dahdi-linux/drivers/dahdi/wcaxx-base.c

4550 lines
119 KiB
C

/*
* A4A,A4B,A8A,A8B TDM FXS/FXO Interface Driver for DAHDI Telephony interface
*
* Copyright (C) 2013 Digium, Inc.
* All rights reserved.
*
*/
/*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2 as published by the
* Free Software Foundation. See the LICENSE file included with
* this program for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/firmware.h>
#include <linux/crc32.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30)
/* Define this if you would like to load the modules in parallel. While this
* can speed up loads when multiple cards handled by this driver are installed,
* it also makes it impossible to abort module loads with ctrl-c */
#undef USE_ASYNC_INIT
#include <linux/async.h>
#else
#undef USE_ASYNC_INIT
#endif
#include <dahdi/kernel.h>
#include <dahdi/wctdm_user.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0)
#include <linux/sched/signal.h>
#endif /* 4.11.0 */
#include "proslic.h"
#include <dahdi/kernel.h>
#include <linux/version.h>
#include <linux/mutex.h>
#include <oct612x.h>
#include "wcxb.h"
#include "wcxb_spi.h"
#include "wcxb_flash.h"
/*!
* \brief Default ringer debounce (in ms)
*/
#define DEFAULT_RING_DEBOUNCE 1024
#define POLARITY_DEBOUNCE 64 /* Polarity debounce (in ms) */
#define OHT_TIMER 6000 /* How long after RING to retain OHT */
#define FLAG_EXPRESS (1 << 0)
#define NUM_MODULES 8
#define CMD_WR(addr, val) (((addr<<8)&0xff00) | (val&0xff))
enum battery_state {
BATTERY_UNKNOWN = 0,
BATTERY_DEBOUNCING_PRESENT,
BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM,
BATTERY_DEBOUNCING_PRESENT_ALARM,
BATTERY_PRESENT,
BATTERY_DEBOUNCING_LOST,
BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM,
BATTERY_DEBOUNCING_LOST_ALARM,
BATTERY_LOST,
};
enum ring_detector_state {
RINGOFF = 0,
DEBOUNCING_RINGING_POSITIVE,
DEBOUNCING_RINGING_NEGATIVE,
RINGING,
DEBOUNCING_RINGOFF,
};
enum polarity_state {
UNKNOWN_POLARITY = 0,
POLARITY_DEBOUNCE_POSITIVE,
POLARITY_POSITIVE,
POLARITY_DEBOUNCE_NEGATIVE,
POLARITY_NEGATIVE,
};
struct wcaxx_chan {
struct dahdi_chan chan;
struct dahdi_echocan_state ec;
int timeslot;
unsigned int hwpreec_enabled:1;
};
struct fxo {
enum ring_detector_state ring_state:4;
enum battery_state battery_state:4;
enum polarity_state polarity_state:4;
u8 ring_polarity_change_count:4;
u8 hook_ring_shadow;
s8 line_voltage_status;
int offhook;
int neonmwi_state;
int neonmwi_last_voltage;
unsigned int neonmwi_debounce;
unsigned int neonmwi_offcounter;
unsigned long display_fxovoltage;
unsigned long ringdebounce_timer;
unsigned long battdebounce_timer;
unsigned long poldebounce_timer;
};
struct fxs {
int idletxhookstate; /* IDLE changing hook state */
/* lasttxhook reflects the last value written to the proslic's reg 64
* (LINEFEED_CONTROL) in bits 0-2. Bit 4 indicates if the last write is
* pending i.e. it is in process of being written to the register NOTE:
* in order for this value to actually be written to the proslic, the
* appropriate matching value must be written into the sethook variable
* so that it gets queued and handled by the voicebus ISR.
*/
u8 lasttxhook;
u8 linefeed_control_shadow;
u8 hook_state_shadow;
u8 oht_active:1;
u8 off_hook:1;
int palarms;
struct dahdi_vmwi_info vmwisetting;
int vmwi_active_messages;
int vmwi_linereverse;
int reversepolarity; /* polarity reversal */
struct {
u8 vals[12];
} calregs;
unsigned long check_alarm;
unsigned long check_proslic;
unsigned long oppending_timeout;
unsigned long ohttimer;
};
#define fxs_lf(fxs, value) _fxs_lf((fxs), SLIC_LF_##value)
static inline bool _fxs_lf(const struct fxs *fxs, const unsigned value)
{
return (fxs->lasttxhook & SLIC_LF_SETMASK) == value;
}
enum module_type {
NONE = 0,
FXS,
FXO,
};
#define MODULE_POLL_TIME_MS 10
struct wcaxx_mod_poll {
struct wcxb_spi_message m;
struct wcxb_spi_transfer t;
struct wcaxx_module *mod;
struct wcaxx *wc;
u8 buffer[6];
u8 master_buffer[6];
};
struct wcaxx_module {
union modtypes {
struct fxo fxo;
struct fxs fxs;
} mod;
u8 card;
u8 subaddr;
enum module_type type;
int sethook; /* pending hook state command */
int dacssrc;
struct wcxb_spi_device *spi;
struct wcaxx_mod_poll *mod_poll;
};
struct _device_desc {
const char *name;
unsigned int ports;
};
static const struct _device_desc device_a8a = { "Wildcard A8A", 8};
static const struct _device_desc device_a8b = { "Wildcard A8B", 8};
static const struct _device_desc device_a4a = { "Wildcard A4A", 4};
static const struct _device_desc device_a4b = { "Wildcard A4B", 4};
struct wcaxx {
const struct _device_desc *desc;
const char *board_name;
unsigned long framecount;
unsigned long module_poll_time;
int mods_per_board;
spinlock_t reglock;
struct wcaxx_module mods[NUM_MODULES];
struct wcxb xb;
struct dahdi_span span;
struct wcaxx_chan *chans[NUM_MODULES];
struct dahdi_echocan_state *ec[NUM_MODULES];
int companding;
struct dahdi_device *ddev;
struct wcxb_spi_master *master;
#define INITIALIZED 0
unsigned long bit_flags;
/* 4 SPI devices that are matched to the chip selects. The 4 port
* modules will share a single SPI device since they use the same chip
* select. */
struct wcxb_spi_device *spi_devices[4];
struct vpm450m *vpm;
struct list_head card_node;
u16 num;
};
static inline bool is_pcie(const struct wcaxx *wc)
{
return (wc->desc == &device_a8b) || (wc->desc == &device_a4b);
}
static inline bool is_four_port(const struct wcaxx *wc)
{
return (4 == wc->desc->ports);
}
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/string.h>
#include <linux/time.h>
#include <linux/version.h>
#include <linux/firmware.h>
#include "oct6100api/oct6100_api.h"
#define ECHOCAN_NUM_CHANS 8
#define FLAG_DTMF (1 << 0)
#define FLAG_MUTE (1 << 1)
#define FLAG_ECHO (1 << 2)
#define OCT_CHIP_ID 0
#define OCT_MAX_TDM_STREAMS 4
#define OCT_TONEEVENT_BUFFER_SIZE 128
#define SOUT_STREAM 1
#define RIN_STREAM 0
#define SIN_STREAM 2
static int vpmsupport = 1;
static int wcaxx_vpm_init(struct wcaxx *wc);
static void echocan_free(struct dahdi_chan *chan,
struct dahdi_echocan_state *ec);
static const struct dahdi_echocan_features vpm_ec_features = {
.NLP_automatic = 1,
.CED_tx_detect = 1,
.CED_rx_detect = 1,
};
static const struct dahdi_echocan_ops vpm_ec_ops = {
.echocan_free = echocan_free,
};
struct vpm450m {
tPOCT6100_INSTANCE_API pApiInstance;
struct oct612x_context context;
UINT32 aulEchoChanHndl[32];
int chanflags[32];
int ecmode[32];
int numchans;
};
static int wcaxx_oct612x_write(struct oct612x_context *context,
u32 address, u16 value)
{
struct wcaxx *wc = dev_get_drvdata(context->dev);
wcxb_set_echocan_reg(&wc->xb, address, value);
return 0;
}
static int wcaxx_oct612x_read(struct oct612x_context *context, u32 address,
u16 *value)
{
struct wcaxx *wc = dev_get_drvdata(context->dev);
*value = wcxb_get_echocan_reg(&wc->xb, address);
return 0;
}
static int wcaxx_oct612x_write_smear(struct oct612x_context *context,
u32 address, u16 value, size_t count)
{
unsigned int i;
struct wcaxx *wc = dev_get_drvdata(context->dev);
for (i = 0; i < count; ++i)
wcxb_set_echocan_reg(&wc->xb, address + (i << 1), value);
return 0;
}
static int wcaxx_oct612x_write_burst(struct oct612x_context *context,
u32 address, const u16 *buffer,
size_t count)
{
unsigned int i;
struct wcaxx *wc = dev_get_drvdata(context->dev);
for (i = 0; i < count; ++i)
wcxb_set_echocan_reg(&wc->xb, address + (i << 1), buffer[i]);
return 0;
}
static int wcaxx_oct612x_read_burst(struct oct612x_context *context,
u32 address, u16 *buffer, size_t count)
{
unsigned int i;
struct wcaxx *wc = dev_get_drvdata(context->dev);
for (i = 0; i < count; ++i)
buffer[i] = wcxb_get_echocan_reg(&wc->xb, address + (i << 1));
return 0;
}
static const struct oct612x_ops wcaxx_oct612x_ops = {
.write = wcaxx_oct612x_write,
.read = wcaxx_oct612x_read,
.write_smear = wcaxx_oct612x_write_smear,
.write_burst = wcaxx_oct612x_write_burst,
.read_burst = wcaxx_oct612x_read_burst,
};
static void vpm450m_setecmode(struct vpm450m *vpm450m, int channel, int mode)
{
tOCT6100_CHANNEL_MODIFY *modify;
UINT32 ulResult;
if (vpm450m->ecmode[channel] == mode)
return;
modify = kzalloc(sizeof(tOCT6100_CHANNEL_MODIFY), GFP_ATOMIC);
if (!modify) {
pr_notice("Unable to allocate memory for setec!\n");
return;
}
Oct6100ChannelModifyDef(modify);
modify->ulEchoOperationMode = mode;
modify->ulChannelHndl = vpm450m->aulEchoChanHndl[channel];
ulResult = Oct6100ChannelModify(vpm450m->pApiInstance, modify);
if (ulResult != GENERIC_OK) {
pr_notice("Failed to apply echo can changes on channel %d %d %08x!\n",
vpm450m->aulEchoChanHndl[channel], channel, ulResult);
} else {
#ifdef OCTASIC_DEBUG
pr_debug("Echo can on channel %d set to %d\n", channel, mode);
#endif
vpm450m->ecmode[channel] = mode;
}
kfree(modify);
}
static void vpm450m_setec(struct vpm450m *vpm450m, int channel, int eclen)
{
if (eclen) {
vpm450m->chanflags[channel] |= FLAG_ECHO;
vpm450m_setecmode(vpm450m, channel,
cOCT6100_ECHO_OP_MODE_NORMAL);
} else {
vpm450m->chanflags[channel] &= ~FLAG_ECHO;
if (vpm450m->chanflags[channel] & (FLAG_DTMF | FLAG_MUTE)) {
vpm450m_setecmode(vpm450m, channel,
cOCT6100_ECHO_OP_MODE_HT_RESET);
} else {
vpm450m_setecmode(vpm450m, channel,
cOCT6100_ECHO_OP_MODE_POWER_DOWN);
}
}
}
static UINT32 tdmmode_chan_to_slot_map(int mode, int channel)
{
/* Four phases on the tdm bus, skip three of them per channel */
/* Due to a bug in the octasic, we had to move the data onto phase 2 */
return 1+(channel*4);
}
static int echocan_initialize_channel(struct vpm450m *vpm,
int channel, int mode)
{
tOCT6100_CHANNEL_OPEN ChannelOpen;
UINT32 law_to_use = cOCT6100_PCM_U_LAW;
UINT32 tdmslot_setting;
UINT32 ulResult;
if (0 > channel || ECHOCAN_NUM_CHANS <= channel)
return -1;
tdmslot_setting = tdmmode_chan_to_slot_map(mode, channel);
/* Fill Open channel structure with defaults */
Oct6100ChannelOpenDef(&ChannelOpen);
/* Assign the handle memory.*/
ChannelOpen.pulChannelHndl = &vpm->aulEchoChanHndl[channel];
ChannelOpen.ulUserChanId = channel;
/* Enable Tone disabling for Fax and Modems */
ChannelOpen.fEnableToneDisabler = TRUE;
/* Passthrough TDM data by default, no echocan */
ChannelOpen.ulEchoOperationMode = cOCT6100_ECHO_OP_MODE_POWER_DOWN;
/* Configure the TDM settings.*/
/* Input from the framer */
ChannelOpen.TdmConfig.ulSinStream = SIN_STREAM;
ChannelOpen.TdmConfig.ulSinTimeslot = tdmslot_setting;
ChannelOpen.TdmConfig.ulSinPcmLaw = law_to_use;
/* Input from the Host (pre-framer) */
ChannelOpen.TdmConfig.ulRinStream = RIN_STREAM;
ChannelOpen.TdmConfig.ulRinTimeslot = tdmslot_setting;
ChannelOpen.TdmConfig.ulRinPcmLaw = law_to_use;
/* Output to the Host */
ChannelOpen.TdmConfig.ulSoutStream = SOUT_STREAM;
ChannelOpen.TdmConfig.ulSoutTimeslot = tdmslot_setting;
ChannelOpen.TdmConfig.ulSoutPcmLaw = law_to_use;
/* From asterisk after echo-cancellation - goes nowhere */
ChannelOpen.TdmConfig.ulRoutStream = cOCT6100_UNASSIGNED;
ChannelOpen.TdmConfig.ulRoutTimeslot = cOCT6100_UNASSIGNED;
ChannelOpen.TdmConfig.ulRoutPcmLaw = law_to_use;
/* Set the desired VQE features.*/
ChannelOpen.VqeConfig.fEnableNlp = TRUE;
ChannelOpen.VqeConfig.fRinDcOffsetRemoval = TRUE;
ChannelOpen.VqeConfig.fSinDcOffsetRemoval = TRUE;
ChannelOpen.VqeConfig.ulComfortNoiseMode =
cOCT6100_COMFORT_NOISE_NORMAL;
/* Open the channel.*/
ulResult = Oct6100ChannelOpen(vpm->pApiInstance, &ChannelOpen);
return ulResult;
}
static struct vpm450m *init_vpm450m(struct wcaxx *wc, int isalaw,
const struct firmware *firmware)
{
tOCT6100_CHIP_OPEN *ChipOpen;
tOCT6100_GET_INSTANCE_SIZE InstanceSize;
tOCT6100_CHANNEL_OPEN *ChannelOpen;
UINT32 ulResult;
struct vpm450m *vpm450m;
int x, i;
vpm450m = kzalloc(sizeof(struct vpm450m), GFP_KERNEL);
if (!vpm450m) {
dev_info(&wc->xb.pdev->dev, "Unable to allocate vpm450m struct\n");
return NULL;
}
vpm450m->context.dev = &wc->xb.pdev->dev;
vpm450m->context.ops = &wcaxx_oct612x_ops;
ChipOpen = kzalloc(sizeof(tOCT6100_CHIP_OPEN), GFP_KERNEL);
if (!ChipOpen) {
dev_info(&wc->xb.pdev->dev, "Unable to allocate ChipOpen\n");
kfree(vpm450m);
return NULL;
}
ChannelOpen = kzalloc(sizeof(tOCT6100_CHANNEL_OPEN), GFP_KERNEL);
if (!ChannelOpen) {
dev_info(&wc->xb.pdev->dev, "Unable to allocate ChannelOpen\n");
kfree(vpm450m);
kfree(ChipOpen);
return NULL;
}
for (x = 0; x < ARRAY_SIZE(vpm450m->ecmode); x++)
vpm450m->ecmode[x] = -1;
vpm450m->numchans = ECHOCAN_NUM_CHANS;
dev_info(&wc->xb.pdev->dev, "Echo cancellation for %d channels\n",
wc->desc->ports);
Oct6100ChipOpenDef(ChipOpen);
ChipOpen->pProcessContext = &vpm450m->context;
/* Change default parameters as needed */
/* upclk oscillator is at 33.33 Mhz */
ChipOpen->ulUpclkFreq = cOCT6100_UPCLK_FREQ_33_33_MHZ;
/* mclk will be generated by internal PLL at 133 Mhz */
ChipOpen->fEnableMemClkOut = TRUE;
ChipOpen->ulMemClkFreq = cOCT6100_MCLK_FREQ_133_MHZ;
/* User defined Chip ID.*/
ChipOpen->ulUserChipId = OCT_CHIP_ID;
/* Set the maximums that the chip needs to support */
ChipOpen->ulMaxChannels = vpm450m->numchans;
ChipOpen->ulMaxTdmStreams = OCT_MAX_TDM_STREAMS;
/* External Memory Settings */
/* Use DDR memory.*/
ChipOpen->ulMemoryType = cOCT6100_MEM_TYPE_DDR;
ChipOpen->ulNumMemoryChips = 1;
ChipOpen->ulMemoryChipSize = cOCT6100_MEMORY_CHIP_SIZE_32MB;
ChipOpen->pbyImageFile = (PUINT8) firmware->data;
ChipOpen->ulImageSize = firmware->size;
/* Set TDM data stream frequency */
for (i = 0; i < ChipOpen->ulMaxTdmStreams; i++)
ChipOpen->aulTdmStreamFreqs[i] = cOCT6100_TDM_STREAM_FREQ_8MHZ;
/* Configure TDM sampling */
ChipOpen->ulTdmSampling = cOCT6100_TDM_SAMPLE_AT_FALLING_EDGE;
/* Disable to save RAM footprint space */
ChipOpen->fEnableChannelRecording = FALSE;
/* In this example we will maintain the API using polling so interrupts
* must be disabled */
ChipOpen->InterruptConfig.ulErrorH100Config =
cOCT6100_INTERRUPT_DISABLE;
ChipOpen->InterruptConfig.ulErrorMemoryConfig =
cOCT6100_INTERRUPT_DISABLE;
ChipOpen->InterruptConfig.ulFatalGeneralConfig =
cOCT6100_INTERRUPT_DISABLE;
ChipOpen->InterruptConfig.ulFatalMemoryConfig =
cOCT6100_INTERRUPT_DISABLE;
ChipOpen->ulSoftToneEventsBufSize = OCT_TONEEVENT_BUFFER_SIZE;
/* Inserting default values into tOCT6100_GET_INSTANCE_SIZE structure
* parameters. */
Oct6100GetInstanceSizeDef(&InstanceSize);
/* Get the size of the OCT6100 instance structure. */
ulResult = Oct6100GetInstanceSize(ChipOpen, &InstanceSize);
if (ulResult != cOCT6100_ERR_OK) {
dev_info(&wc->xb.pdev->dev, "Unable to get instance size: %x\n",
ulResult);
return NULL;
}
vpm450m->pApiInstance = vmalloc(InstanceSize.ulApiInstanceSize);
if (!vpm450m->pApiInstance) {
dev_info(&wc->xb.pdev->dev,
"Out of memory (can't allocate %d bytes)!\n",
InstanceSize.ulApiInstanceSize);
return NULL;
}
/* Perform the actual configuration of the chip. */
wcxb_enable_echocan_dram(&wc->xb);
ulResult = Oct6100ChipOpen(vpm450m->pApiInstance, ChipOpen);
if (ulResult != cOCT6100_ERR_OK) {
dev_info(&wc->xb.pdev->dev, "Unable to Oct6100ChipOpen: %x\n",
ulResult);
return NULL;
}
/* OCT6100 is now booted and channels can be opened */
/* Open all channels */
for (i = 0; i < ECHOCAN_NUM_CHANS; i++) {
ulResult = echocan_initialize_channel(vpm450m, i, isalaw);
if (0 != ulResult) {
dev_info(&wc->xb.pdev->dev,
"Unable to echocan_initialize_channel: %x\n",
ulResult);
return NULL;
}
}
if (vpmsupport)
wcxb_enable_echocan(&wc->xb);
else
wcxb_disable_echocan(&wc->xb);
kfree(ChipOpen);
kfree(ChannelOpen);
return vpm450m;
}
static void release_vpm450m(struct vpm450m *vpm450m)
{
UINT32 ulResult;
tOCT6100_CHIP_CLOSE ChipClose;
Oct6100ChipCloseDef(&ChipClose);
ulResult = Oct6100ChipClose(vpm450m->pApiInstance, &ChipClose);
if (ulResult != cOCT6100_ERR_OK)
pr_notice("Failed to close chip, code %08x!\n", ulResult);
vfree(vpm450m->pApiInstance);
kfree(vpm450m);
}
static const char *wcaxx_echocan_name(const struct dahdi_chan *chan)
{
struct wcaxx *wc = chan->pvt;
if (wc->vpm)
return "VPMOCT032";
else
return NULL;
}
static int wcaxx_echocan_create(struct dahdi_chan *chan,
struct dahdi_echocanparams *ecp,
struct dahdi_echocanparam *p,
struct dahdi_echocan_state **ec)
{
struct wcaxx *wc = chan->pvt;
int channel;
const struct dahdi_echocan_ops *ops;
const struct dahdi_echocan_features *features;
if (!vpmsupport || !wc->vpm)
return -ENODEV;
ops = &vpm_ec_ops;
features = &vpm_ec_features;
if (ecp->param_count > 0) {
dev_warn(&wc->xb.pdev->dev,
"%s echo canceller does not support parameters; failing request\n",
chan->ec_factory->get_name(chan));
return -EINVAL;
}
*ec = wc->ec[chan->chanpos - 1];
(*ec)->ops = ops;
(*ec)->features = *features;
channel = chan->chanpos-1;
if (wc->vpm)
vpm450m_setec(wc->vpm, channel, ecp->tap_length);
return 0;
}
static void echocan_free(struct dahdi_chan *chan,
struct dahdi_echocan_state *ec)
{
struct wcaxx *wc = chan->pvt;
int channel;
memset(ec, 0, sizeof(*ec));
channel = chan->chanpos - 1;
if (wc->vpm)
vpm450m_setec(wc->vpm, channel, 0);
}
static int wcaxx_vpm_init(struct wcaxx *wc)
{
int companding = 0;
struct firmware embedded_firmware;
const struct firmware *firmware = &embedded_firmware;
#if !defined(HOTPLUG_FIRMWARE)
extern void _binary_dahdi_fw_oct6114_032_bin_size;
extern u8 _binary_dahdi_fw_oct6114_032_bin_start[];
#else
static const char oct032_firmware[] = "dahdi-fw-oct6114-032.bin";
#endif
int res;
if (!vpmsupport) {
dev_info(&wc->xb.pdev->dev, "VPM: Support Disabled\n");
return -1;
}
wcxb_reset_echocan(&wc->xb);
if (!wcxb_is_echocan_present(&wc->xb)) {
dev_info(&wc->xb.pdev->dev, "VPM not present.\n");
return -1;
}
#if defined(HOTPLUG_FIRMWARE)
res = request_firmware(&firmware, oct032_firmware, &wc->xb.pdev->dev);
if ((0 != res) || !firmware) {
dev_notice(&wc->xb.pdev->dev,
"VPM450: firmware %s not available from userspace\n",
oct032_firmware);
return -1;
}
#else
embedded_firmware.data = _binary_dahdi_fw_oct6114_032_bin_start;
/* Yes... this is weird. objcopy gives us a symbol containing
the size of the firmware, not a pointer a variable containing
the size. The only way we can get the value of the symbol
is to take its address, so we define it as a pointer and
then cast that value to the proper type.
