/* * Wildcard TDM2400P TDM FXS/FXO Interface Driver for DAHDI Telephony interface * * Written by Mark Spencer * Support for TDM800P and VPM150M by Matthew Fredrickson * * Support for Hx8 by Andrew Kohlsmith and Matthew * Fredrickson * * Copyright (C) 2005 - 2012 Digium, Inc. * All rights reserved. * * Sections for QRV cards written by Jim Dixon * Copyright (C) 2006, Jim Dixon and QRV Communications * All rights reserved. * */ /* * See http://www.asterisk.org for more information about * the Asterisk project. Please do not directly contact * any of the maintainers of this project for assistance; * the project provides a web site, mailing lists and IRC * channels for your use. * * This program is free software, distributed under the terms of * the GNU General Public License Version 2 as published by the * Free Software Foundation. See the LICENSE file included with * this program for more details. */ /* For QRV DRI cards, gain is signed short, expressed in hundredths of db (in reference to 1v Peak @ 1000Hz) , as follows: Rx Gain: -11.99 to 15.52 db Tx Gain - No Pre-Emphasis: -35.99 to 12.00 db Tx Gain - W/Pre-Emphasis: -23.99 to 0.00 db */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 30) /* Define this if you would like to load the modules in parallel. While this * can speed up loads when multiple cards handled by this driver are installed, * it also makes it impossible to abort module loads with ctrl-c */ #undef USE_ASYNC_INIT #include #else #undef USE_ASYNC_INIT #endif #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 11, 0) #include #endif /* 4.11.0 */ #include "proslic.h" #include "wctdm24xxp.h" #include "xhfc.h" #include "adt_lec.h" #include "voicebus/GpakCust.h" #include "voicebus/GpakApi.h" #if VOICEBUS_SFRAME_SIZE != SFRAME_SIZE #error SFRAME_SIZE must match the VOICEBUS_SFRAME_SIZE #endif /* Experimental max loop current limit for the proslic Loop current limit is from 20 mA to 41 mA in steps of 3 (according to datasheet) So set the value below to: 0x00 : 20mA (default) 0x01 : 23mA 0x02 : 26mA 0x03 : 29mA 0x04 : 32mA 0x05 : 35mA 0x06 : 37mA 0x07 : 41mA */ static int loopcurrent = 20; /* Following define is a logical exclusive OR to determine if the polarity of an fxs line is to be reversed. * The items taken into account are: * overall polarity reversal for the module, * polarity reversal for the port, * and the state of the line reversal MWI indicator */ #define POLARITY_XOR(fxs) \ ((reversepolarity != 0) ^ ((fxs)->reversepolarity != 0) ^ \ ((fxs)->vmwi_linereverse != 0)) static int reversepolarity = 0; static alpha indirect_regs[] = { {0,255,"DTMF_ROW_0_PEAK",0x55C2}, {1,255,"DTMF_ROW_1_PEAK",0x51E6}, {2,255,"DTMF_ROW2_PEAK",0x4B85}, {3,255,"DTMF_ROW3_PEAK",0x4937}, {4,255,"DTMF_COL1_PEAK",0x3333}, {5,255,"DTMF_FWD_TWIST",0x0202}, {6,255,"DTMF_RVS_TWIST",0x0202}, {7,255,"DTMF_ROW_RATIO_TRES",0x0198}, {8,255,"DTMF_COL_RATIO_TRES",0x0198}, {9,255,"DTMF_ROW_2ND_ARM",0x0611}, {10,255,"DTMF_COL_2ND_ARM",0x0202}, {11,255,"DTMF_PWR_MIN_TRES",0x00E5}, {12,255,"DTMF_OT_LIM_TRES",0x0A1C}, {13,0,"OSC1_COEF",0x7B30}, {14,1,"OSC1X",0x0063}, {15,2,"OSC1Y",0x0000}, {16,3,"OSC2_COEF",0x7870}, {17,4,"OSC2X",0x007D}, {18,5,"OSC2Y",0x0000}, {19,6,"RING_V_OFF",0x0000}, {20,7,"RING_OSC",0x7EF0}, {21,8,"RING_X",0x0160}, {22,9,"RING_Y",0x0000}, {23,255,"PULSE_ENVEL",0x2000}, {24,255,"PULSE_X",0x2000}, {25,255,"PULSE_Y",0x0000}, //{26,13,"RECV_DIGITAL_GAIN",0x4000}, // playback volume set lower {26,13,"RECV_DIGITAL_GAIN",0x2000}, // playback volume set lower {27,14,"XMIT_DIGITAL_GAIN",0x4000}, //{27,14,"XMIT_DIGITAL_GAIN",0x2000}, {28,15,"LOOP_CLOSE_TRES",0x1000}, {29,16,"RING_TRIP_TRES",0x3600}, {30,17,"COMMON_MIN_TRES",0x1000}, {31,18,"COMMON_MAX_TRES",0x0200}, {32,19,"PWR_ALARM_Q1Q2",0x07C0}, {33,20,"PWR_ALARM_Q3Q4", 0x4C00 /* 0x2600 */}, {34,21,"PWR_ALARM_Q5Q6",0x1B80}, {35,22,"LOOP_CLOSURE_FILTER",0x8000}, {36,23,"RING_TRIP_FILTER",0x0320}, {37,24,"TERM_LP_POLE_Q1Q2",0x008C}, {38,25,"TERM_LP_POLE_Q3Q4",0x0100}, {39,26,"TERM_LP_POLE_Q5Q6",0x0010}, {40,27,"CM_BIAS_RINGING",0x0C00}, {41,64,"DCDC_MIN_V",0x0C00}, {42,255,"DCDC_XTRA",0x1000}, {43,66,"LOOP_CLOSE_TRES_LOW",0x1000}, }; /* names of HWEC modules */ static const char *vpmadt032_name = "VPMADT032"; static const char *vpmoct_name = "VPMOCT032"; /* Undefine to enable Power alarm / Transistor debug -- note: do not enable for normal operation! */ /* #define PAQ_DEBUG */ #define DEBUG_CARD (1 << 0) #define DEBUG_ECHOCAN (1 << 1) #include "fxo_modes.h" struct wctdm_desc { const char *name; const int flags; const int ports; }; static const struct wctdm_desc wctdm2400 = { "Wildcard TDM2400P", 0, 24 }; static const struct wctdm_desc wctdm800 = { "Wildcard TDM800P", 0, 8 }; static const struct wctdm_desc wctdm410 = { "Wildcard TDM410P", 0, 4 }; static const struct wctdm_desc wcaex2400 = { "Wildcard AEX2400", FLAG_EXPRESS, 24 }; static const struct wctdm_desc wcaex800 = { "Wildcard AEX800", FLAG_EXPRESS, 8 }; static const struct wctdm_desc wcaex410 = { "Wildcard AEX410", FLAG_EXPRESS, 4 }; static const struct wctdm_desc wcha80000 = { "HA8-0000", 0, 8 }; static const struct wctdm_desc wchb80000 = { "HB8-0000", FLAG_EXPRESS, 8 }; static inline bool is_pcie(const struct wctdm *wc) { return (wc->desc->flags & FLAG_EXPRESS) > 0; } /** * Returns true if the card is one of the Hybrid Digital Analog Cards. */ static inline bool is_hx8(const struct wctdm *wc) { return (&wcha80000 == wc->desc) || (&wchb80000 == wc->desc); } static inline struct dahdi_chan * get_dahdi_chan(const struct wctdm *wc, struct wctdm_module *const mod) { return wc->aspan->span.chans[mod->card]; } static inline void mod_hooksig(struct wctdm *wc, struct wctdm_module *mod, enum dahdi_rxsig rxsig) { dahdi_hooksig(get_dahdi_chan(wc, mod), rxsig); } struct wctdm *ifaces[WC_MAX_IFACES]; DEFINE_SEMAPHORE(ifacelock); static void wctdm_release(struct wctdm *wc); static int fxovoltage = 0; static unsigned int battdebounce; static unsigned int battalarm; static unsigned int battthresh; static int debug = 0; #ifdef DEBUG static int robust = 0; static int digitalloopback; #endif static int lowpower = 0; static int boostringer = 0; static int fastringer = 0; static int _opermode = 0; static char *opermode = "FCC"; static int fxshonormode = 0; static int alawoverride = 0; static char *companding = "auto"; static int fastpickup = -1; /* -1 auto, 0 no, 1 yes */ static int fxotxgain = 0; static int fxorxgain = 0; static int fxstxgain = 0; static int fxsrxgain = 0; static int nativebridge = 0; static int ringdebounce = DEFAULT_RING_DEBOUNCE; static int latency = VOICEBUS_DEFAULT_LATENCY; static unsigned int max_latency = VOICEBUS_DEFAULT_MAXLATENCY; static int forceload; #define MS_PER_HOOKCHECK (1) #define NEONMWI_ON_DEBOUNCE (100/MS_PER_HOOKCHECK) static int neonmwi_monitor = 0; /* Note: this causes use of full wave ring detect */ static int neonmwi_level = 75; /* neon mwi trip voltage */ static int neonmwi_envelope = 10; static int neonmwi_offlimit = 16000; /* Time in milliseconds the monitor is checked before saying no message is waiting */ static int neonmwi_offlimit_cycles; /* Time in milliseconds the monitor is checked before saying no message is waiting */ static int vpmsupport = 1; static int vpmnlptype = DEFAULT_NLPTYPE; static int vpmnlpthresh = DEFAULT_NLPTHRESH; static int vpmnlpmaxsupp = DEFAULT_NLPMAXSUPP; static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec); static const struct dahdi_echocan_features vpm_ec_features = { .NLP_automatic = 1, .CED_tx_detect = 1, .CED_rx_detect = 1, }; static const struct dahdi_echocan_ops vpm_ec_ops = { .echocan_free = echocan_free, }; static int wctdm_init_proslic(struct wctdm *wc, struct wctdm_module *const mod, int fast, int manual, int sane); static void set_offsets(struct wctdm_module *const mod, int altcs) { int card = mod->card; int bit; mod->subaddr = (altcs) ? 0 : (mod->card & 0x3); for (bit = 0; bit < ARRAY_SIZE(mod->offsets); ++bit) { /* Let's add some trickery to make the TDM410 work */ if (altcs == 3) { if (card == 2) { card = 4; altcs = 0; } else if (card == 3) { card = 5; altcs = 2; } } mod->offsets[bit] = ((((card & 0x3) * 3 + bit) * 7) + (card >> 2) + altcs + ((altcs) ? -21 : 0)); } } static inline __attribute_const__ int CMD_BYTE(const struct wctdm_module *const mod, const int bit) { return mod->offsets[bit]; } static inline __attribute_const__ int VPM_CMD_BYTE(int timeslot, int bit) { return ((((timeslot) & 0x3) * 3 + (bit)) * 7) + ((timeslot) >> 2); } typedef int (*bg_work_func_t)(struct wctdm *wc, unsigned long data); struct bg { struct workqueue_struct *wq; struct work_struct work; struct completion complete; struct wctdm *wc; bg_work_func_t fn; unsigned long param; int ret; }; static void bg_work_func(struct work_struct *work) { struct bg *bg = container_of(work, struct bg, work); bg->ret = bg->fn(bg->wc, bg->param); complete(&bg->complete); } /** * bg_create - Call a function running in a background thread. * @wc: The board structure passed to fn * @fn: The function to run in it's own thread. * @parma: An extra parameter to pass to the fn. * * Returns NULL if the thread could not be created, otherwise a pointer to be * passed to bg_join in order to get the return value. * * The function 'fn' will be run in a new thread. The return value is the * return from the bg_join function. * * This would probably be best served by concurrency managed workqueues before * merging, but this will at least work on the older kernels tht DAHDI * supports. */ static struct bg * bg_create(struct wctdm *wc, bg_work_func_t fn, unsigned long param) { struct bg *bg; bg = kzalloc(sizeof(*bg), GFP_KERNEL); if (!bg) return NULL; bg->wq = create_singlethread_workqueue("wctdm_bg"); if (!bg->wq) { kfree(bg); return NULL; } init_completion(&bg->complete); INIT_WORK(&bg->work, bg_work_func); bg->wc = wc; bg->fn = fn; bg->param = param; queue_work(bg->wq, &bg->work); return bg; } /** * bg_join - Wait for a background function to complete and get the result. * @bg: Pointer returned from the bg_create call. * * Returns the result of the function passed to bg_create. */ static int bg_join(struct bg *bg) { int ret = -ERESTARTSYS; if (unlikely(!bg)) return -EINVAL; while (ret) ret = wait_for_completion_interruptible(&bg->complete); ret = bg->ret; destroy_workqueue(bg->wq); kfree(bg); return ret; } static void setchanconfig_from_state(struct vpmadt032 *vpm, int channel, GpakChannelConfig_t *chanconfig) { GpakEcanParms_t *p; BUG_ON(!vpm); chanconfig->PcmInPortA = 3; chanconfig->PcmInSlotA = channel; chanconfig->PcmOutPortA = SerialPortNull; chanconfig->PcmOutSlotA = channel; chanconfig->PcmInPortB = 2; chanconfig->PcmInSlotB = channel; chanconfig->PcmOutPortB = 3; chanconfig->PcmOutSlotB = channel; chanconfig->ToneTypesA = Null_tone; chanconfig->MuteToneA = Disabled; chanconfig->FaxCngDetA = Disabled; chanconfig->ToneTypesB = Null_tone; chanconfig->EcanEnableA = Enabled; chanconfig->EcanEnableB = Disabled; chanconfig->MuteToneB = Disabled; chanconfig->FaxCngDetB = Disabled; /* The software companding will be overridden on a channel by channel * basis when the channel is enabled. */ chanconfig->SoftwareCompand = cmpPCMU; chanconfig->FrameRate = rate2ms; p = &chanconfig->EcanParametersA; vpmadt032_get_default_parameters(p); p->EcanNlpType = vpm->curecstate[channel].nlp_type; p->EcanNlpThreshold = vpm->curecstate[channel].nlp_threshold; p->EcanNlpMaxSuppress = vpm->curecstate[channel].nlp_max_suppress; memcpy(&chanconfig->EcanParametersB, &chanconfig->EcanParametersA, sizeof(chanconfig->EcanParametersB)); } struct vpmadt032_channel_setup { struct work_struct work; struct wctdm *wc; }; static void vpm_setup_work_func(struct work_struct *work) { struct vpmadt032_channel_setup *setup = container_of(work, struct vpmadt032_channel_setup, work); int i; int res; GpakChannelConfig_t chanconfig; GPAK_ChannelConfigStat_t cstatus; GPAK_AlgControlStat_t algstatus; GpakPortConfig_t portconfig = {0}; gpakConfigPortStatus_t configportstatus; GPAK_PortConfigStat_t pstatus; struct vpmadt032 *vpm; struct wctdm *const wc = setup->wc; WARN_ON(!wc); WARN_ON(!wc->vpmadt032); if (unlikely(!wc || !wc->vpmadt032)) return; vpm = wc->vpmadt032; /* First Serial Port config */ portconfig.SlotsSelect1 = SlotCfgNone; portconfig.FirstBlockNum1 = 0; portconfig.FirstSlotMask1 = 0x0000; portconfig.SecBlockNum1 = 1; portconfig.SecSlotMask1 = 0x0000; portconfig.SerialWordSize1 = SerWordSize8; portconfig.CompandingMode1 = cmpNone; portconfig.TxFrameSyncPolarity1 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity1 = FrameSyncActHigh; portconfig.TxClockPolarity1 = SerClockActHigh; portconfig.RxClockPolarity1 = SerClockActHigh; portconfig.TxDataDelay1 = DataDelay0; portconfig.RxDataDelay1 = DataDelay0; portconfig.DxDelay1 = Disabled; portconfig.ThirdSlotMask1 = 0x0000; portconfig.FouthSlotMask1 = 0x0000; portconfig.FifthSlotMask1 = 0x0000; portconfig.SixthSlotMask1 = 0x0000; portconfig.SevenSlotMask1 = 0x0000; portconfig.EightSlotMask1 = 0x0000; /* Second Serial Port config */ portconfig.SlotsSelect2 = SlotCfg2Groups; portconfig.FirstBlockNum2 = 0; portconfig.FirstSlotMask2 = 0xffff; portconfig.SecBlockNum2 = 1; portconfig.SecSlotMask2 = 0xffff; portconfig.SerialWordSize2 = SerWordSize8; portconfig.CompandingMode2 = cmpNone; portconfig.TxFrameSyncPolarity2 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity2 = FrameSyncActHigh; portconfig.TxClockPolarity2 = SerClockActHigh; portconfig.RxClockPolarity2 = SerClockActLow; portconfig.TxDataDelay2 = DataDelay0; portconfig.RxDataDelay2 = DataDelay0; portconfig.DxDelay2 = Disabled; portconfig.ThirdSlotMask2 = 0x0000; portconfig.FouthSlotMask2 = 0x0000; portconfig.FifthSlotMask2 = 0x0000; portconfig.SixthSlotMask2 = 0x0000; portconfig.SevenSlotMask2 = 0x0000; portconfig.EightSlotMask2 = 0x0000; /* Third Serial Port Config */ portconfig.SlotsSelect3 = SlotCfg2Groups; portconfig.FirstBlockNum3 = 0; portconfig.FirstSlotMask3 = 0xffff; portconfig.SecBlockNum3 = 1; portconfig.SecSlotMask3 = 0xffff; portconfig.SerialWordSize3 = SerWordSize8; portconfig.CompandingMode3 = cmpNone; portconfig.TxFrameSyncPolarity3 = FrameSyncActHigh; portconfig.RxFrameSyncPolarity3 = FrameSyncActHigh; portconfig.TxClockPolarity3 = SerClockActHigh; portconfig.RxClockPolarity3 = SerClockActLow; portconfig.TxDataDelay3 = DataDelay0; portconfig.RxDataDelay3 = DataDelay0; portconfig.DxDelay3 = Disabled; portconfig.ThirdSlotMask3 = 0x0000; portconfig.FouthSlotMask3 = 0x0000; portconfig.FifthSlotMask3 = 0x0000; portconfig.SixthSlotMask3 = 0x0000; portconfig.SevenSlotMask3 = 0x0000; portconfig.EightSlotMask3 = 0x0000; if ((configportstatus = gpakConfigurePorts(vpm->dspid, &portconfig, &pstatus))) { dev_notice(&wc->vb.pdev->dev, "Configuration of ports failed (%d)!\n", configportstatus); return; } else { if (vpm->options.debug & DEBUG_ECHOCAN) dev_info(&wc->vb.pdev->dev, "Configured McBSP ports successfully\n"); } res = gpakPingDsp(vpm->dspid, &vpm->version); if (res) { dev_notice(&wc->vb.pdev->dev, "Error pinging DSP (%d)\n", res); return; } for (i = 0; i < vpm->options.channels; ++i) { vpm->curecstate[i].tap_length = 0; vpm->curecstate[i].nlp_type = vpm->options.vpmnlptype; vpm->curecstate[i].nlp_threshold = vpm->options.vpmnlpthresh; vpm->curecstate[i].nlp_max_suppress = vpm->options.vpmnlpmaxsupp; vpm->curecstate[i].companding = ADT_COMP_ULAW; vpm->setchanconfig_from_state(vpm, i, &chanconfig); res = gpakConfigureChannel(vpm->dspid, i, tdmToTdm, &chanconfig, &cstatus); if (res) { dev_notice(&wc->vb.pdev->dev, "Unable to configure channel #%d (%d)", i, res); if (res == 1) printk(KERN_CONT ", reason %d", cstatus); printk(KERN_CONT "\n"); goto exit; } res = gpakAlgControl(vpm->dspid, i, BypassEcanA, &algstatus); if (res) { dev_notice(&wc->vb.pdev->dev, "Unable to disable echo can on channel %d " "(reason %d:%d)\n", i + 1, res, algstatus); goto exit; } res = gpakAlgControl(vpm->dspid, i, BypassSwCompanding, &algstatus); if (res) { dev_notice(&wc->vb.pdev->dev, "Unable to disable echo can on channel %d " "(reason %d:%d)\n", i + 1, res, algstatus); goto exit; } } res = gpakPingDsp(vpm->dspid, &vpm->version); if (res) { dev_notice(&wc->vb.pdev->dev, "Error pinging DSP (%d)\n", res); goto exit; } set_bit(VPM150M_ACTIVE, &vpm->control); exit: kfree(setup); } static int config_vpmadt032(struct vpmadt032 *vpm, struct wctdm *wc) { struct vpmadt032_channel_setup *setup; /* Because the channel configuration can take such a long time, let's * move this out onto the VPM workqueue so the system can proceeded * with startup. */ setup = kzalloc(sizeof(*setup), GFP_KERNEL); if (!setup) return -ENOMEM; setup->wc = wc; INIT_WORK(&setup->work, vpm_setup_work_func); queue_work(vpm->wq, &setup->work); return 0; } /** * is_good_frame() - Whether the SFRAME received was one sent. * */ static inline bool is_good_frame(const u8 *sframe) { const u8 a = sframe[0*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)]; const u8 b = sframe[1*(EFRAME_SIZE+EFRAME_GAP) + (EFRAME_SIZE+1)]; return a != b; } static inline void cmd_dequeue_vpmoct(struct wctdm *wc, u8 *eframe) { struct vpmoct *vpm = wc->vpmoct; struct vpmoct_cmd *cmd; u8 i; /* Pop a command off pending list */ spin_lock(&vpm->list_lock); if (list_empty(&vpm->pending_list)) { spin_unlock(&vpm->list_lock); return; } cmd = list_entry(vpm->pending_list.next, struct vpmoct_cmd, node); if (is_vpmoct_cmd_read(cmd)) list_move_tail(&cmd->node, &vpm->active_list); else list_del_init(&cmd->node); /* Skip audio (24 bytes) and ignore first 6 timeslots */ eframe += 30; /* Save ident so we can match the return eframe */ cmd->txident = wc->txident; /* We have four timeslots to work with for a regular spi packet */ /* TODO: Create debug flag for this in dev */ /* The vpmoct requires a "sync" spi command as the first three bytes * of an eframe */ eframe[7*0] = 0x12; eframe[7*1] = 0x34; eframe[7*2] = 0x56; eframe[7*3] = cmd->command; eframe[7*4] = cmd->address; eframe[7*5] = cmd->data[0]; for (i = 1; i < cmd->chunksize; i++) eframe[(7*5)+7*i] = cmd->data[i]; /* Clean up fire-and-forget messages from memory */ if (list_empty(&cmd->node)) kfree(cmd); spin_unlock(&vpm->list_lock); } static inline void cmd_dequeue_vpmadt032(struct wctdm *wc, u8 *eframe) { struct vpmadt032_cmd *curcmd = NULL; struct vpmadt032 *vpmadt032 = wc->vpmadt032; int x; unsigned char leds = ~((wc->framecount / 1000) % 8) & 0x7; /* Skip audio */ eframe += 24; if (test_bit(VPM150M_HPIRESET, &vpmadt032->control)) { if (debug & DEBUG_ECHOCAN) dev_info(&wc->vb.pdev->dev, "HW Resetting VPMADT032...