freeswitch/src/switch_mprintf.c

935 lines
26 KiB
C

/*
** The "printf" code that follows dates from the 1980's. It is in
** the public domain. The original comments are included here for
** completeness. They are very out-of-date but might be useful as
** an historical reference. Most of the "enhancements" have been backed
** out so that the functionality is now the same as standard printf().
**
**************************************************************************
**
** The following modules is an enhanced replacement for the "printf" subroutines
** found in the standard C library. The following enhancements are
** supported:
**
** + Additional functions. The standard set of "printf" functions
** includes printf, fprintf, sprintf, vprintf, vfprintf, and
** vsprintf. This module adds the following:
**
** * snprintf -- Works like sprintf, but has an extra argument
** which is the size of the buffer written to.
**
** * mprintf -- Similar to sprintf. Writes output to memory
** obtained from malloc.
**
** * xprintf -- Calls a function to dispose of output.
**
** * nprintf -- No output, but returns the number of characters
** that would have been output by printf.
**
** * A v- version (ex: vsnprintf) of every function is also
** supplied.
**
** + A few extensions to the formatting notation are supported:
**
** * The "=" flag (similar to "-") causes the output to be
** be centered in the appropriately sized field.
**
** * The %b field outputs an integer in binary notation.
**
** * The %c field now accepts a precision. The character output
** is repeated by the number of times the precision specifies.
**
** * The %' field works like %c, but takes as its character the
** next character of the format string, instead of the next
** argument. For example, printf("%.78'-") prints 78 minus
** signs, the same as printf("%.78c",'-').
**
** + When compiled using GCC on a SPARC, this version of printf is
** faster than the library printf for SUN OS 4.1.
**
** + All functions are fully reentrant.
**
*/
/*
* 20090210 (stkn):
* Taken from sqlite-3.3.x,
* renamed SQLITE_ -> SWITCH_,
* renamed visible functions to switch_*
* disabled functions without extra conversion specifiers
*/
#include <switch.h>
#define LONGDOUBLE_TYPE long double
/*
** Conversion types fall into various categories as defined by the
** following enumeration.
*/
#define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */
#define etFLOAT 2 /* Floating point. %f */
#define etEXP 3 /* Exponentional notation. %e and %E */
#define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */
#define etSIZE 5 /* Return number of characters processed so far. %n */
#define etSTRING 6 /* Strings. %s */
#define etDYNSTRING 7 /* Dynamically allocated strings. %z */
#define etPERCENT 8 /* Percent symbol. %% */
#define etCHARX 9 /* Characters. %c */
/* The rest are extensions, not normally found in printf() */
#define etCHARLIT 10 /* Literal characters. %' */
#define etSQLESCAPE 11 /* Strings with '\'' doubled. %q */
#define etSQLESCAPE2 12 /* Strings with '\'' doubled and enclosed in '',
NULL pointers replaced by SQL NULL. %Q */
#ifdef __UNSUPPORTED__
#define etTOKEN 13 /* a pointer to a Token structure */
#define etSRCLIST 14 /* a pointer to a SrcList */
#endif
#define etPOINTER 15 /* The %p conversion */
#define etSQLESCAPE3 16
#define etSQLESCAPE4 17
/*
** An "etByte" is an 8-bit unsigned value.
*/
typedef unsigned char etByte;
/*
** Each builtin conversion character (ex: the 'd' in "%d") is described
** by an instance of the following structure
*/
typedef struct et_info { /* Information about each format field */
char fmttype; /* The format field code letter */
etByte base; /* The base for radix conversion */
etByte flags; /* One or more of FLAG_ constants below */
etByte type; /* Conversion paradigm */
etByte charset; /* Offset into aDigits[] of the digits string */
etByte prefix; /* Offset into aPrefix[] of the prefix string */
} et_info;
