freeswitch/libs/spandsp/src/t38_core.c

1028 lines
37 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* t38_core.c - Encode and decode the ASN.1 of a T.38 IFP message
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2005, 2006 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*! \file */
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <time.h>
#include <string.h>
#if defined(HAVE_TGMATH_H)
#include <tgmath.h>
#endif
#if defined(HAVE_MATH_H)
#include <math.h>
#endif
#include "floating_fudge.h"
#include <assert.h>
#include <memory.h>
#include <tiffio.h>
#include "spandsp/telephony.h"
#include "spandsp/logging.h"
#include "spandsp/bit_operations.h"
#include "spandsp/t38_core.h"
#include "spandsp/private/logging.h"
#include "spandsp/private/t38_core.h"
#define ACCEPTABLE_SEQ_NO_OFFSET 2000
/* The times for training, the optional TEP, and the HDLC preamble, for all the modem options, in ms.
Note that the preamble for V.21 is 1s+-15%, and for the other modems is 200ms+100ms. */
static const struct
{
int tep;
int training;
int flags;
} modem_startup_time[] =
{
{ 0, 75000, 0}, /* T38_IND_NO_SIGNAL */
{ 0, 0, 0}, /* T38_IND_CNG */
{ 0, 3000000, 0}, /* T38_IND_CED */
{ 0, 0, 1000000}, /* T38_IND_V21_PREAMBLE */ /* TODO: 850ms should be OK for this, but it causes trouble with some ATAs. Why? */
{ 215000, 943000, 200000}, /* T38_IND_V27TER_2400_TRAINING */
{ 215000, 708000, 200000}, /* T38_IND_V27TER_4800_TRAINING */
{ 215000, 234000, 200000}, /* T38_IND_V29_7200_TRAINING */
{ 215000, 234000, 200000}, /* T38_IND_V29_9600_TRAINING */
{ 215000, 142000, 200000}, /* T38_IND_V17_7200_SHORT_TRAINING */
{ 215000, 1393000, 200000}, /* T38_IND_V17_7200_LONG_TRAINING */
{ 215000, 142000, 200000}, /* T38_IND_V17_9600_SHORT_TRAINING */
{ 215000, 1393000, 200000}, /* T38_IND_V17_9600_LONG_TRAINING */
{ 215000, 142000, 200000}, /* T38_IND_V17_12000_SHORT_TRAINING */
{ 215000, 1393000, 200000}, /* T38_IND_V17_12000_LONG_TRAINING */
{ 215000, 142000, 200000}, /* T38_IND_V17_14400_SHORT_TRAINING */
{ 215000, 1393000, 200000}, /* T38_IND_V17_14400_LONG_TRAINING */
{ 215000, 0, 0}, /* T38_IND_V8_ANSAM */
{ 215000, 0, 0}, /* T38_IND_V8_SIGNAL */
{ 215000, 0, 0}, /* T38_IND_V34_CNTL_CHANNEL_1200 */
{ 215000, 0, 0}, /* T38_IND_V34_PRI_CHANNEL */
{ 215000, 0, 0}, /* T38_IND_V34_CC_RETRAIN */
{ 215000, 0, 0}, /* T38_IND_V33_12000_TRAINING */
{ 215000, 0, 0} /* T38_IND_V33_14400_TRAINING */
};
SPAN_DECLARE(const char *) t38_indicator_to_str(int indicator)
{
switch (indicator)
{
case T38_IND_NO_SIGNAL:
return "no-signal";
case T38_IND_CNG:
return "cng";
case T38_IND_CED:
return "ced";
case T38_IND_V21_PREAMBLE:
return "v21-preamble";
case T38_IND_V27TER_2400_TRAINING:
return "v27-2400-training";
case T38_IND_V27TER_4800_TRAINING:
return "v27-4800-training";
case T38_IND_V29_7200_TRAINING:
return "v29-7200-training";
case T38_IND_V29_9600_TRAINING:
return "v29-9600-training";
case T38_IND_V17_7200_SHORT_TRAINING:
return "v17-7200-short-training";
case T38_IND_V17_7200_LONG_TRAINING:
return "v17-7200-long-training";
case T38_IND_V17_9600_SHORT_TRAINING:
return "v17-9600-short-training";
case T38_IND_V17_9600_LONG_TRAINING:
return "v17-9600-long-training";
case T38_IND_V17_12000_SHORT_TRAINING:
return "v17-12000-short-training";
case T38_IND_V17_12000_LONG_TRAINING:
return "v17-12000-long-training";
case T38_IND_V17_14400_SHORT_TRAINING:
return "v17-14400-short-training";
case T38_IND_V17_14400_LONG_TRAINING:
return "v17-14400-long-training";
case T38_IND_V8_ANSAM:
return "v8-ansam";
case T38_IND_V8_SIGNAL:
return "v8-signal";
case T38_IND_V34_CNTL_CHANNEL_1200:
return "v34-cntl-channel-1200";
case T38_IND_V34_PRI_CHANNEL:
return "v34-pri-channel";
case T38_IND_V34_CC_RETRAIN:
return "v34-CC-retrain";
case T38_IND_V33_12000_TRAINING:
return "v33-12000-training";
case T38_IND_V33_14400_TRAINING:
return "v33-14400-training";
}
return "???";
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(const char *) t38_data_type_to_str(int data_type)
{
switch (data_type)
{
case T38_DATA_V21:
return "v21";
case T38_DATA_V27TER_2400:
return "v27-2400";
case T38_DATA_V27TER_4800:
return "v27-4800";
case T38_DATA_V29_7200:
return "v29-7200";
case T38_DATA_V29_9600:
return "v29-9600";
case T38_DATA_V17_7200:
return "v17-7200";
case T38_DATA_V17_9600:
return "v17-9600";
case T38_DATA_V17_12000:
return "v17-12000";
case T38_DATA_V17_14400:
return "v17-14400";
case T38_DATA_V8:
return "v8";
case T38_DATA_V34_PRI_RATE:
return "v34-pri-rate";
case T38_DATA_V34_CC_1200:
return "v34-CC-1200";
case T38_DATA_V34_PRI_CH:
return "v34-pri-ch";
case T38_DATA_V33_12000:
return "v33-12000";
case T38_DATA_V33_14400:
return "v33-14400";
}
return "???";
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(const char *) t38_field_type_to_str(int field_type)
{
switch (field_type)
{
case T38_FIELD_HDLC_DATA:
return "hdlc-data";
case T38_FIELD_HDLC_SIG_END:
return "hdlc-sig-end";
case T38_FIELD_HDLC_FCS_OK:
return "hdlc-fcs-OK";
case T38_FIELD_HDLC_FCS_BAD:
return "hdlc-fcs-BAD";
case T38_FIELD_HDLC_FCS_OK_SIG_END:
return "hdlc-fcs-OK-sig-end";
case T38_FIELD_HDLC_FCS_BAD_SIG_END:
return "hdlc-fcs-BAD-sig-end";
case T38_FIELD_T4_NON_ECM_DATA:
return "t4-non-ecm-data";
case T38_FIELD_T4_NON_ECM_SIG_END:
return "t4-non-ecm-sig-end";
case T38_FIELD_CM_MESSAGE:
return "cm-message";
case T38_FIELD_JM_MESSAGE:
return "jm-message";
case T38_FIELD_CI_MESSAGE:
return "ci-message";
case T38_FIELD_V34RATE:
return "v34rate";
}
return "???";
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(const char *) t38_cm_profile_to_str(int profile)
{
switch (profile)
{
case '1':
return "G3 FAX sending terminal";
case '2':
return "G3 FAX receiving terminal";
case '3':
return "V.34 HDX and G3 FAX sending terminal";
case '4':
return "V.34 HDX and G3 FAX receiving terminal";
case '5':
return "V.34 HDX-only FAX sending terminal";
case '6':
return "V.34 HDX-only FAX receiving terminal";
}
return "???";
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(const char *) t38_jm_to_str(const uint8_t *data, int len)
{
if (len < 2)
return "???";
switch (data[0])
{
case 'A':
switch (data[1])
{
case '0':
return "ACK";
}
break;
case 'N':
switch (data[1])
{
case '0':