\n"); for (x = 24; x < 28; x++) { if (x == 24) { if (test_and_clear_bit(VPM150M_HPIRESET, &vpmadt032->control)) { eframe[VPM_CMD_BYTE(x, 0)] = 0x0b; } else { eframe[VPM_CMD_BYTE(x, 0)] = leds; } } else { eframe[VPM_CMD_BYTE(x, 0)] = leds; } eframe[VPM_CMD_BYTE(x, 1)] = 0; eframe[VPM_CMD_BYTE(x, 2)] = 0x00; } return; } if ((curcmd = vpmadt032_get_ready_cmd(vpmadt032))) { curcmd->txident = wc->txident; #if 0 // if (printk_ratelimit()) dev_info(&wc->vb.pdev->dev, "Transmitting txident = %d, desc = 0x%x, addr = 0x%x, data = 0x%x\n", curcmd->txident, curcmd->desc, curcmd->address, curcmd->data); #endif if (curcmd->desc & __VPM150M_RWPAGE) { /* Set CTRL access to page*/ eframe[VPM_CMD_BYTE(24, 0)] = (0x8 << 4); eframe[VPM_CMD_BYTE(24, 1)] = 0; eframe[VPM_CMD_BYTE(24, 2)] = 0x20; /* Do a page write */ if (curcmd->desc & __VPM150M_WR) eframe[VPM_CMD_BYTE(25, 0)] = ((0x8 | 0x4) << 4); else eframe[VPM_CMD_BYTE(25, 0)] = ((0x8 | 0x4 | 0x1) << 4); eframe[VPM_CMD_BYTE(25, 1)] = 0; if (curcmd->desc & __VPM150M_WR) eframe[VPM_CMD_BYTE(25, 2)] = curcmd->data & 0xf; else eframe[VPM_CMD_BYTE(25, 2)] = 0; /* Clear XADD */ eframe[VPM_CMD_BYTE(26, 0)] = (0x8 << 4); eframe[VPM_CMD_BYTE(26, 1)] = 0; eframe[VPM_CMD_BYTE(26, 2)] = 0; /* Fill in to buffer to size */ eframe[VPM_CMD_BYTE(27, 0)] = 0; eframe[VPM_CMD_BYTE(27, 1)] = 0; eframe[VPM_CMD_BYTE(27, 2)] = 0; } else { /* Set address */ eframe[VPM_CMD_BYTE(24, 0)] = ((0x8 | 0x4) << 4); eframe[VPM_CMD_BYTE(24, 1)] = (curcmd->address >> 8) & 0xff; eframe[VPM_CMD_BYTE(24, 2)] = curcmd->address & 0xff; /* Send/Get our data */ eframe[VPM_CMD_BYTE(25, 0)] = (curcmd->desc & __VPM150M_WR) ? ((0x8 | (0x3 << 1)) << 4) : ((0x8 | (0x3 << 1) | 0x1) << 4); eframe[VPM_CMD_BYTE(25, 1)] = (curcmd->data >> 8) & 0xff; eframe[VPM_CMD_BYTE(25, 2)] = curcmd->data & 0xff; eframe[VPM_CMD_BYTE(26, 0)] = 0; eframe[VPM_CMD_BYTE(26, 1)] = 0; eframe[VPM_CMD_BYTE(26, 2)] = 0; /* Fill in the rest */ eframe[VPM_CMD_BYTE(27, 0)] = 0; eframe[VPM_CMD_BYTE(27, 1)] = 0; eframe[VPM_CMD_BYTE(27, 2)] = 0; } } else if (test_and_clear_bit(VPM150M_SWRESET, &vpmadt032->control)) { for (x = 24; x < 28; x++) { if (x == 24) eframe[VPM_CMD_BYTE(x, 0)] = (0x8 << 4); else eframe[VPM_CMD_BYTE(x, 0)] = 0x00; eframe[VPM_CMD_BYTE(x, 1)] = 0; if (x == 24) eframe[VPM_CMD_BYTE(x, 2)] = 0x01; else eframe[VPM_CMD_BYTE(x, 2)] = 0x00; } } else { for (x = 24; x < 28; x++) { eframe[VPM_CMD_BYTE(x, 0)] = 0x00; eframe[VPM_CMD_BYTE(x, 1)] = 0x00; eframe[VPM_CMD_BYTE(x, 2)] = 0x00; } } /* Add our leds in */ for (x = 24; x < 28; x++) { eframe[VPM_CMD_BYTE(x, 0)] |= leds; } } /* Call with wc->reglock held and local interrupts disabled */ static void _cmd_dequeue(struct wctdm *wc, u8 *eframe, int card, int pos) { struct wctdm_module *const mod = &wc->mods[card]; unsigned int curcmd=0; /* QRV only use commands relating to the first channel */ if ((card & 0x03) && (mod->type == QRV)) return; /* Skip audio */ eframe += 24; /* Search for something waiting to transmit */ if (pos) { if (!list_empty(&mod->pending_cmds)) { struct wctdm_cmd *const cmd = list_entry(mod->pending_cmds.next, struct wctdm_cmd, node); curcmd = cmd->cmd; cmd->ident = wc->txident; list_move_tail(&cmd->node, &mod->active_cmds); } } if (!curcmd) { /* If nothing else, use filler */ switch (mod->type) { case FXS: curcmd = CMD_RD(LINE_STATE); break; case FXO: curcmd = CMD_RD(12); break; case BRI: curcmd = 0x101010; break; case QRV: curcmd = CMD_RD(3); break; default: break; } } switch (mod->type) { case FXS: eframe[CMD_BYTE(mod, 0)] = (1 << (mod->subaddr)); if (curcmd & __CMD_WR) eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0x7f; else eframe[CMD_BYTE(mod, 1)] = 0x80 | ((curcmd >> 8) & 0x7f); eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff; break; case FXO: { static const int ADDRS[4] = {0x00, 0x08, 0x04, 0x0c}; if (curcmd & __CMD_WR) eframe[CMD_BYTE(mod, 0)] = 0x20 | ADDRS[mod->subaddr]; else eframe[CMD_BYTE(mod, 0)] = 0x60 | ADDRS[mod->subaddr]; eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0xff; eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff; break; } case FXSINIT: /* Special case, we initialize the FXS's into the three-byte command mode then switch to the regular mode. To send it into thee byte mode, treat the path as 6 two-byte commands and in the last one we initialize register 0 to 0x80. All modules read this as the command to switch to daisy chain mode and we're done. */ eframe[CMD_BYTE(mod, 0)] = 0x00; eframe[CMD_BYTE(mod, 1)] = 0x00; if ((card & 0x1) == 0x1) eframe[CMD_BYTE(mod, 2)] = 0x80; else eframe[CMD_BYTE(mod, 2)] = 0x00; break; case BRI: if (unlikely((curcmd != 0x101010) && (curcmd & 0x1010) == 0x1010)) /* b400m CPLD */ eframe[CMD_BYTE(mod, 0)] = 0x55; else /* xhfc */ eframe[CMD_BYTE(mod, 0)] = 0x10; eframe[CMD_BYTE(mod, 1)] = (curcmd >> 8) & 0xff; eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff; break; case QRV: eframe[CMD_BYTE(mod, 0)] = 0x00; if (!curcmd) { eframe[CMD_BYTE(mod, 1)] = 0x00; eframe[CMD_BYTE(mod, 2)] = 0x00; } else { if (curcmd & __CMD_WR) eframe[CMD_BYTE(mod, 1)] = 0x40 | ((curcmd >> 8) & 0x3f); else eframe[CMD_BYTE(mod, 1)] = 0xc0 | ((curcmd >> 8) & 0x3f); eframe[CMD_BYTE(mod, 2)] = curcmd & 0xff; } break; case NONE: eframe[CMD_BYTE(mod, 0)] = 0x10; eframe[CMD_BYTE(mod, 1)] = 0x10; eframe[CMD_BYTE(mod, 2)] = 0x10; break; } } static inline void cmd_decipher_vpmoct(struct wctdm *wc, const u8 *eframe) { struct vpmoct *vpm = wc->vpmoct; struct vpmoct_cmd *cmd; int i; /* Skip audio and first 6 timeslots */ eframe += 30; spin_lock(&vpm->list_lock); /* No command to handle, just exit */ if (list_empty(&vpm->active_list)) { spin_unlock(&vpm->list_lock); return; } cmd = list_entry(vpm->active_list.next, struct vpmoct_cmd, node); if (wc->rxident == cmd->txident) list_del_init(&cmd->node); else cmd = NULL; spin_unlock(&vpm->list_lock); if (!cmd) return; /* Store result, Ignoring the first "sync spi command" bytes */ cmd->command = eframe[7*3]; cmd->address = eframe[7*4]; for (i = 0; i < cmd->chunksize; ++i) cmd->data[i] = eframe[7*(5+i)]; complete(&cmd->complete); } static inline void cmd_decipher_vpmadt032(struct wctdm *wc, const u8 *eframe) { struct vpmadt032 *const vpm = wc->vpmadt032; struct vpmadt032_cmd *cmd; BUG_ON(!vpm); /* If the hardware is not processing any commands currently, then * there is nothing for us to do here. */ if (list_empty(&vpm->active_cmds)) { return; } spin_lock(&vpm->list_lock); cmd = list_entry(vpm->active_cmds.next, struct vpmadt032_cmd, node); if (wc->rxident == cmd->txident) { list_del_init(&cmd->node); } else { cmd = NULL; } spin_unlock(&vpm->list_lock); if (!cmd) return; /* Skip audio */ eframe += 24; /* Store result */ cmd->data = (0xff & eframe[VPM_CMD_BYTE(25, 1)]) << 8; cmd->data |= eframe[VPM_CMD_BYTE(25, 2)]; if (cmd->desc & __VPM150M_WR) { kfree(cmd); } else { cmd->desc |= __VPM150M_FIN; complete(&cmd->complete); } } /** * Call with the reglock held and local interrupts disabled */ static void _cmd_decipher(struct wctdm *wc, const u8 *eframe, int card) { enum { TDM_BYTES = 24, }; struct wctdm_module *const mod = &wc->mods[card]; struct wctdm_cmd *cmd; u8 address; u8 value; if (list_empty(&mod->active_cmds)) return; cmd = list_entry(mod->active_cmds.next, struct wctdm_cmd, node); if (cmd->ident != wc->rxident) return; list_del(&cmd->node); if (cmd->cmd & __CMD_WR) { kfree(cmd); return; } address = (cmd->cmd >> 8) & 0xff; cmd->cmd = eframe[TDM_BYTES + CMD_BYTE(mod, 2)]; value = (cmd->cmd & 0xff); if (cmd->complete) { complete(cmd->complete); return; } list_add(&cmd->node, &wc->free_isr_commands); switch (mod->type) { case FXS: if (68 == address) mod->mod.fxs.hook_state_shadow = value; else mod->mod.fxs.linefeed_control_shadow = value; break; case FXO: if (5 == address) mod->mod.fxo.hook_ring_shadow = value; else mod->mod.fxo.line_voltage_status = value; break; case QRV: /* wctdm_isr_getreg(wc, mod, 3); */ /* COR/CTCSS state */ /* TODO: This looks broken to me, but I have no way to * resolved it. */ /* wc->mods[card & 0xfc].cmds[USER_COMMANDS + 1] = CMD_RD(3); */ break; default: break; } } /* Call with wc.reglock held and local interrupts disabled. */ static void wctdm_isr_getreg(struct wctdm *wc, struct wctdm_module *const mod, u8 address) { struct wctdm_cmd *cmd; if (!list_empty(&wc->free_isr_commands)) { cmd = list_entry(wc->free_isr_commands.next, struct wctdm_cmd, node); list_del(&cmd->node); } else { cmd = kmalloc(sizeof(*cmd), GFP_ATOMIC); if (unlikely(!cmd)) return; } cmd->cmd = CMD_RD(address); cmd->complete = NULL; list_add(&cmd->node, &mod->pending_cmds); } /* Must be called with wc.reglock held and local interrupts disabled */ static inline void wctdm_setreg_intr(struct wctdm *wc, struct wctdm_module *mod, int addr, int val) { struct wctdm_cmd *cmd; cmd = kmalloc(sizeof(*cmd), GFP_ATOMIC); if (unlikely(!cmd)) return; cmd->complete = NULL; cmd->cmd = CMD_WR(addr, val); list_add_tail(&cmd->node, &mod->pending_cmds); } static void cmd_checkisr(struct wctdm *wc, struct wctdm_module *const mod) { if (mod->sethook) { wctdm_setreg_intr(wc, mod, ((mod->sethook >> 8) & 0xff), mod->sethook & 0xff); mod->sethook = 0; return; } switch (mod->type) { case FXS: wctdm_isr_getreg(wc, mod, 68); /* Hook state */ #ifdef PAQ_DEBUG wctdm_isr_getreg(wc, mod, 19); /* Transistor interrupts */ #else wctdm_isr_getreg(wc, mod, LINE_STATE); #endif break; case FXO: wctdm_isr_getreg(wc, mod, 5); /* Hook/Ring state */ wctdm_isr_getreg(wc, mod, 29); /* Battery */ break; case QRV: wctdm_isr_getreg(wc, mod, 3); /* COR/CTCSS state */ /* TODO: This looks broken to me, but I have no way to * resolved it. */ /* wc->mods[card & 0xfc].cmds[USER_COMMANDS + 1] = CMD_RD(3); */ break; case BRI: /* TODO: Two calls needed here? */ wctdm_bri_checkisr(wc, mod, 0); wctdm_bri_checkisr(wc, mod, 1); break; default: break; } } /** * insert_tdm_data() - Move TDM data from channels to sframe. * */ static void insert_tdm_data(const struct wctdm *wc, u8 *sframe) { int i; register u8 *chanchunk; for (i = 0; i < wc->avchannels; i += 4) { chanchunk = &wc->chans[0 + i]->chan.writechunk[0]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6]; sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7]; chanchunk = &wc->chans[1 + i]->chan.writechunk[0]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6]; sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7]; chanchunk = &wc->chans[2 + i]->chan.writechunk[0]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6]; sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7]; chanchunk = &wc->chans[3 + i]->chan.writechunk[0]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*0] = chanchunk[0]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*1] = chanchunk[1]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*2] = chanchunk[2]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*3] = chanchunk[3]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*4] = chanchunk[4]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*5] = chanchunk[5]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*6] = chanchunk[6]; sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*7] = chanchunk[7]; } } static inline void wctdm_transmitprep(struct wctdm *wc, unsigned char *sframe) { int x, y; struct dahdi_span *s; unsigned char *eframe = sframe; /* Calculate Transmission */ if (likely(is_initialized(wc))) { for (x = 0; x < MAX_SPANS; x++) { if (wc->spans[x]) { s = &wc->spans[x]->span; _dahdi_transmit(s); } } insert_tdm_data(wc, sframe); #ifdef CONFIG_VOICEBUS_ECREFERENCE for (x = 0; x < wc->avchannels; ++x) { __dahdi_fifo_put(wc->ec_reference[x], wc->chans[x]->chan.writechunk, DAHDI_CHUNKSIZE); } #endif } spin_lock(&wc->reglock); for (x = 0; x < DAHDI_CHUNKSIZE; x++) { /* Send a sample, as a 32-bit word */ /* TODO: ABK: hmm, this was originally mods_per_board, but we * need to worry about all the active "voice" timeslots, since * BRI modules have a different number of TDM channels than * installed modules. */ for (y = 0; y < wc->avchannels; y++) { if (y < wc->mods_per_board) _cmd_dequeue(wc, eframe, y, x); } if (wc->vpmadt032) cmd_dequeue_vpmadt032(wc, eframe); else if (wc->vpmoct) cmd_dequeue_vpmoct(wc, eframe); if (x < DAHDI_CHUNKSIZE - 1) { eframe[EFRAME_SIZE] = wc->ctlreg; eframe[EFRAME_SIZE + 1] = wc->txident++; if (4 == wc->desc->ports) eframe[EFRAME_SIZE + 2] = wc->tdm410leds; } eframe += (EFRAME_SIZE + EFRAME_GAP); } spin_unlock(&wc->reglock); } int wctdm_setreg(struct wctdm *wc, struct wctdm_module *mod, int addr, int val) { struct wctdm_cmd *cmd; unsigned long flags; #if 0 /* TODO */ /* QRV and BRI cards are only addressed at their first "port" */ if ((card & 0x03) && ((wc->mods[card].type == QRV) || (wc->mods[card].type == BRI))) return 0; #endif cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (unlikely(!cmd)) return -ENOMEM; cmd->complete = NULL; cmd->cmd = CMD_WR(addr, val); spin_lock_irqsave(&wc->reglock, flags); list_add_tail(&cmd->node, &mod->pending_cmds); spin_unlock_irqrestore(&wc->reglock, flags); return 0; } int wctdm_getreg(struct wctdm *wc, struct wctdm_module *const mod, int addr) { unsigned long flags; struct wctdm_cmd *cmd; int val; #if 0 /* TODO */ /* if a QRV card, use only its first channel */ if (wc->mods[card].type == QRV) { if (card & 3) return 0; } #endif cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) return -ENOMEM; cmd->complete = kmalloc(sizeof(*cmd->complete), GFP_KERNEL); if (!cmd->complete) { kfree(cmd); return -ENOMEM; } init_completion(cmd->complete); cmd->cmd = CMD_RD(addr); spin_lock_irqsave(&wc->reglock, flags); list_add_tail(&cmd->node, &mod->pending_cmds); spin_unlock_irqrestore(&wc->reglock, flags); wait_for_completion(cmd->complete); val = cmd->cmd & 0xff; kfree(cmd->complete); kfree(cmd); return val; } static int wctdm_getregs(struct wctdm *wc, struct wctdm_module *const mod, int *const addresses, const size_t count) { int x; unsigned long flags; struct wctdm_cmd *cmd; struct wctdm_cmd **cmds = kmalloc(sizeof(cmd) * count, GFP_KERNEL); if (!cmds) return -ENOMEM; for (x = 0; x < count; ++x) { cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) { kfree(cmds); return -ENOMEM; } cmd->complete = kmalloc(sizeof(*cmd->complete), GFP_KERNEL); if (!cmd->complete) { kfree(cmd); kfree(cmds); return -ENOMEM; } init_completion(cmd->complete); cmd->cmd = CMD_RD(addresses[x]); spin_lock_irqsave(&wc->reglock, flags); list_add_tail(&cmd->node, &mod->pending_cmds); spin_unlock_irqrestore(&wc->reglock, flags); cmds[x] = cmd; } for (x = count - 1; x >= 0; --x) { cmd = cmds[x]; wait_for_completion(cmd->complete); addresses[x] = cmd->cmd & 0xff; kfree(cmd->complete); kfree(cmd); } kfree(cmds); return 0; } /** * call with wc->reglock held and interrupts disabled. */ static void cmd_retransmit(struct wctdm *wc) { int x; for (x = 0; x < wc->mods_per_board; x++) { struct wctdm_module *const mod = &wc->mods[x]; if (mod->type == BRI) continue; list_splice_init(&mod->active_cmds, &mod->pending_cmds); } #ifdef VPM_SUPPORT if (wc->vpmadt032) vpmadt032_resend(wc->vpmadt032); #endif } /** * extract_tdm_data() - Move TDM data from sframe to channels. * */ static void extract_tdm_data(struct wctdm *wc, const u8 *sframe) { int i; register u8 *chanchunk; for (i = 0; i < wc->avchannels; i += 4) { chanchunk = &wc->chans[0 + i]->chan.readchunk[0]; chanchunk[0] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[0 + i + (EFRAME_SIZE + EFRAME_GAP)*7]; chanchunk = &wc->chans[1 + i]->chan.readchunk[0]; chanchunk[0] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[1 + i + (EFRAME_SIZE + EFRAME_GAP)*7]; chanchunk = &wc->chans[2 + i]->chan.readchunk[0]; chanchunk[0] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[2 + i + (EFRAME_SIZE + EFRAME_GAP)*7]; chanchunk = &wc->chans[3 + i]->chan.readchunk[0]; chanchunk[0] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[3 + i + (EFRAME_SIZE + EFRAME_GAP)*7]; } /* Pre-echo with the vpmoct overwrites the 24th timeslot with the * specified channel's pre-echo audio stream. This data is ignored * on all but the 24xx card, so we store it in a temporary buffer. */ if (wc->vpmoct && wc->vpmoct->preecho_enabled) { chanchunk = &wc->vpmoct->preecho_buf[0]; chanchunk[0] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*0]; chanchunk[1] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*1]; chanchunk[2] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*2]; chanchunk[3] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*3]; chanchunk[4] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*4]; chanchunk[5] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*5]; chanchunk[6] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*6]; chanchunk[7] = sframe[23 + (EFRAME_SIZE + EFRAME_GAP)*7]; } } static inline void wctdm_receiveprep(struct wctdm *wc, const u8 *sframe) { int x, y; bool irqmiss = false; unsigned char expected; const u8 *eframe = sframe; if (unlikely(!is_good_frame(sframe))) return; spin_lock(&wc->reglock); if (likely(is_initialized(wc))) extract_tdm_data(wc, sframe); for (x = 0; x < DAHDI_CHUNKSIZE; x++) { if (x < DAHDI_CHUNKSIZE - 1) { expected = wc->rxident + 1; wc->rxident = eframe[EFRAME_SIZE + 1]; if (wc->rxident != expected) { irqmiss = true; cmd_retransmit(wc); } } for (y = 0; y < wc->avchannels; y++) _cmd_decipher(wc, eframe, y); if (wc->vpmadt032) cmd_decipher_vpmadt032(wc, eframe); else if (wc->vpmoct) cmd_decipher_vpmoct(wc, eframe); eframe += (EFRAME_SIZE + EFRAME_GAP); } spin_unlock(&wc->reglock); /* XXX We're wasting 8 taps. We should get closer :( */ if (likely(is_initialized(wc))) { for (x = 0; x < wc->avchannels; x++) { struct wctdm_chan *const wchan = wc->chans[x]; struct dahdi_chan *const c = &wchan->chan; #ifdef CONFIG_VOICEBUS_ECREFERENCE unsigned char buffer[DAHDI_CHUNKSIZE]; __dahdi_fifo_get(wc->ec_reference[x], buffer, ARRAY_SIZE(buffer)); _dahdi_ec_chunk(c, c->readchunk, buffer); #else if ((wc->vpmoct) && (wchan->timeslot == wc->vpmoct->preecho_timeslot) && (wc->vpmoct->preecho_enabled)) { __dahdi_ec_chunk(c, c->readchunk, wc->vpmoct->preecho_buf, c->writechunk); } else { __dahdi_ec_chunk(c, c->readchunk, c->readchunk, c->writechunk); } #endif } for (x = 0; x < MAX_SPANS; x++) { if (wc->spans[x]) { struct dahdi_span *s = &wc->spans[x]->span; #if 1 /* Check for digital spans */ if (s->ops->chanconfig == b400m_chanconfig) { BUG_ON(!is_hx8(wc)); if (s->flags & DAHDI_FLAG_RUNNING) b400m_dchan(s); } #endif _dahdi_receive(s); if (unlikely(irqmiss)) wc->ddev->irqmisses++; } } } } static int wait_access(struct wctdm *wc, struct wctdm_module *const mod) { unsigned char data = 0; int count = 0; #define MAX 10 /* attempts */ /* Wait for indirect access */ while (count++ < MAX) { data = wctdm_getreg(wc, mod, I_STATUS); if (!data) return 0; } if (count > (MAX-1)) { dev_notice(&wc->vb.pdev->dev, " ##### Loop error (%02x) #####\n", data); } return 0; } static unsigned char translate_3215(unsigned char address) { int x; for (x = 0; x < ARRAY_SIZE(indirect_regs); x++) { if (indirect_regs[x].address == address) { address = indirect_regs[x].altaddr; break; } } return address; } static int wctdm_proslic_setreg_indirect(struct wctdm *wc, struct wctdm_module *const mod, unsigned char address, unsigned short data) { int res = -1; address = translate_3215(address); if (address == 255) return 0; if (!wait_access(wc, mod)) { wctdm_setreg(wc, mod, IDA_LO, (u8)(data & 0xFF)); wctdm_setreg(wc, mod, IDA_HI, (u8)((data & 0xFF00)>>8)); wctdm_setreg(wc, mod, IAA, address); res = 0; }; return res; } static int wctdm_proslic_getreg_indirect(struct wctdm *wc, struct wctdm_module *const mod, unsigned char address) { int res = -1; char *p=NULL; address = translate_3215(address); if (address == 255) return 0; if (!wait_access(wc, mod)) { wctdm_setreg(wc, mod, IAA, address); if (!wait_access(wc, mod)) { int addresses[2] = {IDA_LO, IDA_HI}; wctdm_getregs(wc, mod, addresses, ARRAY_SIZE(addresses)); res = addresses[0] | (addresses[1] << 8); } else p = "Failed to wait inside\n"; } else p = "failed to wait\n"; if (p) dev_notice(&wc->vb.pdev->dev, "%s", p); return res; } static int wctdm_proslic_init_indirect_regs(struct wctdm *wc, struct wctdm_module *mod) { unsigned char i; for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) { if (wctdm_proslic_setreg_indirect(wc, mod, indirect_regs[i].address, indirect_regs[i].initial)) return -1; } return 0; } static int wctdm_proslic_verify_indirect_regs(struct wctdm *wc, struct wctdm_module *mod) { int passed = 1; unsigned short i, initial; int j; for (i = 0; i < ARRAY_SIZE(indirect_regs); i++) { j = wctdm_proslic_getreg_indirect(wc, mod, (u8)indirect_regs[i].address); if (j < 0) { dev_notice(&wc->vb.pdev->dev, "Failed to read indirect register %d\n", i); return -1; } initial = indirect_regs[i].initial; if ((j != initial) && (indirect_regs[i].altaddr != 255)) { dev_notice(&wc->vb.pdev->dev, "!!!!!!! %s iREG %X = %X should be %X\n", indirect_regs[i].name, indirect_regs[i].address, j, initial); passed = 0; } } if (passed) { if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Init Indirect Registers completed successfully.