remove old files

This commit is contained in:
Karsten Keil 2001-02-13 10:28:31 +00:00
parent 33a9b1afac
commit 1a0b200bcb
5 changed files with 0 additions and 4167 deletions

View File

@ -1,861 +0,0 @@
/* $Id$
*
* avm_pci.c low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
* Thanks to AVM, Berlin for informations
*
* Author Karsten Keil (keil@isdn4linux.de)
*
* This file is (c) under GNU PUBLIC LICENSE
*
*/
#define __NO_VERSION__
#include <linux/config.h>
#include "hisax.h"
#include "isac.h"
#include "isdnl1.h"
#include <linux/pci.h>
#include <linux/interrupt.h>
extern const char *CardType[];
static const char *avm_pci_rev = "$Revision$";
#define AVM_FRITZ_PCI 1
#define AVM_FRITZ_PNP 2
#ifndef PCI_VENDOR_ID_AVM
#define PCI_VENDOR_ID_AVM 0x1244
#endif
#ifndef PCI_DEVICE_ID_AVM_FRITZ
#define PCI_DEVICE_ID_AVM_FRITZ 0xa00
#endif
#define HDLC_FIFO 0x0
#define HDLC_STATUS 0x4
#define AVM_HDLC_1 0x00
#define AVM_HDLC_2 0x01
#define AVM_ISAC_FIFO 0x02
#define AVM_ISAC_REG_LOW 0x04
#define AVM_ISAC_REG_HIGH 0x06
#define AVM_STATUS0_IRQ_ISAC 0x01
#define AVM_STATUS0_IRQ_HDLC 0x02
#define AVM_STATUS0_IRQ_TIMER 0x04
#define AVM_STATUS0_IRQ_MASK 0x07
#define AVM_STATUS0_RESET 0x01
#define AVM_STATUS0_DIS_TIMER 0x02
#define AVM_STATUS0_RES_TIMER 0x04
#define AVM_STATUS0_ENA_IRQ 0x08
#define AVM_STATUS0_TESTBIT 0x10
#define AVM_STATUS1_INT_SEL 0x0f
#define AVM_STATUS1_ENA_IOM 0x80
#define HDLC_MODE_ITF_FLG 0x01
#define HDLC_MODE_TRANS 0x02
#define HDLC_MODE_CCR_7 0x04
#define HDLC_MODE_CCR_16 0x08
#define HDLC_MODE_TESTLOOP 0x80
#define HDLC_INT_XPR 0x80
#define HDLC_INT_XDU 0x40
#define HDLC_INT_RPR 0x20
#define HDLC_INT_MASK 0xE0
#define HDLC_STAT_RME 0x01
#define HDLC_STAT_RDO 0x10
#define HDLC_STAT_CRCVFRRAB 0x0E
#define HDLC_STAT_CRCVFR 0x06
#define HDLC_STAT_RML_MASK 0x3f00
#define HDLC_CMD_XRS 0x80
#define HDLC_CMD_XME 0x01
#define HDLC_CMD_RRS 0x20
#define HDLC_CMD_XML_MASK 0x3f00
/* Interface functions */
static u_char
ReadISAC(struct IsdnCardState *cs, u_char offset)
{
register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
register u_char val;
register long flags;
save_flags(flags);
cli();
outb(idx, cs->hw.avm.cfg_reg + 4);
val = inb(cs->hw.avm.isac + (offset & 0xf));
restore_flags(flags);
return (val);
}
static void
WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
{
register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
register long flags;
save_flags(flags);
cli();
outb(idx, cs->hw.avm.cfg_reg + 4);
outb(value, cs->hw.avm.isac + (offset & 0xf));
restore_flags(flags);
}
static void
ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
insb(cs->hw.avm.isac, data, size);
}
static void
WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
{
outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
outsb(cs->hw.avm.isac, data, size);
}
static inline u_int
ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
{
register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
register u_int val;
register long flags;
save_flags(flags);
cli();
outl(idx, cs->hw.avm.cfg_reg + 4);
val = inl(cs->hw.avm.isac + offset);
restore_flags(flags);
return (val);
}
static inline void
WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
{
register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
register long flags;
save_flags(flags);
cli();
outl(idx, cs->hw.avm.cfg_reg + 4);
outl(value, cs->hw.avm.isac + offset);
restore_flags(flags);
}
static inline u_char
ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
{
register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
register u_char val;
register long flags;
save_flags(flags);
cli();
outb(idx, cs->hw.avm.cfg_reg + 4);
val = inb(cs->hw.avm.isac + offset);
restore_flags(flags);
return (val);
}
static inline void
WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
{
register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
register long flags;
save_flags(flags);
cli();
outb(idx, cs->hw.avm.cfg_reg + 4);
outb(value, cs->hw.avm.isac + offset);
restore_flags(flags);
}
static u_char
ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
{
return(0xff & ReadHDLCPCI(cs, chan, offset));
}
static void
WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
{
WriteHDLCPCI(cs, chan, offset, value);
}
static inline
struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
{
if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
return(&cs->bcs[0]);
else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
return(&cs->bcs[1]);
else
return(NULL);
}
void inline
hdlc_sched_event(struct BCState *bcs, int event)
{
bcs->event |= 1 << event;
queue_task(&bcs->tqueue, &tq_immediate);
mark_bh(IMMEDIATE_BH);
}
void
write_ctrl(struct BCState *bcs, int which) {
if (bcs->cs->debug & L1_DEB_HSCX)
debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
} else {
if (which & 4)
WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
bcs->hw.hdlc.ctrl.sr.mode);
if (which & 2)
WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
bcs->hw.hdlc.ctrl.sr.xml);
if (which & 1)
WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
bcs->hw.hdlc.ctrl.sr.cmd);
}
}
void
modehdlc(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
int hdlc = bcs->channel;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
'A' + hdlc, bcs->mode, mode, hdlc, bc);
bcs->hw.hdlc.ctrl.ctrl = 0;
switch (mode) {
case (-1): /* used for init */
bcs->mode = 1;
bcs->channel = bc;
bc = 0;
case (L1_MODE_NULL):
if (bcs->mode == L1_MODE_NULL)
return;
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
write_ctrl(bcs, 5);
bcs->mode = L1_MODE_NULL;
bcs->channel = bc;
break;
case (L1_MODE_TRANS):
bcs->mode = mode;
bcs->channel = bc;
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
write_ctrl(bcs, 5);
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.ctrl.sr.cmd = 0;
hdlc_sched_event(bcs, B_XMTBUFREADY);
break;
case (L1_MODE_HDLC):
bcs->mode = mode;
bcs->channel = bc;
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
write_ctrl(bcs, 5);
bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.ctrl.sr.cmd = 0;
hdlc_sched_event(bcs, B_XMTBUFREADY);
break;
}
}
static inline void
hdlc_empty_fifo(struct BCState *bcs, int count)
{
register u_int *ptr;
u_char *p;
u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
int cnt=0;
struct IsdnCardState *cs = bcs->cs;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hdlc_empty_fifo %d", count);
if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
return;
}
ptr = (u_int *) p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
bcs->hw.hdlc.rcvidx += count;
if (cs->subtyp == AVM_FRITZ_PCI) {
outl(idx, cs->hw.avm.cfg_reg + 4);
while (cnt < count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
*ptr++ = in_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
#else
*ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
#endif /* CONFIG_APUS */
#else
*ptr++ = inl(cs->hw.avm.isac);
#endif /* __powerpc__ */
cnt += 4;
}
} else {
outb(idx, cs->hw.avm.cfg_reg + 4);
while (cnt < count) {
*p++ = inb(cs->hw.avm.isac);
cnt++;
}
}
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
if (cs->subtyp == AVM_FRITZ_PNP)
p = (u_char *) ptr;
t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
bcs->channel ? 'B' : 'A', count);
QuickHex(t, p, count);
debugl1(cs, bcs->blog);
}
}
static inline void
hdlc_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int count, cnt =0;
int fifo_size = 32;
u_char *p;
u_int *ptr;
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hdlc_fill_fifo");
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