*/
embedded_firmware.size = (size_t)&_binary_dahdi_fw_oct6114_032_bin_size;
#endif
wc->vpm = init_vpm450m(wc, companding, firmware);
if (!wc->vpm) {
dev_notice(&wc->xb.pdev->dev, "VPM450: Failed to initialize\n");
if (firmware != &embedded_firmware)
release_firmware(firmware);
return -EIO;
}
if (firmware != &embedded_firmware)
release_firmware(firmware);
dev_info(&wc->xb.pdev->dev,
"VPM450: Present and operational servicing %d span\n", 1);
return 0;
}
static inline bool is_initialized(struct wcaxx *wc)
{
return (test_bit(INITIALIZED, &wc->bit_flags) > 0);
}
static inline struct wcxb_spi_device *
_get_spi_device_for_8_port(struct wcaxx *wc, unsigned int port, bool altcs)
{
switch (port) {
case 0:
return wc->spi_devices[0];
case 1:
return (altcs) ? wc->spi_devices[0] : wc->spi_devices[1];
case 2:
WARN_ON(!altcs);
return wc->spi_devices[0];
case 3:
WARN_ON(!altcs);
return wc->spi_devices[0];
case 4:
return wc->spi_devices[2];
case 5:
return (altcs) ? wc->spi_devices[2] : wc->spi_devices[3];
case 6:
WARN_ON(!altcs);
return wc->spi_devices[2];
case 7:
WARN_ON(!altcs);
return wc->spi_devices[2];
default:
WARN_ON(1);
return wc->spi_devices[0];
}
}
static inline struct wcxb_spi_device *
_get_spi_device_for_4_port(struct wcaxx *wc, unsigned int port)
{
if (port > 3) {
WARN_ON(1);
return wc->spi_devices[0];
} else {
return wc->spi_devices[port];
}
}
static inline struct wcxb_spi_device *
get_spi_device_for_port(struct wcaxx *wc, unsigned int port, bool altcs)
{
if (is_four_port(wc))
return _get_spi_device_for_4_port(wc, port);
else
return _get_spi_device_for_8_port(wc, port, altcs);
}
static u8 wcaxx_getreg(struct wcaxx *wc,
struct wcaxx_module *const mod, int addr);
static void wcaxx_setreg(struct wcaxx *wc, struct wcaxx_module *const mod,
int addr, int val);
static DEFINE_MUTEX(card_list_lock);
static LIST_HEAD(card_list);
#include "adt_lec.h"
/*
Experimental max loop current limit for the proslic
Loop current limit is from 20 mA to 41 mA in steps of 3
(according to datasheet)
So set the value below to:
0x00 : 20mA (default)
0x01 : 23mA
0x02 : 26mA
0x03 : 29mA
0x04 : 32mA
0x05 : 35mA
0x06 : 37mA
0x07 : 41mA
*/
static int loopcurrent = 20;
/* Following define is a logical exclusive OR to determine if the polarity of
* an fxs line is to be reversed. The items taken into account are:
* overall polarity reversal for the module,
* polarity reversal for the port,
* and the state of the line reversal MWI indicator
*/
#define POLARITY_XOR(fxs) \
((reversepolarity != 0) ^ ((fxs)->reversepolarity != 0) ^ \
((fxs)->vmwi_linereverse != 0))
static int reversepolarity;
static alpha indirect_regs[] = {
{0, 255, "DTMF_ROW_0_PEAK", 0x55C2},
{1, 255, "DTMF_ROW_1_PEAK", 0x51E6},
{2, 255, "DTMF_ROW2_PEAK", 0x4B85},
{3, 255, "DTMF_ROW3_PEAK", 0x4937},
{4, 255, "DTMF_COL1_PEAK", 0x3333},
{5, 255, "DTMF_FWD_TWIST", 0x0202},
{6, 255, "DTMF_RVS_TWIST", 0x0202},
{7, 255, "DTMF_ROW_RATIO_TRES", 0x0198},
{8, 255, "DTMF_COL_RATIO_TRES", 0x0198},
{9, 255, "DTMF_ROW_2ND_ARM", 0x0611},
{10, 255, "DTMF_COL_2ND_ARM", 0x0202},
{11, 255, "DTMF_PWR_MIN_TRES", 0x00E5},
{12, 255, "DTMF_OT_LIM_TRES", 0x0A1C},
{13, 0, "OSC1_COEF", 0x7B30},
{14, 1, "OSC1X", 0x0063},
{15, 2, "OSC1Y", 0x0000},
{16, 3, "OSC2_COEF", 0x7870},
{17, 4, "OSC2X", 0x007D},
{18, 5, "OSC2Y", 0x0000},
{19, 6, "RING_V_OFF", 0x0000},
{20, 7, "RING_OSC", 0x7EF0},
{21, 8, "RING_X", 0x0160},
{22, 9, "RING_Y", 0x0000},
{23, 255, "PULSE_ENVEL", 0x2000},
{24, 255, "PULSE_X", 0x2000},
{25, 255, "PULSE_Y", 0x0000},
{26, 13, "RECV_DIGITAL_GAIN", 0x2000}, /* playback volume set lower */
{27, 14, "XMIT_DIGITAL_GAIN", 0x4000},
{28, 15, "LOOP_CLOSE_TRES", 0x1000},
{29, 16, "RING_TRIP_TRES", 0x3600},
{30, 17, "COMMON_MIN_TRES", 0x1000},
{31, 18, "COMMON_MAX_TRES", 0x0200},
{32, 19, "PWR_ALARM_Q1Q2", 0x07C0},
{33, 20, "PWR_ALARM_Q3Q4", 0x4C00 /* 0x2600 */},
{34, 21, "PWR_ALARM_Q5Q6", 0x1B80},
{35, 22, "LOOP_CLOSURE_FILTER", 0x8000},
{36, 23, "RING_TRIP_FILTER", 0x0320},
{37, 24, "TERM_LP_POLE_Q1Q2", 0x008C},
{38, 25, "TERM_LP_POLE_Q3Q4", 0x0100},
{39, 26, "TERM_LP_POLE_Q5Q6", 0x0010},
{40, 27, "CM_BIAS_RINGING", 0x0C00},
{41, 64, "DCDC_MIN_V", 0x0C00},
{42, 255, "DCDC_XTRA", 0x1000},
{43, 66, "LOOP_CLOSE_TRES_LOW", 0x1000},
};
/* Undefine to enable Power alarm / Transistor debug -- note: do not
enable for normal operation! */
/* #define PAQ_DEBUG */
#define DEBUG_CARD (1 << 0)
#define DEBUG_ECHOCAN (1 << 1)
#include "fxo_modes.h"
static inline struct dahdi_chan *
get_dahdi_chan(const struct wcaxx *wc, struct wcaxx_module *const mod)
{
return wc->span.chans[mod->card];
}
static inline void mod_hooksig(struct wcaxx *wc,
struct wcaxx_module *mod,
enum dahdi_rxsig rxsig)
{
dahdi_hooksig(get_dahdi_chan(wc, mod), rxsig);
}
static void wcaxx_release(struct wcaxx *wc);
static int fxovoltage;
static unsigned int battdebounce;
static unsigned int battalarm;
static unsigned int battthresh;
static int debug;
static int int_mode;
#ifdef DEBUG
static int robust;
static int digitalloopback;
#endif
static int lowpower;
static int boostringer;
static int fastringer;
static int _opermode;
static char *opermode = "FCC";
static int fxshonormode;
static int alawoverride;
static char *companding = "auto";
static int fastpickup = -1; /* -1 auto, 0 no, 1 yes */
static int fxotxgain;
static int fxorxgain;
static int fxstxgain;
static int fxsrxgain;
static int nativebridge;
static int ringdebounce = DEFAULT_RING_DEBOUNCE;
static int latency = WCXB_DEFAULT_LATENCY;
static unsigned int max_latency = WCXB_DEFAULT_MAXLATENCY;
static int forceload;
#define MS_PER_HOOKCHECK (1)
#define NEONMWI_ON_DEBOUNCE (100/MS_PER_HOOKCHECK)
static int neonmwi_monitor;
static int neonmwi_level = 75; /* neon mwi trip voltage */
static int neonmwi_envelope = 10;
/* Time in milliseconds the monitor is checked before saying no message is
* waiting */
static int neonmwi_offlimit = 16000;
static int neonmwi_offlimit_cycles;
static int wcaxx_init_proslic(struct wcaxx *wc,
struct wcaxx_module *const mod, int fast,
int manual, int sane);
struct wcaxx_setreg_memory {
struct wcxb_spi_message m;
struct wcxb_spi_transfer t;
u8 buffer[3];
};
/**
* wcxb_spi_complete_setreg - Cleanup after a SPI write.
*
* We don't care about the results of setreg. Just go ahead and free up the
* messages.
*
*/
static void wcaxx_complete_setreg(void *arg)
{
struct wcaxx_setreg_memory *setreg = arg;
kfree(setreg);
}
static void wcaxx_setreg(struct wcaxx *wc, struct wcaxx_module *mod,
int addr, int val)
{
struct wcaxx_setreg_memory *setreg = kzalloc(sizeof(*setreg),
GFP_ATOMIC);
struct wcxb_spi_message *const m = &setreg->m;
struct wcxb_spi_transfer *const t = &setreg->t;
if (!setreg) {
WARN_ON_ONCE(!setreg);
return;
}
wcxb_spi_message_init(m);
t->tx_buf = setreg->buffer;
wcxb_spi_message_add_tail(t, m);
if (FXO == mod->type) {
static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c};
setreg->buffer[0] = 0x20 | ADDRS[mod->subaddr];
} else {
setreg->buffer[0] = 1 << mod->subaddr;
}
setreg->buffer[1] = (addr) & 0x7f;
setreg->buffer[2] = val;
t->len = 3;
m->complete = &wcaxx_complete_setreg;
m->arg = setreg;
wcxb_spi_async(mod->spi, m);
}
/**
* wcaxx_fsxinit - Initilize all SPI devices to 3 byte mode.
*
* All the modules on the card need to be initialized to 3 byte mode in order to
* talk to the daisy-chained SLIC / DAA on the quad modules.
*
*/
static void wcaxx_fxsinit(struct wcxb_spi_device *const spi)
{
int res;
u8 data_byte[2] = {0, 0x80};
struct wcxb_spi_transfer t;
struct wcxb_spi_message m;
memset(&t, 0, sizeof(t));
wcxb_spi_message_init(&m);
t.tx_buf = data_byte;
t.len = sizeof(data_byte);
wcxb_spi_message_add_tail(&t, &m);
res = wcxb_spi_sync(spi, &m);
WARN_ON_ONCE(0 != res);
return;
}
static u8
wcaxx_getreg(struct wcaxx *wc, struct wcaxx_module *const mod, int addr)
{
int res;
u8 buffer[3];
struct wcxb_spi_message m;
struct wcxb_spi_transfer t;
memset(&t, 0, sizeof(t));
wcxb_spi_message_init(&m);
t.tx_buf = t.rx_buf = buffer;
t.len = sizeof(buffer);
wcxb_spi_message_add_tail(&t, &m);
if (FXO == mod->type) {
static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c};
buffer[0] = 0x60 | ADDRS[mod->subaddr];
buffer[1] = addr & 0x7f;
buffer[2] = 0;
} else {
buffer[0] = 1 << mod->subaddr;
buffer[1] = (addr | 0x80) & 0xff;
buffer[2] = 0;
}
res = wcxb_spi_sync(mod->spi, &m);
WARN_ON_ONCE(0 != res);
return buffer[2];
}
static int wcaxx_getregs(struct wcaxx *wc, struct wcaxx_module *const mod,
int *const addresses, const size_t count)
{
int x;
for (x = 0; x < count; ++x)
addresses[x] = wcaxx_getreg(wc, mod, addresses[x]);
return 0;
}
static int wait_access(struct wcaxx *wc, struct wcaxx_module *const mod)
{
unsigned char data = 0;
int count = 0;
#define MAX 10 /* attempts */
/* Wait for indirect access */
while (count++ < MAX) {
data = wcaxx_getreg(wc, mod, I_STATUS);
if (!data)
return 0;
}
if (count > (MAX-1)) {
dev_notice(&wc->xb.pdev->dev,
" ##### Loop error (%02x) #####\n", data);
}
return 0;
}
static unsigned char translate_3215(unsigned char address)
{
int x;
for (x = 0; x < ARRAY_SIZE(indirect_regs); x++) {
if (indirect_regs[x].address == address) {
address = indirect_regs[x].altaddr;
break;
}
}
return address;
}
static int wcaxx_proslic_setreg_indirect(struct wcaxx *wc,
struct wcaxx_module *const mod,
unsigned char address,
unsigned short data)
{
int res = -1;
address = translate_3215(address);
if (address == 255)
return 0;
if (!wait_access(wc, mod)) {
wcaxx_setreg(wc, mod, IDA_LO, (u8)(data & 0xFF));
wcaxx_setreg(wc, mod, IDA_HI, (u8)((data & 0xFF00)>>8));
wcaxx_setreg(wc, mod, IAA, address);
res = 0;
};
return res;
}
static int wcaxx_proslic_getreg_indirect(struct wcaxx *wc,
struct wcaxx_module *const mod,
unsigned char address)
{
int res = -1;
char *p = NULL;
address = translate_3215(address);
if (address == 255)
return 0;
if (!wait_access(wc, mod)) {
wcaxx_setreg(wc, mod, IAA, address);
if (!wait_access(wc, mod)) {
int addresses[2] = {IDA_LO, IDA_HI};
wcaxx_getregs(wc, mod, addresses,
ARRAY_SIZE(addresses));
res = addresses[0] | (addresses[1] << 8);
} else
p = "Failed to wait inside\n";
} else
p = "failed to wait\n";
if (p)
dev_notice(&wc->xb.pdev->dev, "%s", p);
return res;
}
static int
wcaxx_proslic_init_indirect_regs(struct wcaxx *wc, struct wcaxx_module *mod)
{
unsigned char i;
for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) {
if (wcaxx_proslic_setreg_indirect(wc, mod,
indirect_regs[i].address,
indirect_regs[i].initial))
return -1;
}
return 0;
}
static int wcaxx_proslic_verify_indirect_regs(struct wcaxx *wc,
struct wcaxx_module *mod)
{
int passed = 1;
unsigned short i, initial;
int j;
for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) {
j = wcaxx_proslic_getreg_indirect(wc, mod,
(u8)indirect_regs[i].address);
if (j < 0) {
dev_notice(&wc->xb.pdev->dev,
"Failed to read indirect register %d\n", i);
return -1;
}
initial = indirect_regs[i].initial;
if ((j != initial) && (indirect_regs[i].altaddr != 255)) {
dev_notice(&wc->xb.pdev->dev,
"!!!!!!! %s iREG %X = %X should be %X\n",
indirect_regs[i].name,
indirect_regs[i].address, j, initial);
passed = 0;
}
}
if (passed) {
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Init Indirect Registers completed successfully.\n");
}
} else {
dev_notice(&wc->xb.pdev->dev,
" !!!!! Init Indirect Registers UNSUCCESSFULLY.\n");
return -1;
}
return 0;
}
/**
* wcaxx_proslic_check_oppending -
*
* Ensures that a write to the line feed register on the SLIC has been
* processed. If it hasn't after the timeout value, then it will resend the
* command and wait for another timeout period.
