freeswitch/libs/spandsp/src/oki_adpcm.c

387 lines
9.7 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* oki_adpcm.c - Conversion routines between linear 16 bit PCM data and
* OKI (Dialogic) ADPCM format. Supports with the 32kbps
* and 24kbps variants used by Dialogic.
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2001, 2004 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* The actual OKI ADPCM encode and decode method is derived from freely
* available code, whose exact origins seem uncertain.
*/
/*! \file */
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include "spandsp/telephony.h"
#include "spandsp/alloc.h"
#include "spandsp/oki_adpcm.h"
#include "spandsp/private/oki_adpcm.h"
/* Routines to convert 12 bit linear samples to the Oki ADPCM coding format,
widely used in CTI, because Dialogic use it. */
/* OKI ADPCM step variation table */
static const int16_t step_size[49] =
{
16, 17, 19, 21, 23, 25, 28, 31,
34, 37, 41, 45, 50, 55, 60, 66,
73, 80, 88, 97, 107, 118, 130, 143,
157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658,
724, 796, 876, 963, 1060, 1166, 1282, 1411,
1552
};
static const int16_t step_adjustment[8] =
{
-1, -1, -1, -1, 2, 4, 6, 8
};
/* Band limiting filter, to allow sample rate conversion to and
from 6k samples/second. */
static const float cutoff_coeffs[] =
{
-3.648392e-4f,
5.062391e-4f,
1.206247e-3f,
1.804452e-3f,
1.691750e-3f,
4.083405e-4f,
-1.931085e-3f,
-4.452107e-3f,
-5.794821e-3f,
-4.778489e-3f,
-1.161266e-3f,
3.928504e-3f,
8.259786e-3f,
9.500425e-3f,
6.512800e-3f,
2.227856e-4f,
-6.531275e-3f,
-1.026843e-2f,
-8.718062e-3f,
-2.280487e-3f,
5.817733e-3f,
1.096777e-2f,
9.634404e-3f,
1.569301e-3f,
-9.522632e-3f,
-1.748273e-2f,
-1.684408e-2f,
-6.100054e-3f,
1.071206e-2f,
2.525209e-2f,
2.871779e-2f,
1.664411e-2f,
-7.706268e-3f,
-3.331083e-2f,
-4.521249e-2f,
-3.085962e-2f,
1.373653e-2f,
8.089593e-2f,
1.529060e-1f,
2.080487e-1f,
2.286834e-1f,
2.080487e-1f,
1.529060e-1f,
8.089593e-2f,
1.373653e-2f,
-3.085962e-2f,
-4.521249e-2f,
-3.331083e-2f,
-7.706268e-3f,
1.664411e-2f,
2.871779e-2f,
2.525209e-2f,
1.071206e-2f,
-6.100054e-3f,
-1.684408e-2f,
-1.748273e-2f,
-9.522632e-3f,
1.569301e-3f,
9.634404e-3f,
1.096777e-2f,
5.817733e-3f,
-2.280487e-3f,
-8.718062e-3f,
-1.026843e-2f,
-6.531275e-3f,
2.227856e-4f,
6.512800e-3f,
9.500425e-3f,
8.259786e-3f,
3.928504e-3f,
-1.161266e-3f,
-4.778489e-3f,
-5.794821e-3f,
-4.452107e-3f,
-1.931085e-3f,
4.083405e-4f,
1.691750e-3f,
1.804452e-3f,
1.206247e-3f,
5.062391e-4f,
-3.648392e-4f
};
static int16_t decode(oki_adpcm_state_t *s, uint8_t adpcm)
{
int16_t d;
int16_t ss;
int16_t linear;
/* Doing the next part as follows:
*
* x = adpcm & 0x07;
* e = (step_size[s->step_index]*(x + x + 1)) >> 3;
*
* Seems an obvious improvement on a modern machine, but remember
* the truncation errors do not come out the same. It would
* not, therefore, be an exact match for what this code is doing.
*
* Just what a Dialogic card does, I do not know!