if (bcs->tx_skb->len > fifo_size) {
count = fifo_size;
} else {
count = bcs->tx_skb->len;
if (bcs->mode != L1_MODE_TRANS)
bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
}
if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
debugl1(cs, "hdlc_fill_fifo %d/%ld", count, bcs->tx_skb->len);
ptr = (u_int *) p = bcs->tx_skb->data;
skb_pull(bcs->tx_skb, count);
bcs->tx_cnt -= count;
bcs->hw.hdlc.count += count;
bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
write_ctrl(bcs, 3); /* sets the correct index too */
if (cs->subtyp == AVM_FRITZ_PCI) {
while (cnt<count) {
#ifdef __powerpc__
#ifdef CONFIG_APUS
out_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
#else
out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
#endif /* CONFIG_APUS */
#else
outl(*ptr++, cs->hw.avm.isac);
#endif /* __powerpc__ */
cnt += 4;
}
} else {
while (cnt<count) {
outb(*p++, cs->hw.avm.isac);
cnt++;
}
}
if (cs->debug & L1_DEB_HSCX_FIFO) {
char *t = bcs->blog;
if (cs->subtyp == AVM_FRITZ_PNP)
p = (u_char *) ptr;
t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
bcs->channel ? 'B' : 'A', count);
QuickHex(t, p, count);
debugl1(cs, bcs->blog);
}
}
static void
fill_hdlc(struct BCState *bcs)
{
long flags;
save_flags(flags);
cli();
hdlc_fill_fifo(bcs);
restore_flags(flags);
}
static inline void
HDLC_irq(struct BCState *bcs, u_int stat) {
int len;
struct sk_buff *skb;
if (bcs->cs->debug & L1_DEB_HSCX)
debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
if (stat & HDLC_INT_RPR) {
if (stat & HDLC_STAT_RDO) {
if (bcs->cs->debug & L1_DEB_HSCX)
debugl1(bcs->cs, "RDO");
else
debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
bcs->hw.hdlc.ctrl.sr.xml = 0;
bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.rcvidx = 0;
} else {
if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
len = 32;
hdlc_empty_fifo(bcs, len);
if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
(bcs->mode == L1_MODE_TRANS)) {
if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
printk(KERN_WARNING "HDLC: receive out of memory\n");
else {
memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
skb_queue_tail(&bcs->rqueue, skb);
}
bcs->hw.hdlc.rcvidx = 0;
hdlc_sched_event(bcs, B_RCVBUFREADY);
} else {
if (bcs->cs->debug & L1_DEB_HSCX)
debugl1(bcs->cs, "invalid frame");
else
debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
bcs->hw.hdlc.rcvidx = 0;
}
}
}
}
if (stat & HDLC_INT_XDU) {
/* Here we lost an TX interrupt, so
* restart transmitting the whole frame.
*/
if (bcs->tx_skb) {
skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
bcs->tx_cnt += bcs->hw.hdlc.count;
bcs->hw.hdlc.count = 0;
// hdlc_sched_event(bcs, B_XMTBUFREADY);
if (bcs->cs->debug & L1_DEB_WARN)
debugl1(bcs->cs, "ch%d XDU", bcs->channel);
} else if (bcs->cs->debug & L1_DEB_WARN)
debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
bcs->hw.hdlc.ctrl.sr.xml = 0;
bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
write_ctrl(bcs, 1);
bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
write_ctrl(bcs, 1);
hdlc_fill_fifo(bcs);
} else if (stat & HDLC_INT_XPR) {
if (bcs->tx_skb) {
if (bcs->tx_skb->len) {
hdlc_fill_fifo(bcs);
return;
} else {
if (bcs->st->lli.l1writewakeup &&
(PACKET_NOACK != bcs->tx_skb->pkt_type))
bcs->st->lli.l1writewakeup(bcs->st, bcs->hw.hdlc.count);
dev_kfree_skb(bcs->tx_skb);
bcs->hw.hdlc.count = 0;
bcs->tx_skb = NULL;
}
}
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
bcs->hw.hdlc.count = 0;
test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
hdlc_fill_fifo(bcs);
} else {
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
hdlc_sched_event(bcs, B_XMTBUFREADY);
}
}
}
inline void
HDLC_irq_main(struct IsdnCardState *cs)
{
u_int stat;
long flags;
struct BCState *bcs;
save_flags(flags);
cli();
if (cs->subtyp == AVM_FRITZ_PCI) {
stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
} else {
stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
if (stat & HDLC_INT_RPR)
stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
}
if (stat & HDLC_INT_MASK) {
if (!(bcs = Sel_BCS(cs, 0))) {
if (cs->debug)
debugl1(cs, "hdlc spurious channel 0 IRQ");
} else
HDLC_irq(bcs, stat);
}
if (cs->subtyp == AVM_FRITZ_PCI) {
stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
} else {
stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
if (stat & HDLC_INT_RPR)
stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
}
if (stat & HDLC_INT_MASK) {
if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hdlc spurious channel 1 IRQ");
} else
HDLC_irq(bcs, stat);
}
restore_flags(flags);
}
void
hdlc_l2l1(struct PStack *st, int pr, void *arg)
{
struct sk_buff *skb = arg;
long flags;
switch (pr) {
case (PH_DATA | REQUEST):
save_flags(flags);
cli();
if (st->l1.bcs->tx_skb) {
skb_queue_tail(&st->l1.bcs->squeue, skb);
restore_flags(flags);
} else {
st->l1.bcs->tx_skb = skb;
test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
st->l1.bcs->hw.hdlc.count = 0;
restore_flags(flags);
st->l1.bcs->cs->BC_Send_Data(st->l1.bcs);
}
break;
case (PH_PULL | INDICATION):
if (st->l1.bcs->tx_skb) {
printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
break;
}
test_and_set_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
st->l1.bcs->tx_skb = skb;
st->l1.bcs->hw.hdlc.count = 0;
st->l1.bcs->cs->BC_Send_Data(st->l1.bcs);
break;
case (PH_PULL | REQUEST):
if (!st->l1.bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
test_and_set_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag);
modehdlc(st->l1.bcs, st->l1.mode, st->l1.bc);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
test_and_clear_bit(BC_FLG_ACTIV, &st->l1.bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &st->l1.bcs->Flag);
modehdlc(st->l1.bcs, 0, st->l1.bc);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
void
close_hdlcstate(struct BCState *bcs)
{
modehdlc(bcs, 0, 0);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
if (bcs->hw.hdlc.rcvbuf) {
kfree(bcs->hw.hdlc.rcvbuf);
bcs->hw.hdlc.rcvbuf = NULL;
}
if (bcs->blog) {
kfree(bcs->blog);
bcs->blog = NULL;
}
discard_queue(&bcs->rqueue);
discard_queue(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
int
open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for hdlc.rcvbuf\n");
return (1);
}
if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
printk(KERN_WARNING
"HiSax: No memory for bcs->blog\n");
test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
kfree(bcs->hw.hdlc.rcvbuf);
bcs->hw.hdlc.rcvbuf = NULL;
return (2);
}
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->hw.hdlc.rcvidx = 0;
bcs->tx_cnt = 0;
return (0);
}
int
setstack_hdlc(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hdlcstate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hdlc_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
HISAX_INITFUNC(void
clear_pending_hdlc_ints(struct IsdnCardState *cs))
{
u_int val;
if (cs->subtyp == AVM_FRITZ_PCI) {
val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
debugl1(cs, "HDLC 1 STA %x", val);
val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
debugl1(cs, "HDLC 2 STA %x", val);
} else {
val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
debugl1(cs, "HDLC 1 STA %x", val);
val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
debugl1(cs, "HDLC 1 RML %x", val);
val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
debugl1(cs, "HDLC 1 MODE %x", val);
val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
debugl1(cs, "HDLC 1 VIN %x", val);
val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
debugl1(cs, "HDLC 2 STA %x", val);