return "NACK: No compatible mode available";
case '1':
/* Response for profiles 1 and 2 */
return "NACK: No V.34 FAX, use G3 FAX";
case '2':
/* Response for profiles 5 and 6 */
return "NACK: V.34 only FAX.";
}
break;
}
return "???";
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_v34rate_to_bps(const uint8_t *data, int len)
{
int i;
int rate;
if (len < 3)
return -1;
for (i = 0, rate = 0; i < 3; i++)
{
if (data[i] < '0' || data[i] > '9')
return -1;
rate = rate*10 + data[i] - '0';
}
return rate*100;
}
/*- End of function --------------------------------------------------------*/
static __inline__ int classify_seq_no_offset(int expected, int actual)
{
/* Classify the mismatch between expected and actual sequence numbers
according to whether the actual is a little in the past (late), a
little in the future (some packets have been lost), or a large jump
that represents the sequence being lost (possibly when some RTP
gets dumped to a UDPTL port). */
/* This assumes they are not equal */
if (expected > actual)
{
if (expected > actual + 0x10000 - ACCEPTABLE_SEQ_NO_OFFSET)
{
/* In the near future */
return 1;
}
if (expected < actual + ACCEPTABLE_SEQ_NO_OFFSET)
{
/* In the recent past */
return -1;
}
}
else
{
if (expected + ACCEPTABLE_SEQ_NO_OFFSET > actual)
{
/* In the near future */
return 1;
}
if (expected + 0x10000 - ACCEPTABLE_SEQ_NO_OFFSET < actual)
{
/* In the recent past */
return -1;
}
}
/* There has been a huge step in the sequence */
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_rx_ifp_packet(t38_core_state_t *s, const uint8_t *buf, int len, uint16_t seq_no)
{
int i;
int t30_indicator;
int t30_data;
int ptr;
int other_half;
int numocts;
int log_seq_no;
const uint8_t *msg;
unsigned int count;
unsigned int t30_field_type;
uint8_t type;
uint8_t data_field_present;
uint8_t field_data_present;
char tag[20];
log_seq_no = (s->check_sequence_numbers) ? seq_no : s->rx_expected_seq_no;
if (span_log_test(&s->logging, SPAN_LOG_FLOW))
{
sprintf(tag, "Rx %5d: IFP", log_seq_no);
span_log_buf(&s->logging, SPAN_LOG_FLOW, tag, buf, len);
}
if (len < 1)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Bad packet length - %d\n", log_seq_no, len);
return -1;
}
if (s->check_sequence_numbers)
{
seq_no &= 0xFFFF;
if (seq_no != s->rx_expected_seq_no)
{
/* An expected value of -1 indicates this is the first received packet, and will accept
anything for that. We can't assume they will start from zero, even though they should. */
if (s->rx_expected_seq_no != -1)
{
/* We have a packet with a serial number that is not in sequence. The cause could be:
- 1. a repeat copy of a recent packet. Many T.38 implementations can preduce quite a lot of these.
- 2. a late packet, whose point in the sequence we have already passed.
- 3. the result of a hop in the sequence numbers cause by something weird from the other
end. Stream switching might cause this
- 4. missing packets.
In cases 1 and 2 we need to drop this packet. In case 2 it might make sense to try to do
something with it in the terminal case. Currently we don't. For gateway operation it will be
too late to do anything useful.
