
Beta Release v1.0.2

12 Mar 2010 © 2010 Skype Limited Page 1 of 8
Skype Confidential/Proprietary

SILK SDK API

Copyright © 2010, Skype Limited

All intellectual property rights, including but not limited to copyrights, trade marks and patents, as
well as know how and trade secrets contained in, relating to, or arising from the software provided
by Skype Software S.a.r.l (including its affiliates, "Skype"), including without limitation the source
code, API and related material of such software proprietary to Skype ("IP Rights") are and shall
remain the exclusive property of Skype. The recipient hereby acknowledges and agrees that any
unauthorized use of the IP Rights is a violation of intellectual property laws.

Skype reserves all rights and may take legal action against infringers of IP Rights.

The recipient agrees not to remove, obscure, make illegible or alter any notices or indications of
the IP Rights and/or Skype's rights and ownership thereof.

Beta Release v1.0.2

12 Mar 2010 © 2010 Skype Limited Page 2 of 8
Skype Confidential/Proprietary

Instructions for using the Skype SILK SDK API

The Application Programming Interface (API) is defined in four header files
located in the interface/ folder:

 SKP_Silk_SDK_API.h – function declarations for the SILK encoder and
decoder.

 SKP_Silk_control.h – declarations of structures for controlling the
encoder and for controlling and getting status information from the
decoder

 SKP_API_typedef.h – type definitions
 SKP_Silk_errors.h – error code descriptions for the SILK SDK

Encoder Control Struct Description (SKP_Silk_control.h)

The encoder structure (SKP_SILK_SDK_EncControlStruct) has the following
members:

SKP_int32 sampleRate;
(I) Sampling frequency in Hertz of the encoder. Valid values are: 8000,
12000, 16000 and 24000.

SKP_int packetSize;
(I) Number of samples per packet. A number of samples corresponding to
20, 40, 60, 80 or 100 ms are supported at any of the above listed sampling
frequencies, e.g., 480 samples for a 20 ms packet at 24000 Hz sample
frequency.

SKP_int32 bitRate;
(I) Target bitrate for active speech in the range 5000 – 100000 bits per
second (bps). The value is limited internally if the input value is not within
the supported range.

SKP_int packetLossPercentage;
(I) Estimated packet loss percentage in the uplink direction (0 – 100). If in-
band forward error correction is used, this information determines how
much protection the encoder will add.

SKP_int complexity;
(I) Complexity setting for choosing one out of the 3 complexity modes.
Supported values are 0, 1 and 2, where 0 is the lowest and 2 is the
highest complexity.

SKP_int useInBandFEC;

Beta Release v1.0.2

12 Mar 2010 © 2010 Skype Limited Page 3 of 8
Skype Confidential/Proprietary

(I) Enables / disables use of in-band forward error correction (0 disables
and 1 enables).

SKP_int useDTX;
(I) Enables / disables use of discontinuous transmission (0 disables and 1
enables).

Decoder Control Struct Description (SKP_Silk_control.h)

The decoder structure (SKP_SILK_SDK_DecControlStruct) has the following
members:

SKP_int32 sampleRate;
(I) Sampling frequency in Hertz of the decoder output signal. Should be at
least the input sampling frequency that is used by the encoder. Valid
values are 8000, 12000, 16000 and 24000.

SKP_int frameSize;
(O) Frames size in samples; always corresponding of 20 ms of data: 160,
240, 320 or 480, depending on sampleRate.

SKP_int framesPerPacket;
(O) Number of 20 ms frames in the last decoded packet. Possible output
values are 1, 2, 3, 4 or 5.

SKP_int moreInternalDecoderFrames;
(O) Flag which when set specifies that more frames can be obtained from
a multi-frame payload that has been buffered in the decoder (0 or 1).

SKP_int inBandFECOffset;
(O) Distance between main payload and redundant payload in packets (0,
1 or 2)

Comments:
The SILK decoder will always decode a 20 ms frame for each function call. If the
received packet contains more than one frame, the decoder must be called more
than once to fully decode that packet. To indicate when the decoding of the
packet has finished the moreInternalDecoderFrames flag is used. If
moreInternalDecoderFrames is 0, the last packet has been fully decoded
and the decoder is ready for the next packet. When
moreInternalDecoderFrames is 1, the decoder is not finished decoding all
the frames that were contained in the last packet, and the decoder should be
called until moreInternalDecoderFrames changes to 0. Also, when
moreInternalDecoderFrames is 1, the input inData to

Beta Release v1.0.2

12 Mar 2010 © 2010 Skype Limited Page 4 of 8
Skype Confidential/Proprietary

SKP_Silk_SDK_Decode is ignored, as in this case the remaining part of the
last received packet is read from an internal buffer.

