/* * libteletone * Copyright (C) 2005/2006, Anthony Minessale II * * Version: MPL 1.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is tone_detect.c - General telephony tone detection, and specific detection of DTMF. * * * The Initial Developer of the Original Code is * Stephen Underwood * Portions created by the Initial Developer are Copyright (C) * the Initial Developer. All Rights Reserved. * * Contributor(s): * * The the original interface designed by Steve Underwood was preserved to retain *the optimizations when considering DTMF tones though the names were changed in the interest * of namespace. * * Much less efficient expansion interface was added to allow for the detection of * a single arbitrary tone combination which may also exceed 2 simultaneous tones. * (controlled by compile time constant TELETONE_MAX_TONES) * * Copyright (C) 2006 Anthony Minessale II * * * libteletone_detect.c Tone Detection Code * * ********************************************************************************* * * Derived from tone_detect.c - General telephony tone detection, and specific * detection of DTMF. * * Copyright (C) 2001 Steve Underwood * * Despite my general liking of the GPL, I place this code in the * public domain for the benefit of all mankind - even the slimy * ones who might try to proprietize my work and use it to my * detriment. */ #include #ifndef _MSC_VER #include #endif #include #include #include #include #include static teletone_detection_descriptor_t dtmf_detect_row[GRID_FACTOR]; static teletone_detection_descriptor_t dtmf_detect_col[GRID_FACTOR]; static teletone_detection_descriptor_t dtmf_detect_row_2nd[GRID_FACTOR]; static teletone_detection_descriptor_t dtmf_detect_col_2nd[GRID_FACTOR]; static teletone_process_t dtmf_row[] = {697.0, 770.0, 852.0, 941.0}; static teletone_process_t dtmf_col[] = {1209.0, 1336.0, 1477.0, 1633.0}; static char dtmf_positions[] = "123A" "456B" "789C" "*0#D"; static void goertzel_init(teletone_goertzel_state_t *goertzel_state, teletone_detection_descriptor_t *tdesc) { goertzel_state->v2 = goertzel_state->v3 = 0.0; goertzel_state->fac = tdesc->fac; } void teletone_goertzel_update(teletone_goertzel_state_t *goertzel_state, int16_t sample_buffer[], int samples) { int i; teletone_process_t v1; for (i = 0; i < samples; i++) { v1 = goertzel_state->v2; goertzel_state->v2 = goertzel_state->v3; goertzel_state->v3 = goertzel_state->fac*goertzel_state->v2 - v1 + sample_buffer[i]; } } teletone_process_t teletone_goertzel_result (teletone_goertzel_state_t *goertzel_state) { return goertzel_state->v3 * goertzel_state->v3 + goertzel_state->v2 * goertzel_state->v2 - goertzel_state->v2 * goertzel_state->v3 * goertzel_state->fac; } void teletone_dtmf_detect_init (teletone_dtmf_detect_state_t *dtmf_detect_state, int sample_rate) { int i; teletone_process_t theta; dtmf_detect_state->hit1 = dtmf_detect_state->hit2 = 0; for (i = 0; i < GRID_FACTOR; i++) { theta = M_TWO_PI*(dtmf_row[i]/(teletone_process_t)sample_rate); dtmf_detect_row[i].fac = 2.0*cos(theta); theta = M_TWO_PI*(dtmf_col[i]/(teletone_process_t)sample_rate); dtmf_detect_col[i].fac = 2.0*cos(theta); theta = M_TWO_PI*(dtmf_row[i]*2.0/(teletone_process_t)sample_rate); dtmf_detect_row_2nd[i].fac = 2.0*cos(theta); theta = M_TWO_PI*(dtmf_col[i]*2.0/(teletone_process_t)sample_rate); dtmf_detect_col_2nd[i].fac = 2.0*cos(theta); goertzel_init (&dtmf_detect_state->row_out[i], &dtmf_detect_row[i]); goertzel_init (&dtmf_detect_state->col_out[i], &dtmf_detect_col[i]); goertzel_init (&dtmf_detect_state->row_out2nd[i], &dtmf_detect_row_2nd[i]); goertzel_init (&dtmf_detect_state->col_out2nd[i], &dtmf_detect_col_2nd[i]); dtmf_detect_state->energy = 0.0; } dtmf_detect_state->current_sample = 0; dtmf_detect_state->detected_digits = 0; dtmf_detect_state->lost_digits = 0; dtmf_detect_state->digits[0] = '\0'; dtmf_detect_state->mhit = 0; } void teletone_multi_tone_init(teletone_multi_tone_t *mt, teletone_tone_map_t *map) { teletone_process_t theta = 0; int x = 0; if(!mt->min_samples) { mt->min_samples = 102; } if (!mt->positive_factor) { mt->positive_factor = 2; } if(!mt->negative_factor) { mt->negative_factor = 10; } if (!mt->hit_factor) { mt->hit_factor = 2; } if (!mt->sample_rate) { mt->sample_rate = 8000; } for(x = 0; x < TELETONE_MAX_TONES; x++) { if ((int) map->freqs[x] == 0) { break; } mt->tone_count++; theta = M_TWO_PI*(map->freqs[x]/(teletone_process_t)mt->sample_rate); mt->tdd[x].fac = 2.0 * cos(theta); goertzel_init (&mt->gs[x], &mt->tdd[x]); goertzel_init (&mt->gs2[x], &mt->tdd[x]); } } int teletone_multi_tone_detect (teletone_multi_tone_t *mt, int16_t sample_buffer[], int samples) { int sample, limit, j, x = 0; teletone_process_t v1, famp; teletone_process_t eng_sum = 0, eng_all[TELETONE_MAX_TONES]; int gtest = 0, see_hit = 0; for (sample = 0; sample < samples; sample = limit) { mt->total_samples++; if ((samples - sample) >= (mt->min_samples - mt->current_sample)) { limit = sample + (mt->min_samples - mt->current_sample); } else { limit = samples; } for (j = sample; j < limit; j++) { famp = sample_buffer[j]; mt->energy += famp*famp; for(x = 0; x < mt->tone_count; x++) { v1 = mt->gs[x].v2; mt->gs[x].v2 = mt->gs[x].v3; mt->gs[x].v3 = mt->gs[x].fac * mt->gs[x].v2 - v1 + famp; v1 = mt->gs2[x].v2; mt->gs2[x].v2 = mt->gs2[x].v3; mt->gs2[x].v3 = mt->gs2[x].fac*mt->gs2[x].v2 - v1 + famp; } } mt->current_sample += (limit - sample); if (mt->current_sample < mt->min_samples) { continue; } eng_sum = 0; for(x = 0; x < mt->tone_count; x++) { eng_all[x] = teletone_goertzel_result (&mt->gs[x]); eng_sum += eng_all[x]; } gtest = 0; for(x = 0; x < mt->tone_count; x++) { gtest += teletone_goertzel_result (&mt->gs2[x]) < eng_all[x] ? 1 : 0; } if (gtest >= 2 && eng_sum > 42.0 * mt->energy) { if(mt->negatives) { mt->negatives--; } mt->positives++; if(mt->positives >= mt->positive_factor) { mt->hits++; } if (mt->hits >= mt->hit_factor) { see_hit++; mt->positives = mt->negatives = mt->hits = 0; } } else { mt->negatives++; if(mt->positives) { mt->positives--; } if(mt->negatives > mt->negative_factor) { mt->positives = mt->hits = 0; } } /* Reinitialise the detector for the next block */ for(x = 0; x < mt->tone_count; x++) { goertzel_init (&mt->gs[x], &mt->tdd[x]); goertzel_init (&mt->gs2[x], &mt->tdd[x]); } mt->energy = 0.0; mt->current_sample = 0; } return see_hit; } int teletone_dtmf_detect (teletone_dtmf_detect_state_t *dtmf_detect_state, int16_t sample_buffer[], int samples) { teletone_process_t row_energy[GRID_FACTOR]; teletone_process_t col_energy[GRID_FACTOR]; teletone_process_t famp; teletone_process_t v1; int i; int j; int sample; int best_row; int best_col; int hit; int limit; hit = 0; for (sample = 0; sample < samples; sample = limit) { /* BLOCK_LEN is optimised to meet the DTMF specs. */ if ((samples - sample) >= (BLOCK_LEN - dtmf_detect_state->current_sample)) { limit = sample + (BLOCK_LEN - dtmf_detect_state->current_sample); } else { limit = samples; } for (j = sample; j < limit; j++) { int x = 0; famp = sample_buffer[j]; dtmf_detect_state->energy += famp*famp; for(x = 0; x < GRID_FACTOR; x++) { v1 = dtmf_detect_state->row_out[x].v2; dtmf_detect_state->row_out[x].v2 = dtmf_detect_state->row_out[x].v3; dtmf_detect_state->row_out[x].v3 = dtmf_detect_state->row_out[x].fac*dtmf_detect_state->row_out[x].v2 - v1 + famp; v1 = dtmf_detect_state->col_out[x].v2; dtmf_detect_state->col_out[x].v2 = dtmf_detect_state->col_out[x].v3; dtmf_detect_state->col_out[x].v3 = dtmf_detect_state->col_out[x].fac*dtmf_detect_state->col_out[x].v2 - v1 + famp; v1 = dtmf_detect_state->col_out2nd[x].v2; dtmf_detect_state->col_out2nd[x].v2 = dtmf_detect_state->col_out2nd[x].v3; dtmf_detect_state->col_out2nd[x].v3 = dtmf_detect_state->col_out2nd[x].fac*dtmf_detect_state->col_out2nd[x].v2 - v1 + famp; v1 = dtmf_detect_state->row_out2nd[x].v2; dtmf_detect_state->row_out2nd[x].v2 = dtmf_detect_state->row_out2nd[x].v3; dtmf_detect_state->row_out2nd[x].v3 = dtmf_detect_state->row_out2nd[x].fac*dtmf_detect_state->row_out2nd[x].v2 - v1 + famp; } } dtmf_detect_state->current_sample += (limit - sample); if (dtmf_detect_state->current_sample < BLOCK_LEN) { continue; } /* We are at the end of a DTMF detection block */ /* Find the peak row and the peak column */ row_energy[0] = teletone_goertzel_result (&dtmf_detect_state->row_out[0]); col_energy[0] = teletone_goertzel_result (&dtmf_detect_state->col_out[0]); for (best_row = best_col = 0, i = 1; i < GRID_FACTOR; i++) { row_energy[i] = teletone_goertzel_result (&dtmf_detect_state->row_out[i]); if (row_energy[i] > row_energy[best_row]) { best_row = i; } col_energy[i] = teletone_goertzel_result (&dtmf_detect_state->col_out[i]); if (col_energy[i] > col_energy[best_col]) { best_col = i; } } hit = 0; /* Basic signal level test and the twist test */ if (row_energy[best_row] >= DTMF_THRESHOLD && col_energy[best_col] >= DTMF_THRESHOLD && col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST && col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) { /* Relative peak test */ for (i = 0; i < GRID_FACTOR; i++) { if ((i != best_col && col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) || (i != best_row && row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) { break; } } /* ... and second harmonic test */ if (i >= GRID_FACTOR && (row_energy[best_row] + col_energy[best_col]) > 42.0*dtmf_detect_state->energy && teletone_goertzel_result (&dtmf_detect_state->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col] && teletone_goertzel_result (&dtmf_detect_state->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row]) { hit = dtmf_positions[(best_row << 2) + best_col]; /* Look for two successive similar results */ /* The logic in the next test is: We need two successive identical clean detects, with something different preceeding it. This can work with back to back differing digits. More importantly, it can work with nasty phones that give a very wobbly start to a digit. */ if (hit == dtmf_detect_state->hit3 && dtmf_detect_state->hit3 != dtmf_detect_state->hit2) { dtmf_detect_state->mhit = hit; dtmf_detect_state->digit_hits[(best_row << 2) + best_col]++; dtmf_detect_state->detected_digits++; if (dtmf_detect_state->current_digits < TELETONE_MAX_DTMF_DIGITS) { dtmf_detect_state->digits[dtmf_detect_state->current_digits++] = hit; dtmf_detect_state->digits[dtmf_detect_state->current_digits] = '\0'; } else { dtmf_detect_state->lost_digits++; } } } } dtmf_detect_state->hit1 = dtmf_detect_state->hit2; dtmf_detect_state->hit2 = dtmf_detect_state->hit3; dtmf_detect_state->hit3 = hit; /* Reinitialise the detector for the next block */ for (i = 0; i < GRID_FACTOR; i++) { goertzel_init (&dtmf_detect_state->row_out[i], &dtmf_detect_row[i]); goertzel_init (&dtmf_detect_state->col_out[i], &dtmf_detect_col[i]); goertzel_init (&dtmf_detect_state->row_out2nd[i], &dtmf_detect_row_2nd[i]); goertzel_init (&dtmf_detect_state->col_out2nd[i], &dtmf_detect_col_2nd[i]); } dtmf_detect_state->energy = 0.0; dtmf_detect_state->current_sample = 0; } if ((!dtmf_detect_state->mhit) || (dtmf_detect_state->mhit != hit)) { dtmf_detect_state->mhit = 0; return(0); } return (hit); } int teletone_dtmf_get (teletone_dtmf_detect_state_t *dtmf_detect_state, char *buf, int max) { if (max > dtmf_detect_state->current_digits) { max = dtmf_detect_state->current_digits; } if (max > 0) { memcpy (buf, dtmf_detect_state->digits, max); memmove (dtmf_detect_state->digits, dtmf_detect_state->digits + max, dtmf_detect_state->current_digits - max); dtmf_detect_state->current_digits -= max; } buf[max] = '\0'; return max; }