\n"); } } else { dev_notice(&wc->vb.pdev->dev, " !!!!! Init Indirect Registers UNSUCCESSFULLY.\n"); return -1; } return 0; } /** * wctdm_proslic_check_oppending - * * Ensures that a write to the line feed register on the SLIC has been * processed. If it hasn't after the timeout value, then it will resend the * command and wait for another timeout period. * */ static void wctdm_proslic_check_oppending(struct wctdm *wc, struct wctdm_module *const mod) { struct fxs *const fxs = &mod->mod.fxs; if (!(fxs->lasttxhook & SLIC_LF_OPPENDING)) return; /* Monitor the Pending LF state change, for the next 100ms */ spin_lock(&wc->reglock); if (!(fxs->lasttxhook & SLIC_LF_OPPENDING)) { spin_unlock(&wc->reglock); return; } if ((fxs->linefeed_control_shadow & SLIC_LF_SETMASK) == (fxs->lasttxhook & SLIC_LF_SETMASK)) { fxs->lasttxhook &= SLIC_LF_SETMASK; if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "SLIC_LF OK: card=%d shadow=%02x " "lasttxhook=%02x framecount=%ld\n", mod->card, fxs->linefeed_control_shadow, fxs->lasttxhook, wc->framecount); } } else if (time_after(wc->framecount, fxs->oppending_timeout)) { /* Check again in 100 ms */ fxs->oppending_timeout = wc->framecount + 100; wctdm_setreg_intr(wc, mod, LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "SLIC_LF RETRY: card=%d shadow=%02x " "lasttxhook=%02x framecount=%ld\n", mod->card, fxs->linefeed_control_shadow, fxs->lasttxhook, wc->framecount); } } spin_unlock(&wc->reglock); } /* 256ms interrupt */ static void wctdm_proslic_recheck_sanity(struct wctdm *wc, struct wctdm_module *const mod) { struct fxs *const fxs = &mod->mod.fxs; int res; #ifdef PAQ_DEBUG res = mod->isrshadow[1]; res &= ~0x3; if (res) { mod->isrshadow[1] = 0; fxs->palarms++; if (fxs->palarms < MAX_ALARMS) { dev_notice(&wc->vb.pdev->dev, "Power alarm (%02x) on module %d, resetting!\n", res, card + 1); mod->sethook = CMD_WR(19, res); /* Update shadow register to avoid extra power alarms until next read */ mod->isrshadow[1] = 0; } else { if (fxs->palarms == MAX_ALARMS) dev_notice(&wc->vb.pdev->dev, "Too many power alarms on card %d, NOT resetting!\n", card + 1); } } #else spin_lock(&wc->reglock); /* reg 64 has to be zero at last isr read */ res = !fxs->linefeed_control_shadow && !(fxs->lasttxhook & SLIC_LF_OPPENDING) && /* not a transition */ fxs->lasttxhook; /* not an intended zero */ if (res) { fxs->palarms++; if (fxs->palarms < MAX_ALARMS) { dev_notice(&wc->vb.pdev->dev, "Power alarm on module %d, resetting!\n", mod->card + 1); if (fxs->lasttxhook == SLIC_LF_RINGING) { fxs->lasttxhook = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD;; } fxs->lasttxhook |= SLIC_LF_OPPENDING; mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook); fxs->oppending_timeout = wc->framecount + 100; /* Update shadow register to avoid extra power alarms * until next read */ fxs->linefeed_control_shadow = fxs->lasttxhook; } else { if (fxs->palarms == MAX_ALARMS) { dev_notice(&wc->vb.pdev->dev, "Too many power alarms on card %d, " "NOT resetting!\n", mod->card + 1); } } } spin_unlock(&wc->reglock); #endif } static void wctdm_qrvdri_check_hook(struct wctdm *wc, int card) { signed char b,b1; int qrvcard = card & 0xfc; if (wc->mods[card].mod.qrv.debtime >= 2) wc->mods[card].mod.qrv.debtime--; b = wc->mods[qrvcard].mod.qrv.isrshadow[0]; /* Hook/Ring state */ b &= 0xcc; /* use bits 3-4 and 6-7 only */ if (wc->mods[qrvcard].mod.qrv.radmode & RADMODE_IGNORECOR) b &= ~4; else if (!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_INVERTCOR)) b ^= 4; if (wc->mods[qrvcard + 1].mod.qrv.radmode | RADMODE_IGNORECOR) b &= ~0x40; else if (!(wc->mods[qrvcard + 1].mod.qrv.radmode | RADMODE_INVERTCOR)) b ^= 0x40; if ((wc->mods[qrvcard].mod.qrv.radmode & RADMODE_IGNORECT) || (!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_EXTTONE))) b &= ~8; else if (!(wc->mods[qrvcard].mod.qrv.radmode & RADMODE_EXTINVERT)) b ^= 8; if ((wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_IGNORECT) || (!(wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_EXTTONE))) b &= ~0x80; else if (!(wc->mods[qrvcard + 1].mod.qrv.radmode & RADMODE_EXTINVERT)) b ^= 0x80; /* now b & MASK should be zero, if its active */ /* check for change in chan 0 */ if ((!(b & 0xc)) != wc->mods[qrvcard + 2].mod.qrv.hook) { wc->mods[qrvcard].mod.qrv.debtime = wc->mods[qrvcard].mod.qrv.debouncetime; wc->mods[qrvcard + 2].mod.qrv.hook = !(b & 0xc); } /* if timed-out and ready */ if (wc->mods[qrvcard].mod.qrv.debtime == 1) { b1 = wc->mods[qrvcard + 2].mod.qrv.hook; if (debug) { dev_info(&wc->vb.pdev->dev, "QRV channel %d rx state changed to %d\n", qrvcard, wc->mods[qrvcard + 2].mod.qrv.hook); } dahdi_hooksig(wc->aspan->span.chans[qrvcard], (b1) ? DAHDI_RXSIG_OFFHOOK : DAHDI_RXSIG_ONHOOK); wc->mods[card].mod.qrv.debtime = 0; } /* check for change in chan 1 */ if ((!(b & 0xc0)) != wc->mods[qrvcard + 3].mod.qrv.hook) { wc->mods[qrvcard + 1].mod.qrv.debtime = QRV_DEBOUNCETIME; wc->mods[qrvcard + 3].mod.qrv.hook = !(b & 0xc0); } if (wc->mods[qrvcard + 1].mod.qrv.debtime == 1) { b1 = wc->mods[qrvcard + 3].mod.qrv.hook; if (debug) { dev_info(&wc->vb.pdev->dev, "QRV channel %d rx state changed to %d\n", qrvcard + 1, wc->mods[qrvcard + 3].mod.qrv.hook); } dahdi_hooksig(wc->aspan->span.chans[qrvcard + 1], (b1) ? DAHDI_RXSIG_OFFHOOK : DAHDI_RXSIG_ONHOOK); wc->mods[card].mod.qrv.debtime = 0; } return; } static inline bool is_fxo_ringing(const struct fxo *const fxo) { return ((fxo->hook_ring_shadow & 0x60) && ((fxo->battery_state == BATTERY_PRESENT) || (fxo->battery_state == BATTERY_DEBOUNCING_LOST))); } static inline bool is_fxo_ringing_positive(const struct fxo *const fxo) { return (((fxo->hook_ring_shadow & 0x60) == 0x20) && ((fxo->battery_state == BATTERY_PRESENT) || (fxo->battery_state == BATTERY_DEBOUNCING_LOST))); } static inline bool is_fxo_ringing_negative(const struct fxo *const fxo) { return (((fxo->hook_ring_shadow & 0x60) == 0x40) && ((fxo->battery_state == BATTERY_PRESENT) || (fxo->battery_state == BATTERY_DEBOUNCING_LOST))); } static inline void set_ring(struct fxo *fxo, enum ring_detector_state new) { fxo->ring_state = new; } static void wctdm_fxo_ring_detect(struct wctdm *wc, struct wctdm_module *mod) { struct fxo *const fxo = &mod->mod.fxo; static const unsigned int POLARITY_CHANGES_NEEDED = 2; /* Look for ring status bits (Ring Detect Signal Negative and Ring * Detect Signal Positive) to transition back and forth * POLARITY_CHANGES_NEEDED times to indicate that a ring is occurring. * Provide some number of samples to allow for the transitions to occur * before giving up. NOTE: neon mwi voltages will trigger one of these * bits to go active but not to have transitions between the two bits * (i.e. no negative to positive or positive to negative traversals) */ switch (fxo->ring_state) { case DEBOUNCING_RINGING_POSITIVE: if (is_fxo_ringing_negative(fxo)) { if (++fxo->ring_polarity_change_count > POLARITY_CHANGES_NEEDED) { mod_hooksig(wc, mod, DAHDI_RXSIG_RING); set_ring(fxo, RINGING); if (debug) { dev_info(&wc->vb.pdev->dev, "RING on %s!\n", get_dahdi_chan(wc, mod)->name); } } else { set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE); } } else if (time_after(wc->framecount, fxo->ringdebounce_timer)) { set_ring(fxo, RINGOFF); } break; case DEBOUNCING_RINGING_NEGATIVE: if (is_fxo_ringing_positive(fxo)) { if (++fxo->ring_polarity_change_count > POLARITY_CHANGES_NEEDED) { mod_hooksig(wc, mod, DAHDI_RXSIG_RING); set_ring(fxo, RINGING); if (debug) { dev_info(&wc->vb.pdev->dev, "RING on %s!\n", get_dahdi_chan(wc, mod)->name); } } else { set_ring(fxo, DEBOUNCING_RINGING_POSITIVE); } } else if (time_after(wc->framecount, fxo->ringdebounce_timer)) { set_ring(fxo, RINGOFF); } break; case RINGING: if (!is_fxo_ringing(fxo)) { set_ring(fxo, DEBOUNCING_RINGOFF); fxo->ringdebounce_timer = wc->framecount + ringdebounce / 8; } break; case DEBOUNCING_RINGOFF: if (!is_fxo_ringing(fxo)) { if (time_after(wc->framecount, fxo->ringdebounce_timer)) { if (debug) { dev_info(&wc->vb.pdev->dev, "NO RING on %s!\n", get_dahdi_chan(wc, mod)->name); } mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK); set_ring(fxo, RINGOFF); } } else { set_ring(fxo, RINGING); } break; case RINGOFF: if (is_fxo_ringing(fxo)) { /* Look for positive/negative crossings in ring status * reg */ if (is_fxo_ringing_positive(fxo)) set_ring(fxo, DEBOUNCING_RINGING_POSITIVE); else set_ring(fxo, DEBOUNCING_RINGING_NEGATIVE); fxo->ringdebounce_timer = wc->framecount + ringdebounce / 8; fxo->ring_polarity_change_count = 0; } break; } } #define MS_PER_CHECK_HOOK 1 static void wctdm_check_battery_lost(struct wctdm *wc, struct wctdm_module *const mod) { struct fxo *const fxo = &mod->mod.fxo; /* possible existing states: battery lost, no debounce timer battery lost, debounce timer (going to battery present) battery present or unknown, no debounce timer battery present or unknown, debounce timer (going to battery lost) */ switch (fxo->battery_state) { case BATTERY_DEBOUNCING_PRESENT_ALARM: fxo->battery_state = BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM; fxo->battdebounce_timer = wc->framecount + battdebounce; break; case BATTERY_DEBOUNCING_PRESENT: fxo->battery_state = BATTERY_LOST; break; case BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM: fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM; fxo->battdebounce_timer = wc->framecount + battalarm - battdebounce; break; case BATTERY_UNKNOWN: mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK); fallthrough; case BATTERY_PRESENT: fxo->battery_state = BATTERY_DEBOUNCING_LOST; fxo->battdebounce_timer = wc->framecount + battdebounce; break; case BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM: case BATTERY_DEBOUNCING_LOST: /* Intentional drop through */ if (time_after(wc->framecount, fxo->battdebounce_timer)) { if (debug) { dev_info(&wc->vb.pdev->dev, "NO BATTERY on %d/%d!\n", wc->aspan->span.spanno, mod->card + 1); } #ifdef JAPAN if (!wc->ohdebounce && wc->offhook) { dahdi_hooksig(wc->aspan->chans[card], DAHDI_RXSIG_ONHOOK); if (debug) { dev_info(&wc->vb.pdev->dev, "Signalled On Hook\n"); } #ifdef ZERO_BATT_RING wc->onhook++; #endif } #else mod_hooksig(wc, mod, DAHDI_RXSIG_ONHOOK); #endif /* set the alarm timer, taking into account that part * of its time period has already passed while * debouncing occurred */ fxo->battery_state = BATTERY_DEBOUNCING_LOST_ALARM; fxo->battdebounce_timer = wc->framecount + battalarm - battdebounce; } break; case BATTERY_DEBOUNCING_LOST_ALARM: if (time_after(wc->framecount, fxo->battdebounce_timer)) { fxo->battery_state = BATTERY_LOST; dahdi_alarm_channel(get_dahdi_chan(wc, mod), DAHDI_ALARM_RED); } break; case BATTERY_LOST: break; } } static void wctdm_check_battery_present(struct wctdm *wc, struct wctdm_module *const mod) { struct fxo *const fxo = &mod->mod.fxo; switch (fxo->battery_state) { case BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM: case BATTERY_DEBOUNCING_PRESENT: /* intentional drop through */ if (time_after(wc->framecount, fxo->battdebounce_timer)) { if (debug) { dev_info(&wc->vb.pdev->dev, "BATTERY on %d/%d (%s)!\n", wc->aspan->span.spanno, mod->card + 1, (fxo->line_voltage_status < 0) ? "-" : "+"); } #ifdef ZERO_BATT_RING if (wc->onhook) { wc->onhook = 0; dahdi_hooksig(wc->aspan->chans[card], DAHDI_RXSIG_OFFHOOK); if (debug) { dev_info(&wc->vb.pdev->dev, "Signalled Off Hook\n"); } } #else mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK); #endif /* set the alarm timer, taking into account that part * of its time period has already passed while * debouncing occurred */ fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM; fxo->battdebounce_timer = wc->framecount + battalarm - battdebounce; } break; case BATTERY_DEBOUNCING_PRESENT_ALARM: if (time_after(wc->framecount, fxo->battdebounce_timer)) { fxo->battery_state = BATTERY_PRESENT; dahdi_alarm_channel(get_dahdi_chan(wc, mod), DAHDI_ALARM_NONE); } break; case BATTERY_PRESENT: break; case BATTERY_DEBOUNCING_LOST_ALARM: fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_FROM_LOST_ALARM; fxo->battdebounce_timer = wc->framecount + battdebounce; break; case BATTERY_DEBOUNCING_LOST_FROM_PRESENT_ALARM: fxo->battery_state = BATTERY_DEBOUNCING_PRESENT_ALARM; fxo->battdebounce_timer = wc->framecount + battalarm - battdebounce; break; case BATTERY_DEBOUNCING_LOST: fxo->battery_state = BATTERY_PRESENT; break; case BATTERY_UNKNOWN: mod_hooksig(wc, mod, DAHDI_RXSIG_OFFHOOK); fallthrough; case BATTERY_LOST: /* intentional drop through */ fxo->battery_state = BATTERY_DEBOUNCING_PRESENT; fxo->battdebounce_timer = wc->framecount + battdebounce; break; } } static void wctdm_fxo_stop_debouncing_polarity(struct wctdm *wc, struct wctdm_module *const mod) { struct fxo *const fxo = &mod->mod.fxo; switch (fxo->polarity_state) { case UNKNOWN_POLARITY: break; case POLARITY_DEBOUNCE_POSITIVE: fxo->polarity_state = POLARITY_NEGATIVE; break; case POLARITY_POSITIVE: break; case POLARITY_DEBOUNCE_NEGATIVE: fxo->polarity_state = POLARITY_POSITIVE; break; case POLARITY_NEGATIVE: break; }; } static void wctdm_fxo_check_polarity(struct wctdm *wc, struct wctdm_module *const mod, const bool positive_polarity) { struct fxo *const fxo = &mod->mod.fxo; switch (fxo->polarity_state) { case UNKNOWN_POLARITY: fxo->polarity_state = (positive_polarity) ? POLARITY_POSITIVE : POLARITY_NEGATIVE; break; case POLARITY_DEBOUNCE_POSITIVE: if (!positive_polarity) { fxo->polarity_state = POLARITY_NEGATIVE; } else if (time_after(wc->framecount, fxo->poldebounce_timer)) { fxo->polarity_state = POLARITY_POSITIVE; dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_POLARITY); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "%s: Polarity NEGATIVE -> POSITIVE\n", get_dahdi_chan(wc, mod)->name); } } break; case POLARITY_POSITIVE: if (!positive_polarity) { fxo->polarity_state = POLARITY_DEBOUNCE_NEGATIVE; fxo->poldebounce_timer = wc->framecount + POLARITY_DEBOUNCE; } break; case POLARITY_DEBOUNCE_NEGATIVE: if (positive_polarity) { fxo->polarity_state = POLARITY_POSITIVE; } else if (time_after(wc->framecount, fxo->poldebounce_timer)) { dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_POLARITY); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "%s: Polarity POSITIVE -> NEGATIVE\n", get_dahdi_chan(wc, mod)->name); } fxo->polarity_state = POLARITY_NEGATIVE; } break; case POLARITY_NEGATIVE: if (positive_polarity) { fxo->polarity_state = POLARITY_DEBOUNCE_POSITIVE; fxo->poldebounce_timer = wc->framecount + POLARITY_DEBOUNCE; } break; }; } static void wctdm_voicedaa_check_hook(struct wctdm *wc, struct wctdm_module *const mod) { signed char b; u8 abs_voltage; struct fxo *const fxo = &mod->mod.fxo; /* Try to track issues that plague slot one FXO's */ b = fxo->hook_ring_shadow & 0x9b; if (fxo->offhook) { if (b != 0x9) wctdm_setreg_intr(wc, mod, 5, 0x9); } else { if (b != 0x8) wctdm_setreg_intr(wc, mod, 5, 0x8); wctdm_fxo_ring_detect(wc, mod); } abs_voltage = abs(fxo->line_voltage_status); if (fxovoltage && time_after(wc->framecount, fxo->display_fxovoltage)) { /* Every 100 ms */ fxo->display_fxovoltage = wc->framecount + 100; dev_info(&wc->vb.pdev->dev, "Port %d: Voltage: %d\n", mod->card + 1, fxo->line_voltage_status); } if (unlikely(DAHDI_RXSIG_INITIAL == get_dahdi_chan(wc, mod)->rxhooksig)) { /* * dahdi-base will set DAHDI_RXSIG_INITIAL after a * DAHDI_STARTUP or DAHDI_CHANCONFIG ioctl so that new events * will be queued on the channel with the current received * hook state. Channels that use robbed-bit signalling always * report the current received state via the dahdi_rbsbits * call. Since we only call dahdi_hooksig when we've detected * a change to report, let's forget our current state in order * to force us to report it again via dahdi_hooksig. * */ fxo->battery_state = BATTERY_UNKNOWN; } if (abs_voltage < battthresh) { wctdm_fxo_stop_debouncing_polarity(wc, mod); wctdm_check_battery_lost(wc, mod); } else { wctdm_check_battery_present(wc, mod); wctdm_fxo_check_polarity(wc, mod, (fxo->line_voltage_status > 0)); } /* Look for neon mwi pulse */ if (neonmwi_monitor && !fxo->offhook) { /* Look for 4 consecutive voltage readings * where the voltage is over the neon limit but * does not vary greatly from the last reading */ if (fxo->battery_state == BATTERY_PRESENT && abs_voltage > neonmwi_level && (0 == fxo->neonmwi_last_voltage || (fxo->line_voltage_status >= fxo->neonmwi_last_voltage - neonmwi_envelope && fxo->line_voltage_status <= fxo->neonmwi_last_voltage + neonmwi_envelope))) { fxo->neonmwi_last_voltage = fxo->line_voltage_status; if (NEONMWI_ON_DEBOUNCE == fxo->neonmwi_debounce) { fxo->neonmwi_offcounter = neonmwi_offlimit_cycles; if (0 == fxo->neonmwi_state) { dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_NEONMWI_ACTIVE); fxo->neonmwi_state = 1; if (debug) dev_info(&wc->vb.pdev->dev, "NEON MWI active for card %d\n", mod->card+1); } fxo->neonmwi_debounce++; /* terminate the processing */ } else if (NEONMWI_ON_DEBOUNCE > fxo->neonmwi_debounce) { fxo->neonmwi_debounce++; } else { /* Insure the count gets reset */ fxo->neonmwi_offcounter = neonmwi_offlimit_cycles; } } else { fxo->neonmwi_debounce = 0; fxo->neonmwi_last_voltage = 0; } /* If no neon mwi pulse for given period of time, indicte no neon mwi state */ if (fxo->neonmwi_state && 0 < fxo->neonmwi_offcounter ) { fxo->neonmwi_offcounter--; if (0 == fxo->neonmwi_offcounter) { dahdi_qevent_lock(get_dahdi_chan(wc, mod), DAHDI_EVENT_NEONMWI_INACTIVE); fxo->neonmwi_state = 0; if (debug) dev_info(&wc->vb.pdev->dev, "NEON MWI cleared for card %d\n", mod->card+1); } } } #undef MS_PER_CHECK_HOOK } static void wctdm_fxs_hooksig(struct wctdm *wc, struct wctdm_module *const mod, enum dahdi_txsig txsig) { int x = 0; unsigned long flags; struct fxs *const fxs = &mod->mod.fxs; spin_lock_irqsave(&wc->reglock, flags); switch (txsig) { case DAHDI_TXSIG_ONHOOK: switch (get_dahdi_chan(wc, mod)->sig) { case DAHDI_SIG_FXOGS: x = (POLARITY_XOR(fxs)) ? SLIC_LF_RING_OPEN : SLIC_LF_TIP_OPEN; break; case DAHDI_SIG_EM: case DAHDI_SIG_FXOKS: case DAHDI_SIG_FXOLS: default: x = fxs->idletxhookstate; break; } break; case DAHDI_TXSIG_OFFHOOK: switch (get_dahdi_chan(wc, mod)->sig) { case DAHDI_SIG_EM: x = (POLARITY_XOR(fxs)) ? SLIC_LF_ACTIVE_FWD : SLIC_LF_ACTIVE_REV; break; default: x = fxs->idletxhookstate; break; } break; case DAHDI_TXSIG_START: x = SLIC_LF_RINGING; break; case DAHDI_TXSIG_KEWL: x = SLIC_LF_OPEN; break; default: spin_unlock_irqrestore(&wc->reglock, flags); dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig); return; } if (x != fxs->lasttxhook) { fxs->lasttxhook = x | SLIC_LF_OPPENDING; mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook); fxs->oppending_timeout = wc->framecount + 