*/
if (((seq_no + 1) & 0xFFFF) == s->rx_expected_seq_no)
{
/* Assume this is truly a repeat packet, and don't bother checking its contents. */
span_log(&s->logging, SPAN_LOG_FLOW, "Rx %5d: Repeat packet number\n", log_seq_no);
return 0;
}
/* Distinguish between a little bit out of sequence, and a huge hop. */
switch (classify_seq_no_offset(s->rx_expected_seq_no, seq_no))
{
case -1:
/* This packet is in the near past, so its late. */
span_log(&s->logging, SPAN_LOG_FLOW, "Rx %5d: Late packet - expected %d\n", log_seq_no, s->rx_expected_seq_no);
return 0;
case 1:
/* This packet is in the near future, so some packets have been lost */
span_log(&s->logging, SPAN_LOG_FLOW, "Rx %5d: Missing from %d\n", log_seq_no, s->rx_expected_seq_no);
s->rx_missing_handler(s, s->rx_user_data, s->rx_expected_seq_no, seq_no);
s->missing_packets += (seq_no - s->rx_expected_seq_no);
break;
default:
/* The sequence has jumped wildly */
span_log(&s->logging, SPAN_LOG_FLOW, "Rx %5d: Sequence restart\n", log_seq_no);
s->rx_missing_handler(s, s->rx_user_data, -1, -1);
s->missing_packets++;
break;
}
}
s->rx_expected_seq_no = seq_no;
}
}
/* The sequence numbering is defined as rolling from 0xFFFF to 0x0000. Some implementations
of T.38 roll from 0xFFFF to 0x0001. Isn't standardisation a wonderful thing? The T.38
document specifies only a small fraction of what it should, yet then they actually nail
something properly, people ignore it. Developers in this industry truly deserves the ****
**** **** **** **** **** documents they have to live with. Anyway, when the far end has a
broken rollover behaviour we will get a hiccup at the rollover point. Don't worry too
much. We will just treat the message in progress as one with some missing data. With any
luck a retry will ride over the problem. Rollovers don't occur that often. It takes quite
a few FAX pages to reach rollover. */
s->rx_expected_seq_no = (s->rx_expected_seq_no + 1) & 0xFFFF;
data_field_present = (buf[0] >> 7) & 1;
type = (buf[0] >> 6) & 1;
ptr = 0;
switch (type)
{
case T38_TYPE_OF_MSG_T30_INDICATOR:
/* Indicators should never have a data field */
if (data_field_present)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Data field with indicator\n", log_seq_no);
return -1;
}
/* Any received indicator should mean we no longer have a valid concept of "last received data/field type". */
s->current_rx_data_type = -1;
s->current_rx_field_type = -1;
if ((buf[0] & 0x20))
{
/* Extension */
if (len != 2)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for indicator (A)\n", log_seq_no);
return -1;
}
t30_indicator = T38_IND_V8_ANSAM + (((buf[0] << 2) & 0x3C) | ((buf[1] >> 6) & 0x3));
if (t30_indicator > T38_IND_V33_14400_TRAINING)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Unknown indicator - %d\n", log_seq_no, t30_indicator);
return -1;
}
}
else
{
if (len != 1)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for indicator (B)\n", log_seq_no);
return -1;
}
t30_indicator = (buf[0] >> 1) & 0xF;
}
span_log(&s->logging, SPAN_LOG_FLOW, "Rx %5d: indicator %s\n", log_seq_no, t38_indicator_to_str(t30_indicator));
s->rx_indicator_handler(s, s->rx_user_data, t30_indicator);
/* This must come after the indicator handler, so the handler routine sees the existing state of the
indicator. */
s->current_rx_indicator = t30_indicator;
break;
case T38_TYPE_OF_MSG_T30_DATA:
if ((buf[0] & 0x20))
{
/* Extension */
if (len < 2)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for data (A)\n", log_seq_no);
return -1;
}
t30_data = T38_DATA_V8 + (((buf[0] << 2) & 0x3C) | ((buf[1] >> 6) & 0x3));
