uboot-mt623x/board/bf537-stamp/stm_m25p64.c

516 lines
12 KiB
C

/****************************************************************************
* SPI flash driver for M25P64
****************************************************************************/
#include <common.h>
#include <linux/ctype.h>
#include <asm/io.h>
#if defined(CONFIG_SPI)
/* Application definitions */
#define NUM_SECTORS 128 /* number of sectors */
#define SECTOR_SIZE 0x10000
#define NOP_NUM 1000
#define COMMON_SPI_SETTINGS (SPE|MSTR|CPHA|CPOL) /* Settings to the SPI_CTL */
#define TIMOD01 (0x01) /* stes the SPI to work with core instructions */
/* Flash commands */
#define SPI_WREN (0x06) /*Set Write Enable Latch */
#define SPI_WRDI (0x04) /*Reset Write Enable Latch */
#define SPI_RDSR (0x05) /*Read Status Register */
#define SPI_WRSR (0x01) /*Write Status Register */
#define SPI_READ (0x03) /*Read data from memory */
#define SPI_FAST_READ (0x0B) /*Read data from memory */
#define SPI_PP (0x02) /*Program Data into memory */
#define SPI_SE (0xD8) /*Erase one sector in memory */
#define SPI_BE (0xC7) /*Erase all memory */
#define WIP (0x1) /*Check the write in progress bit of the SPI status register */
#define WEL (0x2) /*Check the write enable bit of the SPI status register */
#define TIMEOUT 350000000
typedef enum {
NO_ERR,
POLL_TIMEOUT,
INVALID_SECTOR,
INVALID_BLOCK,
} ERROR_CODE;
void spi_init_f(void);
void spi_init_r(void);
ssize_t spi_read(uchar *, int, uchar *, int);
ssize_t spi_write(uchar *, int, uchar *, int);
char ReadStatusRegister(void);
void Wait_For_SPIF(void);
void SetupSPI(const int spi_setting);
void SPI_OFF(void);
void SendSingleCommand(const int iCommand);
ERROR_CODE GetSectorNumber(unsigned long ulOffset, int *pnSector);
ERROR_CODE EraseBlock(int nBlock);
ERROR_CODE ReadData(unsigned long ulStart, long lCount, int *pnData);
ERROR_CODE WriteData(unsigned long ulStart, long lCount, int *pnData);
ERROR_CODE Wait_For_Status(char Statusbit);
ERROR_CODE Wait_For_WEL(void);
/*
* Function: spi_init_f
* Description: Init SPI-Controller (ROM part)
* return: ---
*/
void spi_init_f(void)
{
}
/*
* Function: spi_init_r
* Description: Init SPI-Controller (RAM part) -
* The malloc engine is ready and we can move our buffers to
* normal RAM
* return: ---
*/
void spi_init_r(void)
{
return;
}
/*
* Function: spi_write
*/
ssize_t spi_write(uchar * addr, int alen, uchar * buffer, int len)
{
unsigned long offset;
int start_block, end_block;
int start_byte, end_byte;
ERROR_CODE result = NO_ERR;
uchar temp[SECTOR_SIZE];
int i, num;
offset = addr[0] << 16 | addr[1] << 8 | addr[2];
/* Get the start block number */
result = GetSectorNumber(offset, &start_block);
if (result == INVALID_SECTOR) {
printf("Invalid sector! ");
return 0;
}
/* Get the end block number */
result = GetSectorNumber(offset + len - 1, &end_block);
if (result == INVALID_SECTOR) {
printf("Invalid sector! ");
return 0;
}
for (num = start_block; num <= end_block; num++) {
ReadData(num * SECTOR_SIZE, SECTOR_SIZE, (int *)temp);
start_byte = num * SECTOR_SIZE;
