freeswitch/libs/xmlrpc-c/src/xmlrpc_decompose.c

1151 lines
35 KiB
C

/* By Bryan Henderson July 2006.
Contributed to the public domain.
*/
#include "xmlrpc_config.h"
#include <stddef.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include "bool.h"
#include "c_util.h"
#include "mallocvar.h"
#include "stdargx.h"
#include "xmlrpc-c/base.h"
#include "xmlrpc-c/base_int.h"
#include "xmlrpc-c/string_int.h"
/* THE DECOMPOSITION TREE
We execute xmlrpc_decompose_value() in two steps:
1) Create a "decomposition tree" that tells how Caller wants the XML-RPC
value decomposed.
2) Using that tree, decompose the value. I.e. store stuff in the variables
in which Caller wants it stored.
The decomposition tree is composed of information from the format
string and the variable arguments that the format string describes.
Nothing in the tree is derived from the actual XML-RPC value being
decomposed, and the tree may in fact be invalid for the particular
XML-RPC value it's meant for.
If the XML-RPC value is a simple value such as an integer, the
decomposition tree is trivial -- it's a single node that says
"store the value of an integer via pointer P".
Where it gets interesting is where the XML-RPC value to be decomposed
is a complex value (array or struct). Then, the root node of the tree
says, e.g., "decompose a 5-item array according to the following
5 decomposition trees" and it points to 5 additional nodes. Each of
those nodes is the root of another decomposition tree (which can also
be called a branch in this context). Each of those branches tells
how to decompose one of the items of the array.
Roots, interior nodes, and leaves are all essentially the same data
type.
*/
struct integerDecomp {
xmlrpc_int32 * valueP;
};
struct boolDecomp {
xmlrpc_bool * valueP;
};
struct doubleDecomp {
double * valueP;
};
struct datetimeTDecomp {
time_t * valueP;
};
struct datetime8Decomp {
const char ** valueP;
};
struct stringDecomp {
const char ** valueP;
size_t * sizeP;
/* NULL means don't store a size */
};
struct wideStringDecomp {
#if HAVE_UNICODE_WCHAR
const wchar_t ** valueP;
#endif
size_t * sizeP;
/* NULL means don't store a size */
};
struct bitStringDecomp {
const unsigned char ** valueP;
size_t * sizeP;
};
struct cptrDecomp {
void ** valueP;
};
struct i8Decomp {
xmlrpc_int64 * valueP;
};
struct valueDecomp {
xmlrpc_value ** valueP;
};
struct arrayValDecomp {
xmlrpc_value ** valueP;
};
struct structValDecomp {
xmlrpc_value ** valueP;
};
struct arrayDecomp {
unsigned int itemCnt;
bool ignoreExcess;
/* If there are more that 'itemCnt' items in the array, just
extract the first 'itemCnt' and ignore the rest, rather than
fail the decomposition.
*/
struct decompTreeNode * itemArray[16];
/* Only first 'itemCnt' elements of this array are defined */
};
struct mbrDecomp {
const char * key;
/* The key for the member whose value client wants to extract */
struct decompTreeNode * decompTreeP;
/* Instructions on how to decompose (extract) member's value */
};
struct structDecomp {
unsigned int mbrCnt;
struct mbrDecomp mbrArray[16];
};
struct decompTreeNode {
char formatSpecChar;
/* e.g. 'i', 'b', '8', 'A'. '(' means array; '{' means struct */
union {
/*------------------------------------------------------------------------
'formatSpecChar' selects among these members.
