freeswitch/libs/libcodec2/src/fdmdv.c

1501 lines
44 KiB
C

/*---------------------------------------------------------------------------*\
FILE........: fdmdv.c
AUTHOR......: David Rowe
DATE CREATED: April 14 2012
Functions that implement the FDMDV modem.
\*---------------------------------------------------------------------------*/
/*
Copyright (C) 2012 David Rowe
All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License version 2.1, as
published by the Free Software Foundation. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*---------------------------------------------------------------------------*\
INCLUDES
\*---------------------------------------------------------------------------*/
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "fdmdv_internal.h"
#include "fdmdv.h"
#include "rn.h"
#include "test_bits.h"
#include "pilot_coeff.h"
#include "kiss_fft.h"
#include "hanning.h"
#include "os.h"
/*---------------------------------------------------------------------------*\
FUNCTIONS
\*---------------------------------------------------------------------------*/
static COMP cneg(COMP a)
{
COMP res;
res.real = -a.real;
res.imag = -a.imag;
return res;
}
static COMP cconj(COMP a)
{
COMP res;
res.real = a.real;
res.imag = -a.imag;
return res;
}
static COMP cmult(COMP a, COMP b)
{
COMP res;
res.real = a.real*b.real - a.imag*b.imag;
res.imag = a.real*b.imag + a.imag*b.real;
return res;
}
static COMP fcmult(float a, COMP b)
{
COMP res;
res.real = a*b.real;
res.imag = a*b.imag;
return res;
}
static COMP cadd(COMP a, COMP b)
{
COMP res;
res.real = a.real + b.real;
res.imag = a.imag + b.imag;
return res;
}
static float cabsolute(COMP a)
{
return sqrt(pow(a.real, 2.0) + pow(a.imag, 2.0));
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_create
AUTHOR......: David Rowe
DATE CREATED: 16/4/2012
Create and initialise an instance of the modem. Returns a pointer
to the modem states or NULL on failure. One set of states is
sufficient for a full duplex modem.
\*---------------------------------------------------------------------------*/
struct FDMDV * CODEC2_WIN32SUPPORT fdmdv_create(void)
{
struct FDMDV *f;
int c, i, k;
float carrier_freq;
assert(FDMDV_BITS_PER_FRAME == NC*NB);
assert(FDMDV_NOM_SAMPLES_PER_FRAME == M);
assert(FDMDV_MAX_SAMPLES_PER_FRAME == (M+M/P));
f = (struct FDMDV*)malloc(sizeof(struct FDMDV));
if (f == NULL)
return NULL;
f->current_test_bit = 0;
for(i=0; i<NTEST_BITS; i++)
f->rx_test_bits_mem[i] = 0;
f->tx_pilot_bit = 0;
for(c=0; c<NC+1; c++) {
f->prev_tx_symbols[c].real = 1.0;
f->prev_tx_symbols[c].imag = 0.0;
f->prev_rx_symbols[c].real = 1.0;
f->prev_rx_symbols[c].imag = 0.0;
for(k=0; k<NSYM; k++) {
f->tx_filter_memory[c][k].real = 0.0;
f->tx_filter_memory[c][k].imag = 0.0;
}
for(k=0; k<NFILTER; k++) {
f->rx_filter_memory[c][k].real = 0.0;
f->rx_filter_memory[c][k].imag = 0.0;
}
/* Spread initial FDM carrier phase out as far as possible.
This helped PAPR for a few dB. We don't need to adjust rx
phase as DQPSK takes care of that. */
f->phase_tx[c].real = cos(2.0*PI*c/(NC+1));
f->phase_tx[c].imag = sin(2.0*PI*c/(NC+1));
f->phase_rx[c].real = 1.0;
f->phase_rx[c].imag = 0.0;
for(k=0; k<NT*P; k++) {
f->rx_filter_mem_timing[c][k].real = 0.0;
f->rx_filter_mem_timing[c][k].imag = 0.0;
}
for(k=0; k<NFILTERTIMING; k++) {
f->rx_baseband_mem_timing[c][k].real = 0.0;
f->rx_baseband_mem_timing[c][k].imag = 0.0;
}
}
/* Set up frequency of each carrier */
for(c=0; c<NC/2; c++) {
carrier_freq = (-NC/2 + c)*FSEP + FDMDV_FCENTRE;
f->freq[c].real = cos(2.0*PI*carrier_freq/FS);
f->freq[c].imag = sin(2.0*PI*carrier_freq/FS);
}
for(c=NC/2; c<NC; c++) {
carrier_freq = (-NC/2 + c + 1)*FSEP + FDMDV_FCENTRE;
f->freq[c].real = cos(2.0*PI*carrier_freq/FS);
f->freq[c].imag = sin(2.0*PI*carrier_freq/FS);
}
f->freq[NC].real = cos(2.0*PI*FDMDV_FCENTRE/FS);
f->freq[NC].imag = sin(2.0*PI*FDMDV_FCENTRE/FS);
/* Generate DBPSK pilot Look Up Table (LUT) */
generate_pilot_lut(f->pilot_lut, &f->freq[NC]);
/* freq Offset estimation states */
f->fft_pilot_cfg = kiss_fft_alloc (MPILOTFFT, 0, NULL, NULL);
assert(f->fft_pilot_cfg != NULL);
for(i=0; i<NPILOTBASEBAND; i++) {
f->pilot_baseband1[i].real = f->pilot_baseband2[i].real = 0.0;
f->pilot_baseband1[i].imag = f->pilot_baseband2[i].imag = 0.0;
}
f->pilot_lut_index = 0;
f->prev_pilot_lut_index = 3*M;
for(i=0; i<NPILOTLPF; i++) {
f->pilot_lpf1[i].real = f->pilot_lpf2[i].real = 0.0;
f->pilot_lpf1[i].imag = f->pilot_lpf2[i].imag = 0.0;
}
f->foff = 0.0;
f->foff_rect.real = 1.0;
f->foff_rect.imag = 0.0;
f->foff_phase_rect.real = 1.0;
f->foff_phase_rect.imag = 0.0;
f->fest_state = 0;
f->coarse_fine = COARSE;
for(c=0; c<NC+1; c++) {
f->sig_est[c] = 0.0;
f->noise_est[c] = 0.0;
}
for(i=0; i<2*FDMDV_NSPEC; i++)
f->fft_buf[i] = 0.0;
f->fft_cfg = kiss_fft_alloc (2*FDMDV_NSPEC, 0, NULL, NULL);
assert(f->fft_cfg != NULL);
return f;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_destroy
AUTHOR......: David Rowe
DATE CREATED: 16/4/2012
Destroy an instance of the modem.