*
*/
static void wcaxx_proslic_check_oppending(struct wcaxx *wc,
struct wcaxx_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
unsigned long flags;
if (!(fxs->lasttxhook & SLIC_LF_OPPENDING))
return;
/* Monitor the Pending LF state change, for the next 100ms */
spin_lock_irqsave(&wc->reglock, flags);
if (!(fxs->lasttxhook & SLIC_LF_OPPENDING)) {
spin_unlock_irqrestore(&wc->reglock, flags);
return;
}
if ((fxs->linefeed_control_shadow & SLIC_LF_SETMASK) ==
(fxs->lasttxhook & SLIC_LF_SETMASK)) {
fxs->lasttxhook &= SLIC_LF_SETMASK;
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"SLIC_LF OK: card=%d shadow=%02x "
"lasttxhook=%02x framecount=%ld\n", mod->card,
fxs->linefeed_control_shadow,
fxs->lasttxhook, wc->framecount);
}
} else if (time_after(wc->framecount, fxs->oppending_timeout)) {
/* Check again in 100 ms */
fxs->oppending_timeout = wc->framecount + 100;
wcaxx_setreg(wc, mod, LINE_STATE, fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"SLIC_LF RETRY: card=%d shadow=%02x "
"lasttxhook=%02x framecount=%ld\n", mod->card,
fxs->linefeed_control_shadow,
fxs->lasttxhook, wc->framecount);
}
}
spin_unlock_irqrestore(&wc->reglock, flags);
}
/* 256ms interrupt */
static void wcaxx_proslic_recheck_sanity(struct wcaxx *wc,
struct wcaxx_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
int res;
unsigned long flags;
const unsigned int MAX_ALARMS = 10;
#ifdef PAQ_DEBUG
res = mod->isrshadow[1];
res &= ~0x3;
if (res) {
mod->isrshadow[1] = 0;
fxs->palarms++;
if (fxs->palarms < MAX_ALARMS) {
dev_notice(&wc->xb.pdev->dev,
"Power alarm (%02x) on module %d, resetting!\n",
res, card + 1);
mod->sethook = CMD_WR(19, res);
/* Update shadow register to avoid extra power alarms
* until next read */
mod->isrshadow[1] = 0;
} else {
if (fxs->palarms == MAX_ALARMS) {
dev_notice(&wc->xb.pdev->dev,
"Too many power alarms on card %d, NOT resetting!\n",
card + 1);
}
}
}
#else
spin_lock_irqsave(&wc->reglock, flags);
/* reg 64 has to be zero at last isr read */
res = !fxs->linefeed_control_shadow &&
!(fxs->lasttxhook & SLIC_LF_OPPENDING) && /* not a transition */
fxs->lasttxhook; /* not an intended zero */
if (res) {
fxs->palarms++;
if (fxs->palarms < MAX_ALARMS) {
dev_notice(&wc->xb.pdev->dev,
"Power alarm on module %d, resetting!\n",
mod->card + 1);
if (fxs->lasttxhook == SLIC_LF_RINGING) {
fxs->lasttxhook = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
}
fxs->lasttxhook |= SLIC_LF_OPPENDING;
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
fxs->oppending_timeout = wc->framecount + 100;
/* Update shadow register to avoid extra power alarms
* until next read */
fxs->linefeed_control_shadow = fxs->lasttxhook;
} else {
if (fxs->palarms == MAX_ALARMS) {
dev_notice(&wc->xb.pdev->dev,
"Too many power alarms on card %d, "
"NOT resetting!\n", mod->card + 1);
}
}
}
spin_unlock_irqrestore(&wc->reglock, flags);
#endif
}
static inline bool is_fxo_ringing(const struct fxo *const fxo)
{
return ((fxo->hook_ring_shadow & 0x60) &&
((fxo->battery_state == BATTERY_PRESENT) ||
(fxo->battery_state == BATTERY_DEBOUNCING_LOST)));
}
static inline bool is_fxo_ringing_positive(const struct fxo *const fxo)
{
return (((fxo->hook_ring_shadow & 0x60) == 0x20) &&
((fxo->battery_state == BATTERY_PRESENT) ||
(fxo->battery_state == BATTERY_DEBOUNCING_LOST)));
}
static inline bool is_fxo_ringing_negative(const struct fxo *const fxo)
{
return (((fxo->hook_ring_shadow & 0x60) == 0x40) &&
((fxo->battery_state == BATTERY_PRESENT) ||
(fxo->battery_state == BATTERY_DEBOUNCING_LOST)));
}
static inline void set_ring(struct fxo *fxo, enum ring_detector_state new)
{
fxo->ring_state = new;
}
static void wcaxx_fxo_ring_detect(struct wcaxx *wc, struct wcaxx_module *mod)
{
struct fxo *const fxo = &mod->mod.fxo;
static const unsigned int POLARITY_CHANGES_NEEDED = 2;
/* Look for ring status bits (Ring Detect Signal Negative and Ring
* Detect Signal Positive) to transition back and forth
* POLARITY_CHANGES_NEEDED times to indicate that a ring is occurring.
* Provide some number of samples to allow for the transitions to occur
* before giving up. NOTE: neon mwi voltages will trigger one of these
* bits to go active but not to have transitions between the two bits
* (i.e. no negative to positive or positive to negative traversals) */
switch (fxo->ring_state) {
case DEBOUNCING_RINGING_POSITIVE:
if (is_fxo_ringing_negative(fxo)) {
if (++fxo->ring_polarity_change_count >
POLARITY_CHANGES_NEEDED) {
mod_hooksig(wc, mod, DAHDI_RXSIG_RING);
set_ring(fxo, RINGING);
if (debug) {
dev_info(&wc->xb.pdev->dev,
"RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
} else {
set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE);
}
} else if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
set_ring(fxo, RINGOFF);
}
break;
case DEBOUNCING_RINGING_NEGATIVE:
if (is_fxo_ringing_positive(fxo)) {
if (++fxo->ring_polarity_change_count >
POLARITY_CHANGES_NEEDED) {
mod_hooksig(wc, mod, DAHDI_RXSIG_RING);
set_ring(fxo, RINGING);
if (debug) {
dev_info(&wc->xb.pdev->dev,
"RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
} else {
set_ring(fxo, DEBOUNCING_RINGING_POSITIVE);
}
} else if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
set_ring(fxo, RINGOFF);
}
break;
case RINGING:
if (!is_fxo_ringing(fxo)) {
set_ring(fxo, DEBOUNCING_RINGOFF);
fxo->ringdebounce_timer =
wc->framecount + ringdebounce / 8;
}
break;
case DEBOUNCING_RINGOFF:
if (!is_fxo_ringing(fxo)) {
if (time_after(wc->framecount,
fxo->ringdebounce_timer)) {
if (debug) {
dev_info(&wc->xb.pdev->dev,
"NO RING on %s!\n",
get_dahdi_chan(wc, mod)->name);
}
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
set_ring(fxo, RINGOFF);
}
} else {
set_ring(fxo, RINGING);
}
break;
case RINGOFF:
if (is_fxo_ringing(fxo)) {
/* Look for positive/negative crossings in ring status
* reg */
if (is_fxo_ringing_positive(fxo))
set_ring(fxo, DEBOUNCING_RINGING_POSITIVE);
else
set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE);
fxo->ringdebounce_timer =
wc->framecount + ringdebounce / 8;
fxo->ring_polarity_change_count = 0;
}
break;
}
}
#define MS_PER_CHECK_HOOK 1
static void
wcaxx_check_battery_lost(struct wcaxx *wc, struct wcaxx_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
/* possible existing states:
battery lost, no debounce timer
battery lost, debounce timer (going to battery present)
battery present or unknown, no debounce timer
battery present or unknown, debounce timer (going to battery lost)
*/
switch (fxo->battery_state) {
case BATTERY_DEBOUNCING_PRESENT_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
case BATTERY_DEBOUNCING_PRESENT:
fxo->battery_state = BATTERY_LOST;
break;
case BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
break;
case BATTERY_UNKNOWN:
mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK);
fallthrough;
case BATTERY_PRESENT:
fxo->battery_state = BATTERY_DEBOUNCING_LOST;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
case BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM:
case BATTERY_DEBOUNCING_LOST: /* Intentional drop through */
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
if (debug) {
dev_info(&wc->xb.pdev->dev,
"NO BATTERY on %d/%d!\n",
wc->span.spanno,
mod->card + 1);
}
#ifdef JAPAN
if (!wc->ohdebounce && wc->offhook) {
dahdi_hooksig(wc->aspan->chans[card],
DAHDI_RXSIG_ONHOOK);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"Signalled On Hook\n");
}
#ifdef ZERO_BATT_RING
wc->onhook++;
#endif
}
#else
mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK);
#endif
/* set the alarm timer, taking into account that part
* of its time period has already passed while
* debouncing occurred */
fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
}
break;
case BATTERY_DEBOUNCING_LOST_ALARM:
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
fxo->battery_state = BATTERY_LOST;
dahdi_alarm_channel(get_dahdi_chan(wc, mod),
DAHDI_ALARM_RED);
}
break;
case BATTERY_LOST:
break;
}
}
static void
wcaxx_check_battery_present(struct wcaxx *wc, struct wcaxx_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->battery_state) {
case BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM:
case BATTERY_DEBOUNCING_PRESENT: /* intentional drop through */
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
if (debug) {
dev_info(&wc->xb.pdev->dev,
"BATTERY on %d/%d (%s)!\n",
wc->span.spanno, mod->card + 1,
(fxo->line_voltage_status < 0) ?
"-" : "+");
}
#ifdef ZERO_BATT_RING
if (wc->onhook) {
wc->onhook = 0;
dahdi_hooksig(wc->aspan->chans[card],
DAHDI_RXSIG_OFFHOOK);
if (debug) {
dev_info(&wc->vb.pdev->dev,
"Signalled Off Hook\n");
}
}
#else
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
#endif
/* set the alarm timer, taking into account that part
* of its time period has already passed while
* debouncing occurred */
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
}
break;
case BATTERY_DEBOUNCING_PRESENT_ALARM:
if (time_after(wc->framecount, fxo->battdebounce_timer)) {
fxo->battery_state = BATTERY_PRESENT;
dahdi_alarm_channel(get_dahdi_chan(wc, mod),
DAHDI_ALARM_NONE);
}
break;
case BATTERY_PRESENT:
break;
case BATTERY_DEBOUNCING_LOST_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
case BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM:
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM;
fxo->battdebounce_timer = wc->framecount +
battalarm - battdebounce;
break;
case BATTERY_DEBOUNCING_LOST:
fxo->battery_state = BATTERY_PRESENT;
break;
case BATTERY_UNKNOWN:
mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK);
fallthrough;
case BATTERY_LOST: /* intentional drop through */
fxo->battery_state = BATTERY_DEBOUNCING_PRESENT;
fxo->battdebounce_timer = wc->framecount + battdebounce;
break;
}
}
static void
wcaxx_fxo_stop_debouncing_polarity(struct wcaxx *wc,
struct wcaxx_module *const mod)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->polarity_state) {
case UNKNOWN_POLARITY:
break;
case POLARITY_DEBOUNCE_POSITIVE:
fxo->polarity_state = POLARITY_NEGATIVE;
break;
case POLARITY_POSITIVE:
break;
case POLARITY_DEBOUNCE_NEGATIVE:
fxo->polarity_state = POLARITY_POSITIVE;
break;
case POLARITY_NEGATIVE:
break;
};
}
static void
wcaxx_fxo_check_polarity(struct wcaxx *wc, struct wcaxx_module *const mod,
const bool positive_polarity)
{
struct fxo *const fxo = &mod->mod.fxo;
switch (fxo->polarity_state) {
case UNKNOWN_POLARITY:
fxo->polarity_state = (positive_polarity) ? POLARITY_POSITIVE :
POLARITY_NEGATIVE;
break;
case POLARITY_DEBOUNCE_POSITIVE:
if (!positive_polarity) {
fxo->polarity_state = POLARITY_NEGATIVE;
} else if (time_after(wc->framecount, fxo->poldebounce_timer)) {
fxo->polarity_state = POLARITY_POSITIVE;
dahdi_qevent_lock(get_dahdi_chan(wc, mod),
DAHDI_EVENT_POLARITY);
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"%s: Polarity NEGATIVE -> POSITIVE\n",
get_dahdi_chan(wc, mod)->name);
}
}
break;
case POLARITY_POSITIVE:
if (!positive_polarity) {
fxo->polarity_state = POLARITY_DEBOUNCE_NEGATIVE;
fxo->poldebounce_timer = wc->framecount +
POLARITY_DEBOUNCE;
}
break;
case POLARITY_DEBOUNCE_NEGATIVE:
if (positive_polarity) {
fxo->polarity_state = POLARITY_POSITIVE;
} else if (time_after(wc->framecount, fxo->poldebounce_timer)) {
dahdi_qevent_lock(get_dahdi_chan(wc, mod),
DAHDI_EVENT_POLARITY);
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"%s: Polarity POSITIVE -> NEGATIVE\n",
get_dahdi_chan(wc, mod)->name);
}
fxo->polarity_state = POLARITY_NEGATIVE;
}
break;
case POLARITY_NEGATIVE:
if (positive_polarity) {
fxo->polarity_state = POLARITY_DEBOUNCE_POSITIVE;
fxo->poldebounce_timer = wc->framecount +
POLARITY_DEBOUNCE;
}
break;
};
}
static bool is_neon_voltage_present(const struct fxo *fxo, u8 abs_voltage)
{
return (fxo->battery_state == BATTERY_PRESENT &&
abs_voltage > neonmwi_level &&
(0 == fxo->neonmwi_last_voltage ||
((fxo->line_voltage_status >= fxo->neonmwi_last_voltage -
neonmwi_envelope) &&
(fxo->line_voltage_status <= fxo->neonmwi_last_voltage +
neonmwi_envelope)
)
)
);
}
static void do_neon_monitor(struct wcaxx *wc,
struct wcaxx_module *mod, u8 abs_voltage)
{
struct fxo *const fxo = &mod->mod.fxo;
struct dahdi_chan *const chan = get_dahdi_chan(wc, mod);
/* Look for 4 consecutive voltage readings where the voltage is over the
* neon limit but does not vary greatly from the last reading */
if (is_neon_voltage_present(fxo, abs_voltage)) {
fxo->neonmwi_last_voltage = fxo->line_voltage_status;
if (NEONMWI_ON_DEBOUNCE == fxo->neonmwi_debounce) {
fxo->neonmwi_offcounter = neonmwi_offlimit_cycles;
if (0 == fxo->neonmwi_state) {
dahdi_qevent_lock(chan,
DAHDI_EVENT_NEONMWI_ACTIVE);
fxo->neonmwi_state = 1;
if (debug) {
dev_info(&wc->xb.pdev->dev,
"NEON MWI active for card %d\n",
mod->card+1);
}
}
fxo->neonmwi_debounce++;
} else if (NEONMWI_ON_DEBOUNCE > fxo->neonmwi_debounce) {
fxo->neonmwi_debounce++;
} else {
fxo->neonmwi_offcounter = neonmwi_offlimit_cycles;
}
} else {
fxo->neonmwi_debounce = 0;
fxo->neonmwi_last_voltage = 0;
}
/* If no neon mwi pulse for given period of time, indicte no neon mwi
* state */
if (fxo->neonmwi_state && 0 < fxo->neonmwi_offcounter) {
fxo->neonmwi_offcounter--;
if (0 == fxo->neonmwi_offcounter) {
dahdi_qevent_lock(get_dahdi_chan(wc, mod),
DAHDI_EVENT_NEONMWI_INACTIVE);
fxo->neonmwi_state = 0;
if (debug) {
dev_info(&wc->xb.pdev->dev,
"NEON MWI cleared for card %d\n",
mod->card+1);
}
}
}
}
static void
wcaxx_voicedaa_check_hook(struct wcaxx *wc, struct wcaxx_module *const mod)
{
signed char b;
u8 abs_voltage;
struct fxo *const fxo = &mod->mod.fxo;
/* Try to track issues that plague slot one FXO's */
b = fxo->hook_ring_shadow & 0x9b;
if (fxo->offhook) {
if (b != 0x9)
wcaxx_setreg(wc, mod, 5, 0x9);
} else {
if (b != 0x8)
wcaxx_setreg(wc, mod, 5, 0x8);
wcaxx_fxo_ring_detect(wc, mod);
}
abs_voltage = abs(fxo->line_voltage_status);
if (fxovoltage && time_after(wc->framecount, fxo->display_fxovoltage)) {
/* Every 100 ms */
fxo->display_fxovoltage = wc->framecount + 100;
dev_info(&wc->xb.pdev->dev,
"Port %d: Voltage: %d\n",
mod->card + 1, fxo->line_voltage_status);
}
if (unlikely(DAHDI_RXSIG_INITIAL ==
get_dahdi_chan(wc, mod)->rxhooksig)) {
/*
* dahdi-base will set DAHDI_RXSIG_INITIAL after a
* DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events
* will be queued on the channel with the current received
* hook state. Channels that use robbed-bit signalling always
* report the current received state via the dahdi_rbsbits
* call. Since we only call dahdi_hooksig when we've detected
* a change to report, let's forget our current state in order
* to force us to report it again via dahdi_hooksig.