-------------------------------------------------------------------------*/
struct integerDecomp Tinteger;
struct boolDecomp Tbool;
struct doubleDecomp Tdouble;
struct datetimeTDecomp TdatetimeT;
struct datetime8Decomp Tdatetime8;
struct stringDecomp Tstring;
struct wideStringDecomp TwideString;
struct bitStringDecomp TbitString;
struct cptrDecomp Tcptr;
struct i8Decomp Ti8;
struct valueDecomp Tvalue;
struct arrayValDecomp TarrayVal;
struct structValDecomp TstructVal;
struct arrayDecomp Tarray;
struct structDecomp Tstruct;
} store;
};
/* prototype for recursive calls */
static void
releaseDecomposition(const struct decompTreeNode * const decompRootP,
bool const oldstyleMemMgmt);
static void
releaseDecompArray(struct arrayDecomp const arrayDecomp,
bool const oldstyleMemMgmt) {
unsigned int i;
for (i = 0; i < arrayDecomp.itemCnt; ++i) {
releaseDecomposition(arrayDecomp.itemArray[i], oldstyleMemMgmt);
}
}
static void
releaseDecompStruct(struct structDecomp const structDecomp,
bool const oldstyleMemMgmt) {
unsigned int i;
for (i = 0; i < structDecomp.mbrCnt; ++i) {
releaseDecomposition(structDecomp.mbrArray[i].decompTreeP,
oldstyleMemMgmt);
}
}
static void
releaseDecomposition(const struct decompTreeNode * const decompRootP,
bool const oldstyleMemMgmt) {
/*----------------------------------------------------------------------------
Assuming that Caller has decomposed something according to 'decompRootP',
release whatever resources the decomposed information occupies.
E.g. if it's an XML-RPC string, Caller would have allocated memory
for the C string that represents the decomposed value of XML-RPC string,
and we release that memory.
-----------------------------------------------------------------------------*/
switch (decompRootP->formatSpecChar) {
case 'i':
case 'b':
case 'd':
case 'n':
case 'I':
case 't':
case 'p':
/* Nothing was allocated; nothing to release */
break;
case '8':
xmlrpc_strfree(*decompRootP->store.Tdatetime8.valueP);
break;
case 's':
xmlrpc_strfree(*decompRootP->store.Tstring.valueP);
break;
case 'w':
free((void*)*decompRootP->store.TwideString.valueP);
break;
case '6':
free((void*)*decompRootP->store.TbitString.valueP);
break;
case 'V':
xmlrpc_DECREF(*decompRootP->store.Tvalue.valueP);
break;
case 'A':
xmlrpc_DECREF(*decompRootP->store.TarrayVal.valueP);
break;
case 'S':
xmlrpc_DECREF(*decompRootP->store.TstructVal.valueP);
break;
case '(':
releaseDecompArray(decompRootP->store.Tarray, oldstyleMemMgmt);
break;
case '{':
releaseDecompStruct(decompRootP->store.Tstruct, oldstyleMemMgmt);
break;
}
}
/* Prototype for recursive invocation: */
static void
decomposeValueWithTree(xmlrpc_env * const envP,
xmlrpc_value * const valueP,
bool const oldstyleMemMgmt,
const struct decompTreeNode * const decompRootP);
static void
validateArraySize(xmlrpc_env * const envP,
const xmlrpc_value * const arrayP,
struct arrayDecomp const arrayDecomp) {
unsigned int size;
size = xmlrpc_array_size(envP, arrayP);
if (!envP->fault_occurred) {
if (arrayDecomp.itemCnt > size)
xmlrpc_env_set_fault_formatted(
envP, XMLRPC_INDEX_ERROR,
"Format string requests %u items from array, but array "
"has only %u items.", arrayDecomp.itemCnt, size);
else if (arrayDecomp.itemCnt < size && !arrayDecomp.ignoreExcess)
xmlrpc_env_set_fault_formatted(
envP, XMLRPC_INDEX_ERROR,
"Format string requests exactly %u items from array, "
"but array has %u items. (A '*' at the end would avoid "
"this failure)", arrayDecomp.itemCnt, size);
}
}
static void
parsearray(xmlrpc_env * const envP,
const xmlrpc_value * const arrayP,