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_destroy(struct FDMDV *fdmdv)
{
assert(fdmdv != NULL);
KISS_FFT_FREE(fdmdv->fft_pilot_cfg);
KISS_FFT_FREE(fdmdv->fft_cfg);
free(fdmdv);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_get_test_bits()
AUTHOR......: David Rowe
DATE CREATED: 16/4/2012
Generate a frame of bits from a repeating sequence of random data. OK so
it's not very random if it repeats but it makes syncing at the demod easier
for test purposes.
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_get_test_bits(struct FDMDV *f, int tx_bits[])
{
int i;
for(i=0; i<FDMDV_BITS_PER_FRAME; i++) {
tx_bits[i] = test_bits[f->current_test_bit];
f->current_test_bit++;
if (f->current_test_bit > (NTEST_BITS-1))
f->current_test_bit = 0;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: bits_to_dqpsk_symbols()
AUTHOR......: David Rowe
DATE CREATED: 16/4/2012
Maps bits to parallel DQPSK symbols. Generate Nc+1 QPSK symbols from
vector of (1,Nc*Nb) input tx_bits. The Nc+1 symbol is the +1 -1 +1
.... BPSK sync carrier.
\*---------------------------------------------------------------------------*/
void bits_to_dqpsk_symbols(COMP tx_symbols[], COMP prev_tx_symbols[], int tx_bits[], int *pilot_bit)
{
int c, msb, lsb;
COMP j = {0.0,1.0};
/* map tx_bits to to Nc DQPSK symbols */
for(c=0; c<NC; c++) {
msb = tx_bits[2*c];
lsb = tx_bits[2*c+1];
if ((msb == 0) && (lsb == 0))
tx_symbols[c] = prev_tx_symbols[c];
if ((msb == 0) && (lsb == 1))
tx_symbols[c] = cmult(j, prev_tx_symbols[c]);
if ((msb == 1) && (lsb == 0))
tx_symbols[c] = cneg(prev_tx_symbols[c]);
if ((msb == 1) && (lsb == 1))
tx_symbols[c] = cmult(cneg(j),prev_tx_symbols[c]);
}
/* +1 -1 +1 -1 BPSK sync carrier, once filtered becomes (roughly)
two spectral lines at +/- Rs/2 */
if (*pilot_bit)
tx_symbols[NC] = cneg(prev_tx_symbols[NC]);
else
tx_symbols[NC] = prev_tx_symbols[NC];
if (*pilot_bit)
*pilot_bit = 0;
else
*pilot_bit = 1;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: tx_filter()
AUTHOR......: David Rowe
DATE CREATED: 17/4/2012
Given NC*NB bits construct M samples (1 symbol) of NC+1 filtered
symbols streams.
\*---------------------------------------------------------------------------*/
void tx_filter(COMP tx_baseband[NC+1][M], COMP tx_symbols[], COMP tx_filter_memory[NC+1][NSYM])
{
int c;
int i,j,k;
float acc;
COMP gain;
gain.real = sqrt(2.0)/2.0;
gain.imag = 0.0;
/*
for(c=0; c<NC+1; c++)
tx_filter_memory[c][NFILTER-1] = cmult(tx_symbols[c], gain);
*/
for(c=0; c<NC+1; c++)
tx_filter_memory[c][NSYM-1] = cmult(tx_symbols[c], gain);
/*
tx filter each symbol, generate M filtered output samples for each symbol.
Efficient polyphase filter techniques used as tx_filter_memory is sparse
*/
for(i=0; i<M; i++) {
for(c=0; c<NC+1; c++) {
/* filter real sample of symbol for carrier c */
acc = 0.0;
for(j=0,k=M-i-1; j<NSYM; j++,k+=M)
acc += M * tx_filter_memory[c][j].real * gt_alpha5_root[k];
tx_baseband[c][i].real = acc;
/* filter imag sample of symbol for carrier c */
acc = 0.0;
for(j=0,k=M-i-1; j<NSYM; j++,k+=M)
acc += M * tx_filter_memory[c][j].imag * gt_alpha5_root[k];
tx_baseband[c][i].imag = acc;
}
}
/* shift memory, inserting zeros at end */
for(i=0; i<NSYM-1; i++)
for(c=0; c<NC+1; c++)
tx_filter_memory[c][i] = tx_filter_memory[c][i+1];
for(c=0; c<NC+1; c++) {
tx_filter_memory[c][NSYM-1].real = 0.0;
tx_filter_memory[c][NSYM-1].imag = 0.0;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdm_upconvert()
AUTHOR......: David Rowe
DATE CREATED: 17/4/2012
Construct FDM signal by frequency shifting each filtered symbol
stream. Returns complex signal so we can apply frequency offsets
easily.
