/* * Copyright (c) 2002, Christopher Clark * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * * Neither the name of the original author; nor the names of any contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "switch.h" #include "private/switch_hashtable_private.h" /* Credit for primes table: Aaron Krowne http://br.endernet.org/~akrowne/ http://planetmath.org/encyclopedia/GoodHashTablePrimes.html */ static const unsigned int primes[] = { 53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593, 49157, 98317, 196613, 393241, 786433, 1572869, 3145739, 6291469, 12582917, 25165843, 50331653, 100663319, 201326611, 402653189, 805306457, 1610612741 }; const unsigned int prime_table_length = sizeof(primes)/sizeof(primes[0]); const float max_load_factor = 0.65f; /*****************************************************************************/ SWITCH_DECLARE(switch_status_t) switch_create_hashtable(switch_hashtable_t **hp, unsigned int minsize, unsigned int (*hashf) (void*), int (*eqf) (void*,void*)) { switch_hashtable_t *h; unsigned int pindex, size = primes[0]; /* Check requested hashtable isn't too large */ if (minsize > (1u << 30)) {*hp = NULL; return SWITCH_STATUS_FALSE;} /* Enforce size as prime */ for (pindex=0; pindex < prime_table_length; pindex++) { if (primes[pindex] > minsize) { size = primes[pindex]; break; } } h = (switch_hashtable_t *) malloc(sizeof(switch_hashtable_t)); if (NULL == h) abort(); /*oom*/ h->table = (struct entry **)malloc(sizeof(struct entry*) * size); if (NULL == h->table) abort(); /*oom*/ memset(h->table, 0, size * sizeof(struct entry *)); h->tablelength = size; h->primeindex = pindex; h->entrycount = 0; h->hashfn = hashf; h->eqfn = eqf; h->loadlimit = (unsigned int) ceil(size * max_load_factor); *hp = h; return SWITCH_STATUS_SUCCESS; } /*****************************************************************************/ static int hashtable_expand(switch_hashtable_t *h) { /* Double the size of the table to accommodate more entries */ struct entry **newtable; struct entry *e; struct entry **pE; unsigned int newsize, i, index; /* Check we're not hitting max capacity */ if (h->primeindex == (prime_table_length - 1)) return 0; newsize = primes[++(h->primeindex)]; newtable = (struct entry **)malloc(sizeof(struct entry*) * newsize); if (NULL != newtable) { memset(newtable, 0, newsize * sizeof(struct entry *)); /* This algorithm is not 'stable'. ie. it reverses the list * when it transfers entries between the tables */ for (i = 0; i < h->tablelength; i++) { while (NULL != (e = h->table[i])) { h->table[i] = e->next; index = indexFor(newsize,e->h); e->next = newtable[index]; newtable[index] = e; } } switch_safe_free(h->table); h->table = newtable; } /* Plan B: realloc instead */ else { newtable = (struct entry **) realloc(h->table, newsize * sizeof(struct entry *)); if (NULL == newtable) { (h->primeindex)--; return 0; } h->table = newtable; memset(newtable[h->tablelength], 0, newsize - h->tablelength); for (i = 0; i < h->tablelength; i++) { for (pE = &(newtable[i]), e = *pE; e != NULL; e = *pE) { index = indexFor(newsize,e->h); if (index == i) { pE = &(e->next); } else { *pE = e->next; e->next = newtable[index]; newtable[index] = e; } } } } h->tablelength = newsize; h->loadlimit = (unsigned int) ceil(newsize * max_load_factor); return -1; } /*****************************************************************************/ SWITCH_DECLARE(unsigned int) switch_hashtable_count(switch_hashtable_t *h) { return h->entrycount; } static void * _switch_hashtable_remove(switch_hashtable_t *h, void *k, unsigned int hashvalue, unsigned int index) { /* TODO: consider compacting the table when the load factor drops enough, * or provide a 'compact' method. */ struct entry *e; struct entry **pE; void *v; pE = &(h->table[index]); e = *pE; while (NULL != e) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (h->eqfn(k, e->k))) { *pE = e->next; h->entrycount--; v = e->v; if (e->flags & HASHTABLE_FLAG_FREE_KEY) { freekey(e->k); } if (e->flags & HASHTABLE_FLAG_FREE_VALUE) { switch_safe_free(e->v); v = NULL; } else if (e->destructor) { e->destructor(e->v); v = e->v = NULL; } switch_safe_free(e); return v; } pE = &(e->next); e = e->next; } return NULL; } /*****************************************************************************/ SWITCH_DECLARE(int) switch_hashtable_insert_destructor(switch_hashtable_t *h, void *k, void *v, hashtable_flag_t flags, hashtable_destructor_t destructor) { struct entry *e; unsigned int hashvalue = hash(h, k); unsigned index = indexFor(h->tablelength, hashvalue); if (flags & HASHTABLE_DUP_CHECK) { _switch_hashtable_remove(h, k, hashvalue, index); } if (++(h->entrycount) > h->loadlimit) { /* Ignore the return value. If expand fails, we should * still try cramming just this value into the existing table * -- we may not have memory for a larger table, but one more * element may be ok. Next time we insert, we'll try expanding again.*/ hashtable_expand(h); index = indexFor(h->tablelength, hashvalue); } e = (struct entry *)malloc(sizeof(struct entry)); if (NULL == e) { --(h->entrycount); return 0; } /*oom*/ e->h = hashvalue; e->k = k; e->v = v; e->flags = flags; e->destructor = destructor; e->next = h->table[index]; h->table[index] = e; return -1; } /*****************************************************************************/ SWITCH_DECLARE(void *) /* returns value associated with key */ switch_hashtable_search(switch_hashtable_t *h, void *k) { struct entry *e; unsigned int hashvalue, index; hashvalue = hash(h,k); index = indexFor(h->tablelength,hashvalue); e = h->table[index]; while (NULL != e) { /* Check hash value to short circuit heavier comparison */ if ((hashvalue == e->h) && (h->eqfn(k, e->k))) return e->v; e = e->next; } return NULL; } /*****************************************************************************/ SWITCH_DECLARE(void *) /* returns value associated with key */ switch_hashtable_remove(switch_hashtable_t *h, void *k) { unsigned int hashvalue = hash(h,k); return _switch_hashtable_remove(h, k, hashvalue, indexFor(h->tablelength,hashvalue)); } /*****************************************************************************/ /* destroy */ SWITCH_DECLARE(void) switch_hashtable_destroy(switch_hashtable_t **h) { unsigned int i; struct entry *e, *f; struct entry **table = (*h)->table; for (i = 0; i < (*h)->tablelength; i++) { e = table[i]; while (NULL != e) { f = e; e = e->next; if (f->flags & HASHTABLE_FLAG_FREE_KEY) { freekey(f->k); } if (f->flags & HASHTABLE_FLAG_FREE_VALUE) { switch_safe_free(f->v); } else if (f->destructor) { f->destructor(f->v); f->v = NULL; } switch_safe_free(f); } } switch_safe_free((*h)->table); free(*h); *h = NULL; } SWITCH_DECLARE(switch_hashtable_iterator_t *) switch_hashtable_next(switch_hashtable_iterator_t **iP) { switch_hashtable_iterator_t *i = *iP; if (i->e) { if ((i->e = i->e->next) != 0) { return i; } else { i->pos++; } } while(i->pos < i->h->tablelength && !i->h->table[i->pos]) { i->pos++; } if (i->pos >= i->h->tablelength) { goto end; } if ((i->e = i->h->table[i->pos]) != 0) { return i; } end: free(i); *iP = NULL; return NULL; } SWITCH_DECLARE(switch_hashtable_iterator_t *) switch_hashtable_first_iter(switch_hashtable_t *h, switch_hashtable_iterator_t *it) { switch_hashtable_iterator_t *iterator; if (it) { iterator = it; } else { switch_zmalloc(iterator, sizeof(*iterator)); } switch_assert(iterator); iterator->pos = 0; iterator->e = NULL; iterator->h = h; return switch_hashtable_next(&iterator); } SWITCH_DECLARE(void) switch_hashtable_this_val(switch_hashtable_iterator_t *i, void *val) { if (i->e) { i->e->v = val; } } SWITCH_DECLARE(void) switch_hashtable_this(switch_hashtable_iterator_t *i, const void **key, switch_ssize_t *klen, void **val) { if (i->e) { if (key) { *key = i->e->k; } if (klen) { *klen = (int)strlen(i->e->k); } if (val) { *val = i->e->v; } } else { if (key) { *key = NULL; } if (klen) { *klen = 0; } if (val) { *val = NULL; } } } /* For Emacs: * Local Variables: * mode:c * indent-tabs-mode:t * tab-width:4 * c-basic-offset:4 * End: * For VIM: * vim:set softtabstop=4 shiftwidth=4 tabstop=4 noet: */