freeswitch/libs/spandsp/src/time_scale.c

334 lines
9.2 KiB
C

/*
* SpanDSP - a series of DSP components for telephony
*
* time_scale.c - Time scaling for linear speech data
*
* Written by Steve Underwood <steveu@coppice.org>
*
* Copyright (C) 2004 Steve Underwood
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 2.1,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*! \file */
#if defined(HAVE_CONFIG_H)
#include "config.h"
#endif
#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <string.h>
#include <fcntl.h>
#include <time.h>
#include <limits.h>
#if defined(HAVE_TGMATH_H)
#include <tgmath.h>
#endif
#if defined(HAVE_MATH_H)
#include <math.h>
#endif
#if defined(HAVE_STDBOOL_H)
#include <stdbool.h>
#else
#include "spandsp/stdbool.h"
#endif
#include "floating_fudge.h"
#include "spandsp/telephony.h"
#include "spandsp/alloc.h"
#include "spandsp/fast_convert.h"
#include "spandsp/vector_int.h"
#include "spandsp/saturated.h"
#include "spandsp/time_scale.h"
#include "spandsp/private/time_scale.h"
/*
Time scaling for speech, based on the Pointer Interval Controlled
OverLap and Add (PICOLA) method, developed by Morita Naotaka.
*/
static __inline__ int amdf_pitch(int min_pitch, int max_pitch, int16_t amp[], int len)
{
int i;
int j;
int acc;
int min_acc;
int pitch;
pitch = min_pitch;
min_acc = INT_MAX;
for (i = max_pitch; i <= min_pitch; i++)
{
acc = 0;
for (j = 0; j < len; j++)
acc += abs(amp[i + j] - amp[j]);
/*endfor*/
if (acc < min_acc)
{
min_acc = acc;
pitch = i;
}
/*endif*/
}
/*endfor*/
return pitch;
}
/*- End of function --------------------------------------------------------*/
static __inline__ void overlap_add(int16_t amp1[], int16_t amp2[], int len)
{
int i;
float weight;
float step;
step = 1.0f/len;
weight = 0.0f;
for (i = 0; i < len; i++)
{
/* TODO: saturate */
amp1[i] = (int16_t) ((float) amp2[i]*(1.0f - weight) + (float) amp1[i]*weight);
weight += step;
}
/*endfor*/
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) time_scale_rate(time_scale_state_t *s, float playout_rate)
{
if (playout_rate <= 0.0f)
return -1;
/*endif*/
if (playout_rate >= 0.99f && playout_rate <= 1.01f)
{
/* Treat rate close to normal speed as exactly normal speed, and
avoid divide by zero, and other numerical problems. */
playout_rate = 1.0f;
}
else if (playout_rate < 1.0f)
{
s->rcomp = playout_rate/(1.0f - playout_rate);
}
else
{
s->rcomp = 1.0f/(playout_rate - 1.0f);
}
/*endif*/
s->playout_rate = playout_rate;
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) time_scale(time_scale_state_t *s, int16_t out[], int16_t in[], int len)
{
double lcpf;
int pitch;
int out_len;
int in_len;
int k;
out_len = 0;
in_len = 0;
if (s->playout_rate == 1.0f)
{
vec_copyi16(out, in, len);
return len;
}
/*endif*/
/* Top up the buffer */
if (s->fill + len < s->buf_len)
{
/* Cannot continue without more samples */
/* Save the residual signal for next time. */
vec_copyi16(&s->buf[s->fill], in, len);
s->fill += len;
return 0;
}
/*endif*/
k = s->buf_len - s->fill;
vec_copyi16(&s->buf[s->fill], in, k);
in_len += k;
s->fill = s->buf_len;
while (s->fill == s->buf_len)
{
while (s->lcp >= s->buf_len)
{
vec_copyi16(&out[out_len], s->buf, s->buf_len);
out_len += s->buf_len;
if (len - in_len < s->buf_len)
{
/* Cannot continue without more samples */
/* Save the residual signal for next time. */
vec_copyi16(s->buf, &in[in_len], len - in_len);
s->fill = len - in_len;
s->lcp -= s->buf_len;
return out_len;
}
/*endif*/
vec_copyi16(s->buf, &in[in_len], s->buf_len);