\*---------------------------------------------------------------------------*/
void fdm_upconvert(COMP tx_fdm[], COMP tx_baseband[NC+1][M], COMP phase_tx[], COMP freq[])
{
int i,c;
COMP two = {2.0, 0.0};
COMP pilot;
for(i=0; i<M; i++) {
tx_fdm[i].real = 0.0;
tx_fdm[i].imag = 0.0;
}
/* Nc/2 tones below centre freq */
for (c=0; c<NC/2; c++)
for (i=0; i<M; i++) {
phase_tx[c] = cmult(phase_tx[c], freq[c]);
tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c]));
}
/* Nc/2 tones above centre freq */
for (c=NC/2; c<NC; c++)
for (i=0; i<M; i++) {
phase_tx[c] = cmult(phase_tx[c], freq[c]);
tx_fdm[i] = cadd(tx_fdm[i], cmult(tx_baseband[c][i], phase_tx[c]));
}
/* add centre pilot tone */
c = NC;
for (i=0; i<M; i++) {
phase_tx[c] = cmult(phase_tx[c], freq[c]);
pilot = cmult(cmult(two, tx_baseband[c][i]), phase_tx[c]);
tx_fdm[i] = cadd(tx_fdm[i], pilot);
}
/*
Scale such that total Carrier power C of real(tx_fdm) = Nc. This
excludes the power of the pilot tone.
We return the complex (single sided) signal to make frequency
shifting for the purpose of testing easier
*/
for (i=0; i<M; i++)
tx_fdm[i] = cmult(two, tx_fdm[i]);
/* normalise digital oscilators as the magnitude can drfift over time */
for (c=0; c<NC+1; c++) {
phase_tx[c].real /= cabsolute(phase_tx[c]);
phase_tx[c].imag /= cabsolute(phase_tx[c]);
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_mod()
AUTHOR......: David Rowe
DATE CREATED: 26/4/2012
FDMDV modulator, take a frame of FDMDV_BITS_PER_FRAME bits and
generates a frame of FDMDV_SAMPLES_PER_FRAME modulated symbols.
Sync bit is returned to aid alignment of your next frame.
The sync_bit value returned will be used for the _next_ frame.
The output signal is complex to support single sided frequency
shifting, for example when testing frequency offsets in channel
simulation.
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_mod(struct FDMDV *fdmdv, COMP tx_fdm[],
int tx_bits[], int *sync_bit)
{
COMP tx_symbols[NC+1];
COMP tx_baseband[NC+1][M];
bits_to_dqpsk_symbols(tx_symbols, fdmdv->prev_tx_symbols, tx_bits, &fdmdv->tx_pilot_bit);
memcpy(fdmdv->prev_tx_symbols, tx_symbols, sizeof(COMP)*(NC+1));
tx_filter(tx_baseband, tx_symbols, fdmdv->tx_filter_memory);
fdm_upconvert(tx_fdm, tx_baseband, fdmdv->phase_tx, fdmdv->freq);
*sync_bit = fdmdv->tx_pilot_bit;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: generate_pilot_fdm()
AUTHOR......: David Rowe
DATE CREATED: 19/4/2012
Generate M samples of DBPSK pilot signal for Freq offset estimation.
\*---------------------------------------------------------------------------*/
void generate_pilot_fdm(COMP *pilot_fdm, int *bit, float *symbol,
float *filter_mem, COMP *phase, COMP *freq)
{
int i,j,k;
float tx_baseband[M];
/* +1 -1 +1 -1 DBPSK sync carrier, once filtered becomes (roughly)
two spectral lines at +/- RS/2 */
if (*bit)
*symbol = -*symbol;
else
*symbol = *symbol;
if (*bit)
*bit = 0;
else
*bit = 1;
/* filter DPSK symbol to create M baseband samples */
filter_mem[NFILTER-1] = (sqrt(2)/2) * *symbol;
for(i=0; i<M; i++) {
tx_baseband[i] = 0.0;
for(j=M-1,k=M-i-1; j<NFILTER; j+=M,k+=M)
tx_baseband[i] += M * filter_mem[j] * gt_alpha5_root[k];
}
/* shift memory, inserting zeros at end */
for(i=0; i<NFILTER-M; i++)
filter_mem[i] = filter_mem[i+M];
for(i=NFILTER-M; i<NFILTER; i++)
filter_mem[i] = 0.0;
/* upconvert */
for(i=0; i<M; i++) {
*phase = cmult(*phase, *freq);
pilot_fdm[i].real = sqrt(2)*2*tx_baseband[i] * phase->real;
pilot_fdm[i].imag = sqrt(2)*2*tx_baseband[i] * phase->imag;
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: generate_pilot_lut()
AUTHOR......: David Rowe
DATE CREATED: 19/4/2012
Generate a 4M sample vector of DBPSK pilot signal. As the pilot signal
is periodic in 4M samples we can then use this vector as a look up table
for pilot signal generation in the demod.
\*---------------------------------------------------------------------------*/
void generate_pilot_lut(COMP pilot_lut[], COMP *pilot_freq)
{
int pilot_rx_bit = 0;
float pilot_symbol = sqrt(2.0);
COMP pilot_phase = {1.0, 0.0};
float pilot_filter_mem[NFILTER];
COMP pilot[M];
int i,f;
for(i=0; i<NFILTER; i++)
pilot_filter_mem[i] = 0.0;
/* discard first 4 symbols as filter memory is filling, just keep
last four symbols */
for(f=0; f<8; f++) {
generate_pilot_fdm(pilot, &pilot_rx_bit, &pilot_symbol, pilot_filter_mem, &pilot_phase, pilot_freq);
if (f >= 4)
memcpy(&pilot_lut[M*(f-4)], pilot, M*sizeof(COMP));
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: lpf_peak_pick()
AUTHOR......: David Rowe
DATE CREATED: 20/4/2012
LPF and peak pick part of freq est, put in a function as we call it twice.