100; spin_unlock_irqrestore(&wc->reglock, flags); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Setting FXS hook state " "to %d (%02x) framecount=%ld\n", txsig, x, wc->framecount); } } else { spin_unlock_irqrestore(&wc->reglock, flags); } } static void wctdm_fxs_off_hook(struct wctdm *wc, struct wctdm_module *const mod) { struct fxs *const fxs = &mod->mod.fxs; if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "fxs_off_hook: Card %d Going off hook\n", mod->card); switch (fxs->lasttxhook) { case SLIC_LF_RINGING: /* Ringing */ case SLIC_LF_OHTRAN_FWD: /* Forward On Hook Transfer */ case SLIC_LF_OHTRAN_REV: /* Reverse On Hook Transfer */ /* just detected OffHook, during Ringing or OnHookTransfer */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; break; } if ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN) wctdm_fxs_hooksig(wc, mod, DAHDI_TXSIG_OFFHOOK); dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_OFFHOOK); #ifdef DEBUG if (robust) wctdm_init_proslic(wc, mod, 1, 0, 1); #endif } /** * wctdm_fxs_on_hook - Report on hook to DAHDI. * @wc: Board hosting the module. * @card: Index of the module / port to place on hook. * * If we are intentionally dropping battery to signal a forward * disconnect we do not want to place the line "On-Hook". In this * case, the core of DAHDI will place us on hook when one of the RBS * timers expires. * */ static void wctdm_fxs_on_hook(struct wctdm *wc, struct wctdm_module *const mod) { if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "fxs_on_hook: Card %d Going on hook\n", mod->card); } if ((mod->mod.fxs.lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN) wctdm_fxs_hooksig(wc, mod, DAHDI_TXSIG_ONHOOK); dahdi_hooksig(get_dahdi_chan(wc, mod), DAHDI_RXSIG_ONHOOK); } static const char *wctdm_echocan_name(const struct dahdi_chan *chan) { struct wctdm *wc = chan->pvt; if (wc->vpmadt032) return vpmadt032_name; else if (wc->vpmoct) return vpmoct_name; return NULL; } static int wctdm_echocan_create(struct dahdi_chan *chan, struct dahdi_echocanparams *ecp, struct dahdi_echocanparam *p, struct dahdi_echocan_state **ec) { struct wctdm *wc = chan->pvt; struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan); const struct dahdi_echocan_ops *ops; const struct dahdi_echocan_features *features; enum adt_companding comp; #ifdef VPM_SUPPORT if (!vpmsupport) return -ENODEV; #endif if (wc->vpmadt032) { ops = &vpm_ec_ops; features = &vpm_ec_features; *ec = &wchan->ec; (*ec)->ops = ops; (*ec)->features = *features; comp = (DAHDI_LAW_ALAW == chan->span->deflaw) ? ADT_COMP_ALAW : ADT_COMP_ULAW; return vpmadt032_echocan_create(wc->vpmadt032, wchan->timeslot, comp, ecp, p); } else if (wc->vpmoct) { ops = &vpm_ec_ops; features = &vpm_ec_features; *ec = &wchan->ec; (*ec)->ops = ops; (*ec)->features = *features; return vpmoct_echocan_create(wc->vpmoct, wchan->timeslot, chan->span->deflaw); } else { return -ENODEV; } } static void echocan_free(struct dahdi_chan *chan, struct dahdi_echocan_state *ec) { struct wctdm *wc = chan->pvt; struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan); if (wc->vpmadt032) { memset(ec, 0, sizeof(*ec)); vpmadt032_echocan_free(wc->vpmadt032, wchan->timeslot, ec); } else if (wc->vpmoct) { memset(ec, 0, sizeof(*ec)); vpmoct_echocan_free(wc->vpmoct, wchan->timeslot); } } /* 1ms interrupt */ static void wctdm_isr_misc_fxs(struct wctdm *wc, struct wctdm_module *const mod) { struct fxs *const fxs = &mod->mod.fxs; if (time_after(wc->framecount, fxs->check_alarm)) { /* Accept an alarm once per 10 seconds */ fxs->check_alarm = wc->framecount + (1000*10); if (fxs->palarms) fxs->palarms--; } if (fxs->off_hook && !(fxs->hook_state_shadow & 1)) { wctdm_fxs_on_hook(wc, mod); fxs->off_hook = 0; } else if (!fxs->off_hook && (fxs->hook_state_shadow & 1)) { wctdm_fxs_off_hook(wc, mod); fxs->off_hook = 1; } wctdm_proslic_check_oppending(wc, mod); if (time_after(wc->framecount, fxs->check_proslic)) { fxs->check_proslic = wc->framecount + 250; /* every 250ms */ wctdm_proslic_recheck_sanity(wc, mod); } if (SLIC_LF_RINGING == fxs->lasttxhook) { /* RINGing, prepare for OHT */ fxs->ohttimer = wc->framecount + OHT_TIMER; /* OHT mode when idle */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD; } else if (fxs->oht_active) { /* check if still OnHook */ if (!fxs->off_hook) { if (time_before(wc->framecount, fxs->ohttimer)) return; /* Switch to active */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; spin_lock(&wc->reglock); if (SLIC_LF_OHTRAN_FWD == fxs->lasttxhook) { /* Apply the change if appropriate */ fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_FWD; /* Data enqueued here */ mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d OnHookTransfer " "stop\n", mod->card); } } else if (SLIC_LF_OHTRAN_REV == fxs->lasttxhook) { /* Apply the change if appropriate */ fxs->lasttxhook = SLIC_LF_OPPENDING | SLIC_LF_ACTIVE_REV; /* Data enqueued here */ mod->sethook = CMD_WR(LINE_STATE, fxs->lasttxhook); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d OnHookTransfer " "stop\n", mod->card); } } spin_unlock(&wc->reglock); } else { fxs->oht_active = 0; /* Switch to active */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d OnHookTransfer abort\n", mod->card); } } } } /* 1ms interrupt */ static inline void wctdm_isr_misc(struct wctdm *wc) { int x; if (unlikely(!is_initialized(wc))) return; for (x = 0; x < wc->mods_per_board; x++) { struct wctdm_module *const mod = &wc->mods[x]; spin_lock(&wc->reglock); cmd_checkisr(wc, mod); spin_unlock(&wc->reglock); switch (mod->type) { case FXS: wctdm_isr_misc_fxs(wc, mod); break; case FXO: wctdm_voicedaa_check_hook(wc, mod); break; case QRV: wctdm_qrvdri_check_hook(wc, x); break; default: break; } } } static void handle_receive(struct voicebus *vb, struct list_head *buffers) { struct wctdm *wc = container_of(vb, struct wctdm, vb); struct vbb *vbb; list_for_each_entry(vbb, buffers, entry) wctdm_receiveprep(wc, vbb->data); } static void handle_transmit(struct voicebus *vb, struct list_head *buffers) { struct wctdm *wc = container_of(vb, struct wctdm, vb); struct vbb *vbb; list_for_each_entry(vbb, buffers, entry) { memset(vbb->data, 0, sizeof(vbb->data)); wctdm_transmitprep(wc, vbb->data); wctdm_isr_misc(wc); wc->framecount++; } } struct sframe_packet { struct list_head node; u8 sframe[SFRAME_SIZE]; }; /** * handle_hx8_bootmode_receive() - queue up the receive packet for later... * * This function is called from interrupt context and isn't optimal, but it's * not the main code path. */ static void handle_hx8_bootmode_receive(struct wctdm *wc, const void *vbb) { struct sframe_packet *frame; frame = kzalloc(sizeof(*frame), GFP_ATOMIC); if (unlikely(!frame)) { WARN_ON(1); return; } memcpy(frame->sframe, vbb, sizeof(frame->sframe)); spin_lock(&wc->frame_list_lock); list_add_tail(&frame->node, &wc->frame_list); spin_unlock(&wc->frame_list_lock); /* Wake up anyone waiting for a new packet. */ wake_up(&wc->regq); return; } static void handle_hx8_receive(struct voicebus *vb, struct list_head *buffers) { struct wctdm *wc = container_of(vb, struct wctdm, vb); struct vbb *vbb; list_for_each_entry(vbb, buffers, entry) handle_hx8_bootmode_receive(wc, vbb->data); } static void handle_hx8_transmit(struct voicebus *vb, struct list_head *buffers) { struct vbb *vbb, *n; list_for_each_entry_safe(vbb, n, buffers, entry) { list_del(&vbb->entry); dma_pool_free(vb->pool, vbb, vbb->dma_addr); } } static int wctdm_voicedaa_insane(struct wctdm *wc, struct wctdm_module *mod) { int blah; blah = wctdm_getreg(wc, mod, 2); if (blah != 0x3) return -2; blah = wctdm_getreg(wc, mod, 11); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "VoiceDAA System: %02x\n", blah & 0xf); } return 0; } static int wctdm_proslic_insane(struct wctdm *wc, struct wctdm_module *const mod) { int blah, reg1, insane_report; insane_report=0; blah = wctdm_getreg(wc, mod, 0); if (blah != 0xff && (debug & DEBUG_CARD)) { dev_info(&wc->vb.pdev->dev, "ProSLIC on module %d, product %d, " "version %d\n", mod->card, (blah & 0x30) >> 4, (blah & 0xf)); } #if 0 if ((blah & 0x30) >> 4) { dev_info(&wc->vb.pdev->dev, "ProSLIC on module %d is not a 3210.\n", mod->card); return -1; } #endif if (((blah & 0xf) == 0) || ((blah & 0xf) == 0xf)) { /* SLIC not loaded */ return -1; } /* let's be really sure this is an FXS before we continue */ reg1 = wctdm_getreg(wc, mod, 1); if ((0x80 != (blah & 0xf0)) || (0x88 != reg1)) { if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "DEBUG: not FXS b/c reg0=%x or " "reg1 != 0x88 (%x).\n", blah, reg1); } return -1; } blah = wctdm_getreg(wc, mod, 8); if (blah != 0x2) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d insane (1) %d should be 2\n", mod->card, blah); return -1; } else if (insane_report) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d Reg 8 Reads %d Expected " "is 0x2\n", mod->card, blah); } blah = wctdm_getreg(wc, mod, 64); if (blah != 0x0) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d insane (2)\n", mod->card); return -1; } else if (insane_report) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d Reg 64 Reads %d Expected " "is 0x0\n", mod->card, blah); } blah = wctdm_getreg(wc, mod, 11); if (blah != 0x33) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d insane (3)\n", mod->card); return -1; } else if (insane_report) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d Reg 11 Reads %d " "Expected is 0x33\n", mod->card, blah); } /* Just be sure it's setup right. */ wctdm_setreg(wc, mod, 30, 0); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "ProSLIC on module %d seems sane.\n", mod->card); } return 0; } static int wctdm_proslic_powerleak_test(struct wctdm *wc, struct wctdm_module *const mod) { unsigned long start; unsigned char vbat; /* Turn off linefeed */ wctdm_setreg(wc, mod, LINE_STATE, 0); /* Power down */ wctdm_setreg(wc, mod, 14, 0x10); start = jiffies; /* TODO: Why is this sleep necessary. Without it, the first read * comes back with a 0 value. */ msleep(20); while ((vbat = wctdm_getreg(wc, mod, 82)) > 0x6) { if (time_after(jiffies, start + HZ/4)) break; } if (vbat < 0x06) { dev_notice(&wc->vb.pdev->dev, "Excessive leakage detected on module %d: %d " "volts (%02x) after %d ms\n", mod->card, 376 * vbat / 1000, vbat, (int)((jiffies - start) * 1000 / HZ)); return -1; } else if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Post-leakage voltage: %d volts\n", 376 * vbat / 1000); } return 0; } static int wctdm_powerup_proslic(struct wctdm *wc, struct wctdm_module *mod, int fast) { unsigned char vbat; unsigned long origjiffies; int lim; /* Set period of DC-DC converter to 1/64 khz */ wctdm_setreg(wc, mod, 92, 0xc0 /* was 0xff */); /* Wait for VBat to powerup */ origjiffies = jiffies; /* Disable powerdown */ wctdm_setreg(wc, mod, 14, 0); /* If fast, don't bother checking anymore */ if (fast) return 0; while ((vbat = wctdm_getreg(wc, mod, 82)) < 0xc0) { /* Wait no more than 500ms */ if ((jiffies - origjiffies) > HZ/2) { break; } } if (vbat < 0xc0) { dev_notice(&wc->vb.pdev->dev, "ProSLIC on module %d failed to powerup within %d ms (%d mV only)\n\n -- DID YOU REMEMBER TO PLUG IN THE HD POWER CABLE TO THE TDM CARD??\n", mod->card, (int)(((jiffies - origjiffies) * 1000 / HZ)), vbat * 375); return -1; } else if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "ProSLIC on module %d powered up to -%d volts (%02x) " "in %d ms\n", mod->card, vbat * 376 / 1000, vbat, (int)(((jiffies - origjiffies) * 1000 / HZ))); } /* Proslic max allowed loop current, reg 71 LOOP_I_LIMIT */ /* If out of range, just set it to the default value */ lim = (loopcurrent - 20) / 3; if ( loopcurrent > 41 ) { lim = 0; if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "Loop current out of range! Setting to default 20mA!\n"); } else if (debug & DEBUG_CARD) dev_info(&wc->vb.pdev->dev, "Loop current set to %dmA!\n",(lim*3)+20); wctdm_setreg(wc, mod, LOOP_I_LIMIT, lim); /* Engage DC-DC converter */ wctdm_setreg(wc, mod, 93, 0x19 /* was 0x19 */); return 0; } static int wctdm_proslic_manual_calibrate(struct wctdm *wc, struct wctdm_module *const mod) { unsigned long origjiffies; unsigned char i; /* Disable all interupts in DR21-23 */ wctdm_setreg(wc, mod, 21, 0); wctdm_setreg(wc, mod, 22, 0); wctdm_setreg(wc, mod, 23, 0); wctdm_setreg(wc, mod, 64, 0); /* (0x18) Calibrations without the ADC and DAC offset and without * common mode calibration. */ wctdm_setreg(wc, mod, 97, 0x18); /* (0x47) Calibrate common mode and differential DAC mode DAC + ILIM */ wctdm_setreg(wc, mod, 96, 0x47); origjiffies=jiffies; while (wctdm_getreg(wc, mod, 96) != 0) { if ((jiffies-origjiffies) > 80) return -1; } //Initialized DR 98 and 99 to get consistant results. // 98 and 99 are the results registers and the search should have same intial conditions. /*******************************The following is the manual gain mismatch calibration****************************/ /*******************************This is also available as a function *******************************************/ msleep(10); wctdm_proslic_setreg_indirect(wc, mod, 88, 0); wctdm_proslic_setreg_indirect(wc, mod, 89, 0); wctdm_proslic_setreg_indirect(wc, mod, 90, 0); wctdm_proslic_setreg_indirect(wc, mod, 91, 0); wctdm_proslic_setreg_indirect(wc, mod, 92, 0); wctdm_proslic_setreg_indirect(wc, mod, 93, 0); /* This is necessary if the calibration occurs other than at reset */ wctdm_setreg(wc, mod, 98, 0x10); wctdm_setreg(wc, mod, 99, 0x10); for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, mod, 98, i); msleep(40); if ((wctdm_getreg(wc, mod, 88)) == 0) break; } // for for ( i=0x1f; i>0; i--) { wctdm_setreg(wc, mod, 99, i); msleep(40); if ((wctdm_getreg(wc, mod, 89)) == 0) break; }//for /*******************************The preceding is the manual gain mismatch calibration****************************/ /**********************************The following is the longitudinal Balance Cal***********************************/ wctdm_setreg(wc, mod, 64, 1); msleep(100); wctdm_setreg(wc, mod, 64, 0); /* enable interrupt for the balance Cal */ wctdm_setreg(wc, mod, 23, 0x4); /* this is a singular calibration bit for longitudinal calibration */ wctdm_setreg(wc, mod, 97, 0x1); wctdm_setreg(wc, mod, 96, 0x40); wctdm_getreg(wc, mod, 96); /* Read Reg 96 just cause */ wctdm_setreg(wc, mod, 21, 0xFF); wctdm_setreg(wc, mod, 22, 0xFF); wctdm_setreg(wc, mod, 23, 0xFF); /**The preceding is the longitudinal Balance Cal***/ return(0); } static int wctdm_proslic_calibrate(struct wctdm *wc, struct wctdm_module *mod) { unsigned long origjiffies; int x; /* Perform all calibrations */ wctdm_setreg(wc, mod, 97, 0x1f); /* Begin, no speedup */ wctdm_setreg(wc, mod, 96, 0x5f); /* Wait for it to finish */ origjiffies = jiffies; while (wctdm_getreg(wc, mod, 96)) { if (time_after(jiffies, (origjiffies + (2*HZ)))) { dev_notice(&wc->vb.pdev->dev, "Timeout waiting for calibration of " "module %d\n", mod->card); return -1; } } if (debug & DEBUG_CARD) { /* Print calibration parameters */ dev_info(&wc->vb.pdev->dev, "Calibration Vector Regs 98 - 107:\n"); for (x=98;x<108;x++) { dev_info(&wc->vb.pdev->dev, "%d: %02x\n", x, wctdm_getreg(wc, mod, x)); } } return 0; } /********************************************************************* * Set the hwgain on the analog modules * * card = the card position for this module (0-23) * gain = gain in dB x10 (e.g. -3.5dB would be gain=-35) * tx = (0 for rx; 1 for tx) * *******************************************************************/ static int wctdm_set_hwgain(struct wctdm *wc, struct wctdm_module *mod, __s32 gain, __u32 tx) { if (mod->type != FXO) { dev_notice(&wc->vb.pdev->dev, "Cannot adjust gain. Unsupported module type!\n"); return -1; } if (tx) { if (debug) { dev_info(&wc->vb.pdev->dev, "setting FXO tx gain for card=%d to %d\n", mod->card, gain); } if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, mod, 38, 16 + (gain / -10)); wctdm_setreg(wc, mod, 40, 16 + (-gain % 10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, mod, 38, gain/10); wctdm_setreg(wc, mod, 40, (gain%10)); } else { dev_notice(&wc->vb.pdev->dev, "FXO tx gain is out of range (%d)\n", gain); return -1; } } else { /* rx */ if (debug) { dev_info(&wc->vb.pdev->dev, "setting FXO rx gain for card=%d to %d\n", mod->card, gain); } if (gain >= -150 && gain <= 0) { wctdm_setreg(wc, mod, 39, 16 + (gain / -10)); wctdm_setreg(wc, mod, 41, 16 + (-gain % 10)); } else if (gain <= 120 && gain > 0) { wctdm_setreg(wc, mod, 39, gain/10); wctdm_setreg(wc, mod, 41, (gain%10)); } else { dev_notice(&wc->vb.pdev->dev, "FXO rx gain is out of range (%d)\n", gain); return -1; } } return 0; } static int set_lasttxhook_interruptible(struct wctdm *wc, struct fxs *fxs, unsigned newval, int *psethook) { int res = 0; unsigned long flags; int timeout = 0; do { spin_lock_irqsave(&wc->reglock, flags); if (SLIC_LF_OPPENDING & fxs->lasttxhook) { spin_unlock_irqrestore(&wc->reglock, flags); if (timeout++ > 100) return -1; msleep(1); } else { fxs->lasttxhook = (newval & SLIC_LF_SETMASK) | SLIC_LF_OPPENDING; *psethook = CMD_WR(LINE_STATE, fxs->lasttxhook); spin_unlock_irqrestore(&wc->reglock, flags); break; } } while (1); return res; } /* Must be called from within an interruptible context */ static int set_vmwi(struct wctdm *wc, struct wctdm_module *const mod) { int x; struct fxs *const fxs = &mod->mod.fxs; /* Presently only supports line reversal MWI */ if ((fxs->vmwi_active_messages) && (fxs->vmwisetting.vmwi_type & DAHDI_VMWI_LREV)) fxs->vmwi_linereverse = 1; else fxs->vmwi_linereverse = 0; /* Set line polarity for new VMWI state */ if (POLARITY_XOR(fxs)) { fxs->idletxhookstate |= SLIC_LF_REVMASK; /* Do not set while currently ringing or open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) && ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) { x = fxs->lasttxhook; x |= SLIC_LF_REVMASK; set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook); } } else { fxs->idletxhookstate &= ~SLIC_LF_REVMASK; /* Do not set while currently ringing or open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_RINGING) && ((fxs->lasttxhook & SLIC_LF_SETMASK) != SLIC_LF_OPEN)) { x = fxs->lasttxhook; x &= ~SLIC_LF_REVMASK; set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook); } } if (debug) { dev_info(&wc->vb.pdev->dev, "Setting VMWI on channel %d, messages=%d, lrev=%d\n", mod->card, fxs->vmwi_active_messages, fxs->vmwi_linereverse); } return 0; } static void wctdm_voicedaa_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts) { wctdm_setreg(wc, mod, 34, (ts * 8) & 0xff); wctdm_setreg(wc, mod, 35, (ts * 8) >> 8); wctdm_setreg(wc, mod, 36, (ts * 8) & 0xff); wctdm_setreg(wc, mod, 37, (ts * 8) >> 8); if (debug) { dev_info(&wc->vb.pdev->dev, "voicedaa: card %d new timeslot: %d\n", mod->card + 1, ts); } } static int wctdm_init_voicedaa(struct wctdm *wc, struct wctdm_module *mod, int fast, int manual, int sane) { unsigned char reg16=0, reg26=0, reg30=0, reg31=0; unsigned long flags; long newjiffies; #if 0 /* TODO */ if ((wc->mods[card & 0xfc].type == QRV) || (wc->mods[card & 0xfc].type == BRI)) return -2; #endif spin_lock_irqsave(&wc->reglock, flags); mod->type = NONE; spin_unlock_irqrestore(&wc->reglock, flags); msleep(20); spin_lock_irqsave(&wc->reglock, flags); mod->type = FXO; spin_unlock_irqrestore(&wc->reglock, flags); msleep(20); memset(&mod->mod.fxo, 0, sizeof(mod->mod.fxo)); if (!sane && wctdm_voicedaa_insane(wc, mod)) return -2; /* Software reset */ wctdm_setreg(wc, mod, 1, 0x80); msleep(100); /* Set On-hook speed, Ringer impedence, and ringer threshold */ reg16 |= (fxo_modes[_opermode].ohs << 6); reg16 |= (fxo_modes[_opermode].rz << 1); reg16 |= (fxo_modes[_opermode].rt); wctdm_setreg(wc, mod, 16, reg16); /* Enable ring detector full-wave rectifier mode */ wctdm_setreg(wc, mod, 18, 2); wctdm_setreg(wc, mod, 24, 0); /* Set DC Termination: Tip/Ring voltage adjust, minimum operational current, current limitation */ reg26 |= (fxo_modes[_opermode].dcv << 6); reg26 |= (fxo_modes[_opermode].mini << 4); reg26 |= (fxo_modes[_opermode].ilim << 1); wctdm_setreg(wc, mod, 26, reg26); /* Set AC Impedence */ reg30 = (fxo_modes[_opermode].acim); wctdm_setreg(wc, mod, 30, reg30); /* Misc. DAA parameters */ /* If fast pickup is set, then the off hook counter will be set to 8 * ms, otherwise 128 ms. */ reg31 = (fastpickup) ? 