end_byte = (num + 1) * SECTOR_SIZE - 1;
if (start_byte < offset)
start_byte = offset;
if (end_byte > (offset + len))
end_byte = (offset + len - 1);
for (i = start_byte; i <= end_byte; i++)
temp[i - num * SECTOR_SIZE] = buffer[i - offset];
EraseBlock(num);
result = WriteData(num * SECTOR_SIZE, SECTOR_SIZE, (int *)temp);
if (result != NO_ERR)
return 0;
printf(".");
}
return len;
}
/*
* Function: spi_read
*/
ssize_t spi_read(uchar * addr, int alen, uchar * buffer, int len)
{
unsigned long offset;
offset = addr[0] << 16 | addr[1] << 8 | addr[2];
ReadData(offset, len, (int *)buffer);
return len;
}
void SendSingleCommand(const int iCommand)
{
unsigned short dummy;
/* turns on the SPI in single write mode */
SetupSPI((COMMON_SPI_SETTINGS | TIMOD01));
/* sends the actual command to the SPI TX register */
*pSPI_TDBR = iCommand;
sync();
/* The SPI status register will be polled to check the SPIF bit */
Wait_For_SPIF();
dummy = *pSPI_RDBR;
/* The SPI will be turned off */
SPI_OFF();
}
void SetupSPI(const int spi_setting)
{
if (icache_status() || dcache_status())
udelay(CONFIG_CCLK_HZ / 50000000);
/*sets up the PF10 to be the slave select of the SPI */
*pPORTF_FER |= (PF10 | PF11 | PF12 | PF13);
*pSPI_FLG = 0xFF02;
*pSPI_BAUD = CONFIG_SPI_BAUD;
*pSPI_CTL = spi_setting;
sync();
*pSPI_FLG = 0xFD02;
sync();
}
void SPI_OFF(void)
{
*pSPI_CTL = 0x0400; /* disable SPI */
*pSPI_FLG = 0;
*pSPI_BAUD = 0;
sync();
udelay(CONFIG_CCLK_HZ / 50000000);
}
void Wait_For_SPIF(void)
{
unsigned short dummyread;
while ((*pSPI_STAT & TXS)) ;
while (!(*pSPI_STAT & SPIF)) ;
while (!(*pSPI_STAT & RXS)) ;
/* Read dummy to empty the receive register */
dummyread = *pSPI_RDBR;
}
ERROR_CODE Wait_For_WEL(void)
{
int i;
char status_register = 0;
ERROR_CODE ErrorCode = NO_ERR;
for (i = 0; i < TIMEOUT; i++) {
status_register = ReadStatusRegister();
if ((status_register & WEL)) {
ErrorCode = NO_ERR;
break;
}
ErrorCode = POLL_TIMEOUT; /* Time out error */
};
return ErrorCode;
}
ERROR_CODE Wait_For_Status(char Statusbit)
{
int i;
char status_register = 0xFF;
ERROR_CODE ErrorCode = NO_ERR;
for (i = 0; i < TIMEOUT; i++) {
status_register = ReadStatusRegister();
if (!(status_register & Statusbit)) {
ErrorCode = NO_ERR;
break;
}
ErrorCode = POLL_TIMEOUT; /* Time out error */
};
return ErrorCode;
}
char ReadStatusRegister(void)
{
char status_register = 0;
SetupSPI((COMMON_SPI_SETTINGS | TIMOD01)); /* Turn on the SPI */
*pSPI_TDBR = SPI_RDSR; /* send instruction to read status register */
sync();
Wait_For_SPIF(); /*wait until the instruction has been sent */
*pSPI_TDBR = 0; /*send dummy to receive the status register */
sync();
Wait_For_SPIF(); /*wait until the data has been sent */
status_register = *pSPI_RDBR; /*read the status register */
SPI_OFF(); /* Turn off the SPI */
return status_register;
}
ERROR_CODE GetSectorNumber(unsigned long ulOffset, int *pnSector)
{
int nSector = 0;
ERROR_CODE ErrorCode = NO_ERR;
if (ulOffset > (NUM_SECTORS * 0x10000 - 1)) {
ErrorCode = INVALID_SECTOR;
return ErrorCode;
