freeswitch/libs/libzrtp/third_party/bnlib/jacobi.c

68 lines
1.6 KiB
C

/*
* Copyright (c) 1995 Colin Plumb. All rights reserved.
* For licensing and other legal details, see the file legal.c.
*
* Compute the Jacobi symbol (small prime case only).
*/
#include "bn.h"
#include "jacobi.h"
/*
* For a small (usually prime, but not necessarily) prime p,
* compute Jacobi(p,bn), which is -1, 0 or +1, using the following rules:
* Jacobi(x, y) = Jacobi(x mod y, y)
* Jacobi(0, y) = 0
* Jacobi(1, y) = 1
* Jacobi(2, y) = 0 if y is even, +1 if y is +/-1 mod 8, -1 if y = +/-3 mod 8
* Jacobi(x1*x2, y) = Jacobi(x1, y) * Jacobi(x2, y) (used with x1 = 2 & x1 = 4)
* If x and y are both odd, then
* Jacobi(x, y) = Jacobi(y, x) * (-1 if x = y = 3 mod 4, +1 otherwise)
*/
int
bnJacobiQ(unsigned p, struct BigNum const *bn)
{
int j = 1;
unsigned u = bnLSWord(bn);
if (!(u & 1))
return 0; /* Don't *do* that */
/* First, get rid of factors of 2 in p */
while ((p & 3) == 0)
p >>= 2;
if ((p & 1) == 0) {
p >>= 1;
if ((u ^ u>>1) & 2)
j = -j; /* 3 (011) or 5 (101) mod 8 */
}
if (p == 1)
return j;
/* Then, apply quadratic reciprocity */
if (p & u & 2) /* p = u = 3 (mod 4? */
j = -j;
/* And reduce u mod p */
u = bnModQ(bn, p);
/* Now compute Jacobi(u,p), u < p */
while (u) {
while ((u & 3) == 0)
u >>= 2;
if ((u & 1) == 0) {
u >>= 1;
if ((p ^ p>>1) & 2)
j = -j; /* 3 (011) or 5 (101) mod 8 */
}
if (u == 1)
return j;
/* Now both u and p are odd, so use quadratic reciprocity */
if (u < p) {
unsigned t = u; u = p; p = t;
if (u & p & 2) /* u = p = 3 (mod 4? */
j = -j;
}
/* Now u >= p, so it can be reduced */
u %= p;
}
return 0;
}