struct arrayDecomp const arrayDecomp,
bool const oldstyleMemMgmt) {
validateArraySize(envP, arrayP, arrayDecomp);
if (!envP->fault_occurred) {
unsigned int doneCnt;
doneCnt = 0;
while(doneCnt < arrayDecomp.itemCnt && !envP->fault_occurred) {
xmlrpc_value * itemP;
xmlrpc_array_read_item(envP, arrayP, doneCnt, &itemP);
if (!envP->fault_occurred) {
XMLRPC_ASSERT(doneCnt < ARRAY_SIZE(arrayDecomp.itemArray));
decomposeValueWithTree(envP, itemP, oldstyleMemMgmt,
arrayDecomp.itemArray[doneCnt]);
if (!envP->fault_occurred)
++doneCnt;
xmlrpc_DECREF(itemP);
}
}
if (envP->fault_occurred) {
/* Release the items we completed before we failed. */
unsigned int i;
for (i = 0; i < doneCnt; ++i)
releaseDecomposition(arrayDecomp.itemArray[i],
oldstyleMemMgmt);
}
}
}
static void
parsestruct(xmlrpc_env * const envP,
xmlrpc_value * const structP,
struct structDecomp const structDecomp,
bool const oldstyleMemMgmt) {
unsigned int doneCount;
doneCount = 0; /* No members done yet */
while (doneCount < structDecomp.mbrCnt && !envP->fault_occurred) {
const char * const key = structDecomp.mbrArray[doneCount].key;
xmlrpc_value * valueP;
xmlrpc_struct_read_value(envP, structP, key, &valueP);
if (!envP->fault_occurred) {
decomposeValueWithTree(
envP, valueP, oldstyleMemMgmt,
structDecomp.mbrArray[doneCount].decompTreeP);
if (!envP->fault_occurred)
++doneCount;
xmlrpc_DECREF(valueP);
}
}
if (envP->fault_occurred) {
unsigned int i;
for (i = 0; i < doneCount; ++i)
releaseDecomposition(structDecomp.mbrArray[i].decompTreeP,
oldstyleMemMgmt);
}
}
static void
readString(xmlrpc_env * const envP,
const xmlrpc_value * const valueP,
const char ** const stringValueP,
bool const oldstyleMemMgmt) {
if (oldstyleMemMgmt) {
xmlrpc_read_string_old(envP, valueP, stringValueP);
} else
xmlrpc_read_string(envP, valueP, stringValueP);
}
static void
readStringLp(xmlrpc_env * const envP,
const xmlrpc_value * const valueP,
size_t * const lengthP,
const char ** const stringValueP,
bool const oldstyleMemMgmt) {
if (oldstyleMemMgmt) {
xmlrpc_read_string_lp_old(envP, valueP, lengthP, stringValueP);
} else
xmlrpc_read_string_lp(envP, valueP, lengthP, stringValueP);
}
#if HAVE_UNICODE_WCHAR
static void
readStringW(xmlrpc_env * const envP,
xmlrpc_value * const valueP,
const wchar_t ** const stringValueP,
bool const oldstyleMemMgmt) {
if (oldstyleMemMgmt) {
xmlrpc_read_string_w_old(envP, valueP, stringValueP);
} else
xmlrpc_read_string_w(envP, valueP, stringValueP);
}
static void
readStringWLp(xmlrpc_env * const envP,
xmlrpc_value * const valueP,
size_t * const lengthP,
const wchar_t ** const stringValueP,
bool const oldstyleMemMgmt) {
if (oldstyleMemMgmt) {
xmlrpc_read_string_w_lp_old(envP, valueP, lengthP, stringValueP);
} else
xmlrpc_read_string_w_lp(envP, valueP, lengthP, stringValueP);
}
#endif
static void
readDatetime8Str(xmlrpc_env * const envP,
const xmlrpc_value * const valueP,
const char ** const stringValueP,
bool const oldstyleMemMgmt) {
if (oldstyleMemMgmt)
xmlrpc_read_datetime_str_old(envP, valueP, stringValueP);
else
xmlrpc_read_datetime_str(envP, valueP, stringValueP);
}
static void
readBase64(xmlrpc_env * const envP,
const xmlrpc_value * const valueP,
size_t * const lengthP,
const unsigned char ** const byteStringValueP,
bool const oldstyleMemMgmt) {
if (oldstyleMemMgmt)
xmlrpc_read_base64_old(envP, valueP, lengthP, byteStringValueP);
else
xmlrpc_read_base64(envP, valueP, lengthP, byteStringValueP);
}
static void
decomposeValueWithTree(xmlrpc_env * const envP,
xmlrpc_value * const valueP,
bool const oldstyleMemMgmt,
const struct decompTreeNode * const decompRootP) {