/*
** Allowed values for et_info.flags
*/
#define FLAG_SIGNED 1 /* True if the value to convert is signed */
#define FLAG_INTERN 2 /* True if for internal use only */
#define FLAG_STRING 4 /* Allow infinity precision */
/*
** The following table is searched linearly, so it is good to put the
** most frequently used conversion types first.
*/
static const char aDigits[] = "0123456789ABCDEF0123456789abcdef";
static const char aPrefix[] = "-x0\000X0";
static const et_info fmtinfo[] = {
{'d', 10, 1, etRADIX, 0, 0},
{'s', 0, 4, etSTRING, 0, 0},
{'g', 0, 1, etGENERIC, 30, 0},
{'z', 0, 6, etDYNSTRING, 0, 0},
{'q', 0, 4, etSQLESCAPE, 0, 0},
{'Q', 0, 4, etSQLESCAPE2, 0, 0},
{'w', 0, 4, etSQLESCAPE3, 0, 0},
{'y', 0, 4, etSQLESCAPE4, 0, 0},
{'c', 0, 0, etCHARX, 0, 0},
{'o', 8, 0, etRADIX, 0, 2},
{'u', 10, 0, etRADIX, 0, 0},
{'x', 16, 0, etRADIX, 16, 1},
{'X', 16, 0, etRADIX, 0, 4},
#ifndef SWITCH_OMIT_FLOATING_POINT
{'f', 0, 1, etFLOAT, 0, 0},
{'e', 0, 1, etEXP, 30, 0},
{'E', 0, 1, etEXP, 14, 0},
{'G', 0, 1, etGENERIC, 14, 0},
#endif
{'i', 10, 1, etRADIX, 0, 0},
{'n', 0, 0, etSIZE, 0, 0},
{'%', 0, 0, etPERCENT, 0, 0},
{'p', 16, 0, etPOINTER, 0, 1},
#ifdef __UNSUPPORTED__
{'T', 0, 2, etTOKEN, 0, 0},
{'S', 0, 2, etSRCLIST, 0, 0},
#endif
};
#define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0]))
/*
** If SWITCH_OMIT_FLOATING_POINT is defined, then none of the floating point
** conversions will work.
*/
#ifndef SWITCH_OMIT_FLOATING_POINT
/*
** "*val" is a double such that 0.1 <= *val < 10.0
** Return the ascii code for the leading digit of *val, then
** multiply "*val" by 10.0 to renormalize.
**
** Example:
** input: *val = 3.14159
** output: *val = 1.4159 function return = '3'
**
** The counter *cnt is incremented each time. After counter exceeds
** 16 (the number of significant digits in a 64-bit float) '0' is
** always returned.
*/
static int et_getdigit(LONGDOUBLE_TYPE * val, int *cnt)
{
int digit;
LONGDOUBLE_TYPE d;
if ((*cnt)++ >= 16)
return '0';
digit = (int) *val;
d = digit;
digit += '0';
*val = (*val - d) * 10.0;
return digit;