in_len += s->buf_len;
s->lcp -= s->buf_len;
}
/*endwhile*/
if (s->lcp > 0)
{
vec_copyi16(&out[out_len], s->buf, s->lcp);
out_len += s->lcp;
vec_movei16(s->buf, &s->buf[s->lcp], s->buf_len - s->lcp);
if (len - in_len < s->lcp)
{
/* Cannot continue without more samples */
/* Save the residual signal for next time. */
vec_copyi16(&s->buf[s->buf_len - s->lcp], &in[in_len], len - in_len);
s->fill = s->buf_len - s->lcp + len - in_len;
s->lcp = 0;
return out_len;
}
/*endif*/
vec_copyi16(&s->buf[s->buf_len - s->lcp], &in[in_len], s->lcp);
in_len += s->lcp;
s->lcp = 0;
}
/*endif*/
pitch = amdf_pitch(s->min_pitch, s->max_pitch, s->buf, s->min_pitch);
lcpf = (double) pitch*s->rcomp;
/* Nudge around to compensate for fractional samples */
s->lcp = (int) lcpf;
/* Note that s->lcp and lcpf are not the same, as lcpf has a fractional part, and s->lcp doesn't */
s->rate_nudge += s->lcp - lcpf;
if (s->rate_nudge >= 0.5f)
{
s->lcp--;
s->rate_nudge -= 1.0f;
}
else if (s->rate_nudge <= -0.5f)
{
s->lcp++;
s->rate_nudge += 1.0f;
}
/*endif*/
if (s->playout_rate < 1.0f)
{
/* Speed up - drop a pitch period of signal */
overlap_add(&s->buf[pitch], s->buf, pitch);
vec_copyi16(&s->buf[pitch], &s->buf[2*pitch], s->buf_len - 2*pitch);
if (len - in_len < pitch)
{
/* Cannot continue without more samples */
/* Save the residual signal for next time. */
vec_copyi16(&s->buf[s->buf_len - pitch], &in[in_len], len - in_len);
s->fill += (len - in_len - pitch);
return out_len;
}
/*endif*/
vec_copyi16(&s->buf[s->buf_len - pitch], &in[in_len], pitch);
in_len += pitch;
}
else
{
/* Slow down - insert a pitch period of signal */
vec_copyi16(&out[out_len], s->buf, pitch);
out_len += pitch;
overlap_add(s->buf, &s->buf[pitch], pitch);
}
/*endif*/
}
/*endwhile*/
return out_len;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) time_scale_flush(time_scale_state_t *s, int16_t out[])
{
int len;
int pad;
if (s->playout_rate < 1.0f)
return 0;
/*endif*/
vec_copyi16(out, s->buf, s->fill);
len = s->fill;
if (s->playout_rate > 1.0f)
{
pad = s->fill*(s->playout_rate - 1.0f);
vec_zeroi16(&out[len], pad);
len += pad;
}
/*endif*/
s->fill = 0;
return len;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) time_scale_max_output_len(time_scale_state_t *s, int input_len)
{
return (int) (input_len*s->playout_rate + s->min_pitch + 1);
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(time_scale_state_t *) time_scale_init(time_scale_state_t *s, int sample_rate, float playout_rate)
{
bool alloced;
if (sample_rate > TIME_SCALE_MAX_SAMPLE_RATE)
return NULL;
/*endif*/
alloced = false;
if (s == NULL)
{
if ((s = (time_scale_state_t *) span_alloc(sizeof(*s))) == NULL)
return NULL;
/*endif*/
alloced = true;
}
/*endif*/
s->sample_rate = sample_rate;
s->min_pitch = sample_rate/TIME_SCALE_MIN_PITCH;
s->max_pitch = sample_rate/TIME_SCALE_MAX_PITCH;
s->buf_len = 2*sample_rate/TIME_SCALE_MIN_PITCH;
if (time_scale_rate(s, playout_rate))
{
if (alloced)
span_free(s);
/*endif*/
return NULL;
}
/*endif*/
s->rate_nudge = 0.0f;
s->fill = 0;
s->lcp = 0;
return s;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) time_scale_release(time_scale_state_t *s)
{
return 0;
}
/*- End of function --------------------------------------------------------*/
SPAN_DECLARE(int) time_scale_free(time_scale_state_t *s)
{
span_free(s);
return 0;
}
/*- End of function --------------------------------------------------------*/
/*- End of file ------------------------------------------------------------*/