val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
debugl1(cs, "HDLC 2 RML %x", val);
val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
debugl1(cs, "HDLC 2 MODE %x", val);
val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
debugl1(cs, "HDLC 2 VIN %x", val);
}
}
HISAX_INITFUNC(void
inithdlc(struct IsdnCardState *cs))
{
cs->bcs[0].BC_SetStack = setstack_hdlc;
cs->bcs[1].BC_SetStack = setstack_hdlc;
cs->bcs[0].BC_Close = close_hdlcstate;
cs->bcs[1].BC_Close = close_hdlcstate;
modehdlc(cs->bcs, -1, 0);
modehdlc(cs->bcs + 1, -1, 1);
}
static void
avm_pcipnp_interrupt(int intno, void *dev_id, struct pt_regs *regs)
{
struct IsdnCardState *cs = dev_id;
u_char val;
u_char sval;
if (!cs) {
printk(KERN_WARNING "AVM PCI: Spurious interrupt!\n");
return;
}
sval = inb(cs->hw.avm.cfg_reg + 2);
if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK)
/* possible a shared IRQ reqest */
return;
if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
val = ReadISAC(cs, ISAC_ISTA);
isac_interrupt(cs, val);
}
if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
HDLC_irq_main(cs);
}
WriteISAC(cs, ISAC_MASK, 0xFF);
WriteISAC(cs, ISAC_MASK, 0x0);
}
static void
reset_avmpcipnp(struct IsdnCardState *cs)
{
long flags;
printk(KERN_INFO "AVM PCI/PnP: reset\n");
save_flags(flags);
sti();
outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout((10*HZ)/1000); /* Timeout 10ms */
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
current->state = TASK_UNINTERRUPTIBLE;
schedule_timeout((10*HZ)/1000); /* Timeout 10ms */
printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
}
static int
AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
switch (mt) {
case CARD_RESET:
reset_avmpcipnp(cs);
return(0);
case CARD_RELEASE:
outb(0, cs->hw.avm.cfg_reg + 2);
release_region(cs->hw.avm.cfg_reg, 32);
return(0);
case CARD_INIT:
clear_pending_isac_ints(cs);
initisac(cs);
clear_pending_hdlc_ints(cs);
inithdlc(cs);
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
cs->hw.avm.cfg_reg + 2);
WriteISAC(cs, ISAC_MASK, 0);
outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
/* RESET Receiver and Transmitter */
WriteISAC(cs, ISAC_CMDR, 0x41);
return(0);
case CARD_TEST:
return(0);
}
return(0);
}
static struct pci_dev *dev_avm __initdata = NULL;
__initfunc(int
setup_avm_pcipnp(struct IsdnCard *card))
{
u_int val, ver;
struct IsdnCardState *cs = card->cs;
char tmp[64];
strcpy(tmp, avm_pci_rev);
printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
if (cs->typ != ISDN_CTYPE_FRITZPCI)
return (0);
if (card->para[1]) {
cs->hw.avm.cfg_reg = card->para[1];
cs->irq = card->para[0];
cs->subtyp = AVM_FRITZ_PNP;
} else {
#if CONFIG_PCI
if (!pci_present()) {
printk(KERN_ERR "FritzPCI: no PCI bus present\n");
return(0);
}
if ((dev_avm = pci_find_device(PCI_VENDOR_ID_AVM,
PCI_DEVICE_ID_AVM_FRITZ, dev_avm))) {
cs->irq = dev_avm->irq;
if (!cs->irq) {
printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
return(0);
}
if (pci_enable_device(dev_avm))
return(0);
cs->hw.avm.cfg_reg = dev_avm->base_address[ 1] & PCI_BASE_ADDRESS_IO_MASK;
if (!cs->hw.avm.cfg_reg) {
printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
return(0);
}
cs->subtyp = AVM_FRITZ_PCI;
} else {
printk(KERN_WARNING "FritzPCI: No PCI card found\n");
return(0);
}
cs->irq_flags |= SA_SHIRQ;
#else
printk(KERN_WARNING "FritzPCI: NO_PCI_BIOS\n");
return (0);
#endif /* CONFIG_PCI */
}
cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
if (check_region((cs->hw.avm.cfg_reg), 32)) {
printk(KERN_WARNING
"HiSax: %s config port %x-%x already in use\n",
CardType[card->typ],
cs->hw.avm.cfg_reg,
cs->hw.avm.cfg_reg + 31);
return (0);
} else {
request_region(cs->hw.avm.cfg_reg, 32,
(cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP");
}
switch (cs->subtyp) {