}
#endif /* SWITCH_OMIT_FLOATING_POINT */
/*
** On machines with a small stack size, you can redefine the
** SWITCH_PRINT_BUF_SIZE to be less than 350. But beware - for
** smaller values some %f conversions may go into an infinite loop.
*/
#ifndef SWITCH_PRINT_BUF_SIZE
# define SWITCH_PRINT_BUF_SIZE 350
#endif
#define etBUFSIZE SWITCH_PRINT_BUF_SIZE /* Size of the output buffer */
/*
** The root program. All variations call this core.
**
** INPUTS:
** func This is a pointer to a function taking three arguments
** 1. A pointer to anything. Same as the "arg" parameter.
** 2. A pointer to the list of characters to be output
** (Note, this list is NOT null terminated.)
** 3. An integer number of characters to be output.
** (Note: This number might be zero.)
**
** arg This is the pointer to anything which will be passed as the
** first argument to "func". Use it for whatever you like.
**
** fmt This is the format string, as in the usual print.
**
** ap This is a pointer to a list of arguments. Same as in
** vfprint.
**
** OUTPUTS:
** The return value is the total number of characters sent to
** the function "func". Returns -1 on a error.
**
** Note that the order in which automatic variables are declared below
** seems to make a big difference in determining how fast this beast
** will run.
*/
static int vxprintf(void (*func) (void *, const char *, int), /* Consumer of text */
void *arg, /* First argument to the consumer */
int useExtended, /* Allow extended %-conversions */
const char *fmt, /* Format string */
va_list ap /* arguments */
)
{
int c; /* Next character in the format string */
char *bufpt; /* Pointer to the conversion buffer */
int precision; /* Precision of the current field */
int length; /* Length of the field */
int idx; /* A general purpose loop counter */
int count; /* Total number of characters output */
int width; /* Width of the current field */
etByte flag_leftjustify; /* True if "-" flag is present */
etByte flag_plussign; /* True if "+" flag is present */
etByte flag_blanksign; /* True if " " flag is present */
etByte flag_alternateform; /* True if "#" flag is present */
etByte flag_altform2; /* True if "!" flag is present */
etByte flag_zeropad; /* True if field width constant starts with zero */
etByte flag_long; /* True if "l" flag is present */
etByte flag_longlong; /* True if the "ll" flag is present */
etByte done; /* Loop termination flag */
uint64_t longvalue; /* Value for integer types */
LONGDOUBLE_TYPE realvalue; /* Value for real types */
const et_info *infop; /* Pointer to the appropriate info structure */
char buf[etBUFSIZE]; /* Conversion buffer */
char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */
etByte errorflag = 0; /* True if an error is encountered */
etByte xtype = 0; /* Conversion paradigm */
char *zExtra; /* Extra memory used for etTCLESCAPE conversions */
static const char spaces[] = " ";
#define etSPACESIZE (sizeof(spaces)-1)
#ifndef SWITCH_OMIT_FLOATING_POINT
int exp, e2; /* exponent of real numbers */
double rounder; /* Used for rounding floating point values */
etByte flag_dp; /* True if decimal point should be shown */
etByte flag_rtz; /* True if trailing zeros should be removed */
etByte flag_exp; /* True to force display of the exponent */
int nsd; /* Number of significant digits returned */
#endif
func(arg, "", 0);
count = length = 0;
bufpt = 0;
for (; (c = (*fmt)) != 0; ++fmt) {
if (c != '%') {
int amt;
bufpt = (char *) fmt;
amt = 1;
while ((c = (*++fmt)) != '%' && c != 0)
amt++;
(*func) (arg, bufpt, amt);
count += amt;
if (c == 0)
break;
}
if ((c = (*++fmt)) == 0) {
errorflag = 1;
(*func) (arg, "%", 1);
count++;
break;
}
/* Find out what flags are present */
flag_leftjustify = flag_plussign = flag_blanksign = flag_alternateform = flag_altform2 = flag_zeropad = 0;
done = 0;
do {
switch (c) {
case '-':
flag_leftjustify = 1;
break;
case '+':
flag_plussign = 1;
break;
case ' ':
flag_blanksign = 1;
break;
case '#':
flag_alternateform = 1;
break;
case '!':
flag_altform2 = 1;
break;
case '0':
flag_zeropad = 1;
break;
default:
done = 1;
break;
}
} while (!done && (c = (*++fmt)) != 0);
/* Get the field width */
width = 0;
if (c == '*') {
width = va_arg(ap, int);
if (width < 0) {
flag_leftjustify = 1;
width = -width;
}
c = *++fmt;
} else {
while (c >= '0' && c <= '9') {
width = width * 10 + c - '0';
c = *++fmt;
}
}
if (width > etBUFSIZE - 10) {
width = etBUFSIZE - 10;
}
/* Get the precision */
if (c == '.') {
precision = 0;
c = *++fmt;
if (c == '*') {
precision = va_arg(ap, int);
if (precision < 0)
precision = -precision;
c = *++fmt;
} else {
while (c >= '0' && c <= '9') {
precision = precision * 10 + c - '0';
c = *++fmt;
}
}
} else {
precision = -1;
}
/* Get the conversion type modifier */
if (c == 'l') {
flag_long = 1;
c = *++fmt;
if (c == 'l') {
flag_longlong = 1;
c = *++fmt;
} else {
flag_longlong = 0;
}
} else {
flag_long = flag_longlong = 0;
}
/* Fetch the info entry for the field */
infop = 0;
for (idx = 0; idx < etNINFO; idx++) {
if (c == fmtinfo[idx].fmttype) {
infop = &fmtinfo[idx];
if (useExtended || (infop->flags & FLAG_INTERN) == 0) {
xtype = infop->type;
} else {
return -1;
}
break;
}
}
zExtra = 0;
if (infop == 0) {
return -1;
}
/* Limit the precision to prevent overflowing buf[] during conversion */
if (precision > etBUFSIZE - 40 && (infop->flags & FLAG_STRING) == 0) {
precision = etBUFSIZE - 40;