\*---------------------------------------------------------------------------*/
void lpf_peak_pick(float *foff, float *max, COMP pilot_baseband[],
COMP pilot_lpf[], kiss_fft_cfg fft_pilot_cfg, COMP S[], int nin)
{
int i,j,k;
int mpilot;
COMP s[MPILOTFFT];
float mag, imax;
int ix;
float r;
/* LPF cutoff 200Hz, so we can handle max +/- 200 Hz freq offset */
for(i=0; i<NPILOTLPF-nin; i++)
pilot_lpf[i] = pilot_lpf[nin+i];
for(i=NPILOTLPF-nin, j=0; i<NPILOTLPF; i++,j++) {
pilot_lpf[i].real = 0.0; pilot_lpf[i].imag = 0.0;
for(k=0; k<NPILOTCOEFF; k++)
pilot_lpf[i] = cadd(pilot_lpf[i], fcmult(pilot_coeff[k], pilot_baseband[j+k]));
}
/* decimate to improve DFT resolution, window and DFT */
mpilot = FS/(2*200); /* calc decimation rate given new sample rate is twice LPF freq */
for(i=0; i<MPILOTFFT; i++) {
s[i].real = 0.0; s[i].imag = 0.0;
}
for(i=0,j=0; i<NPILOTLPF; i+=mpilot,j++) {
s[j] = fcmult(hanning[i], pilot_lpf[i]);
}
kiss_fft(fft_pilot_cfg, (kiss_fft_cpx *)s, (kiss_fft_cpx *)S);
/* peak pick and convert to Hz */
imax = 0.0;
ix = 0;
for(i=0; i<MPILOTFFT; i++) {
mag = S[i].real*S[i].real + S[i].imag*S[i].imag;
if (mag > imax) {
imax = mag;
ix = i;
}
}
r = 2.0*200.0/MPILOTFFT; /* maps FFT bin to frequency in Hz */
if (ix >= MPILOTFFT/2)
*foff = (ix - MPILOTFFT)*r;
else
*foff = (ix)*r;
*max = imax;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: rx_est_freq_offset()
AUTHOR......: David Rowe
DATE CREATED: 19/4/2012
Estimate frequency offset of FDM signal using BPSK pilot. Note that
this algorithm is quite sensitive to pilot tone level wrt other
carriers, so test variations to the pilot amplitude carefully.
\*---------------------------------------------------------------------------*/
float rx_est_freq_offset(struct FDMDV *f, COMP rx_fdm[], int nin)
{
int i,j;
COMP pilot[M+M/P];
COMP prev_pilot[M+M/P];
float foff, foff1, foff2;
float max1, max2;
assert(nin <= M+M/P);
/* get pilot samples used for correlation/down conversion of rx signal */
for (i=0; i<nin; i++) {
pilot[i] = f->pilot_lut[f->pilot_lut_index];
f->pilot_lut_index++;
if (f->pilot_lut_index >= 4*M)
f->pilot_lut_index = 0;
prev_pilot[i] = f->pilot_lut[f->prev_pilot_lut_index];
f->prev_pilot_lut_index++;
if (f->prev_pilot_lut_index >= 4*M)
f->prev_pilot_lut_index = 0;
}
/*
Down convert latest M samples of pilot by multiplying by ideal
BPSK pilot signal we have generated locally. The peak of the
resulting signal is sensitive to the time shift between the
received and local version of the pilot, so we do it twice at
different time shifts and choose the maximum.
*/
for(i=0; i<NPILOTBASEBAND-nin; i++) {
f->pilot_baseband1[i] = f->pilot_baseband1[i+nin];
f->pilot_baseband2[i] = f->pilot_baseband2[i+nin];
}
for(i=0,j=NPILOTBASEBAND-nin; i<nin; i++,j++) {
f->pilot_baseband1[j] = cmult(rx_fdm[i], cconj(pilot[i]));
f->pilot_baseband2[j] = cmult(rx_fdm[i], cconj(prev_pilot[i]));
}
lpf_peak_pick(&foff1, &max1, f->pilot_baseband1, f->pilot_lpf1, f->fft_pilot_cfg, f->S1, nin);
lpf_peak_pick(&foff2, &max2, f->pilot_baseband2, f->pilot_lpf2, f->fft_pilot_cfg, f->S2, nin);
if (max1 > max2)
foff = foff1;
else
foff = foff2;
return foff;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_freq_shift()
AUTHOR......: David Rowe
DATE CREATED: 26/4/2012
Frequency shift modem signal. The use of complex input and output allows
single sided frequency shifting (no images).
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_freq_shift(COMP rx_fdm_fcorr[], COMP rx_fdm[], float foff,
COMP *foff_rect, COMP *foff_phase_rect, int nin)
{
int i;
foff_rect->real = cos(2.0*PI*foff/FS);
foff_rect->imag = sin(2.0*PI*foff/FS);
for(i=0; i<nin; i++) {
*foff_phase_rect = cmult(*foff_phase_rect, *foff_rect);
rx_fdm_fcorr[i] = cmult(rx_fdm[i], *foff_phase_rect);
}
/* normalise digital oscilator as the magnitude can drfift over time */
foff_phase_rect->real /= cabsolute(*foff_phase_rect);
foff_phase_rect->imag /= cabsolute(*foff_phase_rect);
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdm_downconvert()
AUTHOR......: David Rowe
DATE CREATED: 22/4/2012
Frequency shift each modem carrier down to Nc+1 baseband signals.
\*---------------------------------------------------------------------------*/
void fdm_downconvert(COMP rx_baseband[NC+1][M+M/P], COMP rx_fdm[], COMP phase_rx[], COMP freq[], int nin)
{
int i,c;
/* maximum number of input samples to demod */
assert(nin <= (M+M/P));
/* Nc/2 tones below centre freq */
for (c=0; c<NC/2; c++)
for (i=0; i<nin; i++) {
phase_rx[c] = cmult(phase_rx[c], freq[c]);
rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
}
/* Nc/2 tones above centre freq */
for (c=NC/2; c<NC; c++)
for (i=0; i<nin; i++) {
phase_rx[c] = cmult(phase_rx[c], freq[c]);
rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
}
/* centre pilot tone */
c = NC;
for (i=0; i<nin; i++) {
phase_rx[c] = cmult(phase_rx[c], freq[c]);
rx_baseband[c][i] = cmult(rx_fdm[i], cconj(phase_rx[c]));
}
/* normalise digital oscilators as the magnitude can drfift over time */
for (c=0; c<NC+1; c++) {
phase_rx[c].real /= cabsolute(phase_rx[c]);
phase_rx[c].imag /= cabsolute(phase_rx[c]);
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: rx_filter()
AUTHOR......: David Rowe
DATE CREATED: 22/4/2012
Receive filter each baseband signal at oversample rate P. Filtering at
rate P lowers CPU compared to rate M.