if (t30_data > T38_DATA_V33_14400)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Unknown data type - %d\n", log_seq_no, t30_data);
return -1;
}
ptr = 2;
}
else
{
t30_data = (buf[0] >> 1) & 0xF;
if (t30_data > T38_DATA_V17_14400)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Unknown data type - %d\n", log_seq_no, t30_data);
return -1;
}
ptr = 1;
}
if (!data_field_present)
{
/* This is kinda weird, but I guess if the length checks out we accept it. */
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Data type with no data field\n", log_seq_no);
if (ptr != len)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for data (B)\n", log_seq_no);
return -1;
}
break;
}
if (ptr >= len)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for data (C)\n", log_seq_no);
return -1;
}
count = buf[ptr++];
//printf("Count is %d\n", count);
other_half = FALSE;
t30_field_type = 0;
for (i = 0; i < (int) count; i++)
{
if (ptr >= len)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for data (D)\n", log_seq_no);
return -1;
}
if (s->t38_version == 0)
{
/* The original version of T.38 with a typo in the ASN.1 spec. */
if (other_half)
{
/* The lack of a data field in the previous message means
we are currently in the middle of an octet. */
field_data_present = (buf[ptr] >> 3) & 1;
/* Decode field_type */
t30_field_type = buf[ptr] & 0x7;
ptr++;
other_half = FALSE;
}
else
{
field_data_present = (buf[ptr] >> 7) & 1;
/* Decode field_type */
t30_field_type = (buf[ptr] >> 4) & 0x7;
if (field_data_present)
ptr++;
else
other_half = TRUE;
}
if (t30_field_type > T38_FIELD_T4_NON_ECM_SIG_END)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Unknown field type - %d\n", log_seq_no, t30_field_type);
return -1;
}
}
else
{
field_data_present = (buf[ptr] >> 7) & 1;
/* Decode field_type */
if ((buf[ptr] & 0x40))
{
if (ptr > len - 2)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for data (E)\n", log_seq_no);
return -1;
}
t30_field_type = T38_FIELD_CM_MESSAGE + (((buf[ptr] << 2) & 0x3C) | ((buf[ptr + 1] >> 6) & 0x3));
if (t30_field_type > T38_FIELD_V34RATE)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Unknown field type - %d\n", log_seq_no, t30_field_type);
return -1;
}
ptr += 2;
}
else
{
t30_field_type = (buf[ptr++] >> 3) & 0x7;
}
}
/* Decode field_data */
if (field_data_present)
{
if (ptr > len - 2)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for data (F)\n", log_seq_no);
return -1;
}
numocts = ((buf[ptr] << 8) | buf[ptr + 1]) + 1;
msg = buf + ptr + 2;
ptr += numocts + 2;
}
else
{
numocts = 0;
msg = NULL;
}
if (ptr > len)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for data (G)\n", log_seq_no);
return -1;
}
span_log(&s->logging,
SPAN_LOG_FLOW,
"Rx %5d: (%d) data %s/%s + %d byte(s)\n",
log_seq_no,
i,
t38_data_type_to_str(t30_data),
t38_field_type_to_str(t30_field_type),
numocts);
s->rx_data_handler(s, s->rx_user_data, t30_data, t30_field_type, msg, numocts);
s->current_rx_data_type = t30_data;
s->current_rx_field_type = t30_field_type;
}
if (ptr != len)
{
if (s->t38_version != 0 || ptr != (len - 1) || !other_half)
{
span_log(&s->logging, SPAN_LOG_PROTOCOL_WARNING, "Rx %5d: Invalid length for data (H) - %d %d\n", log_seq_no, ptr, len);
return -1;
}
}
break;
}
return 0;
}
/*- End of function --------------------------------------------------------*/
static int t38_encode_indicator(t38_core_state_t *s, uint8_t buf[], int indicator)
{
int len;
/* Build the IFP packet */
/* Data field not present */
/* Indicator packet */
/* Type of indicator */
if (indicator <= T38_IND_V17_14400_LONG_TRAINING)
{
buf[0] = (uint8_t) (indicator << 1);