}
/*
** At this point, variables are initialized as follows:
**
** flag_alternateform TRUE if a '#' is present.
** flag_altform2 TRUE if a '!' is present.
** flag_plussign TRUE if a '+' is present.
** flag_leftjustify TRUE if a '-' is present or if the
** field width was negative.
** flag_zeropad TRUE if the width began with 0.
** flag_long TRUE if the letter 'l' (ell) prefixed
** the conversion character.
** flag_longlong TRUE if the letter 'll' (ell ell) prefixed
** the conversion character.
** flag_blanksign TRUE if a ' ' is present.
** width The specified field width. This is
** always non-negative. Zero is the default.
** precision The specified precision. The default
** is -1.
** xtype The class of the conversion.
** infop Pointer to the appropriate info struct.
*/
switch (xtype) {
case etPOINTER:
flag_longlong = sizeof(char *) == sizeof(int64_t);
flag_long = sizeof(char *) == sizeof(long int);
/* Fall through into the next case */
case etRADIX:
if (infop->flags & FLAG_SIGNED) {
int64_t v;
if (flag_longlong)
v = va_arg(ap, int64_t);
else if (flag_long)
v = va_arg(ap, long int);
else
v = va_arg(ap, int);
if (v < 0) {
longvalue = -v;
prefix = '-';
} else {
longvalue = v;
if (flag_plussign)
prefix = '+';
else if (flag_blanksign)
prefix = ' ';
else
prefix = 0;
}
} else {
if (flag_longlong)
longvalue = va_arg(ap, uint64_t);
else if (flag_long)
longvalue = va_arg(ap, unsigned long int);
else
longvalue = va_arg(ap, unsigned int);
prefix = 0;
}
if (longvalue == 0)
flag_alternateform = 0;
if (flag_zeropad && precision < width - (prefix != 0)) {
precision = width - (prefix != 0);
}
bufpt = &buf[etBUFSIZE - 1];
{
register const char *cset; /* Use registers for speed */
register int base;
cset = &aDigits[infop->charset];
base = infop->base;
do { /* Convert to ascii */
*(--bufpt) = cset[longvalue % base];
longvalue = longvalue / base;
} while (longvalue > 0);
}
length = (int)(&buf[etBUFSIZE - 1] - bufpt);
for (idx = precision - length; idx > 0; idx--) {
*(--bufpt) = '0'; /* Zero pad */
}
if (prefix)
*(--bufpt) = prefix; /* Add sign */
if (flag_alternateform && infop->prefix) { /* Add "0" or "0x" */
const char *pre;
char x;
pre = &aPrefix[infop->prefix];
if (*bufpt != pre[0]) {
for (; (x = (*pre)) != 0; pre++)
*(--bufpt) = x;
}
}
length = (int)(&buf[etBUFSIZE - 1] - bufpt);
break;
case etFLOAT:
case etEXP:
case etGENERIC:
realvalue = va_arg(ap, double);
#ifndef SWITCH_OMIT_FLOATING_POINT
if (precision < 0)
precision = 6; /* Set default precision */
if (precision > etBUFSIZE / 2 - 10)
precision = etBUFSIZE / 2 - 10;
if (realvalue < 0.0) {
realvalue = -realvalue;
prefix = '-';
} else {
if (flag_plussign)
prefix = '+';
else if (flag_blanksign)
prefix = ' ';
else
prefix = 0;
}
if (xtype == etGENERIC && precision > 0)
precision--;
#if 0
/* Rounding works like BSD when the constant 0.4999 is used. Wierd! */
for (idx = precision, rounder = 0.4999; idx > 0; idx--, rounder *= 0.1);
#else
/* It makes more sense to use 0.5 */
for (idx = precision, rounder = 0.5; idx > 0; idx--, rounder *= 0.1) {
}
#endif
if (xtype == etFLOAT)
realvalue += rounder;
/* Normalize realvalue to within 10.0 > realvalue >= 1.0 */
exp = 0;
if (realvalue > 0.0) {
while (realvalue >= 1e32 && exp <= 350) {
realvalue *= 1e-32;
exp += 32;
}
while (realvalue >= 1e8 && exp <= 350) {
realvalue *= 1e-8;
exp += 8;
}
while (realvalue >= 10.0 && exp <= 350) {
realvalue *= 0.1;
exp++;
}
while (realvalue < 1e-8 && exp >= -350) {
realvalue *= 1e8;
exp -= 8;
}
while (realvalue < 1.0 && exp >= -350) {
realvalue *= 10.0;
exp--;
}
if (exp > 350 || exp < -350) {
bufpt = "NaN";
length = 3;
break;
}
}
bufpt = buf;