Functions (SKP_Silk_SDK_API.h)

All functions return an error code, which is 0 if no error was encountered during
function execution. A negative value is returned to indicate an error. The list of
error codes can be found in SKP_Silk_errors.h.

SKP_int SKP_Silk_SDK_Get_Encoder_Size(
SKP_int32 *encSizeBytes

);
*encSizeBytes: (O) Size of encoder state in bytes.

Description:
Writes the size of the SILK encoder state in number of bytes to
*encSizeBytes. Use this function to allocate the right amount of memory
space for the encoder state.

SKP_int SKP_Silk_SDK_InitEncoder(
void *encState,
SKP_SILK_SDK_EncControlStruct *encStatus

);

*encState: (I/O) Encoder state.
*encStatus: (O) Encoder status struct. Returns default encoder settings.

Description:
Initializes the encoder state, encState, and returns the default encoder status,
encStatus. This function has to be called before the first call to the encoder,
and may be called to reset the internal encoder state, for instance when initiating
a new voice call.

SKP_int SKP_Silk_SDK_QueryEncoder(
const void *encState,
SKP_SILK_SDK_EncControlStruct *encStatus

);

*encState: (I) Encoder state.
*encStatus: (O) Encoder status struct. Returns the current encoder

settings.

Beta Release v1.0.2

12 Mar 2010 © 2010 Skype Limited Page 5 of 8
Skype Confidential/Proprietary

Description:
Returns the current encoder settings, encStatus. This function may be called to
check the settings of the encoder.

SKP_int SKP_Silk_SDK_Encode(
void *encState,
const SKP_SILK_SDK_EncControlStruct *encControl,
const SKP_int16 *samplesIn,
SKP_int nSamplesIn,
SKP_uint8 *outData,
SKP_int16 *nBytesOut

);

*encState: (I/O) Encoder state.
*encControl: (I) Structure to hold encoder control.
*samplesIn: (I) Input vector with nSamplesIn of audio samples.
nSamplesIn: (I) Number of input samples. Must correspond to a multiple

of 10 ms, and be no higher than encControl-
>packetSize.

*outData: (O) Output payload.
*nBytesOut: (I/O) Input: Maximum number of bytes allowed in payload.

Output: Number of output bytes in the payload.

Description:
This is the main encoder function. The nSamplesIn input samples are read
from samplesIn and buffered internally until at least encControl-
>packetSize samples are available, at which point one payload is encoded
and written to outData. The parameter pointer nBytesOut serves as both
input and output. As input nBytesOut specifies the maximum number of bytes
the payload may consist of; this is (at most) the number of bytes your application
has allocated in the outData array. As output nBytesOut returns the actual
size of the payload in outData. All members of the encControl structure must
be set to valid values (see description of
SKP_SILK_SDK_EncControlStruct), otherwise errors are reported. The input
vector samplesIn must be sampled at the rate stored in encControl-
>sampleRate.

SKP_int SKP_Silk_SDK_Get_Decoder_Size(
SKP_int32 *decSizeBytes

);

decSizeBytes: (O) Size in bytes of the decoder state.

Beta Release v1.0.2

12 Mar 2010 © 2010 Skype Limited Page 6 of 8
Skype Confidential/Proprietary

Description:
Writes the size of the SILK decoder state in number of bytes to decSizeBytes.
Use this function to allocate the right amount memory space for the decoder
state.

SKP_int SKP_Silk_SDK_InitDecoder(
void *decState

);

*decState: (I/O) Encoder state.

Description:
Initializes the decoder state, decState. This function has to be called before first
call to the decoder and may be called to reset the internal decoder state, for
instance when initiating a new voice call.