*
*/
fxo->battery_state = BATTERY_UNKNOWN;
}
if (abs_voltage < battthresh) {
wcaxx_fxo_stop_debouncing_polarity(wc, mod);
wcaxx_check_battery_lost(wc, mod);
} else {
wcaxx_check_battery_present(wc, mod);
wcaxx_fxo_check_polarity(wc, mod,
(fxo->line_voltage_status > 0));
}
/* Look for neon mwi pulse */
if (neonmwi_monitor && !fxo->offhook)
do_neon_monitor(wc, mod, abs_voltage);
#undef MS_PER_CHECK_HOOK
}
static void
wcaxx_fxs_hooksig(struct wcaxx *wc, struct wcaxx_module *const mod,
enum dahdi_txsig txsig)
{
int x = 0;
unsigned long flags;
struct fxs *const fxs = &mod->mod.fxs;
spin_lock_irqsave(&wc->reglock, flags);
switch (txsig) {
case DAHDI_TXSIG_ONHOOK:
switch (get_dahdi_chan(wc, mod)->sig) {
case DAHDI_SIG_FXOGS:
x = (POLARITY_XOR(fxs)) ?
SLIC_LF_RING_OPEN :
SLIC_LF_TIP_OPEN;
break;
case DAHDI_SIG_EM:
case DAHDI_SIG_FXOKS:
case DAHDI_SIG_FXOLS:
default:
x = fxs->idletxhookstate;
break;
}
break;
case DAHDI_TXSIG_OFFHOOK:
switch (get_dahdi_chan(wc, mod)->sig) {
case DAHDI_SIG_EM:
x = (POLARITY_XOR(fxs)) ?
SLIC_LF_ACTIVE_FWD :
SLIC_LF_ACTIVE_REV;
break;
default:
x = fxs->idletxhookstate;
break;
}
break;
case DAHDI_TXSIG_START:
x = SLIC_LF_RINGING;
break;
case DAHDI_TXSIG_KEWL:
x = SLIC_LF_OPEN;
break;
default:
spin_unlock_irqrestore(&wc->reglock, flags);
dev_notice(&wc->xb.pdev->dev,
"Can't set tx state to %d\n", txsig);
return;
}
if (x != fxs->lasttxhook) {
fxs->lasttxhook = x | SLIC_LF_OPPENDING;
mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
fxs->oppending_timeout = wc->framecount + 100;
spin_unlock_irqrestore(&wc->reglock, flags);
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Setting FXS hook state to %d (%02x) framecount=%ld\n",
txsig, x, wc->framecount);
}
} else {
spin_unlock_irqrestore(&wc->reglock, flags);
}
}
static void
wcaxx_fxs_off_hook(struct wcaxx *wc, struct wcaxx_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"fxs_off_hook: Card %d Going off hook\n", mod->card);
}
switch (fxs->lasttxhook) {
case SLIC_LF_RINGING: /* Ringing */
case SLIC_LF_OHTRAN_FWD: /* Forward On Hook Transfer */
case SLIC_LF_OHTRAN_REV: /* Reverse On Hook Transfer */
/* just detected OffHook, during Ringing or OnHookTransfer */
fxs->idletxhookstate = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
break;
}
if ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)
wcaxx_fxs_hooksig(wc, mod, DAHDI_TXSIG_OFFHOOK);
dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_OFFHOOK);
#ifdef DEBUG
if (robust)
wcaxx_init_proslic(wc, mod, 1, 0, 1);
#endif
}
/**
* wcaxx_fxs_on_hook - Report on hook to DAHDI.
* @wc: Board hosting the module.
* @card: Index of the module / port to place on hook.
*
* If we are intentionally dropping battery to signal a forward
* disconnect we do not want to place the line "On-Hook". In this
* case, the core of DAHDI will place us on hook when one of the RBS
* timers expires.
*
*/
static void
wcaxx_fxs_on_hook(struct wcaxx *wc, struct wcaxx_module *const mod)
{
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"fxs_on_hook: Card %d Going on hook\n", mod->card);
}
if ((mod->mod.fxs.lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)
wcaxx_fxs_hooksig(wc, mod, DAHDI_TXSIG_ONHOOK);
dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_ONHOOK);
}
static void
wcaxx_isr_misc_fxs(struct wcaxx *wc, struct wcaxx_module *const mod)
{
struct fxs *const fxs = &mod->mod.fxs;
unsigned long flags;
if (time_after(wc->framecount, fxs->check_alarm)) {
/* Accept an alarm once per 10 seconds */
fxs->check_alarm = wc->framecount + (1000*10);
if (fxs->palarms)
fxs->palarms--;
}
if (fxs->off_hook && !(fxs->hook_state_shadow & 1)) {
wcaxx_fxs_on_hook(wc, mod);
fxs->off_hook = 0;
} else if (!fxs->off_hook && (fxs->hook_state_shadow & 1)) {
wcaxx_fxs_off_hook(wc, mod);
fxs->off_hook = 1;
}
wcaxx_proslic_check_oppending(wc, mod);
if (time_after(wc->framecount, fxs->check_proslic)) {
fxs->check_proslic = wc->framecount + 250; /* every 250ms */
wcaxx_proslic_recheck_sanity(wc, mod);
}
if (SLIC_LF_RINGING == fxs->lasttxhook) {
/* RINGing, prepare for OHT */
fxs->ohttimer = wc->framecount + OHT_TIMER;
/* OHT mode when idle */
fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_OHTRAN_REV :
SLIC_LF_OHTRAN_FWD;
} else if (fxs->oht_active) {
/* check if still OnHook */
if (!fxs->off_hook) {
if (time_before(wc->framecount, fxs->ohttimer))
return;
/* Switch to active */
fxs->idletxhookstate = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;
spin_lock_irqsave(&wc->reglock, flags);
if (SLIC_LF_OHTRAN_FWD == fxs->lasttxhook) {
/* Apply the change if appropriate */
fxs->lasttxhook = SLIC_LF_OPPENDING |
SLIC_LF_ACTIVE_FWD;
/* Data enqueued here */
mod->sethook = CMD_WR(LINE_STATE,
fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Channel %d OnHookTransfer stop\n",
mod->card);
}
} else if (SLIC_LF_OHTRAN_REV == fxs->lasttxhook) {
/* Apply the change if appropriate */
fxs->lasttxhook = SLIC_LF_OPPENDING |
SLIC_LF_ACTIVE_REV;
/* Data enqueued here */
mod->sethook = CMD_WR(LINE_STATE,
fxs->lasttxhook);
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Channel %d OnHookTransfer stop\n",
mod->card);
}
}
spin_unlock_irqrestore(&wc->reglock, flags);
} else {
fxs->oht_active = 0;
/* Switch to active */
fxs->idletxhookstate = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Channel %d OnHookTransfer abort\n",
mod->card);
}
}
}
}
static void wcaxx_handle_receive(struct wcxb *xb, void *_frame)
{
int i, j;
struct wcaxx *wc = container_of(xb, struct wcaxx, xb);
u8 *const frame = _frame;
wc->framecount++;
if (time_after(wc->framecount, wc->module_poll_time)) {
for (i = 0; i < wc->mods_per_board; i++) {
struct wcaxx_module *const mod = &wc->mods[i];
if (mod->mod_poll) {
wcxb_spi_async(mod->spi, &mod->mod_poll->m);
mod->mod_poll = NULL;
}
}
wc->module_poll_time = wc->framecount + MODULE_POLL_TIME_MS;
}
/* TODO: This protection needs to be thought about. */
if (!test_bit(DAHDI_FLAGBIT_REGISTERED, &wc->span.flags))
return;
for (j = 0; j < DAHDI_CHUNKSIZE; j++) {
for (i = 0; i < wc->span.channels; i++) {
wc->chans[i]->chan.readchunk[j] =
frame[j*WCXB_DMA_CHAN_SIZE+(1+i*4)];
}
}
for (i = 0; i < wc->span.channels; i++) {
struct dahdi_chan *const c = wc->span.chans[i];
__dahdi_ec_chunk(c, c->readchunk, c->readchunk, c->writechunk);
}
_dahdi_receive(&wc->span);
return;
}
static void wcaxx_handle_transmit(struct wcxb *xb, void *_frame)
{
int i, j;
struct wcaxx *wc = container_of(xb, struct wcaxx, xb);
u8 *const frame = _frame;
wcxb_spi_handle_interrupt(wc->master);
/* TODO: This protection needs to be thought about. */
if (!test_bit(DAHDI_FLAGBIT_REGISTERED, &wc->span.flags))
return;
_dahdi_transmit(&wc->span);
for (j = 0; j < DAHDI_CHUNKSIZE; j++) {
for (i = 0; i < wc->span.channels; i++) {
struct dahdi_chan *c = &wc->chans[i]->chan;
frame[j*WCXB_DMA_CHAN_SIZE+(1+i*4)] = c->writechunk[j];
}
}
return;
}
static int wcaxx_voicedaa_insane(struct wcaxx *wc, struct wcaxx_module *mod)
{
int blah;
blah = wcaxx_getreg(wc, mod, 2);
if (blah != 0x3)
return -2;
blah = wcaxx_getreg(wc, mod, 11);
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"VoiceDAA System: %02x\n", blah & 0xf);
}
return 0;
}
static int
wcaxx_proslic_insane(struct wcaxx *wc, struct wcaxx_module *const mod)
{
int blah, reg1, insane_report;
insane_report = 0;
blah = wcaxx_getreg(wc, mod, 0);
if (blah != 0xff && (debug & DEBUG_CARD)) {
dev_info(&wc->xb.pdev->dev,
"ProSLIC on module %d, product %d, "
"version %d\n", mod->card, (blah & 0x30) >> 4,
(blah & 0xf));
}
#if 0
if ((blah & 0x30) >> 4) {
dev_info(&wc->xb.pdev->dev,
"ProSLIC on module %d is not a 3210.\n", mod->card);
return -1;
}
#endif
if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) {
/* SLIC not loaded */
return -1;
}
/* let's be really sure this is an FXS before we continue */
reg1 = wcaxx_getreg(wc, mod, 1);
if ((0x80 != (blah & 0xf0)) || (0x88 != reg1)) {
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"DEBUG: not FXS b/c reg0=%x or "
"reg1 != 0x88 (%x).\n", blah, reg1);
}
return -1;
}
blah = wcaxx_getreg(wc, mod, 8);
if (blah != 0x2) {
dev_notice(&wc->xb.pdev->dev,
"ProSLIC on module %d insane (1) %d should be 2\n",
mod->card, blah);
return -1;
} else if (insane_report) {
dev_notice(&wc->xb.pdev->dev,
"ProSLIC on module %d Reg 8 Reads %d Expected "
"is 0x2\n", mod->card, blah);
}
blah = wcaxx_getreg(wc, mod, 64);
if (blah != 0x0) {
dev_notice(&wc->xb.pdev->dev,
"ProSLIC on module %d insane (2)\n",
mod->card);
return -1;
} else if (insane_report) {
dev_notice(&wc->xb.pdev->dev,
"ProSLIC on module %d Reg 64 Reads %d Expected "
"is 0x0\n", mod->card, blah);
}
blah = wcaxx_getreg(wc, mod, 11);
if (blah != 0x33) {
dev_notice(&wc->xb.pdev->dev,
"ProSLIC on module %d insane (3)\n", mod->card);
return -1;
} else if (insane_report) {
dev_notice(&wc->xb.pdev->dev,
"ProSLIC on module %d Reg 11 Reads %d "
"Expected is 0x33\n", mod->card, blah);
}
/* Just be sure it's setup right. */
wcaxx_setreg(wc, mod, 30, 0);
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"ProSLIC on module %d seems sane.\n", mod->card);
}
return 0;
}
static int
wcaxx_proslic_powerleak_test(struct wcaxx *wc,
struct wcaxx_module *const mod)
{
unsigned long start;
unsigned char vbat;
/* Turn off linefeed */
wcaxx_setreg(wc, mod, LINE_STATE, 0);
/* Power down */
wcaxx_setreg(wc, mod, 14, 0x10);
start = jiffies;
/* TODO: Why is this sleep necessary. Without it, the first read
* comes back with a 0 value. */
msleep(20);
while ((vbat = wcaxx_getreg(wc, mod, 82)) > 0x6) {
if (time_after(jiffies, start + HZ/4))
break;
}
if (vbat < 0x06) {
dev_notice(&wc->xb.pdev->dev,
"Excessive leakage detected on module %d: %d "
"volts (%02x) after %d ms\n", mod->card,
376 * vbat / 1000, vbat,
(int)((jiffies - start) * 1000 / HZ));
return -1;
} else if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Post-leakage voltage: %d volts\n", 376 * vbat / 1000);
}
return 0;
}
static int wcaxx_powerup_proslic(struct wcaxx *wc,
struct wcaxx_module *mod, int fast)
{
unsigned char vbat;
unsigned long origjiffies;
int lim;
/* Set period of DC-DC converter to 1/64 khz */
wcaxx_setreg(wc, mod, 92, 0xc0 /* was 0xff */);
/* Wait for VBat to powerup */
origjiffies = jiffies;
/* Disable powerdown */
wcaxx_setreg(wc, mod, 14, 0);
/* If fast, don't bother checking anymore */
if (fast)
return 0;
while ((vbat = wcaxx_getreg(wc, mod, 82)) < 0xc0) {
/* Wait no more than 500ms */
if ((jiffies - origjiffies) > HZ/2)
break;
}
if (vbat < 0xc0) {
dev_notice(&wc->xb.pdev->dev, "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM CARD??\n",
mod->card, (int)(((jiffies - origjiffies) * 1000 / HZ)),
vbat * 375);
return -1;
} else if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"ProSLIC on module %d powered up to -%d volts (%02x) "
"in %d ms\n", mod->card, vbat * 376 / 1000, vbat,
(int)(((jiffies - origjiffies) * 1000 / HZ)));
}
/* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */
/* If out of range, just set it to the default value */
lim = (loopcurrent - 20) / 3;
if (loopcurrent > 41) {
lim = 0;
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Loop current out of range! Setting to default 20mA!\n");
}
} else if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Loop current set to %dmA!\n", (lim*3)+20);
}
wcaxx_setreg(wc, mod, LOOP_I_LIMIT, lim);
/* Engage DC-DC converter */
wcaxx_setreg(wc, mod, 93, 0x19 /* was 0x19 */);
return 0;
}
static int
wcaxx_proslic_manual_calibrate(struct wcaxx *wc,
struct wcaxx_module *const mod)
{
unsigned long origjiffies;
unsigned char i;
/* Disable all interupts in DR21-23 */
wcaxx_setreg(wc, mod, 21, 0);
wcaxx_setreg(wc, mod, 22, 0);
wcaxx_setreg(wc, mod, 23, 0);
wcaxx_setreg(wc, mod, 64, 0);
/* (0x18) Calibrations without the ADC and DAC offset and without
* common mode calibration. */
wcaxx_setreg(wc, mod, 97, 0x18);
/* (0x47) Calibrate common mode and differential DAC mode DAC + ILIM */
wcaxx_setreg(wc, mod, 96, 0x47);
origjiffies = jiffies;
while (wcaxx_getreg(wc, mod, 96) != 0) {
if ((jiffies-origjiffies) > 80)
return -1;
}
/* Initialized DR 98 and 99 to get consistant results. 98 and 99 are
* the results registers and the search should have same intial
* conditions.