/*
** If the field type is etGENERIC, then convert to either etEXP
** or etFLOAT, as appropriate.
*/
flag_exp = xtype == etEXP;
if (xtype != etFLOAT) {
realvalue += rounder;
if (realvalue >= 10.0) {
realvalue *= 0.1;
exp++;
}
}
if (xtype == etGENERIC) {
flag_rtz = !flag_alternateform;
if (exp < -4 || exp > precision) {
xtype = etEXP;
} else {
precision = precision - exp;
xtype = etFLOAT;
}
} else {
flag_rtz = 0;
}
if (xtype == etEXP) {
e2 = 0;
} else {
e2 = exp;
}
nsd = 0;
flag_dp = (precision > 0) | flag_alternateform | flag_altform2;
/* The sign in front of the number */
if (prefix) {
*(bufpt++) = prefix;
}
/* Digits prior to the decimal point */
if (e2 < 0) {
*(bufpt++) = '0';
} else {
for (; e2 >= 0; e2--) {
*(bufpt++) = (char) et_getdigit(&realvalue, &nsd);
}
}
/* The decimal point */
if (flag_dp) {
*(bufpt++) = '.';
}
/* "0" digits after the decimal point but before the first
** significant digit of the number */
for (e2++; e2 < 0 && precision > 0; precision--, e2++) {
*(bufpt++) = '0';
}
/* Significant digits after the decimal point */
while ((precision--) > 0) {
*(bufpt++) = (char) et_getdigit(&realvalue, &nsd);
}
/* Remove trailing zeros and the "." if no digits follow the "." */
if (flag_rtz && flag_dp) {
while (bufpt[-1] == '0')
*(--bufpt) = 0;
assert(bufpt > buf);
if (bufpt[-1] == '.') {
if (flag_altform2) {
*(bufpt++) = '0';
} else {
*(--bufpt) = 0;
}
}
}
/* Add the "eNNN" suffix */
if (flag_exp || (xtype == etEXP && exp)) {
*(bufpt++) = aDigits[infop->charset];
if (exp < 0) {
*(bufpt++) = '-';
exp = -exp;
} else {
*(bufpt++) = '+';
}
if (exp >= 100) {
*(bufpt++) = (char) (exp / 100) + '0'; /* 100's digit */
exp %= 100;
}
*(bufpt++) = (char) exp / 10 + '0'; /* 10's digit */
*(bufpt++) = exp % 10 + '0'; /* 1's digit */
}
*bufpt = 0;
/* The converted number is in buf[] and zero terminated. Output it.