*/
ss = step_size[s->step_index];
d = ss >> 3;
if (adpcm & 0x01)
d += (ss >> 2);
/*endif*/
if (adpcm & 0x02)
d += (ss >> 1);
/*endif*/
if (adpcm & 0x04)
d += ss;
/*endif*/
if (adpcm & 0x08)
d = -d;
/*endif*/
linear = s->last + d;
/* Saturate the values to +/- 2^11 (supposed to be 12 bits) */
if (linear > 2047)
linear = 2047;
else if (linear < -2048)
linear = -2048;
/*endif*/
s->last = linear;
s->step_index += step_adjustment[adpcm & 0x07];
if (s->step_index < 0)
s->step_index = 0;
else if (s->step_index > 48)
s->step_index = 48;
/*endif*/
/* Note: the result here is a 12 bit value */
return linear;
}
/*- End of function --------------------------------------------------------*/
static uint8_t encode(oki_adpcm_state_t *s, int16_t linear)
{
int16_t d;
int16_t ss;
uint8_t adpcm;
ss = step_size[s->step_index];
d = (linear >> 4) - s->last;
adpcm = (uint8_t) 0x00;
if (d < 0)
{
adpcm = (uint8_t) 0x08;
d = -d;
}
/*endif*/
if (d >= ss)
{
adpcm |= (uint8_t) 0x04;
d -= ss;
}
/*endif*/
if (d >= (ss >> 1))
{
adpcm |= (uint8_t) 0x02;
d -= (ss >> 1);
}
/*endif*/
if (d >= (ss >> 2))
adpcm |= (uint8_t) 0x01;
/*endif*/
/* Use the decoder to set the estimate of the last sample. */
/* It also will adjust the step_index for us. */
s->last = decode(s, adpcm);
return adpcm;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(oki_adpcm_state_t *) oki_adpcm_init(oki_adpcm_state_t *s, int bit_rate)
{
if (bit_rate != 32000 && bit_rate != 24000)
return NULL;
if (s == NULL)
{
if ((s = (oki_adpcm_state_t *) span_alloc(sizeof(*s))) == NULL)
return NULL;
}
memset(s, 0, sizeof(*s));
s->bit_rate = bit_rate;
return s;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) oki_adpcm_release(oki_adpcm_state_t *s)
{
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) oki_adpcm_free(oki_adpcm_state_t *s)
{
span_free(s);
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) oki_adpcm_decode(oki_adpcm_state_t *s,
int16_t amp[],
const uint8_t oki_data[],
int oki_bytes)
{
int i;
int x;
int l;
int n;
int samples;
float z;
#if (_MSC_VER >= 1400)
__analysis_assume(s->phase >= 0 && s->phase <= 4);
#endif
samples = 0;
if (s->bit_rate == 32000)
{
for (i = 0; i < oki_bytes; i++)
{
amp[samples++] = decode(s, (oki_data[i] >> 4) & 0xF) << 4;
amp[samples++] = decode(s, oki_data[i] & 0xF) << 4;
}
/*endwhile*/
}
else
{
n = 0;
for (i = 0; i < oki_bytes; )
{
/* 6k to 8k sample/second conversion */
if (s->phase)
{
s->history[s->ptr++] =
decode(s, (n++ & 1) ? (oki_data[i++] & 0xF) : ((oki_data[i] >> 4) & 0xF)) << 4;
s->ptr &= (32 - 1);
}
/*endif*/
z = 0.0f;
for (l = 80 - 3 + s->phase, x = s->ptr - 1; l >= 0; l -= 4, x--)
z += cutoff_coeffs[l]*s->history[x & (32 - 1)];
amp[samples++] = (int16_t) (z*4.0f);
if (++s->phase > 3)
s->phase = 0;
/*endif*/
}
/*endfor*/
}
/*endif*/
return samples;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) oki_adpcm_encode(oki_adpcm_state_t *s,
uint8_t oki_data[],
const int16_t amp[],
int len)
{
int x;
int l;
int n;
int bytes;
float z;
bytes = 0;
if (s->bit_rate == 32000)
{
for (n = 0; n < len; n++)
{
s->oki_byte = (s->oki_byte << 4) | encode(s, amp[n]);
if ((s->mark++ & 1))
oki_data[bytes++] = s->oki_byte;
/*endif*/
}
/*endfor*/
}
else
{
n = 0;
for (;;)
{
/* 8k to 6k sample/second conversion */
if (s->phase > 2)
{
s->history[s->ptr++] = amp[n];
s->ptr &= (32 - 1);
s->phase = 0;
if (++n >= len)
break;
/*endif*/
}
/*endif*/
s->history[s->ptr++] = amp[n];
s->ptr &= (32 - 1);
z = 0.0f;
for (l = 80 - s->phase, x = s->ptr - 1; l >= 0; l -= 3, x--)
z += cutoff_coeffs[l]*s->history[x & (32 - 1)];
/*endfor*/
s->oki_byte = (s->oki_byte << 4) | encode(s, (int16_t) (z*3.0f));
if ((s->mark++ & 1))
oki_data[bytes++] = s->oki_byte;
/*endif*/
s->phase++;
if (++n >= len)
break;
/*endif*/
}
/*endfor*/
}
/*endif*/
return bytes;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/