*/
/******* The following is the manual gain mismatch calibration ********/
/******* This is also available as a function *************************/
msleep(20);
wcaxx_proslic_setreg_indirect(wc, mod, 88, 0);
wcaxx_proslic_setreg_indirect(wc, mod, 89, 0);
wcaxx_proslic_setreg_indirect(wc, mod, 90, 0);
wcaxx_proslic_setreg_indirect(wc, mod, 91, 0);
wcaxx_proslic_setreg_indirect(wc, mod, 92, 0);
wcaxx_proslic_setreg_indirect(wc, mod, 93, 0);
/* This is necessary if the calibration occurs other than at reset */
wcaxx_setreg(wc, mod, 98, 0x10);
wcaxx_setreg(wc, mod, 99, 0x10);
for (i = 0x1f; i > 0; i--) {
wcaxx_setreg(wc, mod, 98, i);
msleep(40);
if ((wcaxx_getreg(wc, mod, 88)) == 0)
break;
}
for (i = 0x1f; i > 0; i--) {
wcaxx_setreg(wc, mod, 99, i);
msleep(40);
if ((wcaxx_getreg(wc, mod, 89)) == 0)
break;
}
/******** The preceding is the manual gain mismatch calibration *******/
/******** The following is the longitudinal Balance Cal ***************/
wcaxx_setreg(wc, mod, 64, 1);
msleep(100);
wcaxx_setreg(wc, mod, 64, 0);
/* enable interrupt for the balance Cal */
wcaxx_setreg(wc, mod, 23, 0x4);
/* this is a singular calibration bit for longitudinal calibration */
wcaxx_setreg(wc, mod, 97, 0x1);
wcaxx_setreg(wc, mod, 96, 0x40);
wcaxx_getreg(wc, mod, 96); /* Read Reg 96 just cause */
wcaxx_setreg(wc, mod, 21, 0xFF);
wcaxx_setreg(wc, mod, 22, 0xFF);
wcaxx_setreg(wc, mod, 23, 0xFF);
/**The preceding is the longitudinal Balance Cal***/
return 0;
}
static int
wcaxx_proslic_calibrate(struct wcaxx *wc, struct wcaxx_module *mod)
{
unsigned long origjiffies;
int x;
/* Perform all calibrations */
wcaxx_setreg(wc, mod, 97, 0x1f);
/* Begin, no speedup */
wcaxx_setreg(wc, mod, 96, 0x5f);
/* Wait for it to finish */
origjiffies = jiffies;
while (wcaxx_getreg(wc, mod, 96)) {
if (time_after(jiffies, (origjiffies + (2*HZ)))) {
dev_notice(&wc->xb.pdev->dev,
"Timeout waiting for calibration of "
"module %d\n", mod->card);
return -1;
}
}
if (debug & DEBUG_CARD) {
/* Print calibration parameters */
dev_info(&wc->xb.pdev->dev,
"Calibration Vector Regs 98 - 107:\n");
for (x = 98; x < 108; x++) {
dev_info(&wc->xb.pdev->dev,
"%d: %02x\n", x, wcaxx_getreg(wc, mod, x));
}
}
return 0;
}
/*********************************************************************
* Set the hwgain on the analog modules
*
* card = the card position for this module (0-23)
* gain = gain in dB x10 (e.g. -3.5dB would be gain=-35)
* tx = (0 for rx; 1 for tx)
*
*******************************************************************/
static int
wcaxx_set_hwgain(struct wcaxx *wc, struct wcaxx_module *mod,
__s32 gain, __u32 tx)
{
if (mod->type != FXO) {
dev_notice(&wc->xb.pdev->dev,
"Cannot adjust gain. Unsupported module type!\n");
return -1;
}
if (tx) {
if (debug) {
dev_info(&wc->xb.pdev->dev,
"setting FXO tx gain for card=%d to %d\n",
mod->card, gain);
}
if (gain >= -150 && gain <= 0) {
wcaxx_setreg(wc, mod, 38, 16 + (gain / -10));
wcaxx_setreg(wc, mod, 40, 16 + (-gain % 10));
} else if (gain <= 120 && gain > 0) {
wcaxx_setreg(wc, mod, 38, gain/10);
wcaxx_setreg(wc, mod, 40, (gain%10));
} else {
dev_notice(&wc->xb.pdev->dev,
"FXO tx gain is out of range (%d)\n", gain);
return -1;
}
} else { /* rx */
if (debug) {
dev_info(&wc->xb.pdev->dev,
"setting FXO rx gain for card=%d to %d\n",
mod->card, gain);
}
if (gain >= -150 && gain <= 0) {
wcaxx_setreg(wc, mod, 39, 16 + (gain / -10));
wcaxx_setreg(wc, mod, 41, 16 + (-gain % 10));
} else if (gain <= 120 && gain > 0) {
wcaxx_setreg(wc, mod, 39, gain/10);
wcaxx_setreg(wc, mod, 41, (gain%10));
} else {
dev_notice(&wc->xb.pdev->dev,
"FXO rx gain is out of range (%d)\n", gain);
return -1;
}
}
return 0;
}
static int set_lasttxhook_interruptible(struct wcaxx *wc, struct fxs *fxs,
unsigned newval, int *psethook)
{
int res = 0;
unsigned long flags;
int timeout = 0;
do {
spin_lock_irqsave(&wc->reglock, flags);
if (SLIC_LF_OPPENDING & fxs->lasttxhook) {
spin_unlock_irqrestore(&wc->reglock, flags);
if (timeout++ > 100)
return -1;
msleep(100);
} else {
fxs->lasttxhook = (newval & SLIC_LF_SETMASK) |
SLIC_LF_OPPENDING;
*psethook = CMD_WR(LINE_STATE, fxs->lasttxhook);
spin_unlock_irqrestore(&wc->reglock, flags);
break;
}
} while (1);
return res;
}
/* Must be called from within an interruptible context */
static int set_vmwi(struct wcaxx *wc, struct wcaxx_module *const mod)
{
int x;
struct fxs *const fxs = &mod->mod.fxs;
/* Presently only supports line reversal MWI */
if ((fxs->vmwi_active_messages) &&
(fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV))
fxs->vmwi_linereverse = 1;
else
fxs->vmwi_linereverse = 0;
/* Set line polarity for new VMWI state */
if (POLARITY_XOR(fxs)) {
fxs->idletxhookstate |= SLIC_LF_REVMASK;
/* Do not set while currently ringing or open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) &&
((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) {
x = fxs->lasttxhook;
x |= SLIC_LF_REVMASK;
set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook);
}
} else {
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
/* Do not set while currently ringing or open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) &&
((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) {
x = fxs->lasttxhook;
x &= ~SLIC_LF_REVMASK;
set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook);
}
}
if (debug) {
dev_info(&wc->xb.pdev->dev,
"Setting VMWI on channel %d, messages=%d, lrev=%d\n",
mod->card, fxs->vmwi_active_messages,
fxs->vmwi_linereverse);
}
return 0;
}
static void
wcaxx_voicedaa_set_ts(struct wcaxx *wc, struct wcaxx_module *mod, int ts)
{
/* 34 bits from framesysc to the first channel, 8 bits in each ts * (th
* e timeslot we're assigning + 1 to skip for VPMOCT issue on first
* timeslot + 3 in that there are 4 bytes assigned for each timeslot on
* framer which was copied to this card */
/* 34 + 8 * (ts + 1 + 3) */
wcaxx_setreg(wc, mod, 34, (ts * 8 + 42 + (ts * 3 * 8)) & 0xff);
wcaxx_setreg(wc, mod, 35, (ts * 8 + 42 + (ts * 3 * 8)) >> 8);
wcaxx_setreg(wc, mod, 36, (ts * 8 + 42 + (ts * 3 * 8)) & 0xff);
wcaxx_setreg(wc, mod, 37, (ts * 8 + 42 + (ts * 3 * 8)) >> 8);
if (debug) {
dev_info(&wc->xb.pdev->dev,
"voicedaa: card %d new timeslot: %d\n",
mod->card + 1, ts);
}
}
static int
wcaxx_init_voicedaa(struct wcaxx *wc, struct wcaxx_module *mod,
int fast, int manual, int sane)
{
unsigned char reg16 = 0, reg26 = 0, reg30 = 0, reg31 = 0;
unsigned long flags;
unsigned long newjiffies;
/* Send a short write to the device in order to reset the SPI state
* machine. It may be out of sync since the driver was probing for an
* FXS device on that chip select. */
/* wcxb_spi_short_write(mod->spi); */
spin_lock_irqsave(&wc->reglock, flags);
mod->type = FXO;
spin_unlock_irqrestore(&wc->reglock, flags);
if (!sane && wcaxx_voicedaa_insane(wc, mod))
return -2;
/* Software reset */
wcaxx_setreg(wc, mod, 1, 0x80);
msleep(100);
/* Set On-hook speed, Ringer impedence, and ringer threshold */
reg16 |= (fxo_modes[_opermode].ohs << 6);
reg16 |= (fxo_modes[_opermode].rz << 1);
reg16 |= (fxo_modes[_opermode].rt);
wcaxx_setreg(wc, mod, 16, reg16);
/* Enable ring detector full-wave rectifier mode */
wcaxx_setreg(wc, mod, 18, 2);
wcaxx_setreg(wc, mod, 24, 0);
/* Set DC Termination:
Tip/Ring voltage adjust, minimum operational current, current
limitation */
reg26 |= (fxo_modes[_opermode].dcv << 6);
reg26 |= (fxo_modes[_opermode].mini << 4);
reg26 |= (fxo_modes[_opermode].ilim << 1);
wcaxx_setreg(wc, mod, 26, reg26);
/* Set AC Impedence */
reg30 = (fxo_modes[_opermode].acim);
wcaxx_setreg(wc, mod, 30, reg30);
/* Misc. DAA parameters */
/* If fast pickup is set, then the off hook counter will be set to 8
* ms, otherwise 128 ms. */
reg31 = (fastpickup) ? 0xe3 : 0xa3;
reg31 |= (fxo_modes[_opermode].ohs2 << 3);
wcaxx_setreg(wc, mod, 31, reg31);
wcaxx_voicedaa_set_ts(wc, mod, mod->card);
/* Enable ISO-Cap */
wcaxx_setreg(wc, mod, 6, 0x00);
/* Turn off the calibration delay when fastpickup is enabled. */
if (fastpickup)
wcaxx_setreg(wc, mod, 17, wcaxx_getreg(wc, mod, 17) | 0x20);
/* Wait 2000ms for ISO-cap to come up */
newjiffies = jiffies + msecs_to_jiffies(2000);
while (time_before(jiffies, newjiffies) &&
!(wcaxx_getreg(wc, mod, 11) & 0xf0))
msleep(100);
if (!(wcaxx_getreg(wc, mod, 11) & 0xf0)) {
dev_notice(&wc->xb.pdev->dev, "VoiceDAA did not bring up ISO link properly!\n");
return -1;
}
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev, "ISO-Cap is now up, line side: %02x rev %02x\n",
wcaxx_getreg(wc, mod, 11) >> 4,
(wcaxx_getreg(wc, mod, 13) >> 2) & 0xf);
}
/* Enable on-hook line monitor */
wcaxx_setreg(wc, mod, 5, 0x08);
/* Take values for fxotxgain and fxorxgain and apply them to module */
wcaxx_set_hwgain(wc, mod, fxotxgain, 1);
wcaxx_set_hwgain(wc, mod, fxorxgain, 0);
#ifdef DEBUG
if (digitalloopback) {
dev_info(&wc->xb.pdev->dev,
"Turning on digital loopback for port %d.\n",
mod->card + 1);
wcaxx_setreg(wc, mod, 10, 0x01);
}
#endif
if (debug) {
dev_info(&wc->xb.pdev->dev,
"DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n",
(wcaxx_getreg(wc, mod, 38)/16) ?
-(wcaxx_getreg(wc, mod, 38) - 16) :
wcaxx_getreg(wc, mod, 38),
(wcaxx_getreg(wc, mod, 40)/16) ?
-(wcaxx_getreg(wc, mod, 40) - 16) :
wcaxx_getreg(wc, mod, 40),
(wcaxx_getreg(wc, mod, 39)/16) ?
-(wcaxx_getreg(wc, mod, 39) - 16) :
wcaxx_getreg(wc, mod, 39),
(wcaxx_getreg(wc, mod, 41)/16) ?
-(wcaxx_getreg(wc, mod, 41) - 16) :
wcaxx_getreg(wc, mod, 41));
}
return 0;
}
static void
wcaxx_proslic_set_ts(struct wcaxx *wc, struct wcaxx_module *mod, int ts)
{
/* Tx Start low byte 0 */
wcaxx_setreg(wc, mod, 2, (ts * 8 + 42 + (ts * 3 * 8)) & 0xff);
/* Tx Start high byte 0 */
wcaxx_setreg(wc, mod, 3, (ts * 8 + 42 + (ts * 3 * 8)) >> 8);
/* Rx Start low byte 0 */
wcaxx_setreg(wc, mod, 4, (ts * 8 + 42 + (ts * 3 * 8)) & 0xff);
/* Rx Start high byte 0 */
wcaxx_setreg(wc, mod, 5, (ts * 8 + 42 + (ts * 3 * 8)) >> 8);
if (debug) {
dev_info(&wc->xb.pdev->dev,
"proslic: card %d new timeslot: %d\n",
mod->card + 1, ts);
}
}
static int
wcaxx_init_proslic(struct wcaxx *wc, struct wcaxx_module *const mod,
int fast, int manual, int sane)
{
struct fxs *const fxs = &mod->mod.fxs;
unsigned short tmp[5];
unsigned long flags;
unsigned char r19, r9;
int x;
int fxsmode = 0;
int addresses[ARRAY_SIZE(fxs->calregs.vals)];
#if 0 /* TODO */
if (wc->mods[mod->card & 0xfc].type == QRV)
return -2;
#endif
spin_lock_irqsave(&wc->reglock, flags);
mod->type = FXS;
spin_unlock_irqrestore(&wc->reglock, flags);
/* msleep(100); */
/* Sanity check the ProSLIC */
if (!sane && wcaxx_proslic_insane(wc, mod))
return -2;
/* Initialize VMWI settings */
memset(&(fxs->vmwisetting), 0, sizeof(fxs->vmwisetting));
fxs->vmwi_linereverse = 0;
/* By default, don't send on hook */
if (!reversepolarity != !fxs->reversepolarity)
fxs->idletxhookstate = SLIC_LF_ACTIVE_REV;
else
fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD;
if (sane) {
/* Make sure we turn off the DC->DC converter to prevent
* anything from blowing up */
wcaxx_setreg(wc, mod, 14, 0x10);
}
if (wcaxx_proslic_init_indirect_regs(wc, mod)) {
dev_info(&wc->xb.pdev->dev,
"Indirect Registers failed to initialize on "
"module %d.\n", mod->card);
return -1;
}
/* Clear scratch pad area */
wcaxx_proslic_setreg_indirect(wc, mod, 97, 0);
/* Clear digital loopback */
wcaxx_setreg(wc, mod, 8, 0);
/* Revision C optimization */
wcaxx_setreg(wc, mod, 108, 0xeb);
/* Disable automatic VBat switching for safety to prevent
* Q7 from accidently turning on and burning out.
* If pulse dialing has trouble at high REN loads change this to 0x17 */
wcaxx_setreg(wc, mod, 67, 0x07);
/* Turn off Q7 */
wcaxx_setreg(wc, mod, 66, 1);
/* Flush ProSLIC digital filters by setting to clear, while
saving old values */
for (x = 0; x < 5; x++) {
tmp[x] = wcaxx_proslic_getreg_indirect(wc, mod, x + 35);
wcaxx_proslic_setreg_indirect(wc, mod, x + 35, 0x8000);
}
/* Power up the DC-DC converter */
if (wcaxx_powerup_proslic(wc, mod, fast)) {
dev_notice(&wc->xb.pdev->dev,
"Unable to do INITIAL ProSLIC powerup on "
"module %d\n", mod->card);
return -1;
}
if (!fast) {
/* Check for power leaks */
if (wcaxx_proslic_powerleak_test(wc, mod)) {
dev_notice(&wc->xb.pdev->dev,
"ProSLIC module %d failed leakage test. "
"Check for short circuit\n", mod->card);
}
/* Power up again */
if (wcaxx_powerup_proslic(wc, mod, fast)) {
dev_notice(&wc->xb.pdev->dev,
"Unable to do FINAL ProSLIC powerup on "
"module %d\n", mod->card);
return -1;
}
#ifndef NO_CALIBRATION
/* Perform calibration */
if (manual) {
if (wcaxx_proslic_manual_calibrate(wc, mod)) {
dev_dbg(&wc->xb.pdev->dev,
"Proslic failed on Manual Calibration\n");
if (wcaxx_proslic_manual_calibrate(wc, mod)) {
dev_notice(&wc->xb.pdev->dev,
"Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n");
return -1;
}
dev_info(&wc->xb.pdev->dev,
"Proslic Passed Manual Calibration on Second Attempt\n");
}
} else {
if (wcaxx_proslic_calibrate(wc, mod)) {
dev_dbg(&wc->xb.pdev->dev,
"ProSlic died on Auto Calibration.\n");
if (wcaxx_proslic_calibrate(wc, mod)) {
dev_notice(&wc->xb.pdev->dev,
"Proslic Failed on Second Attempt to Auto Calibrate\n");
return -1;
}
dev_info(&wc->xb.pdev->dev,
"Proslic Passed Auto Calibration on Second Attempt\n");
}
}
/* Perform DC-DC calibration */
wcaxx_setreg(wc, mod, 93, 0x99);
r19 = wcaxx_getreg(wc, mod, 107);
if ((r19 < 0x2) || (r19 > 0xd)) {
dev_notice(&wc->xb.pdev->dev,
"DC-DC cal has a surprising direct 107 of 0x%02x!\n",
r19);
wcaxx_setreg(wc, mod, 107, 0x8);
}
/* Save calibration vectors */
for (x = 0; x < ARRAY_SIZE(addresses); x++)
addresses[x] = 96 + x;
wcaxx_getregs(wc, mod, addresses, ARRAY_SIZE(addresses));
for (x = 0; x < ARRAY_SIZE(fxs->calregs.vals); x++)
fxs->calregs.vals[x] = addresses[x];
#endif
} else {
/* Restore calibration registers */
for (x = 0; x < ARRAY_SIZE(fxs->calregs.vals); x++)
wcaxx_setreg(wc, mod, 96 + x, fxs->calregs.vals[x]);
}
/* Calibration complete, restore original values */
for (x = 0; x < 5; x++)
wcaxx_proslic_setreg_indirect(wc, mod, x + 35, tmp[x]);
if (wcaxx_proslic_verify_indirect_regs(wc, mod)) {
dev_info(&wc->xb.pdev->dev, "Indirect Registers failed verification.\n");
return -1;
}
/* U-Law 8-bit interface */
wcaxx_proslic_set_ts(wc, mod, mod->card);
wcaxx_setreg(wc, mod, 18, 0xff); /* clear all interrupt */
wcaxx_setreg(wc, mod, 19, 0xff);
wcaxx_setreg(wc, mod, 20, 0xff);
wcaxx_setreg(wc, mod, 22, 0xff);
wcaxx_setreg(wc, mod, 73, 0x04);
wcaxx_setreg(wc, mod, 69, 0x4);
if (fxshonormode) {
static const int ACIM2TISS[16] = { 0x0, 0x1, 0x4, 0x5, 0x7,
0x0, 0x0, 0x6, 0x0, 0x0,
0x0, 0x2, 0x0, 0x3 };
fxsmode = ACIM2TISS[fxo_modes[_opermode].acim];
wcaxx_setreg(wc, mod, 10, 0x08 | fxsmode);
if (fxo_modes[_opermode].ring_osc) {
wcaxx_proslic_setreg_indirect(wc, mod, 20,
fxo_modes[_opermode].ring_osc);
}
if (fxo_modes[_opermode].ring_x) {
wcaxx_proslic_setreg_indirect(wc, mod, 21,
fxo_modes[_opermode].ring_x);
}
}
if (lowpower)
wcaxx_setreg(wc, mod, 72, 0x10);
if (fastringer) {
/* Speed up Ringer */
wcaxx_proslic_setreg_indirect(wc, mod, 20, 0x7e6d);
wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x01b9);
/* Beef up Ringing voltage to 89V */
if (boostringer) {
wcaxx_setreg(wc, mod, 74, 0x3f);
if (wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x247))
return -1;
dev_info(&wc->xb.pdev->dev,
"Boosting fast ringer on slot %d (89V peak)\n",
mod->card + 1);
} else if (lowpower) {
if (wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x14b))
return -1;
dev_info(&wc->xb.pdev->dev,
"Reducing fast ring power on slot %d "
"(50V peak)\n", mod->card + 1);
} else
dev_info(&wc->xb.pdev->dev,
"Speeding up ringer on slot %d (25Hz)\n",
mod->card + 1);
} else {
/* Beef up Ringing voltage to 89V */
if (boostringer) {
wcaxx_setreg(wc, mod, 74, 0x3f);
if (wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x1d1))
return -1;
dev_info(&wc->xb.pdev->dev,
"Boosting ringer on slot %d (89V peak)\n",
mod->card + 1);
} else if (lowpower) {
if (wcaxx_proslic_setreg_indirect(wc, mod, 21, 0x108))
return -1;
dev_info(&wc->xb.pdev->dev,
"Reducing ring power on slot %d "
"(50V peak)\n", mod->card + 1);
}
}
if (fxstxgain || fxsrxgain) {
r9 = wcaxx_getreg(wc, mod, 9);
switch (fxstxgain) {
case 35:
r9 += 8;
break;
case -35:
r9 += 4;
break;
case 0:
break;
}
switch (fxsrxgain) {
case 35:
r9 += 2;
break;
case -35:
r9 += 1;
break;
case 0:
break;
}
wcaxx_setreg(wc, mod, 9, r9);
}
if (debug) {
dev_info(&wc->xb.pdev->dev,
"DEBUG: fxstxgain:%s fxsrxgain:%s\n",
((wcaxx_getreg(wc, mod, 9) / 8) == 1) ?