** Note that the number is in the usual order, not reversed as with
** integer conversions. */
length = (int)(bufpt - buf);
bufpt = buf;
/* Special case: Add leading zeros if the flag_zeropad flag is
** set and we are not left justified */
if (flag_zeropad && !flag_leftjustify && length < width) {
int i;
int nPad = width - length;
for (i = width; i >= nPad; i--) {
bufpt[i] = bufpt[i - nPad];
}
i = prefix != 0;
while (nPad--)
bufpt[i++] = '0';
length = width;
}
#endif
break;
case etSIZE:
*(va_arg(ap, int *)) = count;
length = width = 0;
break;
case etPERCENT:
buf[0] = '%';
bufpt = buf;
length = 1;
break;
case etCHARLIT:
case etCHARX:
c = buf[0] = (char) (xtype == etCHARX ? va_arg(ap, int) : *++fmt);
if (precision >= 0) {
for (idx = 1; idx < precision; idx++)
buf[idx] = (char) c;
length = precision;
} else {
length = 1;
}
bufpt = buf;
break;
case etSTRING:
case etDYNSTRING:
bufpt = va_arg(ap, char *);
if (bufpt == 0) {
bufpt = "";
} else if (xtype == etDYNSTRING) {
zExtra = bufpt;
}
length = (int)strlen(bufpt);
if (precision >= 0 && precision < length)
length = precision;
break;
case etSQLESCAPE:
case etSQLESCAPE2:
case etSQLESCAPE4:
case etSQLESCAPE3:{
int i, j, n, ch, isnull;
int needQuote;
char *escarg = va_arg(ap, char *);
isnull = escarg == 0;
if (isnull)
escarg = (xtype == etSQLESCAPE2 ? "NULL" : "(NULL)");
for (i = n = 0; (ch = escarg[i]) != 0; i++) {
if (ch == '\'' || (xtype == etSQLESCAPE3 && ch == '\\'))
n++;
}
needQuote = !isnull && xtype == etSQLESCAPE2;
n += i + 1 + needQuote * 2;
if (n > etBUFSIZE) {
bufpt = zExtra = malloc(n);
if (bufpt == 0)
return -1;
} else {
bufpt = buf;
}
j = 0;
if (needQuote)
bufpt[j++] = '\'';
for (i = 0; (ch = escarg[i]) != 0; i++) {
bufpt[j++] = (char) ch;
if (xtype == etSQLESCAPE4) {
if (ch == '\'' || (xtype == etSQLESCAPE3 && ch == '\\')) {
bufpt[j] = (char) ch;
bufpt[j-1] = (char) '\\';
j++;
}
} else {
if (ch == '\'' || (xtype == etSQLESCAPE3 && ch == '\\'))
bufpt[j++] = (char) ch;
}
}
if (needQuote)
bufpt[j++] = '\'';
bufpt[j] = 0;
length = j;
/* The precision is ignored on %q and %Q */
/* if ( precision>=0 && precision<length ) length = precision; */
break;
}
#ifdef __UNSUPPORTED__
case etTOKEN:{
Token *pToken = va_arg(ap, Token *);
if (pToken && pToken->z) {
(*func) (arg, (char *) pToken->z, pToken->n);
}
length = width = 0;
break;
}
case etSRCLIST:{
SrcList *pSrc = va_arg(ap, SrcList *);
int k = va_arg(ap, int);
struct SrcList_item *pItem = &pSrc->a[k];
assert(k >= 0 && k < pSrc->nSrc);
if (pItem->zDatabase && pItem->zDatabase[0]) {
(*func) (arg, pItem->zDatabase, strlen(pItem->zDatabase));
(*func) (arg, ".", 1);
}
(*func) (arg, pItem->zName, strlen(pItem->zName));
length = width = 0;
break;
}
#endif
} /* End switch over the format type */
/*
** The text of the conversion is pointed to by "bufpt" and is
** "length" characters long. The field width is "width". Do
** the output.
*/
if (!flag_leftjustify) {
register int nspace;
nspace = width - length;
if (nspace > 0) {
count += nspace;
while (nspace >= etSPACESIZE) {
(*func) (arg, spaces, etSPACESIZE);
nspace -= etSPACESIZE;
}
if (nspace > 0)
(*func) (arg, spaces, nspace);
}
}
if (length > 0) {
(*func) (arg, bufpt, length);
count += length;
}
if (flag_leftjustify) {
register int nspace;
nspace = width - length;
if (nspace > 0) {
count += nspace;
while (nspace >= etSPACESIZE) {
(*func) (arg, spaces, etSPACESIZE);
nspace -= etSPACESIZE;
}
if (nspace > 0)
(*func) (arg, spaces, nspace);
}
}
if (zExtra) {
free(zExtra);
}
} /* End for loop over the format string */
return errorflag ? -1 : count;
} /* End of function */
/* This structure is used to store state information about the
** write to memory that is currently in progress.
*/
struct sgMprintf {
char *zBase; /* A base allocation */
char *zText; /* The string collected so far */
int nChar; /* Length of the string so far */
int nTotal; /* Output size if unconstrained */
int nAlloc; /* Amount of space allocated in zText */
void *(*xRealloc) (void *, int); /* Function used to realloc memory */
};