0xe3 : 0xa3; reg31 |= (fxo_modes[_opermode].ohs2 << 3); wctdm_setreg(wc, mod, 31, reg31); wctdm_voicedaa_set_ts(wc, mod, mod->card); /* Enable ISO-Cap */ wctdm_setreg(wc, mod, 6, 0x00); /* Turn off the calibration delay when fastpickup is enabled. */ if (fastpickup) wctdm_setreg(wc, mod, 17, wctdm_getreg(wc, mod, 17) | 0x20); /* Wait 1000ms for ISO-cap to come up */ newjiffies = jiffies; newjiffies += 2 * HZ; while ((jiffies < newjiffies) && !(wctdm_getreg(wc, mod, 11) & 0xf0)) msleep(100); if (!(wctdm_getreg(wc, mod, 11) & 0xf0)) { dev_notice(&wc->vb.pdev->dev, "VoiceDAA did not bring up ISO link properly!\n"); return -1; } if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "ISO-Cap is now up, line side: %02x rev %02x\n", wctdm_getreg(wc, mod, 11) >> 4, (wctdm_getreg(wc, mod, 13) >> 2) & 0xf); } /* Enable on-hook line monitor */ wctdm_setreg(wc, mod, 5, 0x08); /* Take values for fxotxgain and fxorxgain and apply them to module */ wctdm_set_hwgain(wc, mod, fxotxgain, 1); wctdm_set_hwgain(wc, mod, fxorxgain, 0); #ifdef DEBUG if (digitalloopback) { dev_info(&wc->vb.pdev->dev, "Turning on digital loopback for port %d.\n", mod->card + 1); wctdm_setreg(wc, mod, 10, 0x01); } #endif if (debug) { dev_info(&wc->vb.pdev->dev, "DEBUG fxotxgain:%i.%i fxorxgain:%i.%i\n", (wctdm_getreg(wc, mod, 38)/16) ? -(wctdm_getreg(wc, mod, 38) - 16) : wctdm_getreg(wc, mod, 38), (wctdm_getreg(wc, mod, 40)/16) ? -(wctdm_getreg(wc, mod, 40) - 16) : wctdm_getreg(wc, mod, 40), (wctdm_getreg(wc, mod, 39)/16) ? -(wctdm_getreg(wc, mod, 39) - 16) : wctdm_getreg(wc, mod, 39), (wctdm_getreg(wc, mod, 41)/16) ? -(wctdm_getreg(wc, mod, 41) - 16) : wctdm_getreg(wc, mod, 41)); } return 0; } static void wctdm_proslic_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts) { wctdm_setreg(wc, mod, 2, (ts * 8) & 0xff); /* Tx Start low byte 0 */ wctdm_setreg(wc, mod, 3, (ts * 8) >> 8); /* Tx Start high byte 0 */ wctdm_setreg(wc, mod, 4, (ts * 8) & 0xff); /* Rx Start low byte 0 */ wctdm_setreg(wc, mod, 5, (ts * 8) >> 8); /* Rx Start high byte 0 */ if (debug) { dev_info(&wc->vb.pdev->dev, "proslic: card %d new timeslot: %d\n", mod->card + 1, ts); } } static int wctdm_init_proslic(struct wctdm *wc, struct wctdm_module *const mod, int fast, int manual, int sane) { struct fxs *const fxs = &mod->mod.fxs; unsigned short tmp[5]; unsigned long flags; unsigned char r19,r9; int x; int fxsmode=0; int addresses[NUM_CAL_REGS]; #if 0 /* TODO */ if (wc->mods[mod->card & 0xfc].type == QRV) return -2; #endif spin_lock_irqsave(&wc->reglock, flags); mod->type = FXS; spin_unlock_irqrestore(&wc->reglock, flags); /* msleep(100); */ /* Sanity check the ProSLIC */ if (!sane && wctdm_proslic_insane(wc, mod)) return -2; /* Initialize VMWI settings */ memset(fxs, 0, sizeof(*fxs)); /* By default, don't send on hook */ if (!reversepolarity != !fxs->reversepolarity) fxs->idletxhookstate = SLIC_LF_ACTIVE_REV; else fxs->idletxhookstate = SLIC_LF_ACTIVE_FWD; if (sane) { /* Make sure we turn off the DC->DC converter to prevent anything from blowing up */ wctdm_setreg(wc, mod, 14, 0x10); } if (wctdm_proslic_init_indirect_regs(wc, mod)) { dev_info(&wc->vb.pdev->dev, "Indirect Registers failed to initialize on " "module %d.\n", mod->card); return -1; } /* Clear scratch pad area */ wctdm_proslic_setreg_indirect(wc, mod, 97, 0); /* Clear digital loopback */ wctdm_setreg(wc, mod, 8, 0); /* Revision C optimization */ wctdm_setreg(wc, mod, 108, 0xeb); /* Disable automatic VBat switching for safety to prevent * Q7 from accidently turning on and burning out. * If pulse dialing has trouble at high REN loads change this to 0x17 */ wctdm_setreg(wc, mod, 67, 0x07); /* Turn off Q7 */ wctdm_setreg(wc, mod, 66, 1); /* Flush ProSLIC digital filters by setting to clear, while saving old values */ for (x=0;x<5;x++) { tmp[x] = wctdm_proslic_getreg_indirect(wc, mod, x + 35); wctdm_proslic_setreg_indirect(wc, mod, x + 35, 0x8000); } /* Power up the DC-DC converter */ if (wctdm_powerup_proslic(wc, mod, fast)) { dev_notice(&wc->vb.pdev->dev, "Unable to do INITIAL ProSLIC powerup on " "module %d\n", mod->card); return -1; } if (!fast) { /* Check for power leaks */ if (wctdm_proslic_powerleak_test(wc, mod)) { dev_notice(&wc->vb.pdev->dev, "ProSLIC module %d failed leakage test. " "Check for short circuit\n", mod->card); } /* Power up again */ if (wctdm_powerup_proslic(wc, mod, fast)) { dev_notice(&wc->vb.pdev->dev, "Unable to do FINAL ProSLIC powerup on " "module %d\n", mod->card); return -1; } #ifndef NO_CALIBRATION /* Perform calibration */ if (manual) { if (wctdm_proslic_manual_calibrate(wc, mod)) { //dev_notice(&wc->vb.pdev->dev, "Proslic failed on Manual Calibration\n"); if (wctdm_proslic_manual_calibrate(wc, mod)) { dev_notice(&wc->vb.pdev->dev, "Proslic Failed on Second Attempt to Calibrate Manually. (Try -DNO_CALIBRATION in Makefile)\n"); return -1; } dev_info(&wc->vb.pdev->dev, "Proslic Passed Manual Calibration on Second Attempt\n"); } } else { if (wctdm_proslic_calibrate(wc, mod)) { //dev_notice(&wc->vb.pdev->dev, "ProSlic died on Auto Calibration.\n"); if (wctdm_proslic_calibrate(wc, mod)) { dev_notice(&wc->vb.pdev->dev, "Proslic Failed on Second Attempt to Auto Calibrate\n"); return -1; } dev_info(&wc->vb.pdev->dev, "Proslic Passed Auto Calibration on Second Attempt\n"); } } /* Perform DC-DC calibration */ wctdm_setreg(wc, mod, 93, 0x99); r19 = wctdm_getreg(wc, mod, 107); if ((r19 < 0x2) || (r19 > 0xd)) { dev_notice(&wc->vb.pdev->dev, "DC-DC cal has a surprising direct 107 of 0x%02x!\n", r19); wctdm_setreg(wc, mod, 107, 0x8); } /* Save calibration vectors */ for (x = 0; x < NUM_CAL_REGS; x++) addresses[x] = 96 + x; wctdm_getregs(wc, mod, addresses, ARRAY_SIZE(addresses)); for (x = 0; x < NUM_CAL_REGS; x++) fxs->calregs.vals[x] = addresses[x]; #endif } else { /* Restore calibration registers */ for (x = 0; x < NUM_CAL_REGS; x++) wctdm_setreg(wc, mod, 96 + x, fxs->calregs.vals[x]); } /* Calibration complete, restore original values */ for (x=0;x<5;x++) { wctdm_proslic_setreg_indirect(wc, mod, x + 35, tmp[x]); } if (wctdm_proslic_verify_indirect_regs(wc, mod)) { dev_info(&wc->vb.pdev->dev, "Indirect Registers failed verification.\n"); return -1; } #if 0 /* Disable Auto Power Alarm Detect and other "features" */ wctdm_setreg(wc, card, 67, 0x0e); blah = wctdm_getreg(wc, card, 67); #endif #if 0 if (wctdm_proslic_setreg_indirect(wc, card, 97, 0x0)) { // Stanley: for the bad recording fix dev_info(&wc->vb.pdev->dev, "ProSlic IndirectReg Died.\n"); return -1; } #endif /* U-Law 8-bit interface */ wctdm_proslic_set_ts(wc, mod, mod->card); wctdm_setreg(wc, mod, 18, 0xff); /* clear all interrupt */ wctdm_setreg(wc, mod, 19, 0xff); wctdm_setreg(wc, mod, 20, 0xff); wctdm_setreg(wc, mod, 22, 0xff); wctdm_setreg(wc, mod, 73, 0x04); wctdm_setreg(wc, mod, 69, 0x4); if (fxshonormode) { static const int ACIM2TISS[16] = { 0x0, 0x1, 0x4, 0x5, 0x7, 0x0, 0x0, 0x6, 0x0, 0x0, 0x0, 0x2, 0x0, 0x3 }; fxsmode = ACIM2TISS[fxo_modes[_opermode].acim]; wctdm_setreg(wc, mod, 10, 0x08 | fxsmode); if (fxo_modes[_opermode].ring_osc) { wctdm_proslic_setreg_indirect(wc, mod, 20, fxo_modes[_opermode].ring_osc); } if (fxo_modes[_opermode].ring_x) { wctdm_proslic_setreg_indirect(wc, mod, 21, fxo_modes[_opermode].ring_x); } } if (lowpower) wctdm_setreg(wc, mod, 72, 0x10); #if 0 wctdm_setreg(wc, card, 21, 0x00); // enable interrupt wctdm_setreg(wc, card, 22, 0x02); // Loop detection interrupt wctdm_setreg(wc, card, 23, 0x01); // DTMF detection interrupt #endif #if 0 /* Enable loopback */ wctdm_setreg(wc, card, 8, 0x2); wctdm_setreg(wc, card, 14, 0x0); wctdm_setreg(wc, card, 64, 0x0); wctdm_setreg(wc, card, 1, 0x08); #endif if (fastringer) { /* Speed up Ringer */ wctdm_proslic_setreg_indirect(wc, mod, 20, 0x7e6d); wctdm_proslic_setreg_indirect(wc, mod, 21, 0x01b9); /* Beef up Ringing voltage to 89V */ if (boostringer) { wctdm_setreg(wc, mod, 74, 0x3f); if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x247)) return -1; dev_info(&wc->vb.pdev->dev, "Boosting fast ringer on slot %d (89V peak)\n", mod->card + 1); } else if (lowpower) { if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x14b)) return -1; dev_info(&wc->vb.pdev->dev, "Reducing fast ring power on slot %d " "(50V peak)\n", mod->card + 1); } else dev_info(&wc->vb.pdev->dev, "Speeding up ringer on slot %d (25Hz)\n", mod->card + 1); } else { /* Beef up Ringing voltage to 89V */ if (boostringer) { wctdm_setreg(wc, mod, 74, 0x3f); if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x1d1)) return -1; dev_info(&wc->vb.pdev->dev, "Boosting ringer on slot %d (89V peak)\n", mod->card + 1); } else if (lowpower) { if (wctdm_proslic_setreg_indirect(wc, mod, 21, 0x108)) return -1; dev_info(&wc->vb.pdev->dev, "Reducing ring power on slot %d " "(50V peak)\n", mod->card + 1); } } if (fxstxgain || fxsrxgain) { r9 = wctdm_getreg(wc, mod, 9); switch (fxstxgain) { case 35: r9+=8; break; case -35: r9+=4; break; case 0: break; } switch (fxsrxgain) { case 35: r9+=2; break; case -35: r9+=1; break; case 0: break; } wctdm_setreg(wc, mod, 9, r9); } if (debug) { dev_info(&wc->vb.pdev->dev, "DEBUG: fxstxgain:%s fxsrxgain:%s\n", ((wctdm_getreg(wc, mod, 9) / 8) == 1) ? "3.5" : (((wctdm_getreg(wc, mod, 9) / 4) == 1) ? "-3.5" : "0.0"), ((wctdm_getreg(wc, mod, 9) / 2) == 1) ? "3.5" : ((wctdm_getreg(wc, mod, 9) % 2) ? "-3.5" : "0.0")); } fxs->lasttxhook = fxs->idletxhookstate; wctdm_setreg(wc, mod, LINE_STATE, fxs->lasttxhook); /* Preset the shadow register so that we won't get a power alarm when * we finish initialization, otherwise the line state register may not * have been read yet. */ fxs->linefeed_control_shadow = fxs->lasttxhook; return 0; } static void wctdm_qrvdri_set_ts(struct wctdm *wc, struct wctdm_module *mod, int ts) { wctdm_setreg(wc, mod, 0x13, ts + 0x80); /* codec 2 tx, ts0 */ wctdm_setreg(wc, mod, 0x17, ts + 0x80); /* codec 0 rx, ts0 */ wctdm_setreg(wc, mod, 0x14, ts + 0x81); /* codec 1 tx, ts1 */ wctdm_setreg(wc, mod, 0x18, ts + 0x81); /* codec 1 rx, ts1 */ if (debug) { dev_info(&wc->vb.pdev->dev, "qrvdri: card %d new timeslot: %d\n", mod->card + 1, ts); } } static int wctdm_init_qrvdri(struct wctdm *wc, int card) { struct wctdm_module *const mod = &wc->mods[card]; unsigned char x,y; if (BRI == wc->mods[card & 0xfc].type) return -2; /* have to set this, at least for now */ mod->type = QRV; if (!(card & 3)) { /* if at base of card, reset and write it */ struct qrv *const qrv = &mod->mod.qrv; struct qrv *const qrv1 = &wc->mods[card + 1].mod.qrv; struct qrv *const qrv2 = &wc->mods[card + 2].mod.qrv; struct qrv *const qrv3 = &wc->mods[card + 3].mod.qrv; wctdm_setreg(wc, mod, 0, 0x80); wctdm_setreg(wc, mod, 0, 0x55); wctdm_setreg(wc, mod, 1, 0x69); qrv->hook = qrv1->hook = 0; qrv2->hook = qrv3->hook = 0xff; qrv->debouncetime = qrv1->debouncetime = QRV_DEBOUNCETIME; qrv->debtime = qrv1->debtime = 0; qrv->radmode = qrv1->radmode = 0; qrv->txgain = qrv1->txgain = 3599; qrv->rxgain = qrv1->rxgain = 1199; } else { /* channel is on same card as base, no need to test */ if (wc->mods[card & 0x7c].type == QRV) { /* only lower 2 are valid */ if (!(card & 2)) return 0; } mod->type = NONE; return 1; } x = wctdm_getreg(wc, mod, 0); y = wctdm_getreg(wc, mod, 1); /* if not a QRV card, return as such */ if ((x != 0x55) || (y != 0x69)) { mod->type = NONE; return 1; } for (x = 0; x < 0x30; x++) { if ((x >= 0x1c) && (x <= 0x1e)) wctdm_setreg(wc, mod, x, 0xff); else wctdm_setreg(wc, mod, x, 0); } wctdm_setreg(wc, mod, 0, 0x80); msleep(100); wctdm_setreg(wc, mod, 0, 0x10); wctdm_setreg(wc, mod, 0, 0x10); msleep(100); /* set up modes */ wctdm_setreg(wc, mod, 0, 0x1c); /* set up I/O directions */ wctdm_setreg(wc, mod, 1, 0x33); wctdm_setreg(wc, mod, 2, 0x0f); wctdm_setreg(wc, mod, 5, 0x0f); /* set up I/O to quiescent state */ wctdm_setreg(wc, mod, 3, 0x11); /* D0-7 */ wctdm_setreg(wc, mod, 4, 0xa); /* D8-11 */ wctdm_setreg(wc, mod, 7, 0); /* CS outputs */ wctdm_qrvdri_set_ts(wc, mod, card); /* set up for max gains */ wctdm_setreg(wc, mod, 0x26, 0x24); wctdm_setreg(wc, mod, 0x27, 0x24); wctdm_setreg(wc, mod, 0x0b, 0x01); /* "Transmit" gain codec 0 */ wctdm_setreg(wc, mod, 0x0c, 0x01); /* "Transmit" gain codec 1 */ wctdm_setreg(wc, mod, 0x0f, 0xff); /* "Receive" gain codec 0 */ wctdm_setreg(wc, mod, 0x10, 0xff); /* "Receive" gain codec 1 */ return 0; } static void qrv_dosetup(struct dahdi_chan *chan, struct wctdm *wc) { struct wctdm_module *qrvmod; struct wctdm_module *nextqrvmod; int qrvcard; unsigned char r; long l; /* actually do something with the values */ qrvcard = (chan->chanpos - 1) & 0xfc; qrvmod = &wc->mods[qrvcard]; nextqrvmod = &wc->mods[qrvcard + 1]; if (debug) { dev_info(&wc->vb.pdev->dev, "@@@@@ radmodes: %d,%d rxgains: %d,%d " "txgains: %d,%d\n", wc->mods[qrvcard].mod.qrv.radmode, nextqrvmod->mod.qrv.radmode, wc->mods[qrvcard].mod.qrv.rxgain, nextqrvmod->mod.qrv.rxgain, wc->mods[qrvcard].mod.qrv.txgain, nextqrvmod->mod.qrv.txgain); } r = 0; if (qrvmod->mod.qrv.radmode & RADMODE_DEEMP) r |= 4; if (nextqrvmod->mod.qrv.radmode & RADMODE_DEEMP) r |= 8; if (qrvmod->mod.qrv.rxgain < 1200) r |= 1; if (nextqrvmod->mod.qrv.rxgain < 1200) r |= 2; wctdm_setreg(wc, qrvmod, 7, r); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 7 to %02x hex\n",r); r = 0; if (qrvmod->mod.qrv.radmode & RADMODE_PREEMP) r |= 3; else if (qrvmod->mod.qrv.txgain >= 3600) r |= 1; else if (qrvmod->mod.qrv.txgain >= 1200) r |= 2; if (nextqrvmod->mod.qrv.radmode & RADMODE_PREEMP) r |= 0xc; else if (nextqrvmod->mod.qrv.txgain >= 3600) r |= 4; else if (nextqrvmod->mod.qrv.txgain >= 1200) r |= 8; wctdm_setreg(wc, qrvmod, 4, r); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 4 to %02x hex\n",r); r = 0; if (qrvmod->mod.qrv.rxgain >= 2400) r |= 1; if (nextqrvmod->mod.qrv.rxgain >= 2400) r |= 2; wctdm_setreg(wc, qrvmod, 0x25, r); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x25 to %02x hex\n",r); r = 0; if (qrvmod->mod.qrv.txgain < 2400) r |= 1; else r |= 4; if (nextqrvmod->mod.qrv.txgain < 2400) r |= 8; else r |= 0x20; wctdm_setreg(wc, qrvmod, 0x26, r); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x26 to %02x hex\n",r); l = ((long)(qrvmod->mod.qrv.rxgain % 1200) * 10000) / 46875; if (l == 0) l = 1; if (qrvmod->mod.qrv.rxgain >= 2400) l += 181; wctdm_setreg(wc, qrvmod, 0x0b, (unsigned char)l); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0b to %02x hex\n",(unsigned char)l); l = ((long)(nextqrvmod->mod.qrv.rxgain % 1200) * 10000) / 46875; if (l == 0) l = 1; if (nextqrvmod->mod.qrv.rxgain >= 2400) l += 181; wctdm_setreg(wc, qrvmod, 0x0c, (unsigned char)l); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0c to %02x hex\n",(unsigned char)l); l = ((long)(qrvmod->mod.qrv.txgain % 1200) * 10000) / 46875; if (l == 0) l = 1; wctdm_setreg(wc, qrvmod, 0x0f, (unsigned char)l); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x0f to %02x hex\n", (unsigned char)l); l = ((long)(nextqrvmod->mod.qrv.txgain % 1200) * 10000) / 46875; if (l == 0) l = 1; wctdm_setreg(wc, qrvmod, 0x10, (unsigned char)l); if (debug) dev_info(&wc->vb.pdev->dev, "@@@@@ setting reg 0x10 to %02x hex\n",(unsigned char)l); return; } static void wctdm24xxp_get_fxs_regs(struct wctdm *wc, struct wctdm_module *mod, struct wctdm_regs *regs) { int x; for (x = 0; x < NUM_INDIRECT_REGS; x++) regs->indirect[x] = wctdm_proslic_getreg_indirect(wc, mod, x); for (x = 0; x < NUM_REGS; x++) regs->direct[x] = wctdm_getreg(wc, mod, x); } static void wctdm24xxp_get_fxo_regs(struct wctdm *wc, struct wctdm_module *mod, struct wctdm_regs *regs) { int x; for (x = 0; x < NUM_FXO_REGS; x++) regs->direct[x] = wctdm_getreg(wc, mod, x); } static void wctdm24xxp_get_qrv_regs(struct wctdm *wc, struct wctdm_module *mod, struct wctdm_regs *regs) { int x; for (x = 0; x < 0x32; x++) regs->direct[x] = wctdm_getreg(wc, mod, x); } static int wctdm_ioctl(struct dahdi_chan *chan, unsigned int cmd, unsigned long data) { struct wctdm_stats stats; struct wctdm_regop regop; struct wctdm_echo_coefs echoregs; struct dahdi_hwgain hwgain; struct wctdm *wc = chan->pvt; int x; union { struct dahdi_radio_stat s; struct dahdi_radio_param p; } stack; struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1]; struct fxs *const fxs = &mod->mod.fxs; switch (cmd) { case DAHDI_ONHOOKTRANSFER: if (mod->type != FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; /* Active mode when idle */ fxs->idletxhookstate = POLARITY_XOR(fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_ACTIVE_FWD) || ((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_ACTIVE_REV)) { int res; res = set_lasttxhook_interruptible(wc, fxs, (POLARITY_XOR(fxs) ? SLIC_LF_OHTRAN_REV : SLIC_LF_OHTRAN_FWD), &mod->sethook); if (debug & DEBUG_CARD) { if (res) { dev_info(&wc->vb.pdev->dev, "Channel %d TIMEOUT: " "OnHookTransfer start\n", chan->chanpos - 1); } else { dev_info(&wc->vb.pdev->dev, "Channel %d OnHookTransfer " "start\n", chan->chanpos - 1); } } } fxs->ohttimer = wc->framecount + x; fxs->oht_active = 1; break; case DAHDI_VMWI_CONFIG: if (mod->type != FXS) return -EINVAL; if (copy_from_user(&(fxs->vmwisetting), (__user void *)data, sizeof(fxs->vmwisetting))) return -EFAULT; set_vmwi(wc, mod); break; case DAHDI_VMWI: if (mod->type != FXS) return -EINVAL; if (get_user(x, (__user int *) data)) return -EFAULT; if (0 > x) return -EFAULT; fxs->vmwi_active_messages = x; set_vmwi(wc, mod); break; case WCTDM_GET_STATS: if (mod->type == FXS) { stats.tipvolt = wctdm_getreg(wc, mod, 80) * -376; stats.ringvolt = wctdm_getreg(wc, mod, 81) * -376; stats.batvolt = wctdm_getreg(wc, mod, 82) * -376; } else if (mod->type == FXO) { stats.tipvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000; stats.ringvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000; stats.batvolt = (s8)wctdm_getreg(wc, mod, 29) * 1000; } else return -EINVAL; if (copy_to_user((__user void *) data, &stats, sizeof(stats))) return -EFAULT; break; case WCTDM_GET_REGS: { struct wctdm_regs *regs = kzalloc(sizeof(*regs), GFP_KERNEL); if (!regs) return -ENOMEM; if (mod->type == FXS) wctdm24xxp_get_fxs_regs(wc, mod, regs); else if (mod->type == QRV) wctdm24xxp_get_qrv_regs(wc, mod, regs); else wctdm24xxp_get_fxo_regs(wc, mod, regs); if (copy_to_user((__user void *)data, regs, sizeof(*regs))) { kfree(regs); return -EFAULT; } kfree(regs); break; } case WCTDM_SET_REG: if (copy_from_user(®op, (__user void *) data, sizeof(regop))) return -EFAULT; if (regop.indirect) { if (mod->type != FXS) return -EINVAL; dev_info(&wc->vb.pdev->dev, "Setting indirect %d to 0x%04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_proslic_setreg_indirect(wc, mod, regop.reg, regop.val); } else { regop.val &= 0xff; if (regop.reg == LINE_STATE) { /* Set feedback register to indicate the new state that is being set */ fxs->lasttxhook = (regop.val & 0x0f) | SLIC_LF_OPPENDING; } dev_info(&wc->vb.pdev->dev, "Setting direct %d to %04x on %d\n", regop.reg, regop.val, chan->chanpos); wctdm_setreg(wc, mod, regop.reg, regop.val); } break; case WCTDM_SET_ECHOTUNE: dev_info(&wc->vb.pdev->dev, "-- Setting echo registers: \n"); if (copy_from_user(&echoregs, (__user void *) data, sizeof(echoregs))) return -EFAULT; if (mod->type == FXO) { /* Set the ACIM register */ wctdm_setreg(wc, mod, 30, echoregs.acim); /* Set the digital echo canceller registers */ wctdm_setreg(wc, mod, 45, echoregs.coef1); wctdm_setreg(wc, mod, 46, echoregs.coef2); wctdm_setreg(wc, mod, 47, echoregs.coef3); wctdm_setreg(wc, mod, 48, echoregs.coef4); wctdm_setreg(wc, mod, 49, echoregs.coef5); wctdm_setreg(wc, mod, 50, echoregs.coef6); wctdm_setreg(wc, mod, 51, echoregs.coef7); wctdm_setreg(wc, mod, 52, echoregs.coef8); dev_info(&wc->vb.pdev->dev, "-- Set echo registers successfully\n"); break; } else { return -EINVAL; } break; case DAHDI_SET_HWGAIN: if (copy_from_user(&hwgain, (__user void *) data, sizeof(hwgain))) return -EFAULT; wctdm_set_hwgain(wc, mod, hwgain.newgain, hwgain.tx); if (debug) dev_info(&wc->vb.pdev->dev, "Setting hwgain on channel %d to %d for %s direction\n", chan->chanpos-1, hwgain.newgain, hwgain.tx ? "tx" : "rx"); break; #ifdef VPM_SUPPORT case DAHDI_TONEDETECT: /* Hardware DTMF detection is not supported. */ return -ENOSYS; #endif case DAHDI_SETPOLARITY: if (get_user(x, (__user int *) data)) return -EFAULT; if (mod->type != FXS) return -EINVAL; /* Can't change polarity while ringing or when open */ if (((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_RINGING) || ((fxs->lasttxhook & SLIC_LF_SETMASK) == SLIC_LF_OPEN)) { if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d Unable to Set Polarity\n", chan->chanpos - 1); } return -EINVAL; } fxs->reversepolarity = (x) ? 