SKP_int SKP_Silk_SDK_Decode(
void* decState,
SKP_SILK_SDK_DecControlStruct* decStatus,
SKP_int lostFlag,
const SKP_uint8 *inData,
const SKP_int nBytesIn,
SKP_int16 *samplesOut,
SKP_int16 *nSamplesOut

);

*decState: (I/O) Decoder state.
*decStatus: (I/O) Decoder status struct.
lostFlag: (I) Flag to activate packet loss concealment. 0 not lost 1 lost.
*inData: (I) Packet payload to be decoded.
nBytesIn: (I) Number of bytes in the payload (inData).
*samplesOut: (O) Decoded samples.
*nSamplesOut: (O) Number of decoded samples.

Description:
This is the main decoder function. When a payload was lost during transport, the
input lostFlag should be set to 1, otherwise set it to 0. The nBytesIn input
parameter must exactly match the number of bytes in the payload as it is used to
detect corrupted packets. The sampling rate (in Hertz) of the output signal is set
with decStatus->sampleRate. It must be ensured that the decoder sampling
rate matches or exceeds the encoding sample rate. This can be achieved either
by setting the decoder sampling rate to the highest value of 24000 or by
indicating a lower maximum sampling rate to the farend sender during call setup.

Beta Release v1.0.2

12 Mar 2010 © 2010 Skype Limited Page 7 of 8
Skype Confidential/Proprietary

The decoder updates the decoder status decStatus, which should be used to
handle multiple frame packets. See description of the decoder status struct.

void SKP_Silk_SDK_search_for_LBRR(
void *decState,
const SKP_uint8 *inData,
const SKP_int16 nBytesIn,
SKP_int lost_offset,
SKP_uint8 *LBRRData,
SKP_int16 *nLBRRBytes

);

*decState: (I/O) Decoder state.
*inData: (I) Future packet payload.
nBytesIn: (I) Number of bytes in packet payload.
lost_offset: (I) Distance in packets between lost packet and future

packet (1 or 2).
*LBRRData: (O) Extracted redundant LBRR payload.
*nLBRRBytes: (O) Number of bytes of LBRR payload.

Description:
Extracts low-bitrate redundant (LBRR) data. If a packet is lost during
transmission and future packets are available on the decoder side this function
can be used to extract any available in-band error correction data. If packet n is
lost and packet n + 1, and / or packet n + 2 are available on the decoder side, the
following should be done: First the payload from packet n + 1 should be input to
SKP_Silk_SDK_search_for_LBRR together with a lost_offset value of 1
which is the relative distance to the lost packet, that is, (n + 1) – n. If after the call
*nLBRRBytes is larger than zero it means that LBRR data was present in the
packet, and the decoder should be called with LBRRData as input payload
(inData) and nLBRRBytes as the payload length (nBytesIn). If nLBRRBytes
is zero, the packet n + 2 should be searched, but this time the lost_offset
should be set to 2, that is, (n+2) – n. If nLBRRBytes is zero also for packet n + 2
the decoder should be called with the lostFlag set to 1 to activate normal
packet loss concealment.

void SKP_Silk_SDK_get_TOC(
void *decState,
const SKP_uint8 *inData,
const SKP_int16 nBytesIn,
SKP_Silk_TOC_struct *Silk_TOC

);

Beta Release v1.0.2

12 Mar 2010 © 2010 Skype Limited Page 8 of 8
Skype Confidential/Proprietary

*decState: (I) Decoder state.
*inData: (I) Packet payload.
nBytesIn: (I) Number of bytes in packet.
*Silk_TOC: (O) Extracted table of contents information about the packet.

Description:
Returns a table of contents (TOC) structure for the packet.

SKP_INLINE const char *SKP_Silk_SDK_get_version();

Description:
Returns a string containing the Silk SDK version number.

Reference Test Program

The SDK contains source code with implementations of test programs for the
SILK encoder (test/Encoder.c) and decoder (test/Decoder.c). This code
serves as a reference implementation of how the API can be used and provides
a quick way to compile, run and analyze the performance of SILK in its various
modes at any bit-rate.

To compile and generate the test programs for the SDK on Mac or Linux the
provided Makefile can be used. The targets for generating the encoder and
decoder test programs respectively are 'Encoder' and 'Decoder'. Similarly on
Windows the test programs can be generated through the provided Visual Studio
2005 solution and projects. Running either executable without command line
arguments prints the command line options.