}
nSector = (int)ulOffset / 0x10000;
*pnSector = nSector;
return ErrorCode;
}
ERROR_CODE EraseBlock(int nBlock)
{
unsigned long ulSectorOff = 0x0, ShiftValue;
ERROR_CODE ErrorCode = NO_ERR;
/* if the block is invalid just return */
if ((nBlock < 0) || (nBlock > NUM_SECTORS)) {
ErrorCode = INVALID_BLOCK;
return ErrorCode;
}
/* figure out the offset of the block in flash */
if ((nBlock >= 0) && (nBlock < NUM_SECTORS)) {
ulSectorOff = (nBlock * SECTOR_SIZE);
} else {
ErrorCode = INVALID_BLOCK;
return ErrorCode;
}
/* A write enable instruction must previously have been executed */
SendSingleCommand(SPI_WREN);
/* The status register will be polled to check the write enable latch "WREN" */
ErrorCode = Wait_For_WEL();
if (POLL_TIMEOUT == ErrorCode) {
printf("SPI Erase block error\n");
return ErrorCode;
} else
/* Turn on the SPI to send single commands */
SetupSPI((COMMON_SPI_SETTINGS | TIMOD01));
/*
* Send the erase block command to the flash followed by the 24 address
* to point to the start of a sector
*/
*pSPI_TDBR = SPI_SE;
sync();
Wait_For_SPIF();
/* Send the highest byte of the 24 bit address at first */
ShiftValue = (ulSectorOff >> 16);
*pSPI_TDBR = ShiftValue;
sync();
/* Wait until the instruction has been sent */
Wait_For_SPIF();
/* Send the middle byte of the 24 bit address at second */
ShiftValue = (ulSectorOff >> 8);
*pSPI_TDBR = ShiftValue;
sync();
/* Wait until the instruction has been sent */
Wait_For_SPIF();
/* Send the lowest byte of the 24 bit address finally */
*pSPI_TDBR = ulSectorOff;
sync();
/* Wait until the instruction has been sent */
Wait_For_SPIF();
/* Turns off the SPI */
SPI_OFF();
/* Poll the status register to check the Write in Progress bit */
/* Sector erase takes time */
ErrorCode = Wait_For_Status(WIP);
/* block erase should be complete */
return ErrorCode;
}
/*
* ERROR_CODE ReadData()
* Read a value from flash for verify purpose
* Inputs: unsigned long ulStart - holds the SPI start address
* int pnData - pointer to store value read from flash
* long lCount - number of elements to read
*/
ERROR_CODE ReadData(unsigned long ulStart, long lCount, int *pnData)
{
unsigned long ShiftValue;
char *cnData;
int i;
/* Pointer cast to be able to increment byte wise */
cnData = (char *)pnData;
/* Start SPI interface */
SetupSPI((COMMON_SPI_SETTINGS | TIMOD01));
#ifdef CONFIG_SPI_FLASH_FAST_READ
/* Send the read command to SPI device */
*pSPI_TDBR = SPI_FAST_READ;
#else
/* Send the read command to SPI device */
*pSPI_TDBR = SPI_READ;
#endif
sync();
/* Wait until the instruction has been sent */
Wait_For_SPIF();
/* Send the highest byte of the 24 bit address at first */
ShiftValue = (ulStart >> 16);
/* Send the byte to the SPI device */
*pSPI_TDBR = ShiftValue;
sync();
/* Wait until the instruction has been sent */
Wait_For_SPIF();
/* Send the middle byte of the 24 bit address at second */
ShiftValue = (ulStart >> 8);
/* Send the byte to the SPI device */
*pSPI_TDBR = ShiftValue;
sync();
/* Wait until the instruction has been sent */
Wait_For_SPIF();