/*----------------------------------------------------------------------------
Decompose XML-RPC value *valueP, given the decomposition tree
*decompRootP. The decomposition tree tells what structure *valueP
is expected to have and where to put the various components of it
(e.g. it says "it's an array of 3 integers. Put their values at
locations x, y, and z")
-----------------------------------------------------------------------------*/
switch (decompRootP->formatSpecChar) {
case '-':
/* There's nothing to validate or return */
break;
case 'i':
xmlrpc_read_int(envP, valueP, decompRootP->store.Tinteger.valueP);
break;
case 'b':
xmlrpc_read_bool(envP, valueP, decompRootP->store.Tbool.valueP);
break;
case 'd':
xmlrpc_read_double(envP, valueP, decompRootP->store.Tdouble.valueP);
break;
case 't':
xmlrpc_read_datetime_sec(envP, valueP,
decompRootP->store.TdatetimeT.valueP);
break;
case '8':
readDatetime8Str(envP, valueP, decompRootP->store.Tdatetime8.valueP,
oldstyleMemMgmt);
break;
case 's':
if (decompRootP->store.Tstring.sizeP)
readStringLp(envP, valueP,
decompRootP->store.Tstring.sizeP,
decompRootP->store.Tstring.valueP,
oldstyleMemMgmt);
else
readString(envP, valueP, decompRootP->store.Tstring.valueP,
oldstyleMemMgmt);
break;
case 'w':
#if HAVE_UNICODE_WCHAR
if (decompRootP->store.Tstring.sizeP)
readStringWLp(envP, valueP,
decompRootP->store.TwideString.sizeP,
decompRootP->store.TwideString.valueP,
oldstyleMemMgmt);
else
readStringW(envP, valueP, decompRootP->store.TwideString.valueP,
oldstyleMemMgmt);
#else
XMLRPC_ASSERT(false);
#endif /* HAVE_UNICODE_WCHAR */
break;
case '6':
readBase64(envP, valueP,
decompRootP->store.TbitString.sizeP,
decompRootP->store.TbitString.valueP,
oldstyleMemMgmt);
break;
case 'n':
xmlrpc_read_nil(envP, valueP);
break;
case 'I':
xmlrpc_read_i8(envP, valueP, decompRootP->store.Ti8.valueP);
break;
case 'p':
xmlrpc_read_cptr(envP, valueP, decompRootP->store.Tcptr.valueP);
break;
case 'V':
*decompRootP->store.Tvalue.valueP = valueP;
if (!oldstyleMemMgmt)
xmlrpc_INCREF(valueP);
break;
case 'A':
if (xmlrpc_value_type(valueP) != XMLRPC_TYPE_ARRAY)
xmlrpc_env_set_fault_formatted(
envP, XMLRPC_TYPE_ERROR, "Value to be decomposed is of type "
"%s, but the 'A' specifier requires type ARRAY",
xmlrpc_type_name(xmlrpc_value_type(valueP)));
else {
*decompRootP->store.TarrayVal.valueP = valueP;
if (!oldstyleMemMgmt)
xmlrpc_INCREF(valueP);
}
break;
case 'S':
if (xmlrpc_value_type(valueP) != XMLRPC_TYPE_STRUCT)
xmlrpc_env_set_fault_formatted(
envP, XMLRPC_TYPE_ERROR, "Value to be decomposed is of type "
"%s, but the 'S' specifier requires type STRUCT.",
xmlrpc_type_name(xmlrpc_value_type(valueP)));
else {
*decompRootP->store.TstructVal.valueP = valueP;
if (!oldstyleMemMgmt)
xmlrpc_INCREF(valueP);
}
break;
case '(':
if (xmlrpc_value_type(valueP) != XMLRPC_TYPE_ARRAY)
xmlrpc_env_set_fault_formatted(
envP, XMLRPC_TYPE_ERROR, "Value to be decomposed is of type "
"%s, but the '(...)' specifier requires type ARRAY",
xmlrpc_type_name(xmlrpc_value_type(valueP)));
else
parsearray(envP, valueP, decompRootP->store.Tarray,
oldstyleMemMgmt);
break;
case '{':
if (xmlrpc_value_type(valueP) != XMLRPC_TYPE_STRUCT)
xmlrpc_env_set_fault_formatted(
envP, XMLRPC_TYPE_ERROR, "Value to be decomposed is of type "
"%s, but the '{...}' specifier requires type STRUCT",
xmlrpc_type_name(xmlrpc_value_type(valueP)));
else
parsestruct(envP, valueP, decompRootP->store.Tstruct,
oldstyleMemMgmt);
break;
default:
/* Every format character that is allowed in a decomposition tree
node is handled above.