1 : 0; if (POLARITY_XOR(fxs)) { fxs->idletxhookstate |= SLIC_LF_REVMASK; x = fxs->lasttxhook & SLIC_LF_SETMASK; x |= SLIC_LF_REVMASK; if (x != fxs->lasttxhook) { x = set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook); if ((debug & DEBUG_CARD) && x) { dev_info(&wc->vb.pdev->dev, "Channel %d TIMEOUT: Set Reverse " "Polarity\n", chan->chanpos - 1); } else if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d Set Reverse Polarity\n", chan->chanpos - 1); } } } else { fxs->idletxhookstate &= ~SLIC_LF_REVMASK; x = fxs->lasttxhook & SLIC_LF_SETMASK; x &= ~SLIC_LF_REVMASK; if (x != fxs->lasttxhook) { x = set_lasttxhook_interruptible(wc, fxs, x, &mod->sethook); if ((debug & DEBUG_CARD) & x) { dev_info(&wc->vb.pdev->dev, "Channel %d TIMEOUT: Set Normal " "Polarity\n", chan->chanpos - 1); } else if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Channel %d Set Normal Polarity\n", chan->chanpos - 1); } } } break; case DAHDI_RADIO_GETPARAM: if (mod->type != QRV) return -ENOTTY; if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p))) return -EFAULT; stack.p.data = 0; /* start with 0 value in output */ switch(stack.p.radpar) { case DAHDI_RADPAR_INVERTCOR: if (mod->mod.qrv.radmode & RADMODE_INVERTCOR) stack.p.data = 1; break; case DAHDI_RADPAR_IGNORECOR: if (mod->mod.qrv.radmode & RADMODE_IGNORECOR) stack.p.data = 1; break; case DAHDI_RADPAR_IGNORECT: if (mod->mod.qrv.radmode & RADMODE_IGNORECT) stack.p.data = 1; break; case DAHDI_RADPAR_EXTRXTONE: stack.p.data = 0; if (mod->mod.qrv.radmode & RADMODE_EXTTONE) { stack.p.data = 1; if (mod->mod.qrv.radmode & RADMODE_EXTINVERT) stack.p.data = 2; } break; case DAHDI_RADPAR_DEBOUNCETIME: stack.p.data = mod->mod.qrv.debouncetime; break; case DAHDI_RADPAR_RXGAIN: stack.p.data = mod->mod.qrv.rxgain - 1199; break; case DAHDI_RADPAR_TXGAIN: stack.p.data = mod->mod.qrv.txgain - 3599; break; case DAHDI_RADPAR_DEEMP: stack.p.data = 0; if (mod->mod.qrv.radmode & RADMODE_DEEMP) stack.p.data = 1; break; case DAHDI_RADPAR_PREEMP: stack.p.data = 0; if (mod->mod.qrv.radmode & RADMODE_PREEMP) stack.p.data = 1; break; default: return -EINVAL; } if (copy_to_user((__user void *) data, &stack.p, sizeof(stack.p))) return -EFAULT; break; case DAHDI_RADIO_SETPARAM: if (mod->type != QRV) return -ENOTTY; if (copy_from_user(&stack.p, (__user void *) data, sizeof(stack.p))) return -EFAULT; switch(stack.p.radpar) { case DAHDI_RADPAR_INVERTCOR: if (stack.p.data) mod->mod.qrv.radmode |= RADMODE_INVERTCOR; else mod->mod.qrv.radmode &= ~RADMODE_INVERTCOR; return 0; case DAHDI_RADPAR_IGNORECOR: if (stack.p.data) mod->mod.qrv.radmode |= RADMODE_IGNORECOR; else mod->mod.qrv.radmode &= ~RADMODE_IGNORECOR; return 0; case DAHDI_RADPAR_IGNORECT: if (stack.p.data) mod->mod.qrv.radmode |= RADMODE_IGNORECT; else mod->mod.qrv.radmode &= ~RADMODE_IGNORECT; return 0; case DAHDI_RADPAR_EXTRXTONE: if (stack.p.data) mod->mod.qrv.radmode |= RADMODE_EXTTONE; else mod->mod.qrv.radmode &= ~RADMODE_EXTTONE; if (stack.p.data > 1) mod->mod.qrv.radmode |= RADMODE_EXTINVERT; else mod->mod.qrv.radmode &= ~RADMODE_EXTINVERT; return 0; case DAHDI_RADPAR_DEBOUNCETIME: mod->mod.qrv.debouncetime = stack.p.data; return 0; case DAHDI_RADPAR_RXGAIN: /* if out of range */ if ((stack.p.data <= -1200) || (stack.p.data > 1552)) { return -EINVAL; } mod->mod.qrv.rxgain = stack.p.data + 1199; break; case DAHDI_RADPAR_TXGAIN: /* if out of range */ if (mod->mod.qrv.radmode & RADMODE_PREEMP) { if ((stack.p.data <= -2400) || (stack.p.data > 0)) return -EINVAL; } else { if ((stack.p.data <= -3600) || (stack.p.data > 1200)) return -EINVAL; } mod->mod.qrv.txgain = stack.p.data + 3599; break; case DAHDI_RADPAR_DEEMP: if (stack.p.data) mod->mod.qrv.radmode |= RADMODE_DEEMP; else mod->mod.qrv.radmode &= ~RADMODE_DEEMP; mod->mod.qrv.rxgain = 1199; break; case DAHDI_RADPAR_PREEMP: if (stack.p.data) mod->mod.qrv.radmode |= RADMODE_PREEMP; else mod->mod.qrv.radmode &= ~RADMODE_PREEMP; mod->mod.qrv.txgain = 3599; break; default: return -EINVAL; } qrv_dosetup(chan,wc); return 0; default: return -ENOTTY; } return 0; } static int wctdm_open(struct dahdi_chan *chan) { struct wctdm *const wc = chan->pvt; unsigned long flags; struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1]; #if 0 if (wc->dead) return -ENODEV; #endif if (mod->type == FXO) { /* Reset the mwi indicators */ spin_lock_irqsave(&wc->reglock, flags); mod->mod.fxo.neonmwi_debounce = 0; mod->mod.fxo.neonmwi_offcounter = 0; mod->mod.fxo.neonmwi_state = 0; spin_unlock_irqrestore(&wc->reglock, flags); } return 0; } static inline struct wctdm *span_to_wctdm(struct dahdi_span *span) { struct wctdm_span *s = container_of(span, struct wctdm_span, span); return s->wc; } static int wctdm_watchdog(struct dahdi_span *span, int event) { struct wctdm *wc = span_to_wctdm(span); dev_info(&wc->vb.pdev->dev, "TDM: Called watchdog\n"); return 0; } static int wctdm_close(struct dahdi_chan *chan) { struct wctdm *wc; int x; signed char reg; wc = chan->pvt; for (x = 0; x < wc->mods_per_board; x++) { struct wctdm_module *const mod = &wc->mods[x]; if (FXS == mod->type) { mod->mod.fxs.idletxhookstate = POLARITY_XOR(&mod->mod.fxs) ? SLIC_LF_ACTIVE_REV : SLIC_LF_ACTIVE_FWD; } else if (QRV == mod->type) { int qrvcard = x & 0xfc; mod->mod.qrv.hook = 0; wc->mods[x + 2].mod.qrv.hook = 0xff; mod->mod.qrv.debouncetime = QRV_DEBOUNCETIME; mod->mod.qrv.debtime = 0; mod->mod.qrv.radmode = 0; mod->mod.qrv.txgain = 3599; mod->mod.qrv.rxgain = 1199; reg = 0; if (!wc->mods[qrvcard].mod.qrv.hook) reg |= 1; if (!wc->mods[qrvcard + 1].mod.qrv.hook) reg |= 0x10; wc->mods[qrvcard].sethook = CMD_WR(3, reg); qrv_dosetup(chan,wc); } } return 0; } static int wctdm_hooksig(struct dahdi_chan *chan, enum dahdi_txsig txsig) { struct wctdm *wc = chan->pvt; int reg = 0; struct wctdm_module *const mod = &wc->mods[chan->chanpos - 1]; if (mod->type == QRV) { const int qrvcard = (chan->chanpos - 1) & 0xfc; switch(txsig) { case DAHDI_TXSIG_START: case DAHDI_TXSIG_OFFHOOK: mod->mod.qrv.hook = 1; break; case DAHDI_TXSIG_ONHOOK: mod->mod.qrv.hook = 0; break; default: dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig); } reg = 0; if (!wc->mods[qrvcard].mod.qrv.hook) reg |= 1; if (!wc->mods[qrvcard + 1].mod.qrv.hook) reg |= 0x10; wc->mods[qrvcard].sethook = CMD_WR(3, reg); /* wctdm_setreg(wc, qrvcard, 3, reg); */ } else if (mod->type == FXO) { switch(txsig) { case DAHDI_TXSIG_START: case DAHDI_TXSIG_OFFHOOK: mod->mod.fxo.offhook = 1; mod->sethook = CMD_WR(5, 0x9); /* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x9); */ break; case DAHDI_TXSIG_ONHOOK: mod->mod.fxo.offhook = 0; mod->sethook = CMD_WR(5, 0x8); /* wctdm_setreg(wc, chan->chanpos - 1, 5, 0x8); */ break; default: dev_notice(&wc->vb.pdev->dev, "wctdm24xxp: Can't set tx state to %d\n", txsig); } } else if (mod->type == FXS) { wctdm_fxs_hooksig(wc, mod, txsig); } return 0; } static void wctdm_dacs_connect(struct wctdm *wc, int srccard, int dstcard) { struct wctdm_module *const srcmod = &wc->mods[srccard]; struct wctdm_module *const dstmod = &wc->mods[dstcard]; unsigned int type; if (wc->mods[dstcard].dacssrc > -1) { dev_notice(&wc->vb.pdev->dev, "wctdm_dacs_connect: Can't have double sourcing yet!\n"); return; } type = wc->mods[srccard].type; if ((type == FXS) || (type == FXO)) { dev_notice(&wc->vb.pdev->dev, "wctdm_dacs_connect: Unsupported modtype for " "card %d\n", srccard); return; } type = wc->mods[dstcard].type; if ((type != FXS) && (type != FXO)) { dev_notice(&wc->vb.pdev->dev, "wctdm_dacs_connect: Unsupported modtype " "for card %d\n", dstcard); return; } if (debug) { dev_info(&wc->vb.pdev->dev, "connect %d => %d\n", srccard, dstcard); } dstmod->dacssrc = srccard; /* make srccard transmit to srccard+24 on the TDM bus */ if (srcmod->type == FXS) { /* proslic */ wctdm_setreg(wc, srcmod, PCM_XMIT_START_COUNT_LSB, ((srccard+24) * 8) & 0xff); wctdm_setreg(wc, srcmod, PCM_XMIT_START_COUNT_MSB, ((srccard+24) * 8) >> 8); } else if (srcmod->type == FXO) { /* daa TX */ wctdm_setreg(wc, srcmod, 34, ((srccard+24) * 8) & 0xff); wctdm_setreg(wc, srcmod, 35, ((srccard+24) * 8) >> 8); } /* have dstcard receive from srccard+24 on the TDM bus */ if (dstmod->type == FXS) { /* proslic */ wctdm_setreg(wc, dstmod, PCM_RCV_START_COUNT_LSB, ((srccard+24) * 8) & 0xff); wctdm_setreg(wc, dstmod, PCM_RCV_START_COUNT_MSB, ((srccard+24) * 8) >> 8); } else if (dstmod->type == FXO) { /* daa RX */ wctdm_setreg(wc, dstmod, 36, ((srccard+24) * 8) & 0xff); wctdm_setreg(wc, dstmod, 37, ((srccard+24) * 8) >> 8); } } static void wctdm_dacs_disconnect(struct wctdm *wc, int card) { struct wctdm_module *const mod = &wc->mods[card]; struct wctdm_module *dacssrc; if (mod->dacssrc <= -1) return; dacssrc = &wc->mods[mod->dacssrc]; if (debug) { dev_info(&wc->vb.pdev->dev, "wctdm_dacs_disconnect: " "restoring TX for %d and RX for %d\n", mod->dacssrc, card); } /* restore TX (source card) */ if (dacssrc->type == FXS) { wctdm_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_LSB, (mod->dacssrc * 8) & 0xff); wctdm_setreg(wc, dacssrc, PCM_XMIT_START_COUNT_MSB, (mod->dacssrc * 8) >> 8); } else if (dacssrc->type == FXO) { wctdm_setreg(wc, mod, 34, (card * 8) & 0xff); wctdm_setreg(wc, mod, 35, (card * 8) >> 8); } else { dev_warn(&wc->vb.pdev->dev, "WARNING: wctdm_dacs_disconnect() called " "on unsupported modtype\n"); } /* restore RX (this card) */ if (FXS == mod->type) { wctdm_setreg(wc, mod, PCM_RCV_START_COUNT_LSB, (card * 8) & 0xff); wctdm_setreg(wc, mod, PCM_RCV_START_COUNT_MSB, (card * 8) >> 8); } else if (FXO == mod->type) { wctdm_setreg(wc, mod, 36, (card * 8) & 0xff); wctdm_setreg(wc, mod, 37, (card * 8) >> 8); } else { dev_warn(&wc->vb.pdev->dev, "WARNING: wctdm_dacs_disconnect() called " "on unsupported modtype\n"); } mod->dacssrc = -1; } static int wctdm_dacs(struct dahdi_chan *dst, struct dahdi_chan *src) { struct wctdm *wc; if (!nativebridge) return 0; /* should this return -1 since unsuccessful? */ wc = dst->pvt; if (src) { wctdm_dacs_connect(wc, src->chanpos - 1, dst->chanpos - 1); if (debug) dev_info(&wc->vb.pdev->dev, "dacs connecct: %d -> %d!\n\n", src->chanpos, dst->chanpos); } else { wctdm_dacs_disconnect(wc, dst->chanpos - 1); if (debug) dev_info(&wc->vb.pdev->dev, "dacs disconnect: %d!\n", dst->chanpos); } return 0; } /** * wctdm_wait_for_ready * * Check if the board has finished any setup and is ready to start processing * calls. */ int wctdm_wait_for_ready(struct wctdm *wc) { while (!is_initialized(wc)) { if (fatal_signal_pending(current)) return -EIO; msleep_interruptible(250); } return 0; } static int wctdm_enable_hw_preechocan(struct dahdi_chan *chan) { struct wctdm *wc = chan->pvt; struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan); if (!wc->vpmoct) return 0; return vpmoct_preecho_enable(wc->vpmoct, wchan->timeslot); } static void wctdm_disable_hw_preechocan(struct dahdi_chan *chan) { struct wctdm *wc = chan->pvt; struct wctdm_chan *wchan = container_of(chan, struct wctdm_chan, chan); if (!wc->vpmoct) return; vpmoct_preecho_disable(wc->vpmoct, wchan->timeslot); } /** * wctdm_chanconfig - Called when the channels are being configured. * * Ensure that the card is completely ready to go before we allow the channels * to be completely configured. This is to allow lengthy initialization * actions to take place in background on driver load and ensure we're synced * up by the time dahdi_cfg is run. * */ static int wctdm_chanconfig(struct file *file, struct dahdi_chan *chan, int sigtype) { struct wctdm *wc = chan->pvt; if ((file->f_flags & O_NONBLOCK) && !is_initialized(wc)) return -EAGAIN; return wctdm_wait_for_ready(wc); } static const struct dahdi_span_ops wctdm24xxp_analog_span_ops = { .owner = THIS_MODULE, .hooksig = wctdm_hooksig, .open = wctdm_open, .close = wctdm_close, .ioctl = wctdm_ioctl, .watchdog = wctdm_watchdog, .chanconfig = wctdm_chanconfig, .dacs = wctdm_dacs, #ifdef VPM_SUPPORT .enable_hw_preechocan = wctdm_enable_hw_preechocan, .disable_hw_preechocan = wctdm_disable_hw_preechocan, .echocan_create = wctdm_echocan_create, .echocan_name = wctdm_echocan_name, #endif }; static const struct dahdi_span_ops wctdm24xxp_digital_span_ops = { .owner = THIS_MODULE, .open = wctdm_open, .close = wctdm_close, .ioctl = wctdm_ioctl, .watchdog = wctdm_watchdog, .hdlc_hard_xmit = wctdm_hdlc_hard_xmit, .spanconfig = b400m_spanconfig, .chanconfig = b400m_chanconfig, .dacs = wctdm_dacs, #ifdef VPM_SUPPORT .enable_hw_preechocan = wctdm_enable_hw_preechocan, .disable_hw_preechocan = wctdm_disable_hw_preechocan, .echocan_create = wctdm_echocan_create, .echocan_name = wctdm_echocan_name, #endif }; static struct wctdm_chan * wctdm_init_chan(struct wctdm *wc, struct wctdm_span *s, int chanoffset, int channo, unsigned int card_position) { struct wctdm_chan *c; c = kzalloc(sizeof(*c), GFP_KERNEL); if (!c) return NULL; /* Do not change the procfs representation for non-hx8 cards. */ if (dahdi_is_digital_span(&s->span)) { sprintf(c->chan.name, "WCBRI/%d/%d/%d", card_position, s->spanno, channo); } else { sprintf(c->chan.name, "WCTDM/%d/%d", card_position, channo); } c->chan.chanpos = channo+1; c->chan.span = &s->span; c->chan.pvt = wc; c->timeslot = chanoffset + channo; return c; } #if 0 /** * wctdm_span_count() - Return the number of spans exported by this board. * * This is only called during initialization so let's just count the spans each * time we need this information as opposed to storing another variable in the * wctdm structure. */ static int wctdm_span_count(const struct wctdm *wc) { int i; int count = 0; for (i = 0; i < MAX_SPANS; ++i) { if (wc->spans[i]) ++count; } return count; } #endif static struct wctdm_span * wctdm_init_span(struct wctdm *wc, int spanno, int chanoffset, int chancount, int digital_span, unsigned int card_position) { int x; struct wctdm_chan *c; struct wctdm_span *s; static int spancount; s = kzalloc(sizeof(*s), GFP_KERNEL); if (!s) return NULL; /* DAHDI stuff */ s->span.offset = spanno; s->spanno = spancount++; s->wc = wc; /* Do not change the procfs representation for non-hx8 cards. */ if (digital_span) sprintf(s->span.name, "WCBRI/%d/%d", card_position, s->spanno); else sprintf(s->span.name, "WCTDM/%d", card_position); snprintf(s->span.desc, sizeof(s->span.desc) - 1, "%s", wc->desc->name); if (wc->companding == DAHDI_LAW_DEFAULT) { if (wc->digi_mods || digital_span) /* If we have a BRI module, Auto set to alaw */ s->span.deflaw = DAHDI_LAW_ALAW; else /* Auto set to ulaw */ s->span.deflaw = DAHDI_LAW_MULAW; } else if (wc->companding == DAHDI_LAW_ALAW) { /* Force everything to alaw */ s->span.deflaw = DAHDI_LAW_ALAW; } else { /* Auto set to ulaw */ s->span.deflaw = DAHDI_LAW_MULAW; } if (digital_span) { s->span.ops = &wctdm24xxp_digital_span_ops; s->span.linecompat = DAHDI_CONFIG_AMI | DAHDI_CONFIG_B8ZS | DAHDI_CONFIG_D4; s->span.linecompat |= DAHDI_CONFIG_ESF | DAHDI_CONFIG_HDB3 | DAHDI_CONFIG_CCS | DAHDI_CONFIG_CRC4; s->span.linecompat |= DAHDI_CONFIG_NTTE | DAHDI_CONFIG_TERM; s->span.spantype = SPANTYPE_DIGITAL_BRI_TE; } else { s->span.ops = &wctdm24xxp_analog_span_ops; s->span.flags = DAHDI_FLAG_RBS; s->span.spantype = SPANTYPE_ANALOG_MIXED; /* analog sigcap handled in fixup_analog_span() */ } s->span.chans = kmalloc(sizeof(struct dahdi_chan *) * chancount, GFP_KERNEL); if (!s->span.chans) return NULL; /* allocate channels for the span */ for (x = 0; x < chancount; x++) { c = wctdm_init_chan(wc, s, chanoffset, x, card_position); if (!c) return NULL; wc->chans[chanoffset + x] = c; s->span.chans[x] = &c->chan; } s->span.channels = chancount; if (digital_span) { wc->chans[chanoffset + 0]->chan.sigcap = DAHDI_SIG_CLEAR; wc->chans[chanoffset + 1]->chan.sigcap = DAHDI_SIG_CLEAR; wc->chans[chanoffset + 2]->chan.sigcap = DAHDI_SIG_HARDHDLC; } wc->spans[spanno] = s; return s; } /** * should_set_alaw() - Should be called after all the spans are initialized. * * Returns true if the module companding should be set to alaw, otherwise * false. */ static bool should_set_alaw(const struct wctdm *wc) { if (DAHDI_LAW_DEFAULT == wc->companding) return (wc->digi_mods > 0); else if (DAHDI_LAW_ALAW == wc->companding) return true; else return false; } static void wctdm_fixup_analog_span(struct wctdm *wc, int spanno) { struct dahdi_span *s; int x, y; /* Finalize signalling */ y = 0; s = &wc->spans[spanno]->span; for (x = 0; x < wc->desc->ports; x++) { struct wctdm_module *const mod = &wc->mods[x]; if (debug) { dev_info(&wc->vb.pdev->dev, "fixup_analog: x=%d, y=%d modtype=%d, " "s->chans[%d]=%p\n", x, y, mod->type, y, s->chans[y]); } if (mod->type == FXO) { int val; s->chans[y++]->sigcap = DAHDI_SIG_FXSKS | DAHDI_SIG_FXSLS | DAHDI_SIG_SF | DAHDI_SIG_CLEAR; val = should_set_alaw(wc) ? 0x20 : 0x28; #ifdef DEBUG val = (digitalloopback) ? 0x30 : val; #endif wctdm_setreg(wc, mod, 33, val); } else if (mod->type == FXS) { s->chans[y++]->sigcap = DAHDI_SIG_FXOKS | DAHDI_SIG_FXOLS | DAHDI_SIG_FXOGS | DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR; wctdm_setreg(wc, mod, 1, (should_set_alaw(wc) ? 