"3.5" : ((wcaxx_getreg(wc, mod, 9) / 4) == 1) ?
"-3.5" : "0.0",
((wcaxx_getreg(wc, mod, 9) / 2) == 1) ?
"3.5" : ((wcaxx_getreg(wc, mod, 9) % 2) ?
"-3.5" : "0.0"));
}
fxs->lasttxhook = fxs->idletxhookstate;
wcaxx_setreg(wc, mod, LINE_STATE, fxs->lasttxhook);
/* Preset the shadow register so that we won't get a power alarm when
* we finish initialization, otherwise the line state register may not
* have been read yet. */
fxs->linefeed_control_shadow = fxs->lasttxhook;
return 0;
}
static void wcaxx_get_fxs_regs(struct wcaxx *wc, struct wcaxx_module *mod,
struct wctdm_regs *regs)
{
int x;
for (x = 0; x < NUM_INDIRECT_REGS; x++)
regs->indirect[x] = wcaxx_proslic_getreg_indirect(wc, mod, x);
for (x = 0; x < NUM_REGS; x++)
regs->direct[x] = wcaxx_getreg(wc, mod, x);
}
static void wcaxx_get_fxo_regs(struct wcaxx *wc, struct wcaxx_module *mod,
struct wctdm_regs *regs)
{
const unsigned int NUM_FXO_REGS = 60;
int x;
for (x = 0; x < NUM_FXO_REGS; x++)
regs->direct[x] = wcaxx_getreg(wc, mod, x);
}
static int
wcaxx_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data)
{
struct wctdm_stats stats;
struct wctdm_regop regop;
struct wctdm_echo_coefs echoregs;
struct dahdi_hwgain hwgain;
struct wcaxx *wc = chan->pvt;
int x;
struct wcaxx_module *const mod = &wc->mods[chan->chanpos - 1];
struct fxs *const fxs = &mod->mod.fxs;
switch (cmd) {
case DAHDI_ONHOOKTRANSFER:
if (mod->type != FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
/* Active mode when idle */
fxs->idletxhookstate = POLARITY_XOR(fxs) ?
SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
if (fxs_lf(fxs, ACTIVE_FWD) || fxs_lf(fxs, ACTIVE_REV)) {
int res;
res = set_lasttxhook_interruptible(wc, fxs,
(POLARITY_XOR(fxs) ?
SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD),
&mod->sethook);
if (debug & DEBUG_CARD) {
if (res) {
dev_info(&wc->xb.pdev->dev,
"Channel %d TIMEOUT: "
"OnHookTransfer start\n",
chan->chanpos - 1);
} else {
dev_info(&wc->xb.pdev->dev,
"Channel %d OnHookTransfer "
"start\n", chan->chanpos - 1);
}
}
}
fxs->ohttimer = wc->framecount + x;
fxs->oht_active = 1;
break;
case DAHDI_VMWI_CONFIG:
if (mod->type != FXS)
return -EINVAL;
if (copy_from_user(&(fxs->vmwisetting),
(__user void *)data,
sizeof(fxs->vmwisetting)))
return -EFAULT;
set_vmwi(wc, mod);
break;
case DAHDI_VMWI:
if (mod->type != FXS)
return -EINVAL;
if (get_user(x, (__user int *) data))
return -EFAULT;
if (0 > x)
return -EFAULT;
fxs->vmwi_active_messages = x;
set_vmwi(wc, mod);
break;
case WCTDM_GET_STATS:
if (mod->type == FXS) {
stats.tipvolt = wcaxx_getreg(wc, mod, 80) * -376;
stats.ringvolt = wcaxx_getreg(wc, mod, 81) * -376;
stats.batvolt = wcaxx_getreg(wc, mod, 82) * -376;
} else if (mod->type == FXO) {
stats.tipvolt = (s8)wcaxx_getreg(wc, mod, 29) * 1000;
stats.ringvolt = (s8)wcaxx_getreg(wc, mod, 29) * 1000;
stats.batvolt = (s8)wcaxx_getreg(wc, mod, 29) * 1000;
} else
return -EINVAL;
if (copy_to_user((__user void *) data, &stats, sizeof(stats)))
return -EFAULT;
break;
case WCTDM_GET_REGS:
{
struct wctdm_regs *regs = kzalloc(sizeof(*regs), GFP_KERNEL);
if (!regs)
return -ENOMEM;
if (mod->type == FXS)
wcaxx_get_fxs_regs(wc, mod, regs);
else
wcaxx_get_fxo_regs(wc, mod, regs);
if (copy_to_user((__user void *)data, regs, sizeof(*regs))) {
kfree(regs);
return -EFAULT;
}
kfree(regs);
break;
}
case WCTDM_SET_REG:
if (copy_from_user(&regop, (__user void *) data, sizeof(regop)))
return -EFAULT;
if (regop.indirect) {
if (mod->type != FXS)
return -EINVAL;
dev_info(&wc->xb.pdev->dev,
"Setting indirect %d to 0x%04x on %d\n",
regop.reg, regop.val, chan->chanpos);
wcaxx_proslic_setreg_indirect(wc, mod, regop.reg,
regop.val);
} else {
regop.val &= 0xff;
if (regop.reg == LINE_STATE) {
/* Set feedback register to indicate the new
* state that is being set */
fxs->lasttxhook = (regop.val & 0x0f) |
SLIC_LF_OPPENDING;
}
dev_info(&wc->xb.pdev->dev,
"Setting direct %d to %04x on %d\n",
regop.reg, regop.val, chan->chanpos);
wcaxx_setreg(wc, mod, regop.reg, regop.val);
}
break;
case WCTDM_SET_ECHOTUNE:
dev_info(&wc->xb.pdev->dev, "-- Setting echo registers:\n");
if (copy_from_user(&echoregs, (__user void *) data,
sizeof(echoregs)))
return -EFAULT;
if (mod->type == FXO) {
/* Set the ACIM register */
wcaxx_setreg(wc, mod, 30, echoregs.acim);
/* Set the digital echo canceller registers */
wcaxx_setreg(wc, mod, 45, echoregs.coef1);
wcaxx_setreg(wc, mod, 46, echoregs.coef2);
wcaxx_setreg(wc, mod, 47, echoregs.coef3);
wcaxx_setreg(wc, mod, 48, echoregs.coef4);
wcaxx_setreg(wc, mod, 49, echoregs.coef5);
wcaxx_setreg(wc, mod, 50, echoregs.coef6);
wcaxx_setreg(wc, mod, 51, echoregs.coef7);
wcaxx_setreg(wc, mod, 52, echoregs.coef8);
dev_info(&wc->xb.pdev->dev, "-- Set echo registers successfully\n");
break;
} else {
return -EINVAL;
}
break;
case DAHDI_SET_HWGAIN:
if (copy_from_user(&hwgain, (__user void *) data,
sizeof(hwgain)))
return -EFAULT;
wcaxx_set_hwgain(wc, mod, hwgain.newgain, hwgain.tx);
if (debug) {
dev_info(&wc->xb.pdev->dev,
"Setting hwgain on channel %d to %d for %s direction\n",
chan->chanpos-1, hwgain.newgain,
((hwgain.tx) ? "tx" : "rx"));
}
break;
case DAHDI_TONEDETECT:
/* Hardware DTMF detection is not supported. */
return -ENOSYS;
case DAHDI_SETPOLARITY:
if (get_user(x, (__user int *) data))
return -EFAULT;
if (mod->type != FXS)
return -EINVAL;
/* Can't change polarity while ringing or when open */
if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_RINGING) ||
((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_OPEN)) {
if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Channel %d Unable to Set Polarity\n",
chan->chanpos - 1);
}
return -EINVAL;
}
fxs->reversepolarity = (x) ? 1 : 0;
if (POLARITY_XOR(fxs)) {
fxs->idletxhookstate |= SLIC_LF_REVMASK;
x = fxs->lasttxhook & SLIC_LF_SETMASK;
x |= SLIC_LF_REVMASK;
if (x != fxs->lasttxhook) {
x = set_lasttxhook_interruptible(wc, fxs, x,
&mod->sethook);
if ((debug & DEBUG_CARD) && x) {
dev_info(&wc->xb.pdev->dev,
"Channel %d TIMEOUT: Set Reverse Polarity\n",
chan->chanpos - 1);
} else if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Channel %d Set Reverse Polarity\n",
chan->chanpos - 1);
}
}
} else {
fxs->idletxhookstate &= ~SLIC_LF_REVMASK;
x = fxs->lasttxhook & SLIC_LF_SETMASK;
x &= ~SLIC_LF_REVMASK;
if (x != fxs->lasttxhook) {
x = set_lasttxhook_interruptible(wc, fxs, x,
&mod->sethook);
if ((debug & DEBUG_CARD) & x) {
dev_info(&wc->xb.pdev->dev,
"Channel %d TIMEOUT: Set Normal Polarity\n",
chan->chanpos - 1);
} else if (debug & DEBUG_CARD) {
dev_info(&wc->xb.pdev->dev,
"Channel %d Set Normal Polarity\n",
chan->chanpos - 1);
}
}
}
break;
default:
return -ENOTTY;
}
return 0;
}
static int wcaxx_open(struct dahdi_chan *chan)
{
struct wcaxx *const wc = chan->pvt;
unsigned long flags;
struct wcaxx_module *const mod = &wc->mods[chan->chanpos - 1];
#if 0
if (wc->dead)
return -ENODEV;
#endif
if (mod->type == FXO) {
/* Reset the mwi indicators */
spin_lock_irqsave(&wc->reglock, flags);
mod->mod.fxo.neonmwi_debounce = 0;
mod->mod.fxo.neonmwi_offcounter = 0;
mod->mod.fxo.neonmwi_state = 0;
spin_unlock_irqrestore(&wc->reglock, flags);
}
return 0;
}
static inline struct wcaxx *span_to_wcaxx(struct dahdi_span *span)
{
struct wcaxx *wc = container_of(span, struct wcaxx, span);
return wc;
}
static int wcaxx_watchdog(struct dahdi_span *span, int event)
{
struct wcaxx *wc = span_to_wcaxx(span);
dev_info(&wc->xb.pdev->dev, "TDM: Called watchdog\n");
return 0;
}
static int wcaxx_close(struct dahdi_chan *chan)
{
struct wcaxx *wc;
int x;
wc = chan->pvt;
for (x = 0; x < wc->mods_per_board; x++) {
struct wcaxx_module *const mod = &wc->mods[x];
if (FXS == mod->type) {
mod->mod.fxs.idletxhookstate =
POLARITY_XOR(&mod->mod.fxs) ? SLIC_LF_ACTIVE_REV :
SLIC_LF_ACTIVE_FWD;
}
}
return 0;
}
static int wcaxx_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig)
{
struct wcaxx *wc = chan->pvt;
struct wcaxx_module *const mod = &wc->mods[chan->chanpos - 1];
if (mod->type == FXO) {
switch (txsig) {
case DAHDI_TXSIG_START:
case DAHDI_TXSIG_OFFHOOK:
mod->mod.fxo.offhook = 1;
mod->sethook = CMD_WR(5, 0x9);
/* wcaxx_setreg(wc, chan->chanpos - 1, 5, 0x9); */
break;
case DAHDI_TXSIG_ONHOOK:
mod->mod.fxo.offhook = 0;
mod->sethook = CMD_WR(5, 0x8);
/* wcaxx_setreg(wc, chan->chanpos - 1, 5, 0x8); */
break;
default:
dev_notice(&wc->xb.pdev->dev,
"Can't set tx state to %d\n", txsig);
break;
}
} else if (mod->type == FXS) {
wcaxx_fxs_hooksig(wc, mod, txsig);
}
return 0;
}
static void wcaxx_dacs_connect(struct wcaxx *wc, int srccard, int dstcard)
{
struct wcaxx_module *const srcmod = &wc->mods[srccard];
struct wcaxx_module *const dstmod = &wc->mods[dstcard];
unsigned int type;
if (wc->mods[dstcard].dacssrc > -1) {
dev_notice(&wc->xb.pdev->dev, "wcaxx_dacs_connect: Can't have double sourcing yet!\n");
return;
}
type = wc->mods[srccard].type;
if ((type == FXS) || (type == FXO)) {
dev_notice(&wc->xb.pdev->dev,
"wcaxx_dacs_connect: Unsupported modtype for "
"card %d\n", srccard);
return;
}
type = wc->mods[dstcard].type;
if ((type != FXS) && (type != FXO)) {
dev_notice(&wc->xb.pdev->dev,
"wcaxx_dacs_connect: Unsupported modtype "
"for card %d\n", dstcard);
return;
}
if (debug) {
dev_info(&wc->xb.pdev->dev,
"connect %d => %d\n", srccard, dstcard);
}
dstmod->dacssrc = srccard;
/* make srccard transmit to srccard+24 on the TDM bus */
if (srcmod->type == FXS) {
/* proslic */
wcaxx_setreg(wc, srcmod, PCM_XMIT_START_COUNT_LSB,
((srccard+24) * 8) & 0xff);
wcaxx_setreg(wc, srcmod, PCM_XMIT_START_COUNT_MSB,
((srccard+24) * 8) >> 8);
} else if (srcmod->type == FXO) {
/* daa TX */
wcaxx_setreg(wc, srcmod, 34, ((srccard+24) * 8) & 0xff);
wcaxx_setreg(wc, srcmod, 35, ((srccard+24) * 8) >> 8);
}
/* have dstcard receive from srccard+24 on the TDM bus */
if (dstmod->type == FXS) {
/* proslic */
wcaxx_setreg(wc, dstmod, PCM_RCV_START_COUNT_LSB,
((srccard+24) * 8) & 0xff);
wcaxx_setreg(wc, dstmod, PCM_RCV_START_COUNT_MSB,
((srccard+24) * 8) >> 8);
} else if (dstmod->type == FXO) {
/* daa RX */
wcaxx_setreg(wc, dstmod, 36, ((srccard+24) * 8) & 0xff);
wcaxx_setreg(wc, dstmod, 37, ((srccard+24) * 8) >> 8);
}
}
static void wcaxx_dacs_disconnect(struct wcaxx *wc, int card)
{
struct wcaxx_module *const mod = &wc->mods[card];
struct wcaxx_module *dacssrc;
if (mod->dacssrc <= -1)
return;
dacssrc = &wc->mods[mod->dacssrc];
if (debug) {
dev_info(&wc->xb.pdev->dev,
"wcaxx_dacs_disconnect: restoring TX for %d and RX for %d\n",
mod->dacssrc, card);
}
/* restore TX (source card) */
if (dacssrc->type == FXS) {
wcaxx_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_LSB,
(mod->dacssrc * 8) & 0xff);
wcaxx_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_MSB,
(mod->dacssrc * 8) >> 8);
} else if (dacssrc->type == FXO) {
wcaxx_setreg(wc, mod, 34, (card * 8) & 0xff);
wcaxx_setreg(wc, mod, 35, (card * 8) >> 8);
} else {
dev_warn(&wc->xb.pdev->dev,
"WARNING: wcaxx_dacs_disconnect() called "
"on unsupported modtype\n");
}
/* restore RX (this card) */
if (FXS == mod->type) {
wcaxx_setreg(wc, mod, PCM_RCV_START_COUNT_LSB,
(card * 8) & 0xff);
wcaxx_setreg(wc, mod, PCM_RCV_START_COUNT_MSB,
(card * 8) >> 8);
} else if (FXO == mod->type) {
wcaxx_setreg(wc, mod, 36, (card * 8) & 0xff);
wcaxx_setreg(wc, mod, 37, (card * 8) >> 8);
} else {
dev_warn(&wc->xb.pdev->dev,
"WARNING: wcaxx_dacs_disconnect() called "
"on unsupported modtype\n");
}
mod->dacssrc = -1;
}
static int wcaxx_dacs(struct dahdi_chan *dst, struct dahdi_chan *src)
{
struct wcaxx *wc;
if (!nativebridge)
return 0; /* should this return -1 since unsuccessful? */
wc = dst->pvt;
if (src) {
wcaxx_dacs_connect(wc, src->chanpos - 1, dst->chanpos - 1);
if (debug) {
dev_info(&wc->xb.pdev->dev,
"dacs connecct: %d -> %d!\n\n",
src->chanpos, dst->chanpos);
}
} else {
wcaxx_dacs_disconnect(wc, dst->chanpos - 1);
if (debug) {
dev_info(&wc->xb.pdev->dev,
"dacs disconnect: %d!\n", dst->chanpos);
}
}
return 0;
}
/**
* wcaxx_chanconfig - Called when the channels are being configured.
*
* Ensure that the card is completely ready to go before we allow the channels
* to be completely configured. This is to allow lengthy initialization
* actions to take place in background on driver load and ensure we're synced
* up by the time dahdi_cfg is run.