case AVM_FRITZ_PCI:
val = inl(cs->hw.avm.cfg_reg);
printk(KERN_INFO "AVM PCI: stat %#x\n", val);
printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
val & 0xff, (val>>8) & 0xff);
cs->BC_Read_Reg = &ReadHDLC_s;
cs->BC_Write_Reg = &WriteHDLC_s;
break;
case AVM_FRITZ_PNP:
val = inb(cs->hw.avm.cfg_reg);
ver = inb(cs->hw.avm.cfg_reg + 1);
printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
reset_avmpcipnp(cs);
cs->BC_Read_Reg = &ReadHDLCPnP;
cs->BC_Write_Reg = &WriteHDLCPnP;
break;
default:
printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
return(0);
}
printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
(cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
cs->irq, cs->hw.avm.cfg_reg);
cs->readisac = &ReadISAC;
cs->writeisac = &WriteISAC;
cs->readisacfifo = &ReadISACfifo;
cs->writeisacfifo = &WriteISACfifo;
cs->BC_Send_Data = &fill_hdlc;
cs->cardmsg = &AVM_card_msg;
cs->irq_func = &avm_pcipnp_interrupt;
ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
return (1);
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,465 +0,0 @@
/* $Id$
*
* Basic declarations, defines and prototypes
*
* This file is (c) under GNU PUBLIC LICENSE
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/major.h>
#include <asm/segment.h>
#include <asm/io.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/signal.h>
#include <linux/malloc.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/ioport.h>
#include <linux/timer.h>
#include <linux/wait.h>
#include <linux/isdnif.h>
#include <linux/tty.h>
#include <linux/serial_reg.h>
#include <linux/hisaxif.h>
#include "helper.h"
#define CARD_RESET 0x00F0
#define CARD_INIT 0x00F2
#define CARD_RELEASE 0x00F3
#define CARD_TEST 0x00F4
#define CARD_AUX_IND 0x00F5
#define PH_TESTLOOP 0x0140
#define PH_PAUSE 0x0150
#define DL_FLUSH 0x0224
#define MDL_INFO_SETUP 0x02E0
#define MDL_INFO_CONN 0x02E4
#define MDL_INFO_REL 0x02E8
#define CC_SETUP 0x0300
#define CC_RESUME 0x0304
#define CC_MORE_INFO 0x0310
#define CC_IGNORE 0x0320
#define CC_REJECT 0x0324
#define CC_SETUP_COMPL 0x0330
#define CC_PROCEEDING 0x0340
#define CC_ALERTING 0x0344
#define CC_PROGRESS 0x0348
#define CC_CONNECT 0x0350
#define CC_CHARGE 0x0354
#define CC_NOTIFY 0x0358
#define CC_DISCONNECT 0x0360
#define CC_RELEASE 0x0368
#define CC_SUSPEND 0x0370
#define CC_PROCEED_SEND 0x0374
#define CC_REDIR 0x0378
#define CC_T302 0x0382
#define CC_T303 0x0383
#define CC_T304 0x0384
#define CC_T305 0x0385
#define CC_T308_1 0x0388
#define CC_T308_2 0x038A
#define CC_T309 0x0309
#define CC_T310 0x0390
#define CC_T313 0x0393
#define CC_T318 0x0398
#define CC_T319 0x0399
#define CC_TSPID 0x03A0
#define CC_NOSETUP_RSP 0x03E0
#define CC_SETUP_ERR 0x03E1
#define CC_SUSPEND_ERR 0x03E2
#define CC_RESUME_ERR 0x03E3
#define CC_CONNECT_ERR 0x03E4
#define CC_RELEASE_ERR 0x03E5
#define CC_RESTART 0x03F4
#define CC_TDSS1_IO 0x13F4 /* DSS1 IO user timer */
#define CC_TNI1_IO 0x13F5 /* NI1 IO user timer */
/* define maximum number of possible waiting incoming calls */
#define MAX_WAITING_CALLS 2
#ifdef __KERNEL__
#define MAX_DFRAME_LEN 260
#define MAX_DFRAME_LEN_L1 300
#define HSCX_BUFMAX 4096
#define MAX_DATA_SIZE (HSCX_BUFMAX - 4)
#define MAX_DATA_MEM (HSCX_BUFMAX + 64)
#define RAW_BUFMAX (((HSCX_BUFMAX*6)/5) + 5)
#define MAX_HEADER_LEN 4
#define MAX_WINDOW 8
#define MAX_MON_FRAME 32
#define MAX_DLOG_SPACE 2048
#define MAX_BLOG_SPACE 256
/* #define I4L_IRQ_FLAG SA_INTERRUPT */
#define I4L_IRQ_FLAG 0
/*
* Statemachine
*/
struct FsmInst;
typedef void (* FSMFNPTR)(struct FsmInst *, int, void *);
struct Fsm {
FSMFNPTR *jumpmatrix;
int state_count, event_count;
char **strEvent, **strState;
};
struct FsmInst {
struct Fsm *fsm;
int state;
int debug;
void *userdata;
int userint;
void (*printdebug) (struct FsmInst *, char *, ...);