len = 1;
}
else if (s->t38_version != 0 && indicator <= T38_IND_V33_14400_TRAINING)
{
buf[0] = (uint8_t) (0x20 | (((indicator - T38_IND_V8_ANSAM) & 0xF) >> 2));
buf[1] = (uint8_t) (((indicator - T38_IND_V8_ANSAM) << 6) & 0xFF);
len = 2;
}
else
{
len = -1;
}
return len;
}
/*- End of function --------------------------------------------------------*/
static int t38_encode_data(t38_core_state_t *s, uint8_t buf[], int data_type, const t38_data_field_t field[], int fields)
{
int len;
int i;
int enclen;
int multiplier;
int data_field_no;
const t38_data_field_t *q;
unsigned int encoded_len;
unsigned int fragment_len;
unsigned int value;
uint8_t data_field_present;
uint8_t field_data_present;
char tag[20];
/* Build the IFP packet */
/* There seems no valid reason why a packet would ever be generated without a data field present */
data_field_present = TRUE;
for (data_field_no = 0; data_field_no < fields; data_field_no++)
{
span_log(&s->logging,
SPAN_LOG_FLOW,
"Tx %5d: (%d) data %s/%s + %d byte(s)\n",
s->tx_seq_no,
data_field_no,
t38_data_type_to_str(data_type),
t38_field_type_to_str(field[data_field_no].field_type),
field[data_field_no].field_len);
}
data_field_no = 0;
len = 0;
/* Data field present */
/* Data packet */
/* Type of data */
if (data_type <= T38_DATA_V17_14400)
{
buf[len++] = (uint8_t) ((data_field_present << 7) | 0x40 | (data_type << 1));
}
else if (s->t38_version != 0 && data_type <= T38_DATA_V33_14400)
{
buf[len++] = (uint8_t) ((data_field_present << 7) | 0x60 | (((data_type - T38_DATA_V8) & 0xF) >> 2));
buf[len++] = (uint8_t) (((data_type - T38_DATA_V8) << 6) & 0xFF);
}
else
{
return -1;
}
if (data_field_present)
{
encoded_len = 0;
data_field_no = 0;
do
{
value = fields - encoded_len;
if (value < 0x80)
{
/* 1 octet case */
buf[len++] = (uint8_t) value;
enclen = value;
}
else if (value < 0x4000)
{
/* 2 octet case */
buf[len++] = (uint8_t) (0x80 | ((value >> 8) & 0xFF));
buf[len++] = (uint8_t) (value & 0xFF);
enclen = value;
}
else
{
/* Fragmentation case */
multiplier = (value/0x4000 < 4) ? value/0x4000 : 4;
buf[len++] = (uint8_t) (0xC0 | multiplier);
enclen = 0x4000*multiplier;
}
fragment_len = enclen;
encoded_len += fragment_len;
/* Encode the elements */
for (i = 0; i < (int) encoded_len; i++)
{
q = &field[data_field_no];
field_data_present = (uint8_t) (q->field_len > 0);
/* Encode field_type */
if (s->t38_version == 0)
{
/* Original version of T.38 with a typo */
if (q->field_type > T38_FIELD_T4_NON_ECM_SIG_END)
return -1;
buf[len++] = (uint8_t) ((field_data_present << 7) | (q->field_type << 4));
}
else
{
if (q->field_type <= T38_FIELD_T4_NON_ECM_SIG_END)
{
buf[len++] = (uint8_t) ((field_data_present << 7) | (q->field_type << 3));
}
else if (q->field_type <= T38_FIELD_V34RATE)
{
buf[len++] = (uint8_t) ((field_data_present << 7) | 0x40 | ((q->field_type - T38_FIELD_CM_MESSAGE) >> 2));
buf[len++] = (uint8_t) (((q->field_type - T38_FIELD_CM_MESSAGE) << 6) & 0xC0);
}
else
{
return -1;
}
}
/* Encode field_data */
if (field_data_present)
{
if (q->field_len < 1 || q->field_len > 65535)
return -1;
buf[len++] = (uint8_t) (((q->field_len - 1) >> 8) & 0xFF);
buf[len++] = (uint8_t) ((q->field_len - 1) & 0xFF);
memcpy(buf + len, q->field, q->field_len);
len += q->field_len;
}
data_field_no++;
}
}
while (fields != (int) encoded_len || fragment_len >= 16384);
}
if (span_log_test(&s->logging, SPAN_LOG_FLOW))
{
sprintf(tag, "Tx %5d: IFP", s->tx_seq_no);
span_log_buf(&s->logging, SPAN_LOG_FLOW, tag, buf, len);
}
return len;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_send_indicator(t38_core_state_t *s, int indicator)