*/
XMLRPC_ASSERT(false);
}
}
/* Forward declaration for recursive calls */
static void
createDecompTreeNext(xmlrpc_env * const envP,
const char ** const formatP,
va_listx * const argsP,
struct decompTreeNode ** const decompNodePP);
static void
buildWideStringNode(xmlrpc_env * const envP ATTR_UNUSED,
const char ** const formatP,
va_listx * const argsP,
struct decompTreeNode * const decompNodeP) {
#if HAVE_UNICODE_WCHAR
decompNodeP->store.TwideString.valueP =
(const wchar_t**) va_arg(argsP->v, wchar_t**);
if (**formatP == '#') {
decompNodeP->store.TwideString.sizeP =
(size_t*) va_arg(argsP->v, size_t**);
(*formatP)++;
} else
decompNodeP->store.TwideString.sizeP = NULL;
#else
xmlrpc_faultf(envP,
"This XML-RPC For C/C++ library was built without Unicode "
"wide character capability. 'w' isn't available.");
#endif /* HAVE_UNICODE_WCHAR */
}
static void
destroyDecompTree(struct decompTreeNode * const decompRootP) {
switch (decompRootP->formatSpecChar) {
case '(': {
unsigned int i;
for (i = 0; i < decompRootP->store.Tarray.itemCnt; ++i)
destroyDecompTree(decompRootP->store.Tarray.itemArray[i]);
} break;
case '{': {
unsigned int i;
for (i = 0; i < decompRootP->store.Tstruct.mbrCnt; ++i)
destroyDecompTree(
decompRootP->store.Tstruct.mbrArray[i].decompTreeP);
} break;
}
free(decompRootP);
}
static void
processArraySpecTail(xmlrpc_env * const envP,
const char ** const formatP,
bool * const hasTrailingAsteriskP,
char const delim) {
if (**formatP == '*') {
*hasTrailingAsteriskP = true;
++*formatP;
if (!**formatP)
xmlrpc_faultf(envP, "missing closing delimiter ('%c')", delim);
else if (**formatP != delim)
xmlrpc_faultf(envP, "character following '*' in array "
"specification should be the closing delimiter "
"'%c', but is '%c'", delim, **formatP);
} else {
*hasTrailingAsteriskP = false;
if (!**formatP)
xmlrpc_faultf(envP, "missing closing delimiter ('%c')", delim);
}
if (!envP->fault_occurred)
XMLRPC_ASSERT(**formatP == delim);
}
static void
buildArrayDecompBranch(xmlrpc_env * const envP,
const char ** const formatP,
char const delim,
va_listx * const argsP,
struct decompTreeNode * const decompNodeP) {
/*----------------------------------------------------------------------------
Fill in the decomposition tree node *decompNodeP to cover an array
whose items are described by *formatP. To wit, they are the values
described by successive format specifiers in *formatP up to but not
including the next 'delim' character.
Plus, the last character before the delimiter might be a '*', which
means "ignore any additional items in the array."
We create a node (and whole branch if required) to describe each array
item.
The pointers to where those items are to be stored are given by
'argsP'.
We advance *formatP to the delimiter character, and advance 'argsP'
past whatever arguments we use.