};
struct FsmNode {
int state, event;
void (*routine) (struct FsmInst *, int, void *);
};
struct FsmTimer {
struct FsmInst *fi;
struct timer_list tl;
int event;
void *arg;
};
#define FLG_L1_ACTIVATING 1
#define FLG_L1_ACTIVATED 2
#define FLG_L1_DEACTTIMER 3
#define FLG_L1_ACTTIMER 4
#define FLG_L1_T3RUN 5
#define FLG_L1_PULL_REQ 6
#define FLG_L1_UINT 7
#define PACKET_NOACK 250
struct hdlc_stat_reg {
#ifdef __BIG_ENDIAN
u_char fill __attribute__((packed));
u_char mode __attribute__((packed));
u_char xml __attribute__((packed));
u_char cmd __attribute__((packed));
#else
u_char cmd __attribute__((packed));
u_char xml __attribute__((packed));
u_char mode __attribute__((packed));
u_char fill __attribute__((packed));
#endif
};
struct isar_reg {
unsigned int Flags;
volatile u_char bstat;
volatile u_char iis;
volatile u_char cmsb;
volatile u_char clsb;
volatile u_char par[8];
};
struct isar_hw {
int dpath;
int txcnt;
int mml;
u_char state;
u_char cmd;
u_char mod;
u_char newcmd;
u_char newmod;
char try_mod;
struct timer_list ftimer;
u_char conmsg[16];
struct isar_reg *reg;
};
struct hdlc_hw {
union {
u_int ctrl;
struct hdlc_stat_reg sr;
} ctrl;
u_int stat;
int count; /* Current skb sent count */
};
#define BC_FLG_INIT 1
#define BC_FLG_ACTIV 2
#define BC_FLG_BUSY 3
#define BC_FLG_NOFRAME 4
#define BC_FLG_HALF 5
#define BC_FLG_EMPTY 6
#define BC_FLG_ORIG 7
#define BC_FLG_DLEETX 8
#define BC_FLG_LASTDLE 9
#define BC_FLG_FIRST 10
#define BC_FLG_LASTDATA 11
#define BC_FLG_NMD_DATA 12
#define BC_FLG_FTI_RUN 13
#define BC_FLG_LL_OK 14
#define BC_FLG_LL_CONN 15
typedef struct _bchannel_t {
int channel;
int protocol;
int Flag;
int debug;
hisaxinstance_t inst;
u_char (*BC_Read_Reg)(void *, int, u_char);
void (*BC_Write_Reg)(void *, int, u_char, u_char);
struct sk_buff *next_skb;
u_int next_nr;
u_char *tx_buf;
int tx_idx;
int tx_len;
u_char *rx_buf;
int rx_idx;
struct sk_buff_head rqueue; /* B-Channel receive Queue */
u_char *blog;
u_char *conmsg;
struct timer_list transbusy;
struct tq_struct tqueue;
int event;
int err_crc;
int err_tx;
int err_rdo;
int err_inv;
union {
struct hdlc_hw hdlc;
struct isar_hw isar;
} hw;
} bchannel_t;
struct avm_hw {
unsigned int cfg_reg;
unsigned int isac;
unsigned int hscx[2];
unsigned int isacfifo;
unsigned int hscxfifo[2];
unsigned int counter;
};
struct sedl_hw {
unsigned int cfg_reg;
unsigned int adr;
unsigned int isac;
unsigned int hscx;
unsigned int reset_on;
unsigned int reset_off;
struct isar_reg isar;
unsigned int chip;
unsigned int bus;
};
struct arcofi_msg {
struct arcofi_msg *next;
u_char receive;
u_char len;
u_char msg[10];
};
struct isac_chip {
int ph_state;
u_char *mon_tx;
u_char *mon_rx;
int mon_txp;
int mon_txc;
int mon_rxp;
struct arcofi_msg *arcofi_list;
struct timer_list arcofitimer;
struct wait_queue *arcofi_wait;
u_char arcofi_bc;
u_char arcofi_state;
u_char mocr;
u_char adf2;
};
#define HW_IOM1 0
#define HW_IPAC 1
#define HW_ISAR 2
#define HW_ARCOFI 3
#define FLG_TWO_DCHAN 4
#define FLG_TX_BUSY 5
#define FLG_TX_NEXT 6
#define FLG_L1_DBUSY 7
#define FLG_DBUSY_TIMER 8
#define FLG_LOCK_ATOMIC 9
#define FLG_ARCOFI_TIMER 10
#define FLG_ARCOFI_ERROR 11
#define FLG_HW_L1_UINT 12
#define FLG_HW_INIT 13
typedef struct _dchannel_t {
hisaxinstance_t inst;
u_int DFlags;
u_char (*readisac) (void *, u_char);
void (*writeisac) (void *, u_char, u_char);
void (*readisacfifo) (void *, u_char *, int);
void (*writeisacfifo) (void *, u_char *, int);
char *dlog;
int debug;
u_int reqnr;
u_char *rx_buf;
int rx_idx;
struct sk_buff *next_skb;
u_int next_nr;
u_char *tx_buf;
int tx_idx;
int tx_len;
int event;
int err_crc;
int err_tx;
int err_rx;
union {
struct isac_chip isac;
} hw;
struct sk_buff_head rqueue; /* D-channel receive queue */
struct tq_struct tqueue;
struct timer_list dbusytimer;
