freeswitch/libs/spandsp/src/noise.c

130 lines
4.0 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* noise.c - A low complexity audio noise generator, suitable for
* real time generation (current AWGN, and Hoth)
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2005 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*! \file */
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <memory.h>
#if defined(HAVE_TGMATH_H)
#include <tgmath.h>
#endif
#if defined(HAVE_MATH_H)
#include <math.h>
#endif
#include "floating_fudge.h"
#include "spandsp/telephony.h"
#include "spandsp/alloc.h"
#include "spandsp/fast_convert.h"
#include "spandsp/saturated.h"
#include "spandsp/noise.h"
#include "spandsp/private/noise.h"
SPAN_DECLARE(int16_t) noise(noise_state_t *s)
{
int32_t val;
int i;
/* The central limit theorem says if you add a few random numbers together,
the result starts to look Gaussian. Quantities above 7 give diminishing
returns. Quantites above 20 are exceedingly Gaussian. */
val = 0;
for (i = 0; i < s->quality; i++)
{
s->rndnum = 1664525U*s->rndnum + 1013904223U;
val += ((int32_t) s->rndnum) >> 22;
}
if (s->class_of_noise == NOISE_CLASS_HOTH)
{
/* Hoth noise is room-like. It should be sculpted, at the high and low ends,
and roll off at 5dB/octave across the main part of the band. However,
merely rolling off at 6dB/octave across the band gets you close
to the subjective effect. */
s->state = (3*val + 5*s->state) >> 3;
/* Bring the overall power level back to the pre-filtered level. This
simple approx. leaves the signal about 0.35dB low. */
val = s->state << 1;
}
return saturate16((val*s->rms) >> 10);
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(noise_state_t *) noise_init_dbov(noise_state_t *s, int seed, float level, int class_of_noise, int quality)
{
float rms;
if (s == NULL)
{
if ((s = (noise_state_t *) span_alloc(sizeof(*s))) == NULL)
return NULL;
}
memset(s, 0, sizeof(*s));
s->rndnum = (uint32_t) seed;
rms = 32768.0f*powf(10.0f, level/20.0f);
if (quality < 4)
s->quality = 4;
else if (quality > 20)
s->quality = 20;
else
s->quality = quality;
if (class_of_noise == NOISE_CLASS_HOTH)
{
/* Allow for the gain of the filter */
rms *= 1.043f;
}
s->rms = (int32_t) (rms*sqrtf(12.0f/s->quality));
s->class_of_noise = class_of_noise;
return s;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(noise_state_t *) noise_init_dbm0(noise_state_t *s, int seed, float level, int class_of_noise, int quality)
{
return noise_init_dbov(s, seed, (level - DBM0_MAX_POWER), class_of_noise, quality);
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) noise_release(noise_state_t *s)
{
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) noise_free(noise_state_t *s)
{
span_free(s);
return 0;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/