-----------------------------------------------------------------------------*/
unsigned int itemCnt;
/* Number of array items in the branch so far */
itemCnt = 0; /* Branch is empty so far */
while (**formatP && **formatP != delim && **formatP != '*' &&
!envP->fault_occurred) {
if (itemCnt >= ARRAY_SIZE(decompNodeP->store.Tarray.itemArray))
xmlrpc_faultf(envP, "Too many array items in format string. "
"The most items you can have for an array in "
"a format string is %u.", (unsigned)
ARRAY_SIZE(decompNodeP->store.Tarray.itemArray));
else {
struct decompTreeNode * itemNodeP;
createDecompTreeNext(envP, formatP, argsP, &itemNodeP);
if (!envP->fault_occurred)
decompNodeP->store.Tarray.itemArray[itemCnt++] = itemNodeP;
}
}
if (!envP->fault_occurred) {
decompNodeP->store.Tarray.itemCnt = itemCnt;
processArraySpecTail(envP, formatP,
&decompNodeP->store.Tarray.ignoreExcess,
delim);
}
if (envP->fault_occurred) {
unsigned int i;
for (i = 0; i < itemCnt; ++i)
destroyDecompTree(decompNodeP->store.Tarray.itemArray[i]);
}
}
static void
doStructValue(xmlrpc_env * const envP,
const char ** const formatP,
va_listx * const argsP,
struct mbrDecomp * const mbrP) {
struct decompTreeNode * valueNodeP;
mbrP->key = (const char*) va_arg(argsP->v, char*);
createDecompTreeNext(envP, formatP, argsP, &valueNodeP);
if (!envP->fault_occurred)
mbrP->decompTreeP = valueNodeP;
}
static void
skipAsterisk(xmlrpc_env * const envP,
const char ** const formatP,
char const delim) {
if (**formatP == '*') {
++*formatP;
if (!**formatP)
xmlrpc_faultf(envP, "missing closing delimiter ('%c')", delim);
else if (**formatP != delim)
xmlrpc_faultf(envP, "junk after '*' in the specifier of an "
"array. First character='%c'", **formatP);
} else
/* Conceptually, one can make it an error to leave some struct
members behind, but we have never had code that knows how to
recognize that case.
*/
xmlrpc_faultf(envP,
"You must put a trailing '*' in the specifiers for "
"struct members to signify it's OK if there are "
"additional members you didn't get.");
}
static void
skipColon(xmlrpc_env * const envP,
const char ** const formatP,
char const delim) {
if (**formatP == '\0')
xmlrpc_faultf(envP, "format string ends in the middle of a struct "
"member specifier");
else if (**formatP == delim)
xmlrpc_faultf(envP, "member list ends in the middle of a member");
else if (**formatP != ':')
xmlrpc_faultf(envP, "In a struct specifier, '%c' found "
"where a colon (':') separating key and "
"value was expected.", **formatP);
}
static void
skipComma(xmlrpc_env * const envP,
const char ** const formatP,
char const delim) {
if (**formatP && **formatP != delim) {
if (**formatP == ',')
++*formatP; /* skip over comma */
else
xmlrpc_faultf(envP, "'%c' where we expected a ',' "
"to separate struct members", **formatP);
}
}
static void
buildStructDecompBranch(xmlrpc_env * const envP,
const char ** const formatP,
char const delim,
va_listx * const argsP,
struct decompTreeNode * const decompNodeP) {
/*----------------------------------------------------------------------------
Fill in the decomposition tree node *decompNodeP to cover a struct
whose members are described by *formatP. To wit, they are the values
described by successive format specifiers in *formatP up to but not
including the next 'delim' character.
We create a node (and whole branch if required) to describe each
struct member value.
The pointers to where those values are to be stored are given by
'argsP'.
The names of the members to be extracted are also given by 'argsP'.
We advance *formatP to the delimiter character, and advance 'argsP'
past whatever arguments we use.