} dchannel_t;
#define MON0_RX 1
#define MON1_RX 2
#define MON0_TX 4
#define MON1_TX 8
#define HISAX_MAX_CARDS 8
#define ISDN_CTYPE_16_0 1
#define ISDN_CTYPE_8_0 2
#define ISDN_CTYPE_16_3 3
#define ISDN_CTYPE_PNP 4
#define ISDN_CTYPE_A1 5
#define ISDN_CTYPE_ELSA 6
#define ISDN_CTYPE_ELSA_PNP 7
#define ISDN_CTYPE_TELESPCMCIA 8
#define ISDN_CTYPE_IX1MICROR2 9
#define ISDN_CTYPE_ELSA_PCMCIA 10
#define ISDN_CTYPE_DIEHLDIVA 11
#define ISDN_CTYPE_ASUSCOM 12
#define ISDN_CTYPE_TELEINT 13
#define ISDN_CTYPE_TELES3C 14
#define ISDN_CTYPE_SEDLBAUER 15
#define ISDN_CTYPE_SPORTSTER 16
#define ISDN_CTYPE_MIC 17
#define ISDN_CTYPE_ELSA_PCI 18
#define ISDN_CTYPE_COMPAQ_ISA 19
#define ISDN_CTYPE_NETJET_S 20
#define ISDN_CTYPE_TELESPCI 21
#define ISDN_CTYPE_SEDLBAUER_PCMCIA 22
#define ISDN_CTYPE_AMD7930 23
#define ISDN_CTYPE_NICCY 24
#define ISDN_CTYPE_S0BOX 25
#define ISDN_CTYPE_A1_PCMCIA 26
#define ISDN_CTYPE_FRITZPCI 27
#define ISDN_CTYPE_SEDLBAUER_FAX 28
#define ISDN_CTYPE_ISURF 29
#define ISDN_CTYPE_ACERP10 30
#define ISDN_CTYPE_HSTSAPHIR 31
#define ISDN_CTYPE_BKM_A4T 32
#define ISDN_CTYPE_SCT_QUADRO 33
#define ISDN_CTYPE_GAZEL 34
#define ISDN_CTYPE_HFC_PCI 35
#define ISDN_CTYPE_W6692 36
#define ISDN_CTYPE_HFC_SX 37
#define ISDN_CTYPE_NETJET_U 38
#define ISDN_CTYPE_HFC_SP_PCMCIA 39
#define ISDN_CTYPE_COUNT 39
#ifdef ISDN_CHIP_ISAC
#undef ISDN_CHIP_ISAC
#endif
#ifndef __initfunc
#define __initfunc(__arginit) __arginit
#endif
#ifndef __initdata
#define __initdata
#endif
#define HISAX_INITFUNC(__arginit) __initfunc(__arginit)
#define HISAX_INITDATA __initdata
#ifdef CONFIG_HISAX_FRITZPCI
#define CARD_FRITZPCI 1
#ifndef ISDN_CHIP_ISAC
#define ISDN_CHIP_ISAC 1
#endif
#else
#define CARD_FRITZPCI 0
#endif
#define TEI_PER_CARD 1
/* L1 Debug */
#define L1_DEB_WARN 0x01
#define L1_DEB_INTSTAT 0x02
#define L1_DEB_ISAC 0x04
#define L1_DEB_ISAC_FIFO 0x08
#define L1_DEB_HSCX 0x10
#define L1_DEB_HSCX_FIFO 0x20
#define L1_DEB_LAPD 0x40
#define L1_DEB_IPAC 0x80
#define L1_DEB_RECEIVE_FRAME 0x100
#define L1_DEB_MONITOR 0x200
#define DEB_DLOG_HEX 0x400
#define DEB_DLOG_VERBOSE 0x800
struct IsdnCard {
int typ;
int protocol; /* EDSS1, 1TR6 or NI1 */
unsigned int para[4];
void *card;
};
int init_dchannel(dchannel_t *);
int free_dchannel(dchannel_t *);
int init_bchannel(bchannel_t *);
int free_bchannel(bchannel_t *);
void FsmNew(struct Fsm *fsm, struct FsmNode *fnlist, int fncount);
void FsmFree(struct Fsm *fsm);
int FsmEvent(struct FsmInst *fi, int event, void *arg);
void FsmChangeState(struct FsmInst *fi, int newstate);
void FsmInitTimer(struct FsmInst *fi, struct FsmTimer *ft);
int FsmAddTimer(struct FsmTimer *ft, int millisec, int event,
void *arg, int where);
void FsmRestartTimer(struct FsmTimer *ft, int millisec, int event,
void *arg, int where);
void FsmDelTimer(struct FsmTimer *ft, int where);
int jiftime(char *s, long mark);
int QuickHex(char *txt, u_char * p, int cnt);
#endif /* __KERNEL__ */
#define HZDELAY(jiffs) {int tout = jiffs; while (tout--) udelay(1000000/HZ);}
char *HiSax_getrev(const char *revision);
#ifdef __powerpc__
#include <linux/pci.h>
static inline int pci_enable_device(struct pci_dev *dev)
{
u16 cmd;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
cmd |= PCI_COMMAND_MEMORY | PCI_COMMAND_IO | PCI_COMMAND_SERR;
cmd &= ~PCI_COMMAND_FAST_BACK;
pci_write_config_word(dev, PCI_COMMAND, cmd);
return(0);
}
#else
#define pci_enable_device(dev) !dev
#endif /* __powerpc__ */

View File

@ -1,20 +0,0 @@
/* $Id$
*
* Layer 1 defines
*
* This file is (c) under GNU PUBLIC LICENSE
*
*/
#define D_RCVBUFREADY 0
#define D_XMTBUFREADY 1
#define D_L1STATECHANGE 2
#define D_CLEARBUSY 3
#define D_RX_MON0 4
#define D_RX_MON1 5
#define D_TX_MON0 6
#define D_TX_MON1 7
#define B_RCVBUFREADY 0
#define B_XMTBUFREADY 1