0x20 : 0x28)); } else if (mod->type == QRV) { s->chans[y++]->sigcap = DAHDI_SIG_SF | DAHDI_SIG_EM | DAHDI_SIG_CLEAR; } else { s->chans[y++]->sigcap = 0; } } } static int wctdm_initialize_vpmadt032(struct wctdm *wc) { int res; struct vpmadt032_options options; struct vpmadt032 *vpm; unsigned long flags; options.debug = debug; options.vpmnlptype = vpmnlptype; options.vpmnlpthresh = vpmnlpthresh; options.vpmnlpmaxsupp = vpmnlpmaxsupp; if (is_hx8(wc)) { /* Hybrid cards potentially have 3 channels of EC on their * ports since they may be BRI spans. */ options.channels = 3 * wc->desc->ports; } else { options.channels = wc->desc->ports; } BUG_ON(options.channels > 24); wc->vpmadt032 = vpmadt032_alloc(&options); if (!wc->vpmadt032) return -ENOMEM; wc->vpmadt032->setchanconfig_from_state = setchanconfig_from_state; /* Pull the configuration information from the span holding * the analog channels. */ res = vpmadt032_test(wc->vpmadt032, &wc->vb); if (!res) res = vpmadt032_init(wc->vpmadt032); if (res) { vpm = wc->vpmadt032; spin_lock_irqsave(&wc->reglock, flags); wc->vpmadt032 = NULL; spin_unlock_irqrestore(&wc->reglock, flags); vpmadt032_free(vpm); return res; } /* Now we need to configure the VPMADT032 module for this * particular board. */ res = config_vpmadt032(wc->vpmadt032, wc); if (res) { vpm = wc->vpmadt032; spin_lock_irqsave(&wc->reglock, flags); wc->vpmadt032 = NULL; spin_unlock_irqrestore(&wc->reglock, flags); vpmadt032_free(vpm); return res; } return 0; } static void wctdm_vpm_load_complete(struct device *dev, bool operational) { unsigned long flags; struct pci_dev *pdev = container_of(dev, struct pci_dev, dev); struct wctdm *wc = pci_get_drvdata(pdev); struct vpmoct *vpm = NULL; WARN_ON(!wc || !wc->not_ready); if (!wc || !wc->not_ready) return; spin_lock_irqsave(&wc->reglock, flags); wc->not_ready--; if (operational) { wc->ctlreg |= 0x10; } else { vpm = wc->vpmoct; wc->vpmoct = NULL; } spin_unlock_irqrestore(&wc->reglock, flags); if (vpm) vpmoct_free(vpm); } static int wctdm_initialize_vpm(struct wctdm *wc, unsigned long unused) { int res = 0; if (!vpmsupport) { dev_notice(&wc->vb.pdev->dev, "VPM: Support Disabled\n"); return 0; } res = wctdm_initialize_vpmadt032(wc); if (!res) { wc->ctlreg |= 0x10; return 0; } else { struct vpmoct *vpm; unsigned long flags; vpm = vpmoct_alloc(); if (!vpm) { dev_info(&wc->vb.pdev->dev, "Unable to allocate memory for struct vpmoct\n"); return -ENOMEM; } vpm->dev = &wc->vb.pdev->dev; spin_lock_irqsave(&wc->reglock, flags); wc->vpmoct = vpm; wc->not_ready++; spin_unlock_irqrestore(&wc->reglock, flags); res = vpmoct_init(vpm, wctdm_vpm_load_complete); if (-EINVAL == res) { spin_lock_irqsave(&wc->reglock, flags); wc->vpmoct = NULL; wc->not_ready--; spin_unlock_irqrestore(&wc->reglock, flags); vpmoct_free(vpm); } } return 0; } static int __wctdm_identify_module_group(struct wctdm *wc, unsigned long base) { int x; unsigned long flags; for (x = base; x < base + 4; ++x) { struct wctdm_module *const mod = &wc->mods[x]; enum {SANE = 1, UNKNOWN = 0}; int ret = 0, readi = 0; bool altcs = false; if (fatal_signal_pending(current)) break; retry: ret = wctdm_init_proslic(wc, mod, 0, 0, UNKNOWN); if (!ret) { if (debug & DEBUG_CARD) { readi = wctdm_getreg(wc, mod, LOOP_I_LIMIT); dev_info(&wc->vb.pdev->dev, "Proslic module %d loop current " "is %dmA\n", x, ((readi*3) + 20)); } continue; } if (ret != -2) { /* Init with Manual Calibration */ if (!wctdm_init_proslic(wc, mod, 0, 1, SANE)) { if (debug & DEBUG_CARD) { readi = wctdm_getreg(wc, mod, LOOP_I_LIMIT); dev_info(&wc->vb.pdev->dev, "Proslic module %d loop " "current is %dmA\n", x, ((readi*3)+20)); } } else { dev_notice(&wc->vb.pdev->dev, "Port %d: FAILED FXS (%s)\n", x + 1, fxshonormode ? fxo_modes[_opermode].name : "FCC"); } continue; } ret = wctdm_init_voicedaa(wc, mod, 0, 0, UNKNOWN); if (!ret) continue; if (!wctdm_init_qrvdri(wc, x)) continue; if (is_hx8(wc) && !wctdm_init_b400m(wc, x)) continue; if ((wc->desc->ports != 24) && ((x&0x3) == 1) && !altcs) { spin_lock_irqsave(&wc->reglock, flags); set_offsets(mod, 2); altcs = true; if (wc->desc->ports == 4) { set_offsets(&wc->mods[x+1], 3); set_offsets(&wc->mods[x+2], 3); } mod->type = FXSINIT; spin_unlock_irqrestore(&wc->reglock, flags); udelay(1000); udelay(1000); spin_lock_irqsave(&wc->reglock, flags); mod->type = FXS; spin_unlock_irqrestore(&wc->reglock, flags); if (debug & DEBUG_CARD) { dev_info(&wc->vb.pdev->dev, "Trying port %d with alternate chip " "select\n", x + 1); } goto retry; } mod->type = NONE; } return 0; } /** * wctdm_print_moule_configuration - Print the configuration to the kernel log * @wc: The card we're interested in. * * This is to ensure that the module configuration from each card shows up * sequentially in the kernel log, as opposed to interleaved with one another. * */ static void wctdm_print_module_configuration(const struct wctdm *const wc) { int i; static DEFINE_MUTEX(print); mutex_lock(&print); for (i = 0; i < wc->mods_per_board; ++i) { const struct wctdm_module *const mod = &wc->mods[i]; switch (mod->type) { case FXO: dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- " "AUTO FXO (%s mode)\n", i + 1, fxo_modes[_opermode].name); break; case FXS: dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- AUTO FXS/DPO\n", i + 1); break; case BRI: dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- BRI " "quad-span module\n", i + 1); break; case QRV: dev_info(&wc->vb.pdev->dev, "Port %d: Installed -- QRV DRI card\n", i + 1); break; case NONE: dev_info(&wc->vb.pdev->dev, "Port %d: Not installed\n", i + 1); break; case FXSINIT: break; } } mutex_unlock(&print); } static void wctdm_identify_modules(struct wctdm *wc) { int x; unsigned long flags; struct bg *bg_work[ARRAY_SIZE(wc->mods)/4 + 1] = {NULL, }; wc->ctlreg = 0x00; /* * This looks a little weird. * * There are only 8 physical ports on the TDM/AEX800, but the code * immediately below sets 24 modules up. This has to do with the * altcs magic that allows us to have single-port and quad-port * modules on these products. The variable "mods_per_board" is set to * the appropriate value just below the next code block. * * Now why this is important: The FXS modules come out of reset in a * two-byte, non-chainable SPI mode. This is currently incompatible * with how we do things, so we need to set them to a chained, 3-byte * command mode. This is done by setting the module type to FXSINIT * for a little while so that cmd_dequeue will initialize the SLIC * into the appropriate mode. * * This "go to 3-byte chained mode" command, however, wreaks havoc * with HybridBRI. * * The solution: Since HybridBRI is only designed to work in an 8-port * card, and since the single-port modules "show up" in SPI slots >= 8 * in these cards, we only set SPI slots 8-23 to FXSINIT. The * HybridBRI will never see the command that causes it to freak out * and the single-port FXS cards get what they need so that when we * probe with altcs we see them. */ /* Make sure all units go into daisy chain mode */ spin_lock_irqsave(&wc->reglock, flags); for (x = 0; x < ARRAY_SIZE(wc->mods); x++) wc->mods[x].type = FXSINIT; spin_unlock_irqrestore(&wc->reglock, flags); /* Wait just a bit; this makes sure that cmd_dequeue is emitting SPI * commands in the appropriate mode(s). */ msleep(20); /* Now that all the cards have been reset, we can stop checking them * all if there aren't as many */ spin_lock_irqsave(&wc->reglock, flags); wc->mods_per_board = wc->desc->ports; spin_unlock_irqrestore(&wc->reglock, flags); BUG_ON(wc->desc->ports % 4); /* Detecting and configuring the modules over voicebus takes a * significant amount of time. We can speed things up by performing * this in parallel for each group of four modules. */ for (x = 0; x < wc->desc->ports/4; x++) bg_work[x] = bg_create(wc, __wctdm_identify_module_group, x*4); for (x = 0; bg_work[x]; ++x) bg_join(bg_work[x]); wctdm_print_module_configuration(wc); } static struct pci_driver wctdm_driver; static void wctdm_back_out_gracefully(struct wctdm *wc) { int i; unsigned long flags; struct vpmadt032 *vpm; LIST_HEAD(local_list); spin_lock_irqsave(&wc->reglock, flags); if (wc->not_ready) { wc->not_ready--; spin_unlock_irqrestore(&wc->reglock, flags); while (wctdm_wait_for_ready(wc)) schedule(); spin_lock_irqsave(&wc->reglock, flags); } spin_unlock_irqrestore(&wc->reglock, flags); if (wc->vpmadt032) { flush_workqueue(wc->vpmadt032->wq); clear_bit(VPM150M_ACTIVE, &wc->vpmadt032->control); flush_workqueue(wc->vpmadt032->wq); spin_lock_irqsave(&wc->reglock, flags); vpm = wc->vpmadt032; wc->vpmadt032 = NULL; spin_unlock_irqrestore(&wc->reglock, flags); vpmadt032_free(vpm); } voicebus_release(&wc->vb); #ifdef CONFIG_VOICEBUS_ECREFERENCE for (i = 0; i < ARRAY_SIZE(wc->ec_reference); ++i) { if (wc->ec_reference[i]) dahdi_fifo_free(wc->ec_reference[i]); } #endif for (i = 0; i < ARRAY_SIZE(wc->spans); ++i) { if (wc->spans[i] && wc->spans[i]->span.chans) kfree(wc->spans[i]->span.chans); kfree(wc->spans[i]); wc->spans[i] = NULL; } spin_lock_irqsave(&wc->reglock, flags); for (i = 0; i < ARRAY_SIZE(wc->mods); ++i) { struct wctdm_module *const mod = &wc->mods[i]; kfree(wc->chans[i]); wc->chans[i] = NULL; list_splice_init(&mod->pending_cmds, &local_list); list_splice_init(&mod->active_cmds, &local_list); } list_splice_init(&wc->free_isr_commands, &local_list); spin_unlock_irqrestore(&wc->reglock, flags); while (!list_empty(&local_list)) { struct wctdm_cmd *cmd; cmd = list_entry(local_list.next, struct wctdm_cmd, node); list_del(&cmd->node); kfree(cmd->complete); kfree(cmd); } spin_lock_irqsave(&wc->frame_list_lock, flags); list_splice(&wc->frame_list, &local_list); spin_unlock_irqrestore(&wc->frame_list_lock, flags); while (!list_empty(&local_list)) { struct sframe_packet *frame; frame = list_entry(local_list.next, struct sframe_packet, node); list_del(&frame->node); kfree(frame); } kfree(wc->board_name); kfree(wc->ddev->devicetype); kfree(wc->ddev->location); dahdi_free_device(wc->ddev); kfree(wc); } static const struct voicebus_operations voicebus_operations = { .handle_receive = handle_receive, .handle_transmit = handle_transmit, }; static const struct voicebus_operations hx8_voicebus_operations = { .handle_receive = handle_hx8_receive, .handle_transmit = handle_hx8_transmit, }; struct cmd_results { u8 results[8]; }; static int hx8_send_command(struct wctdm *wc, const u8 *command, size_t count, int checksum, int application, int bootloader, struct cmd_results *results) { int ret = 0; struct vbb *vbb; struct sframe_packet *frame; const int MAX_COMMAND_LENGTH = 264 + 4; unsigned long flags; dma_addr_t dma_addr; might_sleep(); /* can't boot both into the application and the bootloader at once. */ WARN_ON((application > 0) && (bootloader > 0)); if ((application > 0) && (bootloader > 0)) return -EINVAL; WARN_ON(count > MAX_COMMAND_LENGTH); if (count > MAX_COMMAND_LENGTH) return -EINVAL; vbb = dma_pool_alloc(wc->vb.pool, GFP_KERNEL, &dma_addr); WARN_ON(!vbb); if (!vbb) return -ENOMEM; vbb->dma_addr = dma_addr; memset(vbb->data, 0, SFRAME_SIZE); memcpy(&vbb->data[EFRAME_SIZE + EFRAME_GAP], command, count); vbb->data[EFRAME_SIZE] = 0x80 | ((application) ? 0 : 0x40) | ((checksum) ? 0x20 : 0) | ((count & 0x100) >> 4); vbb->data[EFRAME_SIZE + 1] = count & 0xff; if (bootloader) vbb->data[EFRAME_SIZE + 3] = 0xAA; spin_lock_irqsave(&wc->vb.lock, flags); voicebus_transmit(&wc->vb, vbb); spin_unlock_irqrestore(&wc->vb.lock, flags); /* Do not wait for the response if the caller doesn't care about the * results. */ if (NULL == results) return 0; if (!wait_event_timeout(wc->regq, !list_empty(&wc->frame_list), 2*HZ)) { dev_err(&wc->vb.pdev->dev, "Timeout waiting " "for receive frame.\n"); ret = -EIO; } /* We only want the last packet received. Throw away anything else on * the list */ frame = NULL; spin_lock_irqsave(&wc->frame_list_lock, flags); while (!list_empty(&wc->frame_list)) { frame = list_entry(wc->frame_list.next, struct sframe_packet, node); list_del(&frame->node); if (!list_empty(&wc->frame_list)) { kfree(frame); frame = NULL; } } spin_unlock_irqrestore(&wc->frame_list_lock, flags); if (frame) { memcpy(results->results, &frame->sframe[EFRAME_SIZE], sizeof(results->results)); } else { ret = -EIO; } return ret; } static int hx8_get_fpga_version(struct wctdm *wc, u8 *major, u8 *minor) { int ret; struct cmd_results results; u8 command[] = {0xD7, 0x00}; ret = hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 0, 0, &results); if (ret) return ret; *major = results.results[0]; *minor = results.results[2]; return 0; } static void hx8_cleanup_frame_list(struct wctdm *wc) { unsigned long flags; LIST_HEAD(local_list); struct sframe_packet *frame; spin_lock_irqsave(&wc->frame_list_lock, flags); list_splice_init(&wc->frame_list, &local_list); spin_unlock_irqrestore(&wc->frame_list_lock, flags); while (!list_empty(&local_list)) { frame = list_entry(local_list.next, struct sframe_packet, node); list_del(&frame->node); kfree(frame); } } static int hx8_switch_to_application(struct wctdm *wc) { int ret; u8 command[] = {0xD7, 0x00}; ret = hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 1, 0, NULL); if (ret) return ret; msleep(1000); hx8_cleanup_frame_list(wc); return 0; } /** * hx8_switch_to_bootloader() - Send packet to switch hx8 into bootloader * */ static int hx8_switch_to_bootloader(struct wctdm *wc) { int ret; u8 command[] = {0xD7, 0x00}; ret = hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 0, 1, NULL); if (ret) return ret; /* It takes some time for the FPGA to reload and switch it's * configuration. */ msleep(300); hx8_cleanup_frame_list(wc); return 0; } struct ha80000_firmware { u8 header[6]; u8 major_ver; u8 minor_ver; u8 data[54648]; __le32 chksum; } __attribute__((packed)); static void hx8_send_dummy(struct wctdm *wc) { u8 command[] = {0xD7, 0x00}; hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 0, 0, NULL); } static int hx8_read_status_register(struct wctdm *wc, u8 *status) { int ret; struct cmd_results results; u8 command[] = {0xD7, 0x00}; ret = hx8_send_command(wc, command, ARRAY_SIZE(command), 0, 0, 0, &results); if (ret) return ret; *status = results.results[3]; return 0; } static const unsigned int HYBRID_PAGE_SIZE = 264; static int hx8_write_buffer(struct wctdm *wc, const u8 *buffer, size_t size) { int ret = 0; struct cmd_results results; int padding_bytes = 0; u8 *local_data; u8 command[] = {0x84, 0, 0, 0}; if (size > HYBRID_PAGE_SIZE) return -EINVAL; if (size < HYBRID_PAGE_SIZE) padding_bytes = HYBRID_PAGE_SIZE - size; local_data = kmalloc(sizeof(command) + size + padding_bytes, GFP_KERNEL); if (!local_data) return -ENOMEM; memcpy(local_data, command, sizeof(command)); memcpy(&local_data[sizeof(command)], buffer, size); memset(&local_data[sizeof(command) + size], 0xff, padding_bytes); ret = hx8_send_command(wc, local_data, sizeof(command) + size + padding_bytes, 1, 0, 0, &results); if (ret) goto cleanup; cleanup: kfree(local_data); return ret; } static int hx8_buffer_to_page(struct wctdm *wc, const unsigned int page) { int ret; struct cmd_results results; u8 command[] = {0x83, (page & 0x180) >> 7, (page & 0x7f) << 1, 0x00}; ret = hx8_send_command(wc, command, sizeof(command), 1, 0, 0, &results); if (ret) return ret; return 0; } static int hx8_wait_for_ready(struct wctdm *wc, const int timeout) { int ret; u8 status; unsigned long local_timeout = jiffies + timeout; do { ret = hx8_read_status_register(wc, &status); if (ret) return ret; if ((status & 0x80) > 0) break; } while (time_after(local_timeout, jiffies)); if (time_after(jiffies, local_timeout)) return -EIO; return 0; } /** * hx8_reload_application - reload the application firmware * * NOTE: The caller should ensure that the board is in bootloader mode before * calling this function. */ static int hx8_reload_application(struct wctdm *wc, const struct ha80000_firmware *ha8_fw) { unsigned int cur_page; const u8 *data; u8 status; int ret = 0; const int HYBRID_PAGE_COUNT = (sizeof(ha8_fw->data)) / HYBRID_PAGE_SIZE; dev_info(&wc->vb.pdev->dev, "Reloading firmware. Do not power down " "the system until the process is complete.\n"); BUG_ON(!ha8_fw); might_sleep(); data = &ha8_fw->data[0]; ret = hx8_read_status_register(wc, &status); if (ret) return ret; for (cur_page = 0; cur_page < HYBRID_PAGE_COUNT; ++cur_page) { ret = hx8_write_buffer(wc, data, HYBRID_PAGE_SIZE); if (ret) return ret; /* The application starts out at page 0x100 */ ret = hx8_buffer_to_page(wc, 0x100 + cur_page); if (ret) return ret; /* wait no more than a second for the write to the page to * finish */ ret = hx8_wait_for_ready(wc, HZ); if (ret) return ret; data += HYBRID_PAGE_SIZE; } return ret; } static void print_hx8_recovery_message(struct device *dev) { dev_warn(dev, "The firmware may be corrupted. Please completely " "power off your system, power on, and then reload the driver " "with the 'forceload' module parameter set to 1 to attempt " "recovery.\n"); } /** * hx8_check_firmware - Check the firmware version and load a new one possibly. * */ static int hx8_check_firmware(struct wctdm *wc) { int ret; u8 major; u8 minor; const struct firmware *fw; const struct ha80000_firmware *ha8_fw; struct device *dev = &wc->vb.pdev->dev; int retries = 10; BUG_ON(!is_hx8(wc)); might_sleep(); do { hx8_send_dummy(wc); ret = hx8_get_fpga_version(wc, &major, &minor); if (!ret) break; if (fatal_signal_pending(current)) return -EINTR; } while (--retries); if (ret) { print_hx8_recovery_message(dev); return ret; } /* If we're in the bootloader, try to jump into the application. */ if ((1 == major) && (0x80 == minor) && !forceload) { dev_dbg(dev, "Switching to application.\n"); hx8_switch_to_application(wc); ret = hx8_get_fpga_version(wc, &major, &minor); if (ret) { print_hx8_recovery_message(dev); return ret; } } dev_dbg(dev, "FPGA VERSION: %02x.%02x\n", major, minor); ret = request_firmware(&fw, "dahdi-fw-hx8.bin", dev); if (ret) { dev_warn(dev, "Failed to load firmware from userspace, skipping " "check. (%d)\n", ret); return 0; } ha8_fw = (const struct ha80000_firmware *)fw->data; if ((fw->size != sizeof(*ha8_fw)) || (0 != memcmp("DIGIUM", ha8_fw->header, sizeof(ha8_fw->header))) || ((crc32(~0, (void *)ha8_fw, sizeof(*ha8_fw) - sizeof(u32)) ^ ~0) != le32_to_cpu(ha8_fw->chksum))) { dev_warn(dev, "Firmware file is invalid. Skipping load.\n"); ret = 0; goto cleanup; } dev_dbg(dev, "FIRMWARE: %02x.%02x\n", ha8_fw->major_ver, ha8_fw->minor_ver); if (ha8_fw->major_ver == major && ha8_fw->minor_ver == minor) { dev_dbg(dev, "Firmware versions match, skipping load.\n"); ret = 0; goto cleanup; } if (2 == major) { hx8_switch_to_bootloader(wc); ret = hx8_get_fpga_version(wc, &major, &minor); if (ret) goto cleanup; } /* so now we're in boot loader mode, ready to load the new firmware. */ ret = hx8_reload_application(wc, ha8_fw); if (ret) goto cleanup; dev_dbg(dev, "Firmware reloaded. Booting into application.\n"); hx8_switch_to_application(wc); ret = hx8_get_fpga_version(wc, &major, &minor); if (ret) goto cleanup; dev_dbg(dev, "FPGA VERSION AFTER LOAD: %02x.%02x\n", major, minor); if (forceload) { dev_warn(dev, "Please unset forceload if your card is able to " "detect the installed modules.\n"); } cleanup: release_firmware(fw); dev_info(dev, "Hx8 firmware version: %d.%02d\n", major, minor); return ret; } #ifdef CONFIG_VOICEBUS_SYSFS static ssize_t voicebus_current_latency_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long flags; struct wctdm *wc = dev_get_drvdata(dev); unsigned int current_latency; spin_lock_irqsave(&wc->vb.lock, flags); current_latency = wc->vb.min_tx_buffer_count; spin_unlock_irqrestore(&wc->vb.lock, flags); return sprintf(buf, "%d\n", current_latency); } static DEVICE_ATTR(voicebus_current_latency, 0400, voicebus_current_latency_show, NULL); static ssize_t vpm_firmware_version_show(struct device *dev, struct device_attribute *attr, char *buf) { int res; u16 version = 0; struct wctdm *wc = dev_get_drvdata(dev); if (wc->vpmadt032) { res = gpakPingDsp(wc->vpmadt032->dspid, &version); if (res) { dev_info(&wc->vb.pdev->dev, "Failed gpakPingDsp %d\n", res); version = -1; } } return sprintf(buf, "%x.