Depending on the number of input samples to the demod nin, we
produce P-1, P (usually), or P+1 filtered samples at rate P. nin is
occasionally adjusted to compensate for timing slips due to
different tx and rx sample clocks.
\*---------------------------------------------------------------------------*/
void rx_filter(COMP rx_filt[NC+1][P+1], COMP rx_baseband[NC+1][M+M/P], COMP rx_filter_memory[NC+1][NFILTER], int nin)
{
int c, i,j,k,l;
int n=M/P;
/* rx filter each symbol, generate P filtered output samples for
each symbol. Note we keep filter memory at rate M, it's just
the filter output at rate P */
for(i=0, j=0; i<nin; i+=n,j++) {
/* latest input sample */
for(c=0; c<NC+1; c++)
for(k=NFILTER-n,l=i; k<NFILTER; k++,l++)
rx_filter_memory[c][k] = rx_baseband[c][l];
/* convolution (filtering) */
for(c=0; c<NC+1; c++) {
rx_filt[c][j].real = 0.0; rx_filt[c][j].imag = 0.0;
for(k=0; k<NFILTER; k++)
rx_filt[c][j] = cadd(rx_filt[c][j], fcmult(gt_alpha5_root[k], rx_filter_memory[c][k]));
}
/* make room for next input sample */
for(c=0; c<NC+1; c++)
for(k=0,l=n; k<NFILTER-n; k++,l++)
rx_filter_memory[c][k] = rx_filter_memory[c][l];
}
assert(j <= (P+1)); /* check for any over runs */
}
/*---------------------------------------------------------------------------*\
FUNCTION....: rx_est_timing()
AUTHOR......: David Rowe
DATE CREATED: 23/4/2012
Estimate optimum timing offset, re-filter receive symbols at optimum
timing estimate.
\*---------------------------------------------------------------------------*/
float rx_est_timing(COMP rx_symbols[],
COMP rx_filt[NC+1][P+1],
COMP rx_baseband[NC+1][M+M/P],
COMP rx_filter_mem_timing[NC+1][NT*P],
float env[],
COMP rx_baseband_mem_timing[NC+1][NFILTERTIMING],
int nin)
{
int c,i,j,k;
int adjust, s;
COMP x, phase, freq;
float rx_timing;
/*
nin adjust
--------------------------------
120 -1 (one less rate P sample)
160 0 (nominal)
200 1 (one more rate P sample)
*/
adjust = P - nin*P/M;
/* update buffer of NT rate P filtered symbols */
for(c=0; c<NC+1; c++)
for(i=0,j=P-adjust; i<(NT-1)*P+adjust; i++,j++)
rx_filter_mem_timing[c][i] = rx_filter_mem_timing[c][j];
for(c=0; c<NC+1; c++)
for(i=(NT-1)*P+adjust,j=0; i<NT*P; i++,j++)
rx_filter_mem_timing[c][i] = rx_filt[c][j];
/* sum envelopes of all carriers */
for(i=0; i<NT*P; i++) {
env[i] = 0.0;
for(c=0; c<NC+1; c++)
env[i] += cabsolute(rx_filter_mem_timing[c][i]);
}
/* The envelope has a frequency component at the symbol rate. The
phase of this frequency component indicates the timing. So work
out single DFT at frequency 2*pi/P */
x.real = 0.0; x.imag = 0.0;
freq.real = cos(2*PI/P);
freq.imag = sin(2*PI/P);
phase.real = 1.0;
phase.imag = 0.0;
for(i=0; i<NT*P; i++) {
x = cadd(x, fcmult(env[i], phase));
phase = cmult(phase, freq);
}
/* Map phase to estimated optimum timing instant at rate M. The
M/4 part was adjusted by experiment, I know not why.... */
rx_timing = atan2(x.imag, x.real)*M/(2*PI) + M/4;
if (rx_timing > M)
rx_timing -= M;
if (rx_timing < -M)
rx_timing += M;
/* rx_filt_mem_timing contains M + Nfilter + M samples of the
baseband signal at rate M this enables us to resample the
filtered rx symbol with M sample precision once we have
rx_timing */
for(c=0; c<NC+1; c++)
for(i=0,j=nin; i<NFILTERTIMING-nin; i++,j++)
rx_baseband_mem_timing[c][i] = rx_baseband_mem_timing[c][j];
for(c=0; c<NC+1; c++)
for(i=NFILTERTIMING-nin,j=0; i<NFILTERTIMING; i++,j++)
rx_baseband_mem_timing[c][i] = rx_baseband[c][j];
/* rx filter to get symbol for each carrier at estimated optimum
timing instant. We use rate M filter memory to get fine timing
resolution. */
s = round(rx_timing) + M;
for(c=0; c<NC+1; c++) {
rx_symbols[c].real = 0.0;
rx_symbols[c].imag = 0.0;
for(k=s,j=0; k<s+NFILTER; k++,j++)
rx_symbols[c] = cadd(rx_symbols[c], fcmult(gt_alpha5_root[j], rx_baseband_mem_timing[c][k]));
}
return rx_timing;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: qpsk_to_bits()
AUTHOR......: David Rowe
DATE CREATED: 24/4/2012
Convert DQPSK symbols back to an array of bits, extracts sync bit
from DBPSK pilot, and also uses pilot to estimate fine frequency
error.