-----------------------------------------------------------------------------*/
unsigned int memberCnt;
/* Number of struct members in the branch so far */
memberCnt = 0; /* Branch is empty so far */
while (**formatP && **formatP != delim && **formatP != '*' &&
!envP->fault_occurred) {
if (memberCnt >= ARRAY_SIZE(decompNodeP->store.Tstruct.mbrArray))
xmlrpc_faultf(envP,
"Too many structure members in format string. "
"The most members you can specify in "
"a format string is %u.", (unsigned)
ARRAY_SIZE(decompNodeP->store.Tstruct.mbrArray));
else {
struct mbrDecomp * const mbrP =
&decompNodeP->store.Tstruct.mbrArray[memberCnt];
if (**formatP != 's')
xmlrpc_faultf(envP, "In a struct specifier, the specifier "
"for the key is '%c', but it must be 's'.",
**formatP);
else {
++*formatP;
skipColon(envP, formatP, delim);
if (!envP->fault_occurred) {
++*formatP;
doStructValue(envP, formatP, argsP, mbrP);
if (!envP->fault_occurred)
++memberCnt;
skipComma(envP, formatP, delim);
}
}
}
}
decompNodeP->store.Tstruct.mbrCnt = memberCnt;
if (!envP->fault_occurred) {
skipAsterisk(envP, formatP, delim);
if (!envP->fault_occurred)
XMLRPC_ASSERT(**formatP == delim);
}
if (envP->fault_occurred) {
unsigned int i;
for (i = 0; i < memberCnt; ++i)
destroyDecompTree(
decompNodeP->store.Tstruct.mbrArray[i].decompTreeP);
}
}
static void
createDecompTreeNext(xmlrpc_env * const envP,
const char ** const formatP,
va_listx * const argsP,
struct decompTreeNode ** const decompNodePP) {
/*----------------------------------------------------------------------------
Create a branch of a decomposition tree that applies to the first
value described by '*formatP', and advance *formatP past the description
of that first value. E.g.:
- If *formatP is "isb", we create a branch consisting of one
node -- for an integer. We advance *formatP by one character, so
it points to the "s".
- If *formatP is "(isb)s", we create a branch that represents the
array (isb) and advance *formatP past the closing parenthesis to
point to the final "s". We return as *decompNodePP a pointer to
a node for the array, and that array in turn points to nodes for
each of the 3 array items: one for an integer, one for a string,
and one for a boolean.
The locations at which the components of that value are to be
stored (which is the main contents of the branch we create) are
given by 'argsP'.
Return as *decompNodeP a pointer to the root node of the branch we
generate.
-----------------------------------------------------------------------------*/
struct decompTreeNode * decompNodeP;
MALLOCVAR(decompNodeP);
if (decompNodeP == NULL)
xmlrpc_faultf(envP, "Could not allocate space for a decomposition "
"tree node");
else {
decompNodeP->formatSpecChar = *(*formatP)++;
switch (decompNodeP->formatSpecChar) {
case '-':
/* There's nothing to store */
break;
case 'i':
decompNodeP->store.Tinteger.valueP =
(xmlrpc_int32*) va_arg(argsP->v, xmlrpc_int32*);
break;
case 'b':
decompNodeP->store.Tbool.valueP =
(xmlrpc_bool*) va_arg(argsP->v, xmlrpc_bool*);
break;
case 'd':
decompNodeP->store.Tdouble.valueP =
(double*) va_arg(argsP->v, double*);
break;
case 't':
decompNodeP->store.TdatetimeT.valueP =
va_arg(argsP->v, time_t*);
break;
case '8':
decompNodeP->store.Tdatetime8.valueP =
(const char**) va_arg(argsP->v, char**);
break;
case 's':
decompNodeP->store.Tstring.valueP =
(const char**) va_arg(argsP->v, char**);
if (**formatP == '#') {
decompNodeP->store.Tstring.sizeP =
(size_t*) va_arg(argsP->v, size_t**);