%02x\n", (version & 0xff00) >> 8, (version & 0xff)); } static DEVICE_ATTR(vpm_firmware_version, 0400, vpm_firmware_version_show, NULL); static ssize_t enable_vpm_show(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long flags; struct wctdm *wc = dev_get_drvdata(dev); unsigned int enable_vpm; spin_lock_irqsave(&wc->reglock, flags); enable_vpm = (wc->ctlreg & 0x10) != 0; spin_unlock_irqrestore(&wc->reglock, flags); return sprintf(buf, "%d\n", enable_vpm); } static ssize_t enable_vpm_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long flags; struct wctdm *wc = dev_get_drvdata(dev); unsigned int enable_vpm; if (count < 2) return -EINVAL; if (('0' == buf[0]) || (0 == buf[0])) enable_vpm = 0; else enable_vpm = 1; spin_lock_irqsave(&wc->reglock, flags); if (enable_vpm) wc->ctlreg |= 0x10; else wc->ctlreg &= ~0x10; spin_unlock_irqrestore(&wc->reglock, flags); return count; } static DEVICE_ATTR(enable_vpm, 0644, enable_vpm_show, enable_vpm_store); static void create_sysfs_files(struct wctdm *wc) { int ret; ret = device_create_file(&wc->vb.pdev->dev, &dev_attr_voicebus_current_latency); if (ret) { dev_info(&wc->vb.pdev->dev, "Failed to create device attributes.\n"); } ret = device_create_file(&wc->vb.pdev->dev, &dev_attr_vpm_firmware_version); if (ret) { dev_info(&wc->vb.pdev->dev, "Failed to create device attributes.\n"); } ret = device_create_file(&wc->vb.pdev->dev, &dev_attr_enable_vpm); if (ret) { dev_info(&wc->vb.pdev->dev, "Failed to create device attributes.\n"); } } static void remove_sysfs_files(struct wctdm *wc) { device_remove_file(&wc->vb.pdev->dev, &dev_attr_enable_vpm); device_remove_file(&wc->vb.pdev->dev, &dev_attr_vpm_firmware_version); device_remove_file(&wc->vb.pdev->dev, &dev_attr_voicebus_current_latency); } #else static inline void create_sysfs_files(struct wctdm *wc) { return; } static inline void remove_sysfs_files(struct wctdm *wc) { return; } #endif /* CONFIG_VOICEBUS_SYSFS */ static void wctdm_set_tdm410_leds(struct wctdm *wc) { int i; if (4 != wc->desc->ports) return; wc->tdm410leds = 0; /* all on by default */ for (i = 0; i < wc->desc->ports; ++i) { /* Turn off the LED for any module that isn't installed. */ if (NONE == wc->mods[i].type) wc->tdm410leds |= (1 << i); } } /** * wctdm_allocate_irq_commands - Preallocate some commands for use in interrupt context. * @wc: The board which we're allocating for. * @count: The number of IRQ commands to allocate. * * We need a minimum of 4 * the current latency worth of commands for each * analog module. When the latency grows, new commands will be allocated, but * this just represents are best guess as to the number of commands we'll need * after probing for modules, and reduces the chance that we'll allocate * memory in interrupt context when the driver first loads. * */ static void wctdm_allocate_irq_commands(struct wctdm *wc, unsigned int count) { unsigned long flags; LIST_HEAD(local_list); if (!count) return; while (count--) { struct wctdm_cmd *cmd; cmd = kzalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd) break; list_add(&cmd->node, &local_list); } spin_lock_irqsave(&wc->reglock, flags); list_splice(&local_list, &wc->free_isr_commands); spin_unlock_irqrestore(&wc->reglock, flags); } #ifdef USE_ASYNC_INIT struct async_data { struct pci_dev *pdev; const struct pci_device_id *ent; }; static int __devinit __wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent, async_cookie_t cookie) #else static int __devinit __wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) #endif { struct wctdm *wc; unsigned int pos; int i, ret; struct bg *vpm_work; int anamods, digimods, curchan, curspan; neonmwi_offlimit_cycles = neonmwi_offlimit / MS_PER_HOOKCHECK; wc = kzalloc(sizeof(*wc), GFP_KERNEL); if (!wc) return -ENOMEM; wc->not_ready = 1; down(&ifacelock); /* \todo this is a candidate for removal... */ for (pos = 0; pos < WC_MAX_IFACES; ++pos) { if (!ifaces[pos]) { ifaces[pos] = wc; break; } } up(&ifacelock); wc->desc = (struct wctdm_desc *)ent->driver_data; /* This is to insure that the analog span is given lowest priority */ sema_init(&wc->syncsem, 1); INIT_LIST_HEAD(&wc->frame_list); spin_lock_init(&wc->frame_list_lock); init_waitqueue_head(&wc->regq); spin_lock_init(&wc->reglock); INIT_LIST_HEAD(&wc->free_isr_commands); wc->oldsync = -1; wc->board_name = kasprintf(GFP_KERNEL, "%s%d", wctdm_driver.name, pos); if (!wc->board_name) { wctdm_back_out_gracefully(wc); return -ENOMEM; } #ifdef CONFIG_VOICEBUS_ECREFERENCE for (i = 0; i < ARRAY_SIZE(wc->ec_reference); ++i) { /* 256 is the smallest power of 2 that will contains the * maximum possible amount of latency. */ wc->ec_reference[i] = dahdi_fifo_alloc(256, GFP_KERNEL); if (IS_ERR(wc->ec_reference[i])) { ret = PTR_ERR(wc->ec_reference[i]); wc->ec_reference[i] = NULL; wctdm_back_out_gracefully(wc); return ret; } } #endif pci_set_drvdata(pdev, wc); wc->vb.ops = &voicebus_operations; wc->vb.pdev = pdev; wc->vb.debug = &debug; #ifdef CONFIG_VOICEBUS_DISABLE_ASPM if (is_pcie(wc)) { pci_disable_link_state(pdev->bus->self, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM); }; #endif if (is_hx8(wc)) { wc->vb.ops = &hx8_voicebus_operations; ret = voicebus_boot_init(&wc->vb, wc->board_name); } else { wc->vb.ops = &voicebus_operations; ret = voicebus_init(&wc->vb, wc->board_name); voicebus_set_minlatency(&wc->vb, latency); voicebus_set_maxlatency(&wc->vb, max_latency); } if (ret) { wctdm_back_out_gracefully(wc); return ret; } create_sysfs_files(wc); voicebus_lock_latency(&wc->vb); wc->mods_per_board = NUM_MODULES; wc->txident = 1; if (alawoverride) { companding = "alaw"; dev_info(&wc->vb.pdev->dev, "The module parameter alawoverride"\ " has been deprecated. Please use the "\ "parameter companding=alaw instead"); } if (!strcasecmp(companding, "alaw")) /* Force this card's companding to alaw */ wc->companding = DAHDI_LAW_ALAW; else if (!strcasecmp(companding, "ulaw")) /* Force this card's companding to ulaw */ wc->companding = DAHDI_LAW_MULAW; else /* Auto detect this card's companding */ wc->companding = DAHDI_LAW_DEFAULT; for (i = 0; i < ARRAY_SIZE(wc->mods); i++) { struct wctdm_module *const mod = &wc->mods[i]; INIT_LIST_HEAD(&mod->pending_cmds); INIT_LIST_HEAD(&mod->active_cmds); mod->dacssrc = -1; mod->card = i; set_offsets(mod, 0); } /* Start the hardware processing. */ if (voicebus_start(&wc->vb)) { BUG_ON(1); } if (is_hx8(wc)) { ret = hx8_check_firmware(wc); if (ret) { wctdm_back_out_gracefully(wc); return -EIO; } /* Switch to the normal operating mode for this card. */ voicebus_stop(&wc->vb); wc->vb.ops = &voicebus_operations; voicebus_set_minlatency(&wc->vb, latency); voicebus_set_maxlatency(&wc->vb, max_latency); voicebus_set_hx8_mode(&wc->vb); if (voicebus_start(&wc->vb)) BUG_ON(1); } /* first we have to make sure that we process all module data, we'll fine-tune it later in this routine. */ wc->avchannels = NUM_MODULES; vpm_work = bg_create(wc, wctdm_initialize_vpm, 0); if (!vpm_work) { wctdm_back_out_gracefully(wc); return -ENOMEM; } /* Now track down what modules are installed */ wctdm_identify_modules(wc); wctdm_set_tdm410_leds(wc); if (fatal_signal_pending(current)) { wctdm_back_out_gracefully(wc); bg_join(vpm_work); return -EINTR; } /* We need to wait for the vpm thread to finish before we setup the * spans in order to ensure they are named properly. */ bg_join(vpm_work); /* * Walk the module list and create a 3-channel span for every BRI module found. * Empty and analog modules get a common span which is allocated outside of this loop. */ anamods = digimods = 0; curchan = curspan = 0; for (i = 0; i < wc->mods_per_board; i++) { struct wctdm_module *const mod = &wc->mods[i]; struct b400m *b4; if (mod->type == NONE) { ++curspan; continue; } else if (mod->type == BRI) { if (!is_hx8(wc)) { dev_info(&wc->vb.pdev->dev, "Digital modules " "detected on a non-hybrid card. " "This is unsupported.\n"); wctdm_back_out_gracefully(wc); bg_join(vpm_work); return -EIO; } wc->spans[curspan] = wctdm_init_span(wc, curspan, curchan, 3, 1, pos); if (!wc->spans[curspan]) { wctdm_back_out_gracefully(wc); bg_join(vpm_work); return -EIO; } b4 = mod->mod.bri; b400m_set_dahdi_span(b4, i & 0x03, wc->spans[curspan]); ++curspan; curchan += 3; if (!(i & 0x03)) { b400m_post_init(b4); ++digimods; } } else { /* * FIXME: ABK: * create a wctdm_chan for every analog module and link them into a span of their own down below. * then evaluate all of the callbacks and hard-code whether they are receiving a dahdi_chan or wctdm_chan *. * Finally, move the union from the wctdm structure to the dahdi_chan structure, and we should have something * resembling a clean dynamic # of channels/dynamic # of spans driver. */ ++curspan; ++anamods; } if (digimods > 2) { dev_info(&wc->vb.pdev->dev, "More than two digital modules detected. This is unsupported.\n"); wctdm_back_out_gracefully(wc); return -EIO; } } wc->digi_mods = digimods; /* create an analog span if there are analog modules, or if there are no digital ones. */ if (anamods || !digimods) { if (!digimods) { curspan = 0; } wctdm_init_span(wc, curspan, curchan, wc->desc->ports, 0, pos); wctdm_fixup_analog_span(wc, curspan); wc->aspan = wc->spans[curspan]; curchan += wc->desc->ports; ++curspan; } /* Now fix up the timeslots for the analog modules, since the digital * modules are always first */ for (i = 0; i < wc->mods_per_board; i++) { struct wctdm_module *const mod = &wc->mods[i]; switch (mod->type) { case FXS: wctdm_proslic_set_ts(wc, mod, (digimods * 12) + i); break; case FXO: wctdm_voicedaa_set_ts(wc, mod, (digimods * 12) + i); break; case QRV: wctdm_qrvdri_set_ts(wc, mod, (digimods * 12) + i); break; default: break; } } /* This shouldn't ever occur, but if we don't try to trap it, the driver * will be scribbling into memory it doesn't own. */ BUG_ON(curchan > 24); wc->avchannels = curchan; #ifdef USE_ASYNC_INIT async_synchronize_cookie(cookie); #endif wc->ddev = dahdi_create_device(); wc->ddev->manufacturer = "Digium"; wc->ddev->location = kasprintf(GFP_KERNEL, "PCI%s Bus %02d Slot %02d", (wc->desc->flags & FLAG_EXPRESS) ? " Express" : "", pdev->bus->number, PCI_SLOT(pdev->devfn) + 1); if (!wc->ddev->location) { wctdm_back_out_gracefully(wc); return -ENOMEM; } if (wc->vpmadt032) { wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s (VPMADT032)", wc->desc->name); } else if (wc->vpmoct) { wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s (VPMOCT032)", wc->desc->name); } else { wc->ddev->devicetype = kasprintf(GFP_KERNEL, "%s", wc->desc->name); } if (!wc->ddev->devicetype) { wctdm_back_out_gracefully(wc); return -ENOMEM; } /* We should be ready for DAHDI to come in now. */ for (i = 0; i < MAX_SPANS; ++i) { struct dahdi_span *span; if (!wc->spans[i]) continue; span = &wc->spans[i]->span; list_add_tail(&span->device_node, &wc->ddev->spans); } wctdm_allocate_irq_commands(wc, anamods * latency * 4); if (dahdi_register_device(wc->ddev, &wc->vb.pdev->dev)) { dev_notice(&wc->vb.pdev->dev, "Unable to register device with DAHDI\n"); wctdm_back_out_gracefully(wc); return -1; } WARN_ON(wc->not_ready <= 0); --wc->not_ready; dev_info(&wc->vb.pdev->dev, "Found a %s: %s (%d BRI spans, %d analog %s)\n", (is_hx8(wc)) ? "Hybrid card" : "Wildcard TDM", wc->desc->name, digimods*4, anamods, (anamods == 1) ? "channel" : "channels"); ret = 0; voicebus_unlock_latency(&wc->vb); return 0; } #ifdef USE_ASYNC_INIT static __devinit void wctdm_init_one_async(void *data, async_cookie_t cookie) { struct async_data *dat = data; __wctdm_init_one(dat->pdev, dat->ent, cookie); kfree(dat); } static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct async_data *dat; dat = kmalloc(sizeof(*dat), GFP_KERNEL); /* If we can't allocate the memory for the async_data, odds are we won't * be able to initialize the device either, but let's try synchronously * anyway... */ if (!dat) return __wctdm_init_one(pdev, ent, 0); dat->pdev = pdev; dat->ent = ent; async_schedule(wctdm_init_one_async, dat); return 0; } #else static int __devinit wctdm_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { return __wctdm_init_one(pdev, ent); } #endif static void wctdm_release(struct wctdm *wc) { int i; if (is_initialized(wc)) dahdi_unregister_device(wc->ddev); down(&ifacelock); for (i = 0; i < WC_MAX_IFACES; i++) if (ifaces[i] == wc) break; ifaces[i] = NULL; up(&ifacelock); wctdm_back_out_gracefully(wc); } static void __devexit wctdm_remove_one(struct pci_dev *pdev) { int i; unsigned long flags; struct wctdm *wc = pci_get_drvdata(pdev); struct vpmadt032 *vpmadt032; struct vpmoct *vpmoct; if (!wc) return; vpmadt032 = wc->vpmadt032; vpmoct = wc->vpmoct; remove_sysfs_files(wc); if (vpmadt032) { flush_workqueue(vpmadt032->wq); clear_bit(VPM150M_ACTIVE, &vpmadt032->control); flush_workqueue(vpmadt032->wq); } else if (vpmoct) { while (wctdm_wait_for_ready(wc)) schedule(); } flush_scheduled_work(); /* shut down any BRI modules */ for (i = 0; i < wc->mods_per_board; i += 4) { if (wc->mods[i].type == BRI) wctdm_unload_b400m(wc, i); } voicebus_stop(&wc->vb); if (vpmadt032) { spin_lock_irqsave(&wc->reglock, flags); wc->vpmadt032 = NULL; spin_unlock_irqrestore(&wc->reglock, flags); vpmadt032_free(vpmadt032); } else if (vpmoct) { spin_lock_irqsave(&wc->reglock, flags); wc->vpmoct = NULL; spin_unlock_irqrestore(&wc->reglock, flags); vpmoct_free(vpmoct); } dev_info(&wc->vb.pdev->dev, "Freed a %s\n", (is_hx8(wc)) ? "Hybrid card" : "Wildcard"); /* Release span */ wctdm_release(wc); } static DEFINE_PCI_DEVICE_TABLE(wctdm_pci_tbl) = { { 0xd161, 0x2400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm2400 }, { 0xd161, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm800 }, { 0xd161, 0x8002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex800 }, { 0xd161, 0x8003, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex2400 }, { 0xd161, 0x8005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wctdm410 }, { 0xd161, 0x8006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcaex410 }, { 0xd161, 0x8007, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcha80000 }, { 0xd161, 0x8008, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wchb80000 }, { 0 } }; static void wctdm_shutdown(struct pci_dev *pdev) { struct wctdm *wc = pci_get_drvdata(pdev); voicebus_quiesce(&wc->vb); } MODULE_DEVICE_TABLE(pci, wctdm_pci_tbl); static int wctdm_suspend(struct pci_dev *pdev, pm_message_t state) { return -ENOSYS; } static struct pci_driver wctdm_driver = { .name = "wctdm24xxp", .probe = wctdm_init_one, .remove = __devexit_p(wctdm_remove_one), .shutdown = wctdm_shutdown, .suspend = wctdm_suspend, .id_table = wctdm_pci_tbl, }; static int __init wctdm_init(void) { int res; int x; for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) { if (!strcmp(fxo_modes[x].name, opermode)) break; } if (x < ARRAY_SIZE(fxo_modes)) { _opermode = x; } else { printk(KERN_NOTICE "Invalid/unknown operating mode '%s' " "specified. Please choose one of:\n", opermode); for (x = 0; x < ARRAY_SIZE(fxo_modes); x++) printk(KERN_CONT " %s\n", fxo_modes[x].name); printk(KERN_NOTICE "Note this option is CASE SENSITIVE!\n"); return -ENODEV; } if (!strcmp(opermode, "AUSTRALIA")) { boostringer = 1; fxshonormode = 1; } if (-1 == fastpickup) { if (!strcmp(opermode, "JAPAN")) fastpickup = 1; else fastpickup = 0; } /* for the voicedaa_check_hook defaults, if the user has not overridden them by specifying them as module parameters, then get the values from the selected operating mode */ if (battdebounce == 0) { battdebounce = fxo_modes[_opermode].battdebounce; } if (battalarm == 0) { battalarm = fxo_modes[_opermode].battalarm; } if (battthresh == 0) { battthresh = fxo_modes[_opermode].battthresh; } b400m_module_init(); res = pci_register_driver(&wctdm_driver); if (res) return -ENODEV; #ifdef USE_ASYNC_INIT async_synchronize_full(); #endif return 0; } static void __exit wctdm_cleanup(void) { pci_unregister_driver(&wctdm_driver); } module_param(debug, int, 0600); module_param(fastpickup, int, 0400); MODULE_PARM_DESC(fastpickup, "Set to 1 to shorten the calibration delay when taking " \ "an FXO port off hook. This can be required for Type-II " \ "CID. If -1 the calibration delay will depend on the " \ "current opermode.\n"); module_param(fxovoltage, int, 0600); module_param(loopcurrent, int, 0600); module_param(reversepolarity, int, 0600); #ifdef DEBUG module_param(robust, int, 0600); module_param(digitalloopback, int, 0400); MODULE_PARM_DESC(digitalloopback, "Set to 1 to place FXO modules into " \ "loopback mode for troubleshooting."); #endif module_param(opermode, charp, 0600); module_param(lowpower, int, 0600); module_param(boostringer, int, 0600); module_param(fastringer, int, 0600); module_param(fxshonormode, int, 0600); module_param(battdebounce, uint, 0600); module_param(battalarm, uint, 0600); module_param(battthresh, uint, 0600); module_param(nativebridge, int, 0600); module_param(fxotxgain, int, 0600); module_param(fxorxgain, int, 0600); module_param(fxstxgain, int, 0600); module_param(fxsrxgain, int, 0600); module_param(ringdebounce, int, 0600); module_param(latency, int, 0400); module_param(max_latency, int, 0400); module_param(neonmwi_monitor, int, 0600); module_param(neonmwi_level, int, 0600); module_param(neonmwi_envelope, int, 0600); module_param(neonmwi_offlimit, int, 0600); #ifdef VPM_SUPPORT module_param(vpmsupport, int, 0400); module_param(vpmnlptype, int, 0400); module_param(vpmnlpthresh, int, 0400); module_param(vpmnlpmaxsupp, int, 0400); #endif /* Module parameters backed by code in xhfc.c */ module_param(bri_debug, int, 0600); MODULE_PARM_DESC(bri_debug, "bitmap: 1=general 2=dtmf 4=regops 8=fops 16=ec 32=st state 64=hdlc 128=alarm"); module_param(bri_spanfilter, int, 0600); MODULE_PARM_DESC(bri_spanfilter, "debug filter for spans. bitmap: 1=port 1, 2=port 2, 4=port 3, 8=port 4"); module_param(bri_alarmdebounce, int, 0600); MODULE_PARM_DESC(bri_alarmdebounce, "msec to wait before set/clear alarm condition"); module_param(bri_teignorered, int, 0600); MODULE_PARM_DESC(bri_teignorered, "1=ignore (do not inform DAHDI) if a red alarm exists in TE mode"); module_param(bri_persistentlayer1, int, 0600); MODULE_PARM_DESC(bri_persistentlayer1, "Set to 0 for disabling automatic layer 1 reactivation (when other end deactivates it)"); module_param(timingcable, int, 0600); MODULE_PARM_DESC(timingcable, "Set to 1 for enabling timing cable. This means that *all* cards in the system are linked together with a single timing cable"); module_param(forceload, int, 0600); MODULE_PARM_DESC(forceload, "Set to 1 in order to force an FPGA reload after power on (currently only for HA8/HB8 cards)."); module_param(alawoverride, int, 0400); MODULE_PARM_DESC(alawoverride, "This option has been deprecated. Please use "\ "the parameter \"companding\" instead"); module_param(companding, charp, 0400); MODULE_PARM_DESC(companding, "Change the companding to \"auto\" or \"alaw\" " \ "or \"ulaw\". Auto (default) will set everything to ulaw " \ "unless a BRI module is installed. It will use alaw in that " "case."); MODULE_DESCRIPTION("VoiceBus Driver for Wildcard Analog and Hybrid Cards"); MODULE_AUTHOR("Digium Incorporated "); MODULE_ALIAS("wctdm8xxp"); MODULE_ALIAS("wctdm4xxp"); MODULE_ALIAS("wcaex24xx"); MODULE_ALIAS("wcaex8xx"); MODULE_ALIAS("wcaex4xx"); MODULE_LICENSE("GPL v2"); module_init(wctdm_init); module_exit(wctdm_cleanup);