/* Send the lowest byte of the 24 bit address finally */
*pSPI_TDBR = ulStart;
sync();
/* Wait until the instruction has been sent */
Wait_For_SPIF();
#ifdef CONFIG_SPI_FLASH_FAST_READ
/* Send dummy for FAST_READ */
*pSPI_TDBR = 0;
sync();
/* Wait until the instruction has been sent */
Wait_For_SPIF();
#endif
/* After the SPI device address has been placed on the MOSI pin the data can be */
/* received on the MISO pin. */
for (i = 0; i < lCount; i++) {
*pSPI_TDBR = 0;
sync();
while (!(*pSPI_STAT & RXS)) ;
*cnData++ = *pSPI_RDBR;
if ((i >= SECTOR_SIZE) && (i % SECTOR_SIZE == 0))
printf(".");
}
/* Turn off the SPI */
SPI_OFF();
return NO_ERR;
}
ERROR_CODE WriteFlash(unsigned long ulStartAddr, long lTransferCount,
int *iDataSource, long *lWriteCount)
{
unsigned long ulWAddr;
long lWTransferCount = 0;
int i;
char iData;
char *temp = (char *)iDataSource;
ERROR_CODE ErrorCode = NO_ERR;
/* First, a Write Enable Command must be sent to the SPI. */
SendSingleCommand(SPI_WREN);
/*
* Second, the SPI Status Register will be tested whether the
* Write Enable Bit has been set
*/
ErrorCode = Wait_For_WEL();
if (POLL_TIMEOUT == ErrorCode) {
printf("SPI Write Time Out\n");
return ErrorCode;
} else
/* Third, the 24 bit address will be shifted out
* the SPI MOSI bytewise.
* Turns the SPI on
*/
SetupSPI((COMMON_SPI_SETTINGS | TIMOD01));
*pSPI_TDBR = SPI_PP;
sync();
/*wait until the instruction has been sent */
Wait_For_SPIF();
ulWAddr = (ulStartAddr >> 16);
*pSPI_TDBR = ulWAddr;
sync();
/*wait until the instruction has been sent */
Wait_For_SPIF();
ulWAddr = (ulStartAddr >> 8);
*pSPI_TDBR = ulWAddr;
sync();
/*wait until the instruction has been sent */
Wait_For_SPIF();
ulWAddr = ulStartAddr;
*pSPI_TDBR = ulWAddr;
sync();
/*wait until the instruction has been sent */
Wait_For_SPIF();
/*
* Fourth, maximum number of 256 bytes will be taken from the Buffer
* and sent to the SPI device.
*/
for (i = 0; (i < lTransferCount) && (i < 256); i++, lWTransferCount++) {
iData = *temp;
*pSPI_TDBR = iData;
sync();
/*wait until the instruction has been sent */
Wait_For_SPIF();
temp++;
}
/* Turns the SPI off */
SPI_OFF();
/*
* Sixth, the SPI Write in Progress Bit must be toggled to ensure the
* programming is done before start of next transfer
*/
ErrorCode = Wait_For_Status(WIP);
if (POLL_TIMEOUT == ErrorCode) {
printf("SPI Program Time out!\n");
return ErrorCode;
} else
*lWriteCount = lWTransferCount;
return ErrorCode;
}
ERROR_CODE WriteData(unsigned long ulStart, long lCount, int *pnData)
{
unsigned long ulWStart = ulStart;
long lWCount = lCount, lWriteCount;
long *pnWriteCount = &lWriteCount;
ERROR_CODE ErrorCode = NO_ERR;
while (lWCount != 0) {
ErrorCode = WriteFlash(ulWStart, lWCount, pnData, pnWriteCount);
/*
* After each function call of WriteFlash the counter
* must be adjusted
*/
lWCount -= *pnWriteCount;
/* Also, both address pointers must be recalculated. */
ulWStart += *pnWriteCount;
pnData += *pnWriteCount / 4;
}
/* return the appropriate error code */
return ErrorCode;
}
#endif /* CONFIG_SPI */