\*---------------------------------------------------------------------------*/
float qpsk_to_bits(int rx_bits[], int *sync_bit, COMP phase_difference[], COMP prev_rx_symbols[], COMP rx_symbols[])
{
int c;
COMP pi_on_4;
COMP d;
int msb=0, lsb=0;
float ferr;
pi_on_4.real = cos(PI/4.0);
pi_on_4.imag = sin(PI/4.0);
/* Extra 45 degree clockwise lets us use real and imag axis as
decision boundaries */
for(c=0; c<NC; c++)
phase_difference[c] = cmult(cmult(rx_symbols[c], cconj(prev_rx_symbols[c])), pi_on_4);
/* map (Nc,1) DQPSK symbols back into an (1,Nc*Nb) array of bits */
for (c=0; c<NC; c++) {
d = phase_difference[c];
if ((d.real >= 0) && (d.imag >= 0)) {
msb = 0; lsb = 0;
}
if ((d.real < 0) && (d.imag >= 0)) {
msb = 0; lsb = 1;
}
if ((d.real < 0) && (d.imag < 0)) {
msb = 1; lsb = 0;
}
if ((d.real >= 0) && (d.imag < 0)) {
msb = 1; lsb = 1;
}
rx_bits[2*c] = msb;
rx_bits[2*c+1] = lsb;
}
/* Extract DBPSK encoded Sync bit and fine freq offset estimate */
phase_difference[NC] = cmult(rx_symbols[NC], cconj(prev_rx_symbols[NC]));
if (phase_difference[NC].real < 0) {
*sync_bit = 1;
ferr = phase_difference[NC].imag;
}
else {
*sync_bit = 0;
ferr = -phase_difference[NC].imag;
}
/* pilot carrier gets an extra pi/4 rotation to make it consistent
with other carriers, as we need it for snr_update and scatter
diagram */
phase_difference[NC] = cmult(phase_difference[NC], pi_on_4);
return ferr;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: snr_update()
AUTHOR......: David Rowe
DATE CREATED: 17 May 2012
Given phase differences update estimates of signal and noise levels.
\*---------------------------------------------------------------------------*/
void snr_update(float sig_est[], float noise_est[], COMP phase_difference[])
{
float s[NC+1];
COMP refl_symbols[NC+1];
float n[NC+1];
COMP pi_on_4;
int c;
pi_on_4.real = cos(PI/4.0);
pi_on_4.imag = sin(PI/4.0);
/* mag of each symbol is distance from origin, this gives us a
vector of mags, one for each carrier. */
for(c=0; c<NC+1; c++)
s[c] = cabsolute(phase_difference[c]);
/* signal mag estimate for each carrier is a smoothed version of
instantaneous magntitude, this gives us a vector of smoothed
mag estimates, one for each carrier. */
for(c=0; c<NC+1; c++)
sig_est[c] = SNR_COEFF*sig_est[c] + (1.0 - SNR_COEFF)*s[c];
/* noise mag estimate is distance of current symbol from average
location of that symbol. We reflect all symbols into the first
quadrant for convenience. */
for(c=0; c<NC+1; c++) {
refl_symbols[c].real = fabs(phase_difference[c].real);
refl_symbols[c].imag = fabs(phase_difference[c].imag);
n[c] = cabsolute(cadd(fcmult(sig_est[c], pi_on_4), cneg(refl_symbols[c])));
}
/* noise mag estimate for each carrier is a smoothed version of
instantaneous noise mag, this gives us a vector of smoothed
noise power estimates, one for each carrier. */
for(c=0; c<NC+1; c++)
noise_est[c] = SNR_COEFF*noise_est[c] + (1 - SNR_COEFF)*n[c];
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_put_test_bits()
AUTHOR......: David Rowe
DATE CREATED: 24/4/2012
Accepts nbits from rx and attempts to sync with test_bits sequence.
If sync OK measures bit errors.
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_put_test_bits(struct FDMDV *f, int *sync,
int *bit_errors, int *ntest_bits,
int rx_bits[])
{
int i,j;
float ber;
/* Append to our memory */
for(i=0,j=FDMDV_BITS_PER_FRAME; i<NTEST_BITS-FDMDV_BITS_PER_FRAME; i++,j++)
f->rx_test_bits_mem[i] = f->rx_test_bits_mem[j];
for(i=NTEST_BITS-FDMDV_BITS_PER_FRAME,j=0; i<NTEST_BITS; i++,j++)
f->rx_test_bits_mem[i] = rx_bits[j];
/* see how many bit errors we get when checked against test sequence */
*bit_errors = 0;
for(i=0; i<NTEST_BITS; i++) {
*bit_errors += test_bits[i] ^ f->rx_test_bits_mem[i];
//printf("%d %d %d %d\n", i, test_bits[i], f->rx_test_bits_mem[i], test_bits[i] ^ f->rx_test_bits_mem[i]);
}
/* if less than a thresh we are aligned and in sync with test sequence */
ber = (float)*bit_errors/NTEST_BITS;
*sync = 0;
if (ber < 0.2)
*sync = 1;
*ntest_bits = NTEST_BITS;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: freq_state(()
AUTHOR......: David Rowe
DATE CREATED: 24/4/2012
Freq offset state machine. Moves between coarse and fine states
based on BPSK pilot sequence. Freq offset estimator occasionally
makes mistakes when used continuously. So we use it until we have
acquired the BPSK pilot, then switch to a more robust "fine"
tracking algorithm. If we lose sync we switch back to coarse mode
for fast re-acquisition of large frequency offsets.