{
uint8_t buf[100];
int len;
int delay;
int transmissions;
delay = 0;
/* Only send an indicator if it represents a change of state. */
/* If the 0x100 bit is set in indicator it will bypass this test, and force transmission */
if (s->current_tx_indicator != indicator)
{
/* Zero is a valid count, to suppress the transmission of indicators when the
transport means they are not needed - e.g. TPKT/TCP. */
transmissions = (indicator & 0x100) ? 1 : s->category_control[T38_PACKET_CATEGORY_INDICATOR];
indicator &= 0xFF;
if (s->category_control[T38_PACKET_CATEGORY_INDICATOR])
{
if ((len = t38_encode_indicator(s, buf, indicator)) < 0)
{
span_log(&s->logging, SPAN_LOG_FLOW, "T.38 indicator len is %d\n", len);
return len;
}
span_log(&s->logging, SPAN_LOG_FLOW, "Tx %5d: indicator %s\n", s->tx_seq_no, t38_indicator_to_str(indicator));
s->tx_packet_handler(s, s->tx_packet_user_data, buf, len, transmissions);
s->tx_seq_no = (s->tx_seq_no + 1) & 0xFFFF;
delay = modem_startup_time[indicator].training;
if (s->allow_for_tep)
delay += modem_startup_time[indicator].tep;
}
s->current_tx_indicator = indicator;
}
return delay;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_send_flags_delay(t38_core_state_t *s, int indicator)
{
return modem_startup_time[indicator].flags;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_send_training_delay(t38_core_state_t *s, int indicator)
{
return modem_startup_time[indicator].training;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_send_data(t38_core_state_t *s, int data_type, int field_type, const uint8_t field[], int field_len, int category)
{
t38_data_field_t field0;
uint8_t buf[1000];
int len;
field0.field_type = field_type;
field0.field = field;
field0.field_len = field_len;
if ((len = t38_encode_data(s, buf, data_type, &field0, 1)) < 0)
{
span_log(&s->logging, SPAN_LOG_FLOW, "T.38 data len is %d\n", len);
return len;
}
s->tx_packet_handler(s, s->tx_packet_user_data, buf, len, s->category_control[category]);
s->tx_seq_no = (s->tx_seq_no + 1) & 0xFFFF;
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_send_data_multi_field(t38_core_state_t *s, int data_type, const t38_data_field_t field[], int fields, int category)
{
uint8_t buf[1000];
int len;
if ((len = t38_encode_data(s, buf, data_type, field, fields)) < 0)
{
span_log(&s->logging, SPAN_LOG_FLOW, "T.38 data len is %d\n", len);
return len;
}
s->tx_packet_handler(s, s->tx_packet_user_data, buf, len, s->category_control[category]);
s->tx_seq_no = (s->tx_seq_no + 1) & 0xFFFF;
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_data_rate_management_method(t38_core_state_t *s, int method)
{
s->data_rate_management_method = method;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_data_transport_protocol(t38_core_state_t *s, int data_transport_protocol)
{
s->data_transport_protocol = data_transport_protocol;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_fill_bit_removal(t38_core_state_t *s, int fill_bit_removal)
{
s->fill_bit_removal = fill_bit_removal;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_mmr_transcoding(t38_core_state_t *s, int mmr_transcoding)
{
s->mmr_transcoding = mmr_transcoding;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_jbig_transcoding(t38_core_state_t *s, int jbig_transcoding)
{
s->jbig_transcoding = jbig_transcoding;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_max_buffer_size(t38_core_state_t *s, int max_buffer_size)
{
s->max_buffer_size = max_buffer_size;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_max_datagram_size(t38_core_state_t *s, int max_datagram_size)