*
*/
static int
wcaxx_chanconfig(struct file *file, struct dahdi_chan *chan, int sigtype)
{
struct wcaxx *wc = chan->pvt;
if ((file->f_flags & O_NONBLOCK) && !is_initialized(wc))
return -EAGAIN;
return 0;
}
/*
* wcaxx_assigned - Called when span is assigned.
* @span: The span that is now assigned.
*
* This function is called by the core of DAHDI after the span number and
* channel numbers have been assigned.
*
*/
static void wcaxx_assigned(struct dahdi_span *span)
{
struct dahdi_span *s;
struct dahdi_device *ddev = span->parent;
struct wcaxx *wc = NULL;
list_for_each_entry(s, &ddev->spans, device_node) {
wc = container_of(s, struct wcaxx, span);
if (!test_bit(DAHDI_FLAGBIT_REGISTERED, &s->flags))
return;
}
}
static const struct dahdi_span_ops wcaxx_span_ops = {
.owner = THIS_MODULE,
.hooksig = wcaxx_hooksig,
.open = wcaxx_open,
.close = wcaxx_close,
.ioctl = wcaxx_ioctl,
.watchdog = wcaxx_watchdog,
.chanconfig = wcaxx_chanconfig,
.dacs = wcaxx_dacs,
.assigned = wcaxx_assigned,
.echocan_create = wcaxx_echocan_create,
.echocan_name = wcaxx_echocan_name,
};
static struct wcaxx_chan *
wcaxx_init_chan(struct wcaxx *wc, struct dahdi_span *s, int channo)
{
struct wcaxx_chan *c;
c = kzalloc(sizeof(*c), GFP_KERNEL);
if (!c)
return NULL;
snprintf(c->chan.name, sizeof(c->chan.name), "WCTDM/%d/%d",
wc->num, channo);
c->chan.chanpos = channo+1;
c->chan.span = s;
c->chan.pvt = wc;
c->timeslot = channo;
return c;
}
static void wcaxx_init_span(struct wcaxx *wc)
{
int x;
struct wcaxx_chan *c;
struct dahdi_echocan_state *ec[NUM_MODULES] = {NULL, };
/* DAHDI stuff */
wc->span.offset = 0;
sprintf(wc->span.name, "WCTDM/%d", wc->num);
snprintf(wc->span.desc, sizeof(wc->span.desc) - 1,
"%s", wc->desc->name);
if (wc->companding == DAHDI_LAW_DEFAULT) {
wc->span.deflaw = DAHDI_LAW_MULAW;
} else if (wc->companding == DAHDI_LAW_ALAW) {
/* Force everything to alaw */
wc->span.deflaw = DAHDI_LAW_ALAW;
} else {
/* Auto set to ulaw */
wc->span.deflaw = DAHDI_LAW_MULAW;
}
wc->span.ops = &wcaxx_span_ops;
wc->span.flags = DAHDI_FLAG_RBS;
wc->span.spantype = SPANTYPE_ANALOG_MIXED;
wc->span.chans = kmalloc(sizeof(wc->span.chans[0]) * wc->desc->ports,
GFP_KERNEL);
if (!wc->span.chans)
return;
/* allocate channels for the span */
for (x = 0; x < wc->desc->ports; x++) {
c = wcaxx_init_chan(wc, &wc->span, x);
if (!c)
return;
wc->chans[x] = c;
wc->span.chans[x] = &c->chan;
/* TODO: Should echocan state hide under VPM_ENABLED or does
* software ec use it? */
ec[x] = kzalloc(sizeof(*ec[x]), GFP_KERNEL);
}
wc->span.channels = wc->desc->ports;
memcpy(wc->ec, ec, sizeof(wc->ec));
memset(ec, 0, sizeof(ec));
}
/**
* should_set_alaw() - Should be called after all the spans are initialized.
*
* Returns true if the module companding should be set to alaw, otherwise
* false.
*/
static bool should_set_alaw(const struct wcaxx *wc)
{
if (DAHDI_LAW_ALAW == wc->companding)
return true;
else
return false;
}
static void wcaxx_fixup_span(struct wcaxx *wc)
{
struct dahdi_span *s;
int x, y;
y = 0;
s = &wc->span;
for (x = 0; x < wc->desc->ports; x++) {
struct wcaxx_module *const mod = &wc->mods[x];
if (debug) {
dev_info(&wc->xb.pdev->dev,
"fixup_analog: x=%d, y=%d modtype=%d, "
"s->chans[%d]=%p\n", x, y, mod->type,
y, s->chans[y]);
}
if (mod->type == FXO) {
int val;
s->chans[y++]->sigcap = DAHDI_SIG_FXSKS |
DAHDI_SIG_FXSLS | DAHDI_SIG_SF |
DAHDI_SIG_CLEAR;
val = should_set_alaw(wc) ? 0x20 : 0x28;
#ifdef DEBUG
val = (digitalloopback) ? 0x30 : val;
#endif
wcaxx_setreg(wc, mod, 33, val);
wcaxx_voicedaa_set_ts(wc, mod, wc->chans[x]->timeslot);
} else if (mod->type == FXS) {
/* NOTE: Digital loopback does not work on the FXS
* modules in the same way since the data is still
* companded by the ProSLIC and doesn't appear to have
* perfect symetry. */
s->chans[y++]->sigcap = DAHDI_SIG_FXOKS |
DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS |
DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR;
wcaxx_setreg(wc, mod, 1,
(should_set_alaw(wc) ? 0x20 : 0x28));
wcaxx_proslic_set_ts(wc, mod, wc->chans[x]->timeslot);
} else {
s->chans[y++]->sigcap = 0;
}
}
}
static bool wcaxx_init_fxs_port(struct wcaxx *wc, struct wcaxx_module *mod)
{
u8 readi;
enum {UNKNOWN = 0, SANE = 1};
int ret = wcaxx_init_proslic(wc, mod, 0, 0, UNKNOWN);
if (!ret) {
if (debug & DEBUG_CARD) {
readi = wcaxx_getreg(wc, mod, LOOP_I_LIMIT);
dev_info(&wc->xb.pdev->dev,
"Proslic module %d loop current is %dmA\n",
mod->card, ((readi*3) + 20));
}
return true;
}
if (ret != -2) {
/* Init with Manual Calibration */
if (!wcaxx_init_proslic(wc, mod, 0, 1, SANE)) {
if (debug & DEBUG_CARD) {
readi = wcaxx_getreg(wc, mod, LOOP_I_LIMIT);
dev_info(&wc->xb.pdev->dev,
"Proslic module %d loop current is %dmA\n",
mod->card, ((readi*3)+20));
}
} else {
dev_notice(&wc->xb.pdev->dev,
"Port %d: FAILED FXS (%s)\n", mod->card + 1,
fxshonormode ? fxo_modes[_opermode].name :
"FCC");
}
return true;
}
return false;
}
static void wcaxx_reset_module(struct wcaxx *wc, struct wcaxx_module *mod)
{
u32 reg_val = (1UL << (mod->spi->chip_select + 12));
wcxb_gpio_clear(&wc->xb, reg_val);
udelay(500);
wcxb_gpio_set(&wc->xb, reg_val);
msleep(250); /* TODO: What should this value be? */
}
static bool check_for_single_fxs(struct wcaxx *wc, unsigned int port)
{
bool result;
struct wcaxx_module *mod = &wc->mods[port];
mod->spi = get_spi_device_for_port(wc, mod->card, false);
mod->subaddr = 0;
wcaxx_reset_module(wc, mod);
wcaxx_fxsinit(mod->spi);
result = wcaxx_init_fxs_port(wc, mod);
if (!result)
mod->type = NONE;
/* It is currently unclear why this read is necessary for some of the
* S100M modules to properly function. */
wcaxx_getreg(wc, mod, 0x00);
return result;
}
static bool check_for_single_fxo(struct wcaxx *wc, unsigned int port)
{
bool result;
struct wcaxx_module *mod = &wc->mods[port];
mod->spi = get_spi_device_for_port(wc, mod->card, false);
mod->subaddr = 0;
wcaxx_reset_module(wc, mod);
result = (wcaxx_init_voicedaa(wc, mod, 0, 0, 0) == 0);
if (!result)
mod->type = NONE;
return result;
}
static bool check_for_quad_fxs(struct wcaxx *wc, unsigned int base_port)
{
int port;
int offset;
struct wcaxx_module *mod = &wc->mods[base_port + 1];
/* Cannot have quad port modules on the 4 port base cards. */
if (is_four_port(wc))
return false;
/* We can assume that the base port has already been configured as an
* FXS port if we're even in this function */
mod->spi = get_spi_device_for_port(wc, mod->card, true);
mod->subaddr = offset = 1;
if (wcaxx_init_fxs_port(wc, mod)) {
/* This must be a 4 port FXS module... */
for (port = base_port + 2; port < base_port+4; ++port) {
mod = &wc->mods[port];
mod->spi = get_spi_device_for_port(wc, mod->card, true);
mod->subaddr = ++offset;
if (!wcaxx_init_fxs_port(wc, mod)) {
/* This means that a quad-module failed to
* setup ports 3 or 4? */
dev_err(&wc->xb.pdev->dev,
"Quad-FXS at base %d failed initialization.\n",
base_port);
goto error_exit;
}
}
return true;
}
error_exit:
for (port = base_port + 1; port < base_port + 4; ++port) {
mod = &wc->mods[port];
mod->type = NONE;
}
return false;
}
static bool check_for_quad_fxo(struct wcaxx *wc, unsigned int base_port)
{
int port;
int offset;
struct wcaxx_module *mod = &wc->mods[base_port + 1];
/* Cannot have quad port modules on the 4 port base cards. */
if (is_four_port(wc))
return false;
/* We can assume that the base port has already been configured as an
* FXO port if we're even in this function */
mod->spi = get_spi_device_for_port(wc, mod->card, true);
mod->subaddr = offset = 1;
if (!wcaxx_init_voicedaa(wc, mod, 0, 0, 0)) {
/* This must be a 4 port FXO module. */
for (port = base_port + 2; port < base_port + 4; ++port) {
mod = &wc->mods[port];
mod->spi = get_spi_device_for_port(wc, mod->card, true);
mod->subaddr = ++offset;
if (wcaxx_init_voicedaa(wc, mod, 0, 0, 0)) {
dev_err(&wc->xb.pdev->dev,
"Quad-FXO at base %d failed initialization.\n",
base_port);
goto error_exit;
}
}
return true;
}
error_exit:
for (port = base_port + 1; port < base_port + 4; ++port) {
mod = &wc->mods[port];
mod->type = NONE;
}
return false;
}
static void __wcaxx_identify_four_port_module_group(struct wcaxx *wc)
{
int i;
for (i = 0; i < wc->desc->ports; i++) {
if (!check_for_single_fxs(wc, i))
check_for_single_fxo(wc, i);
}
return;
}
static void
__wcaxx_identify_module_group(struct wcaxx *wc, unsigned long base)
{
if (check_for_single_fxs(wc, base)) {
if (check_for_quad_fxs(wc, base)) {
/* S400M installed */
return;
} else if (check_for_single_fxs(wc, base + 1)) {
/* Two S110M installed */
return;
} else if (check_for_single_fxo(wc, base + 1)) {
/* 1 S110M 1 X100M */
return;
} else {
/* 1 S110M 1 Empty */
return;
}
} else if (check_for_single_fxo(wc, base)) {
if (check_for_quad_fxo(wc, base)) {
/* X400M installed */
return;
} else if (check_for_single_fxo(wc, base + 1)) {
/* Two X100M installed */
return;
} else if (check_for_single_fxs(wc, base + 1)) {
/* 1 X100M 1 S100M installed */
return;
} else {
/* 1 X100M 1 Empty */
return;
}
} else if (check_for_single_fxs(wc, base + 1)) {
/* 1 Empty 1 S110M installed */
return;
} else if (check_for_single_fxo(wc, base + 1)) {
/* 1 Empty 1 X100M installed */
return;
}
/* No module */
return;
}
/**
* wcaxx_print_moule_configuration - Print the configuration to the kernel log
* @wc: The card we're interested in.
*
* This is to ensure that the module configuration from each card shows up
* sequentially in the kernel log, as opposed to interleaved with one another.
*
*/
static void wcaxx_print_module_configuration(const struct wcaxx *const wc)
{
int i;
static DEFINE_MUTEX(print);
mutex_lock(&print);
for (i = 0; i < wc->mods_per_board; ++i) {
const struct wcaxx_module *const mod = &wc->mods[i];
switch (mod->type) {
case FXO:
dev_info(&wc->xb.pdev->dev,
"Port %d: Installed -- AUTO FXO (%s mode)\n",
i + 1, fxo_modes[_opermode].name);
break;
case FXS:
dev_info(&wc->xb.pdev->dev,
"Port %d: Installed -- AUTO FXS/DPO\n", i + 1);
break;
case NONE:
dev_info(&wc->xb.pdev->dev,
"Port %d: Not installed\n", i + 1);
break;
}
}
mutex_unlock(&print);
}
static void wcaxx_identify_modules(struct wcaxx *wc)
{
int x;
unsigned long flags;
/* A8A/A8B - Reset the modules. */
wcxb_gpio_clear(&wc->xb, 0xf000);
msleep(50); /* TODO: what should these values be? */
wcxb_gpio_set(&wc->xb, 0xf000);
msleep(250); /* TODO: What should these values be? */
/* Place all units in the daisy chain mode of operation. This allows
* multiple devices to share a chip select (like on the X400 and S400
* modules) */
for (x = 0; x < ARRAY_SIZE(wc->spi_devices); ++x)
wcaxx_fxsinit(wc->spi_devices[x]);
spin_lock_irqsave(&wc->reglock, flags);
wc->mods_per_board = wc->desc->ports;
spin_unlock_irqrestore(&wc->reglock, flags);
BUG_ON(wc->desc->ports % 4);
if (is_four_port(wc)) {
__wcaxx_identify_four_port_module_group(wc);
} else {
for (x = 0; x < wc->desc->ports/4; x++)
__wcaxx_identify_module_group(wc, x*4);
}
wcaxx_print_module_configuration(wc);
}
static struct pci_driver wcaxx_driver;
static void wcaxx_back_out_gracefully(struct wcaxx *wc)
{
int i;
unsigned long flags;
clear_bit(INITIALIZED, &wc->bit_flags);
smp_mb__after_atomic();
/* Make sure we're not on the card list anymore. */
mutex_lock(&card_list_lock);
list_del(&wc->card_node);
mutex_unlock(&card_list_lock);
wcxb_release(&wc->xb);
for (i = 0; i < wc->mods_per_board; i++) {
struct wcaxx_module *const mod = &wc->mods[i];
kfree(mod->mod_poll);
mod->mod_poll = NULL;
}
kfree(wc->span.chans);
wc->span.chans = NULL;
spin_lock_irqsave(&wc->reglock, flags);
for (i = 0; i < wc->span.channels; ++i) {
kfree(wc->chans[i]);
kfree(wc->ec[i]);
wc->chans[i] = NULL;
wc->ec[i] = NULL;
}
spin_unlock_irqrestore(&wc->reglock, flags);
for (i = 0; i < ARRAY_SIZE(wc->spi_devices); i++)
wcxb_spi_device_destroy(wc->spi_devices[i]);
wcxb_spi_master_destroy(wc->master);
kfree(wc->board_name);
if (wc->ddev) {
kfree(wc->ddev->devicetype);
kfree(wc->ddev->location);
kfree(wc->ddev->hardware_id);
dahdi_free_device(wc->ddev);
}
kfree(wc);
}
static void wcaxx_handle_error(struct wcxb *xb)
{
struct wcaxx *wc = container_of(xb, struct wcaxx, xb);
wc->ddev->irqmisses++;
}
static const struct wcxb_operations wcxb_operations = {
.handle_receive = wcaxx_handle_receive,
.handle_transmit = wcaxx_handle_transmit,
.handle_error = wcaxx_handle_error,
};
struct cmd_results {
u8 results[8];
};
static int wcaxx_check_firmware(struct wcaxx *wc)
{
char *filename;
u32 firmware_version;
const bool force_firmware = false;
const unsigned int A4A_VERSION = 0x0a0017;
const unsigned int A4B_VERSION = 0x0d001e;
const unsigned int A8A_VERSION = 0x1d0017;
const unsigned int A8B_VERSION = 0x1f001e;
if (wc->desc == &device_a8a) {
firmware_version = A8A_VERSION;
filename = "dahdi-fw-a8a.bin";
} else if (wc->desc == &device_a8b) {
firmware_version = A8B_VERSION;
filename = "dahdi-fw-a8b.bin";
} else if (wc->desc == &device_a4a) {
firmware_version = A4A_VERSION;
filename = "dahdi-fw-a4a.bin";
} else if (wc->desc == &device_a4b) {
firmware_version = A4B_VERSION;
filename = "dahdi-fw-a4b.bin";
} else {
/* This is a bug in the driver code */
WARN_ON(1);
return 0;
}
return wcxb_check_firmware(&wc->xb, firmware_version,
filename, force_firmware, WCXB_RESET_NOW);
}
static void wcaxx_check_sethook(struct wcaxx *wc, struct wcaxx_module *mod)
{
if (mod->sethook) {
wcaxx_setreg(wc, mod, ((mod->sethook >> 8) & 0xff),
mod->sethook & 0xff);
mod->sethook = 0;
}
}
static void wcaxx_poll_fxs_complete(void *arg)
{
struct wcaxx_mod_poll *poll_fxs = arg;
struct wcaxx *wc = poll_fxs->wc;
struct wcaxx_module *const mod = poll_fxs->mod;
if (!is_initialized(wc)) {
kfree(poll_fxs);
return;
}
mod->mod.fxs.hook_state_shadow = poll_fxs->buffer[2];
mod->mod.fxs.linefeed_control_shadow = poll_fxs->buffer[5];
wcaxx_isr_misc_fxs(poll_fxs->wc, poll_fxs->mod);
memcpy(poll_fxs->buffer, poll_fxs->master_buffer,
sizeof(poll_fxs->buffer));
wcaxx_check_sethook(poll_fxs->wc, poll_fxs->mod);
mod->mod_poll = poll_fxs;
}
/**
* wcaxx_start_poll_fxs - Starts the interrupt polling loop for FXS modules.
*
* To stop the polling loop, clear the initialized bit and then flush the
* pending wcxb_spi messages.