/*
** This function implements the callback from vxprintf.
**
** This routine add nNewChar characters of text in zNewText to
** the sgMprintf structure pointed to by "arg".
*/
static void mout(void *arg, const char *zNewText, int nNewChar)
{
struct sgMprintf *pM = (struct sgMprintf *) arg;
pM->nTotal += nNewChar;
if (pM->nChar + nNewChar + 1 > pM->nAlloc) {
if (pM->xRealloc == 0) {
nNewChar = pM->nAlloc - pM->nChar - 1;
} else {
pM->nAlloc = pM->nChar + nNewChar * 2 + 1;
if (pM->zText == pM->zBase) {
pM->zText = pM->xRealloc(0, pM->nAlloc);
if (pM->zText && pM->nChar) {
memcpy(pM->zText, pM->zBase, pM->nChar);
}
} else {
char *zNew;
zNew = pM->xRealloc(pM->zText, pM->nAlloc);
if (zNew) {
pM->zText = zNew;
}
}
}
}
if (pM->zText) {
if (nNewChar > 0) {
memcpy(&pM->zText[pM->nChar], zNewText, nNewChar);
pM->nChar += nNewChar;
}
pM->zText[pM->nChar] = 0;
}
}
/*
** This routine is a wrapper around xprintf() that invokes mout() as
** the consumer.
*/
static char *base_vprintf(void *(*xRealloc) (void *, int), /* Routine to realloc memory. May be NULL */
int useInternal, /* Use internal %-conversions if true */
char *zInitBuf, /* Initially write here, before mallocing */
int nInitBuf, /* Size of zInitBuf[] */
const char *zFormat, /* format string */
va_list ap /* arguments */
)
{
struct sgMprintf sM;
sM.zBase = sM.zText = zInitBuf;
sM.nChar = sM.nTotal = 0;
sM.nAlloc = nInitBuf;
sM.xRealloc = xRealloc;
vxprintf(mout, &sM, useInternal, zFormat, ap);
if (xRealloc) {
if (sM.zText == sM.zBase) {
sM.zText = xRealloc(0, sM.nChar + 1);
if (sM.zText) {
memcpy(sM.zText, sM.zBase, sM.nChar + 1);
}
} else if (sM.nAlloc > sM.nChar + 10) {
char *zNew = xRealloc(sM.zText, sM.nChar + 1);
if (zNew) {
sM.zText = zNew;
}
}
}
return sM.zText;
}
/*
** Realloc that is a real function, not a macro.
*/
static void *printf_realloc(void *old, int size)
{
return realloc(old, size);
}
/*
** Print into memory. Omit the internal %-conversion extensions.
*/
SWITCH_DECLARE(char *) switch_vmprintf(const char *zFormat, va_list ap)
{
char zBase[SWITCH_PRINT_BUF_SIZE];
return base_vprintf(printf_realloc, 0, zBase, sizeof(zBase), zFormat, ap);
}
/*
** Print into memory. Omit the internal %-conversion extensions.
*/
SWITCH_DECLARE(char *) switch_mprintf(const char *zFormat, ...)
{
va_list ap;
char *z;
char zBase[SWITCH_PRINT_BUF_SIZE];
va_start(ap, zFormat);
z = base_vprintf(printf_realloc, 0, zBase, sizeof(zBase), zFormat, ap);
va_end(ap);
return z;
}
/*
** sqlite3_snprintf() works like snprintf() except that it ignores the
** current locale settings. This is important for SQLite because we
** are not able to use a "," as the decimal point in place of "." as
** specified by some locales.
*/
SWITCH_DECLARE(char *) switch_snprintfv(char *zBuf, int n, const char *zFormat, ...)
{
char *z;
va_list ap;
va_start(ap, zFormat);
z = base_vprintf(0, 0, zBuf, n, zFormat, ap);
va_end(ap);
return z;
}
/* For Emacs:
* Local Variables:
* mode:c
* indent-tabs-mode:t
* tab-width:4
* c-basic-offset:4
* End:
* For VIM:
* vim:set softtabstop=4 shiftwidth=4 tabstop=4 noet:
*/