{
s->max_datagram_size = max_datagram_size;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_t38_version(t38_core_state_t *s, int t38_version)
{
s->t38_version = t38_version;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_sequence_number_handling(t38_core_state_t *s, int check)
{
s->check_sequence_numbers = check;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_tep_handling(t38_core_state_t *s, int allow_for_tep)
{
s->allow_for_tep = allow_for_tep;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_redundancy_control(t38_core_state_t *s, int category, int setting)
{
s->category_control[category] = setting;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(void) t38_set_fastest_image_data_rate(t38_core_state_t *s, int max_rate)
{
s->fastest_image_data_rate = max_rate;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_get_fastest_image_data_rate(t38_core_state_t *s)
{
return s->fastest_image_data_rate;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(logging_state_t *) t38_core_get_logging_state(t38_core_state_t *s)
{
return &s->logging;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_restart(t38_core_state_t *s)
{
/* Set the initial current receive states to something invalid, so the
first data received is seen as a change of state. */
s->current_rx_indicator = -1;
s->current_rx_data_type = -1;
s->current_rx_field_type = -1;
/* Set the initial current indicator state to something invalid, so the
first attempt to send an indicator will work. */
s->current_tx_indicator = -1;
/* We have no initial expectation of the received packet sequence number.
They most often start at 0 or 1 for a UDPTL transport, but random
starting numbers are possible. */
s->rx_expected_seq_no = -1;
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(t38_core_state_t *) t38_core_init(t38_core_state_t *s,
t38_rx_indicator_handler_t *rx_indicator_handler,
t38_rx_data_handler_t *rx_data_handler,
t38_rx_missing_handler_t *rx_missing_handler,
void *rx_user_data,
t38_tx_packet_handler_t *tx_packet_handler,
void *tx_packet_user_data)
{
if (s == NULL)
{
if ((s = (t38_core_state_t *) malloc(sizeof(*s))) == NULL)
return NULL;
}
memset(s, 0, sizeof(*s));
span_log_init(&s->logging, SPAN_LOG_NONE, NULL);
span_log_set_protocol(&s->logging, "T.38");
/* Set some defaults for the parameters configurable from outside the
T.38 domain - e.g. from SDP data. */
s->data_rate_management_method = T38_DATA_RATE_MANAGEMENT_TRANSFERRED_TCF;
s->data_transport_protocol = T38_TRANSPORT_UDPTL;
s->fill_bit_removal = FALSE;
s->mmr_transcoding = FALSE;
s->jbig_transcoding = FALSE;
s->max_buffer_size = 400;
s->max_datagram_size = 100;
s->t38_version = 0;
s->check_sequence_numbers = TRUE;
/* Set some defaults */
s->category_control[T38_PACKET_CATEGORY_INDICATOR] = 1;
s->category_control[T38_PACKET_CATEGORY_CONTROL_DATA] = 1;
s->category_control[T38_PACKET_CATEGORY_CONTROL_DATA_END] = 1;
s->category_control[T38_PACKET_CATEGORY_IMAGE_DATA] = 1;
s->category_control[T38_PACKET_CATEGORY_IMAGE_DATA_END] = 1;
s->rx_indicator_handler = rx_indicator_handler;
s->rx_data_handler = rx_data_handler;
s->rx_missing_handler = rx_missing_handler;
s->rx_user_data = rx_user_data;
s->tx_packet_handler = tx_packet_handler;
s->tx_packet_user_data = tx_packet_user_data;
t38_core_restart(s);
return s;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_release(t38_core_state_t *s)
{
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) t38_core_free(t38_core_state_t *s)
{
if (s)
free(s);
return 0;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/