\*---------------------------------------------------------------------------*/
int freq_state(int sync_bit, int *state)
{
int next_state, coarse_fine;
/* acquire state, look for 6 symbol 010101 sequence from sync bit */
next_state = *state;
switch(*state) {
case 0:
if (sync_bit == 0)
next_state = 1;
break;
case 1:
if (sync_bit == 1)
next_state = 2;
else
next_state = 0;
break;
case 2:
if (sync_bit == 0)
next_state = 3;
else
next_state = 0;
break;
case 3:
if (sync_bit == 1)
next_state = 4;
else
next_state = 0;
break;
case 4:
if (sync_bit == 0)
next_state = 5;
else
next_state = 0;
break;
case 5:
if (sync_bit == 1)
next_state = 6;
else
next_state = 0;
break;
/* states 6 and above are track mode, make sure we keep
getting 0101 sync bit sequence */
case 6:
if (sync_bit == 0)
next_state = 7;
else
next_state = 0;
break;
case 7:
if (sync_bit == 1)
next_state = 6;
else
next_state = 0;
break;
}
*state = next_state;
if (*state >= 6)
coarse_fine = FINE;
else
coarse_fine = COARSE;
return coarse_fine;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_demod()
AUTHOR......: David Rowe
DATE CREATED: 26/4/2012
FDMDV demodulator, take an array of FDMDV_SAMPLES_PER_FRAME
modulated samples, returns an array of FDMDV_BITS_PER_FRAME bits,
plus the sync bit.
The input signal is complex to support single sided frequcny shifting
before the demod input (e.g. fdmdv2 click to tune feature).
The number of input samples nin will normally be M ==
FDMDV_SAMPLES_PER_FRAME. However to adjust for differences in
transmit and receive sample clocks nin will occasionally be M-M/P,
or M+M/P.
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_demod(struct FDMDV *fdmdv, int rx_bits[],
int *sync_bit, COMP rx_fdm[], int *nin)
{
float foff_coarse, foff_fine;
COMP rx_fdm_fcorr[M+M/P];
COMP rx_baseband[NC+1][M+M/P];
COMP rx_filt[NC+1][P+1];
COMP rx_symbols[NC+1];
float env[NT*P];
/* freq offset estimation and correction */
foff_coarse = rx_est_freq_offset(fdmdv, rx_fdm, *nin);
if (fdmdv->coarse_fine == COARSE)
fdmdv->foff = foff_coarse;
fdmdv_freq_shift(rx_fdm_fcorr, rx_fdm, -fdmdv->foff, &fdmdv->foff_rect, &fdmdv->foff_phase_rect, *nin);
/* baseband processing */
fdm_downconvert(rx_baseband, rx_fdm_fcorr, fdmdv->phase_rx, fdmdv->freq, *nin);
rx_filter(rx_filt, rx_baseband, fdmdv->rx_filter_memory, *nin);
fdmdv->rx_timing = rx_est_timing(rx_symbols, rx_filt, rx_baseband, fdmdv->rx_filter_mem_timing, env, fdmdv->rx_baseband_mem_timing, *nin);
/* Adjust number of input samples to keep timing within bounds */
*nin = M;
if (fdmdv->rx_timing > 2*M/P)
*nin += M/P;
if (fdmdv->rx_timing < 0)
*nin -= M/P;
foff_fine = qpsk_to_bits(rx_bits, sync_bit, fdmdv->phase_difference, fdmdv->prev_rx_symbols, rx_symbols);
memcpy(fdmdv->prev_rx_symbols, rx_symbols, sizeof(COMP)*(NC+1));
snr_update(fdmdv->sig_est, fdmdv->noise_est, fdmdv->phase_difference);
/* freq offset estimation state machine */
fdmdv->coarse_fine = freq_state(*sync_bit, &fdmdv->fest_state);
fdmdv->foff -= TRACK_COEFF*foff_fine;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: calc_snr()
AUTHOR......: David Rowe
DATE CREATED: 17 May 2012
Calculate current SNR estimate (3000Hz noise BW)
\*---------------------------------------------------------------------------*/
float calc_snr(float sig_est[], float noise_est[])
{
float S, SdB;
float mean, N50, N50dB, N3000dB;
float snr_dB;
int c;
S = 0.0;
for(c=0; c<NC+1; c++)
S += pow(sig_est[c], 2.0);
SdB = 10.0*log10(S+1E-12);
/* Average noise mag across all carriers and square to get an
average noise power. This is an estimate of the noise power in
Rs = 50Hz of BW (note for raised root cosine filters Rs is the
noise BW of the filter) */
mean = 0.0;
for(c=0; c<NC+1; c++)
mean += noise_est[c];
mean /= (NC+1);
N50 = pow(mean, 2.0);
N50dB = 10.0*log10(N50+1E-12);
/* Now multiply by (3000 Hz)/(50 Hz) to find the total noise power
in 3000 Hz */
N3000dB = N50dB + 10.0*log10(3000.0/RS);
snr_dB = SdB - N3000dB;
return snr_dB;
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_get_demod_stats()
AUTHOR......: David Rowe
DATE CREATED: 1 May 2012
Fills stats structure with a bunch of demod information.
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_get_demod_stats(struct FDMDV *fdmdv,
struct FDMDV_STATS *fdmdv_stats)
{
int c;
fdmdv_stats->snr_est = calc_snr(fdmdv->sig_est, fdmdv->noise_est);
fdmdv_stats->fest_coarse_fine = fdmdv->coarse_fine;
fdmdv_stats->foff = fdmdv->foff;
fdmdv_stats->rx_timing = fdmdv->rx_timing;
fdmdv_stats->clock_offset = 0.0; /* TODO - implement clock offset estimation */
assert((NC+1) == FDMDV_NSYM);
for(c=0; c<NC+1; c++) {
fdmdv_stats->rx_symbols[c] = fdmdv->phase_difference[c];
}
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_8_to_48()
AUTHOR......: David Rowe
DATE CREATED: 9 May 2012
Changes the sample rate of a signal from 8 to 48 kHz. Experience
with PC based modems has shown that PC sound cards have a more
accurate sample clock when set for 48 kHz than 8 kHz.
n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n samples
at the 48 kHz rate. A memory of FDMDV_OS_TAPS/FDMDV_OS samples is reqd for
in8k[] (see t48_8.c unit test as example).