++*formatP;
} else
decompNodeP->store.Tstring.sizeP = NULL;
break;
case 'w':
buildWideStringNode(envP, formatP, argsP, decompNodeP);
break;
case '6':
decompNodeP->store.TbitString.valueP =
(const unsigned char**) va_arg(argsP->v, unsigned char**);
decompNodeP->store.TbitString.sizeP =
(size_t*) va_arg(argsP->v, size_t**);
break;
case 'n':
/* There's no value to store */
break;
case 'I':
decompNodeP->store.Ti8.valueP =
(xmlrpc_int64 *) va_arg(argsP->v, xmlrpc_int64 *);
break;
case 'p':
decompNodeP->store.Tcptr.valueP =
(void**) va_arg(argsP->v, void**);
break;
case 'V':
decompNodeP->store.Tvalue.valueP =
(xmlrpc_value**) va_arg(argsP->v, xmlrpc_value**);
break;
case 'A':
decompNodeP->store.TarrayVal.valueP =
(xmlrpc_value**) va_arg(argsP->v, xmlrpc_value**);
break;
case 'S':
decompNodeP->store.TstructVal.valueP =
(xmlrpc_value**) va_arg(argsP->v, xmlrpc_value**);
break;
case '(':
buildArrayDecompBranch(envP, formatP, ')', argsP, decompNodeP);
++(*formatP); /* skip past closing ')' */
break;
case '{':
buildStructDecompBranch(envP, formatP, '}', argsP, decompNodeP);
++(*formatP); /* skip past closing '}' */
break;
default:
xmlrpc_faultf(envP, "Invalid format character '%c'",
decompNodeP->formatSpecChar);
}
if (envP->fault_occurred)
free(decompNodeP);
else
*decompNodePP = decompNodeP;
}
}
static void
createDecompTree(xmlrpc_env * const envP,
const char * const format,
va_listx const args,
struct decompTreeNode ** const decompRootPP) {
const char * formatCursor;
struct decompTreeNode * decompRootP;
va_listx currentArgs;
currentArgs = args;
formatCursor = &format[0];
createDecompTreeNext(envP, &formatCursor, &currentArgs, &decompRootP);
if (!envP->fault_occurred) {
if (*formatCursor != '\0')
xmlrpc_faultf(envP, "format string '%s' has garbage at the end: "
"'%s'. It should be a specifier of a single value "
"(but that might be a complex value, such as an "
"array)", format, formatCursor);
if (envP->fault_occurred)
destroyDecompTree(decompRootP);
}
*decompRootPP = decompRootP;
}
static void
decomposeValue(xmlrpc_env * const envP,
xmlrpc_value * const valueP,
bool const oldstyleMemMgmt,
const char * const format,
va_listx const args) {
struct decompTreeNode * decompRootP;
XMLRPC_ASSERT_ENV_OK(envP);
XMLRPC_ASSERT_VALUE_OK(valueP);
XMLRPC_ASSERT(format != NULL);
createDecompTree(envP, format, args, &decompRootP);
if (!envP->fault_occurred) {
decomposeValueWithTree(envP, valueP, oldstyleMemMgmt, decompRootP);
destroyDecompTree(decompRootP);
}
}
void
xmlrpc_decompose_value_va(xmlrpc_env * const envP,
xmlrpc_value * const valueP,
const char * const format,
va_list const args) {
bool const oldstyleMemMgtFalse = false;
va_listx argsx;
init_va_listx(&argsx, args);
decomposeValue(envP, valueP, oldstyleMemMgtFalse, format, argsx);
}
void
xmlrpc_decompose_value(xmlrpc_env * const envP,
xmlrpc_value * const value,
const char * const format,
...) {
va_list args;
va_start(args, format);
xmlrpc_decompose_value_va(envP, value, format, args);
va_end(args);
}
void
xmlrpc_parse_value_va(xmlrpc_env * const envP,
xmlrpc_value * const valueP,
const char * const format,
va_list const args) {
bool const oldstyleMemMgmtTrue = true;
va_listx argsx;
init_va_listx(&argsx, args);
decomposeValue(envP, valueP, oldstyleMemMgmtTrue, format, argsx);
}
void
xmlrpc_parse_value(xmlrpc_env * const envP,
xmlrpc_value * const value,
const char * const format,
...) {
va_list args;
va_start(args, format);
xmlrpc_parse_value_va(envP, value, format, args);
va_end(args);
}