*
*/
static int wcaxx_start_poll_fxs(struct wcaxx *wc, struct wcaxx_module *mod)
{
struct wcaxx_mod_poll *mod_poll = kzalloc(sizeof(*mod_poll),
GFP_KERNEL);
struct wcxb_spi_message *m = &mod_poll->m;
struct wcxb_spi_transfer *t = &mod_poll->t;
WARN_ON(!is_initialized(wc));
if (!mod_poll)
return -ENOMEM;
memset(t, 0, sizeof(*t));
wcxb_spi_message_init(m);
t->tx_buf = t->rx_buf = mod_poll->buffer;
t->len = sizeof(mod_poll->buffer);
wcxb_spi_message_add_tail(t, m);
mod_poll->wc = wc;
mod_poll->mod = mod;
mod_poll->master_buffer[0] = 1 << mod_poll->mod->subaddr;
mod_poll->master_buffer[1] = (LOOP_STAT | 0x80) & 0xff;
mod_poll->master_buffer[2] = 0;
mod_poll->master_buffer[3] = mod_poll->master_buffer[0];
mod_poll->master_buffer[4] = (LINE_STATE | 0x80) & 0xff;
mod_poll->master_buffer[5] = 0;
memcpy(mod_poll->buffer, mod_poll->master_buffer,
sizeof(mod_poll->buffer));
m->arg = mod_poll;
m->complete = &wcaxx_poll_fxs_complete;
wcxb_spi_async(mod->spi, m);
return 0;
}
static void wcaxx_poll_fxo_complete(void *arg)
{
struct wcaxx_mod_poll *poll_fxo = arg;
struct wcaxx *wc = poll_fxo->wc;
struct wcaxx_module *const mod = poll_fxo->mod;
if (!is_initialized(wc)) {
kfree(poll_fxo);
return;
}
mod->mod.fxo.hook_ring_shadow = poll_fxo->buffer[2];
mod->mod.fxo.line_voltage_status = poll_fxo->buffer[5];
wcaxx_voicedaa_check_hook(poll_fxo->wc, poll_fxo->mod);
memcpy(poll_fxo->buffer, poll_fxo->master_buffer,
sizeof(poll_fxo->buffer));
wcaxx_check_sethook(poll_fxo->wc, poll_fxo->mod);
mod->mod_poll = poll_fxo;
}
/**
* wcaxx_start_poll_fxo - Starts the interrupt polling loop for FXS modules.
*
* To stop the polling loop, clear the initialized bit and then flush the
* pending wcxb_spi messages.
*
*/
static int wcaxx_start_poll_fxo(struct wcaxx *wc, struct wcaxx_module *mod)
{
static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c};
struct wcaxx_mod_poll *poll_fxo = kzalloc(sizeof(*poll_fxo),
GFP_KERNEL);
struct wcxb_spi_message *m = &poll_fxo->m;
struct wcxb_spi_transfer *t = &poll_fxo->t;
WARN_ON(!is_initialized(wc));
if (!poll_fxo)
return -ENOMEM;
memset(t, 0, sizeof(*t));
wcxb_spi_message_init(m);
t->tx_buf = t->rx_buf = poll_fxo->buffer;
t->len = sizeof(poll_fxo->buffer);
wcxb_spi_message_add_tail(t, m);
poll_fxo->wc = wc;
poll_fxo->mod = mod;
poll_fxo->master_buffer[0] = 0x60 | ADDRS[poll_fxo->mod->subaddr];
poll_fxo->master_buffer[1] = 5 & 0x7f; /* Hook / Ring State */
poll_fxo->master_buffer[2] = 0;
poll_fxo->master_buffer[3] = poll_fxo->master_buffer[0];
poll_fxo->master_buffer[4] = 29 & 0x7f; /* Battery */
poll_fxo->master_buffer[5] = 0;
memcpy(poll_fxo->buffer, poll_fxo->master_buffer,
sizeof(poll_fxo->buffer));
m->arg = poll_fxo;
m->complete = &wcaxx_poll_fxo_complete;
wcxb_spi_async(mod->spi, m);
return 0;
}
/**
* wcaxx_read_serial - Returns the serial number of the board.
* @wc: The board whos serial number we are reading.
*
* The buffer returned is dynamically allocated and must be kfree'd by the
* caller. If memory could not be allocated, NULL is returned.
*
* Must be called in process context.
*
*/
static char *wcaxx_read_serial(struct wcaxx *wc)
{
int i;
static const int MAX_SERIAL = 20*5;
const unsigned int SERIAL_ADDRESS = 0x1f0000;
unsigned char *serial = kzalloc(MAX_SERIAL + 1, GFP_KERNEL);
struct wcxb const *xb = &wc->xb;
struct wcxb_spi_master *flash_spi_master = NULL;
struct wcxb_spi_device *flash_spi_device = NULL;
const unsigned int FLASH_SPI_BASE = 0x200;
if (!serial)
return NULL;
flash_spi_master = wcxb_spi_master_create(&xb->pdev->dev,
xb->membase + FLASH_SPI_BASE,
false);
if (!flash_spi_master)
return NULL;
flash_spi_device = wcxb_spi_device_create(flash_spi_master, 0);
if (!flash_spi_device)
goto error_exit;
wcxb_flash_read(flash_spi_device, SERIAL_ADDRESS,
serial, MAX_SERIAL);
for (i = 0; i < MAX_SERIAL; ++i) {
if ((serial[i] < 0x20) || (serial[i] > 0x7e)) {
serial[i] = '\0';
break;
}
}
if (!i) {
kfree(serial);
serial = NULL;
} else {
/* Limit the size of the buffer to just what is needed to
* actually hold the serial number. */
unsigned char *new_serial;
new_serial = kasprintf(GFP_KERNEL, "%s", serial);
kfree(serial);
serial = new_serial;
}
error_exit:
wcxb_spi_device_destroy(flash_spi_device);
wcxb_spi_master_destroy(flash_spi_master);
return serial;
}
static void wcaxx_start_module_polling(struct wcaxx *wc)
{
int x;
WARN_ON(!is_initialized(wc));
for (x = 0; x < wc->mods_per_board; x++) {
struct wcaxx_module *const mod = &wc->mods[x];
switch (mod->type) {
case FXO:
wcaxx_start_poll_fxo(wc, mod);
break;
case FXS:
wcaxx_start_poll_fxs(wc, mod);
break;
case NONE:
break;
}
}
wc->module_poll_time = wc->framecount + MODULE_POLL_TIME_MS;
}
/**
* t43x_assign_num - Assign wc->num a unique value and place on card_list
*
*/
static void wcaxx_assign_num(struct wcaxx *wc)
{
mutex_lock(&card_list_lock);
if (list_empty(&card_list)) {
wc->num = 0;
list_add(&wc->card_node, &card_list);
} else {
struct wcaxx *cur;
struct list_head *insert_pos;
int new_num = 0;
insert_pos = &card_list;
list_for_each_entry(cur, &card_list, card_node) {
if (new_num != cur->num)
break;
new_num++;
insert_pos = &cur->card_node;
}
wc->num = new_num;
list_add_tail(&wc->card_node, insert_pos);
}
mutex_unlock(&card_list_lock);
}
#ifdef USE_ASYNC_INIT
struct async_data {
struct pci_dev *pdev;
const struct pci_device_id *ent;
};
static int __devinit
__wcaxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent,
async_cookie_t cookie)
#else
static int __devinit
__wcaxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
#endif
{
struct wcaxx *wc;
int i, ret;
int curchan;
neonmwi_offlimit_cycles = neonmwi_offlimit / MS_PER_HOOKCHECK;
wc = kzalloc(sizeof(*wc), GFP_KERNEL);
if (!wc)
return -ENOMEM;
wcaxx_assign_num(wc);
wc->desc = (struct _device_desc *)ent->driver_data;
spin_lock_init(&wc->reglock);
wc->board_name = kasprintf(GFP_KERNEL, "%s%d",
wcaxx_driver.name, wc->num);
if (!wc->board_name) {
wcaxx_back_out_gracefully(wc);
return -ENOMEM;
}
#ifdef CONFIG_VOICEBUS_DISABLE_ASPM
if (is_pcie(wc)) {
pci_disable_link_state(pdev->bus->self, PCIE_LINK_STATE_L0S |
PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
};
#endif
pci_set_drvdata(pdev, wc);
wc->xb.ops = &wcxb_operations;
wc->xb.pdev = pdev;
wc->xb.debug = &debug;
ret = wcxb_init(&wc->xb, wc->board_name, int_mode);
if (ret) {
wcaxx_back_out_gracefully(wc);
return ret;
}
wcxb_set_minlatency(&wc->xb, latency);
wcxb_set_maxlatency(&wc->xb, max_latency);
ret = wcaxx_check_firmware(wc);
if (ret) {
wcaxx_back_out_gracefully(wc);
return ret;
}
wcxb_lock_latency(&wc->xb);
wc->mods_per_board = NUM_MODULES;
if (alawoverride) {
companding = "alaw";
dev_info(&wc->xb.pdev->dev,
"The module parameter alawoverride has been deprecated. Please use the parameter companding=alaw instead");
}
if (!strcasecmp(companding, "alaw"))
/* Force this card's companding to alaw */
wc->companding = DAHDI_LAW_ALAW;
else if (!strcasecmp(companding, "ulaw"))
/* Force this card's companding to ulaw */
wc->companding = DAHDI_LAW_MULAW;
else
/* Auto detect this card's companding */
wc->companding = DAHDI_LAW_DEFAULT;
wc->master = wcxb_spi_master_create(&pdev->dev,
wc->xb.membase + 0x280, true);
for (i = 0; i < ARRAY_SIZE(wc->spi_devices); i++)
wc->spi_devices[i] = wcxb_spi_device_create(wc->master, 3-i);
for (i = 0; i < ARRAY_SIZE(wc->mods); i++) {
struct wcaxx_module *const mod = &wc->mods[i];
mod->dacssrc = -1;
mod->card = i;
mod->spi = NULL;
mod->subaddr = 0;
mod->type = NONE;
}
ret = wcaxx_vpm_init(wc);
if (!ret)
wcxb_enable_echocan(&wc->xb);
/* Now track down what modules are installed */
wcaxx_identify_modules(wc);
/* Start the hardware processing. */
if (wcxb_start(&wc->xb)) {
WARN_ON(1);
return -EIO;
}
if (fatal_signal_pending(current)) {
wcaxx_back_out_gracefully(wc);
return -EINTR;
}
curchan = 0;
wcaxx_init_span(wc);
wcaxx_fixup_span(wc);
curchan += wc->desc->ports;
#ifdef USE_ASYNC_INIT
async_synchronize_cookie(cookie);
#endif
wc->ddev = dahdi_create_device();
if (!wc->ddev) {
wcaxx_back_out_gracefully(wc);
return -ENOMEM;
}
wc->ddev->manufacturer = "Digium";
wc->ddev->location = kasprintf(GFP_KERNEL, "PCI Bus %02d Slot %02d",
pdev->bus->number,
PCI_SLOT(pdev->devfn) + 1);
if (!wc->ddev->location) {
wcaxx_back_out_gracefully(wc);
return -ENOMEM;
}
if (wc->vpm)
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s (%s)",
wc->desc->name, "VPMOCT032");
else
wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s",
wc->desc->name);
if (!wc->ddev->devicetype) {
wcaxx_back_out_gracefully(wc);
return -ENOMEM;
}
wc->ddev->hardware_id = wcaxx_read_serial(wc);
list_add_tail(&wc->span.device_node, &wc->ddev->spans);
if (dahdi_register_device(wc->ddev, &wc->xb.pdev->dev)) {
dev_notice(&wc->xb.pdev->dev, "Unable to register device with DAHDI\n");
wcaxx_back_out_gracefully(wc);
return -1;
}
dev_info(&wc->xb.pdev->dev, "Found a %s (SN: %s)\n",
wc->desc->name, wc->ddev->hardware_id);
set_bit(INITIALIZED, &wc->bit_flags);
wcaxx_start_module_polling(wc);
wcxb_unlock_latency(&wc->xb);
return 0;
}
#ifdef USE_ASYNC_INIT
static __devinit void
wcaxx_init_one_async(void *data, async_cookie_t cookie)
{
struct async_data *dat = data;
__wcaxx_init_one(dat->pdev, dat->ent, cookie);
kfree(dat);
}
static int __devinit
wcaxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct async_data *dat;
dat = kmalloc(sizeof(*dat), GFP_KERNEL);
/* If we can't allocate the memory for the async_data, odds are we won't
* be able to initialize the device either, but let's try synchronously
* anyway... */
if (!dat)
return __wcaxx_init_one(pdev, ent, 0);
dat->pdev = pdev;
dat->ent = ent;
async_schedule(wcaxx_init_one_async, dat);
return 0;
}
#else
static int __devinit
wcaxx_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
return __wcaxx_init_one(pdev, ent);
}
#endif
static void wcaxx_release(struct wcaxx *wc)
{
if (is_initialized(wc))
dahdi_unregister_device(wc->ddev);
wcaxx_back_out_gracefully(wc);
}
static void __devexit wcaxx_remove_one(struct pci_dev *pdev)
{
struct wcaxx *wc = pci_get_drvdata(pdev);
if (!wc)
return;
dev_info(&wc->xb.pdev->dev, "Removing a %s.\n", wc->desc->name);
flush_scheduled_work();
wcxb_stop(&wc->xb);
if (wc->vpm)
release_vpm450m(wc->vpm);
wc->vpm = NULL;
wcaxx_release(wc);
}
static DEFINE_PCI_DEVICE_TABLE(wcaxx_pci_tbl) = {
{ 0xd161, 0x800d, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
(unsigned long) &device_a8b
},
{ 0xd161, 0x800c, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
(unsigned long) &device_a8a
},
{ 0xd161, 0x8010, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
(unsigned long) &device_a4b
},
{ 0xd161, 0x800f, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
(unsigned long) &device_a4a
},
{ 0 }
};
MODULE_DEVICE_TABLE(pci, wcaxx_pci_tbl);
static void wcaxx_shutdown(struct pci_dev *pdev)
{
struct wcaxx *wc = pci_get_drvdata(pdev);
wcxb_stop(&wc->xb);
}
static int wcaxx_suspend(struct pci_dev *pdev, pm_message_t state)
{
return -ENOSYS;
}
static struct pci_driver wcaxx_driver = {
.name = "wcaxx",
.probe = wcaxx_init_one,
.remove = __devexit_p(wcaxx_remove_one),
.shutdown = wcaxx_shutdown,
.suspend = wcaxx_suspend,
.id_table = wcaxx_pci_tbl,
};
static int __init wcaxx_init(void)
{
int res;
int x;
for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) {
if (!strcmp(fxo_modes[x].name, opermode))
break;
}
if (x < ARRAY_SIZE(fxo_modes)) {
_opermode = x;
} else {
pr_notice("Invalid/unknown operating mode '%s' specified. Please choose one of:\n",
opermode);
for (x = 0; x < ARRAY_SIZE(fxo_modes); x++)
pr_notice(" %s\n", fxo_modes[x].name);
pr_notice("Note this option is CASE SENSITIVE!\n");
return -ENODEV;
}
if (!strcmp(opermode, "AUSTRALIA")) {
boostringer = 1;
fxshonormode = 1;
}
if (-1 == fastpickup) {
if (!strcmp(opermode, "JAPAN"))
fastpickup = 1;
else
fastpickup = 0;
}
/* for the voicedaa_check_hook defaults, if the user has not
* overridden them by specifying them as module parameters, then get
* the values from the selected operating mode */
if (!battdebounce)
battdebounce = fxo_modes[_opermode].battdebounce;
if (!battalarm)
battalarm = fxo_modes[_opermode].battalarm;
if (!battthresh)
battthresh = fxo_modes[_opermode].battthresh;
res = pci_register_driver(&wcaxx_driver);
if (res)
return -ENODEV;
#ifdef USE_ASYNC_INIT
async_synchronize_full();
#endif
return 0;
}
static void __exit wcaxx_cleanup(void)
{
pci_unregister_driver(&wcaxx_driver);
}
module_param(debug, int, 0600);
module_param(int_mode, int, 0400);
MODULE_PARM_DESC(int_mode,
"0 = Use MSI interrupt if available. 1 = Legacy interrupt only.\n");
module_param(fastpickup, int, 0400);
MODULE_PARM_DESC(fastpickup,
"Set to 1 to shorten the calibration delay when taking an FXO port off "
"hook. This can be required for Type-II CID. If -1 the calibration "
"delay will depend on the current opermode.\n");
module_param(fxovoltage, int, 0600);
module_param(loopcurrent, int, 0600);
module_param(reversepolarity, int, 0600);
#ifdef DEBUG
module_param(robust, int, 0600);
module_param(digitalloopback, int, 0400);
MODULE_PARM_DESC(digitalloopback,
"Set to 1 to place FXO modules into loopback mode for troubleshooting.");
#endif
module_param(opermode, charp, 0600);
module_param(lowpower, int, 0600);
module_param(boostringer, int, 0600);
module_param(fastringer, int, 0600);
module_param(fxshonormode, int, 0600);
module_param(battdebounce, uint, 0600);
module_param(battalarm, uint, 0600);
module_param(battthresh, uint, 0600);
module_param(nativebridge, int, 0600);
module_param(fxotxgain, int, 0600);
module_param(fxorxgain, int, 0600);
module_param(fxstxgain, int, 0600);
module_param(fxsrxgain, int, 0600);
module_param(ringdebounce, int, 0600);
module_param(latency, int, 0400);
module_param(max_latency, int, 0400);
module_param(neonmwi_monitor, int, 0600);
module_param(neonmwi_level, int, 0600);
module_param(neonmwi_envelope, int, 0600);
module_param(neonmwi_offlimit, int, 0600);
module_param(vpmsupport, int, 0400);
module_param(forceload, int, 0600);
MODULE_PARM_DESC(forceload,
"Set to 1 in order to force an FPGA reload after power on.");
module_param(companding, charp, 0400);
MODULE_PARM_DESC(companding,
"Change the companding to \"auto\" or \"alaw\" or \"ulaw\". Auto "
"(default) will set everything to ulaw unless a BRI module is "
"installed. It will use alaw in that case.");
MODULE_DESCRIPTION("A4A,A4B,A8A,A8B Driver for Analog Telephony Cards");
MODULE_AUTHOR("Digium Incorporated <support@digium.com>");
MODULE_LICENSE("GPL v2");
module_init(wcaxx_init);
module_exit(wcaxx_cleanup);