This is a classic polyphase upsampler. We take the 8 kHz samples
and insert (FDMDV_OS-1) zeroes between each sample, then
FDMDV_OS_TAPS FIR low pass filter the signal at 4kHz. As most of
the input samples are zeroes, we only need to multiply non-zero
input samples by filter coefficients. The zero insertion and
filtering are combined in the code below and I'm too lazy to explain
it further right now....
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_8_to_48(float out48k[], float in8k[], int n)
{
int i,j,k,l;
/* make sure n is an integer multiple of the oversampling rate, ow
this function breaks */
assert((n % FDMDV_OS) == 0);
for(i=0; i<n; i++) {
for(j=0; j<FDMDV_OS; j++) {
out48k[i*FDMDV_OS+j] = 0.0;
for(k=0,l=0; k<FDMDV_OS_TAPS; k+=FDMDV_OS,l++)
out48k[i*FDMDV_OS+j] += fdmdv_os_filter[k+j]*in8k[i-l];
out48k[i*FDMDV_OS+j] *= FDMDV_OS;
}
}
/* update filter memory */
for(i=-(FDMDV_OS_TAPS/FDMDV_OS); i<0; i++)
in8k[i] = in8k[i + n];
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_48_to_8()
AUTHOR......: David Rowe
DATE CREATED: 9 May 2012
Changes the sample rate of a signal from 48 to 8 kHz.
n is the number of samples at the 8 kHz rate, there are FDMDV_OS*n
samples at the 48 kHz rate. As above however a memory of
FDMDV_OS_TAPS samples is reqd for in48k[] (see t48_8.c unit test as example).
Low pass filter the 48 kHz signal at 4 kHz using the same filter as
the upsampler, then just output every FDMDV_OS-th filtered sample.
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_48_to_8(float out8k[], float in48k[], int n)
{
int i,j;
for(i=0; i<n; i++) {
out8k[i] = 0.0;
for(j=0; j<FDMDV_OS_TAPS; j++)
out8k[i] += fdmdv_os_filter[j]*in48k[i*FDMDV_OS-j];
}
/* update filter memory */
for(i=-FDMDV_OS_TAPS; i<0; i++)
in48k[i] = in48k[i + n*FDMDV_OS];
}
/*---------------------------------------------------------------------------*\
FUNCTION....: fdmdv_get_rx_spectrum()
AUTHOR......: David Rowe
DATE CREATED: 9 June 2012
Returns the FDMDV_NSPEC point magnitude spectrum of the rx signal in
dB. The spectral samples are scaled so that 0dB is the peak, a good
range for plotting is 0 to -40dB.
Note only the real part of the complex input signal is used at
present. A complex variable is used for input for compatability
with the other rx signal procesing.
Successive calls can be used to build up a waterfall or spectrogram
plot, by mapping the received levels to colours.
The time-frequency resolution of the spectrum can be adjusted by varying
FDMDV_NSPEC. Note that a 2*FDMDV_NSPEC size FFT is reqd to get
FDMDV_NSPEC output points. FDMDV_NSPEC must be a power of 2.
See octave/tget_spec.m for a demo real time spectral display using
Octave. This demo averages the output over time to get a smoother
display:
av = 0.9*av + 0.1*mag_dB
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_get_rx_spectrum(struct FDMDV *f, float mag_spec_dB[],
COMP rx_fdm[], int nin)
{
int i,j;
COMP fft_in[2*FDMDV_NSPEC];
COMP fft_out[2*FDMDV_NSPEC];
float full_scale_dB;
/* update buffer of input samples */
for(i=0; i<2*FDMDV_NSPEC-nin; i++)
f->fft_buf[i] = f->fft_buf[i+nin];
for(j=0; j<nin; j++,i++)
f->fft_buf[i] = rx_fdm[j].real;
assert(i == 2*FDMDV_NSPEC);
/* window and FFT */
for(i=0; i<2*FDMDV_NSPEC; i++) {
fft_in[i].real = f->fft_buf[i] * (0.5 - 0.5*cos((float)i*2.0*PI/(2*FDMDV_NSPEC)));
fft_in[i].imag = 0.0;
}
kiss_fft(f->fft_cfg, (kiss_fft_cpx *)fft_in, (kiss_fft_cpx *)fft_out);
/* FFT scales up a signal of level 1 FDMDV_NSPEC */
full_scale_dB = 20*log10(FDMDV_NSPEC);
/* scale and convert to dB */
for(i=0; i<FDMDV_NSPEC; i++) {
mag_spec_dB[i] = 10.0*log10(fft_out[i].real*fft_out[i].real + fft_out[i].imag*fft_out[i].imag + 1E-12);
mag_spec_dB[i] -= full_scale_dB;
}
}
/*---------------------------------------------------------------------------*\
Function used during development to test if magnitude of digital
oscillators was drifting. It was!
\*---------------------------------------------------------------------------*/
void CODEC2_WIN32SUPPORT fdmdv_dump_osc_mags(struct FDMDV *f)
{
int i;
fprintf(stderr, "phase_tx[]:\n");
for(i=0; i<=NC; i++)
fprintf(stderr," %1.3f", cabsolute(f->phase_tx[i]));
fprintf(stderr,"\nfreq[]:\n");
for(i=0; i<=NC; i++)
fprintf(stderr," %1.3f", cabsolute(f->freq[i]));
fprintf(stderr,"\nfoff_rect %1.3f foff_phase_rect: %1.3f", cabsolute(f->foff_rect), cabsolute(f->foff_phase_rect));
fprintf(stderr,"\nphase_rx[]:\n");
for(i=0; i<=NC; i++)
fprintf(stderr," %1.3f", cabsolute(f->phase_rx[i]));
fprintf(stderr, "\n\n");
}