uboot-mt623x/drivers/net/enc28j60_lpc2292.c

984 lines
24 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#warning This driver is depreciated. Please update to new SPI framework enc28j60 driver
#include <config.h>
#include <common.h>
#include <net.h>
#include <asm/arch/hardware.h>
#include <asm/arch/spi.h>
/*
* Control Registers in Bank 0
*/
#define CTL_REG_ERDPTL 0x00
#define CTL_REG_ERDPTH 0x01
#define CTL_REG_EWRPTL 0x02
#define CTL_REG_EWRPTH 0x03
#define CTL_REG_ETXSTL 0x04
#define CTL_REG_ETXSTH 0x05
#define CTL_REG_ETXNDL 0x06
#define CTL_REG_ETXNDH 0x07
#define CTL_REG_ERXSTL 0x08
#define CTL_REG_ERXSTH 0x09
#define CTL_REG_ERXNDL 0x0A
#define CTL_REG_ERXNDH 0x0B
#define CTL_REG_ERXRDPTL 0x0C
#define CTL_REG_ERXRDPTH 0x0D
#define CTL_REG_ERXWRPTL 0x0E
#define CTL_REG_ERXWRPTH 0x0F
#define CTL_REG_EDMASTL 0x10
#define CTL_REG_EDMASTH 0x11
#define CTL_REG_EDMANDL 0x12
#define CTL_REG_EDMANDH 0x13
#define CTL_REG_EDMADSTL 0x14
#define CTL_REG_EDMADSTH 0x15
#define CTL_REG_EDMACSL 0x16
#define CTL_REG_EDMACSH 0x17
/* these are common in all banks */
#define CTL_REG_EIE 0x1B
#define CTL_REG_EIR 0x1C
#define CTL_REG_ESTAT 0x1D
#define CTL_REG_ECON2 0x1E
#define CTL_REG_ECON1 0x1F
/*
* Control Registers in Bank 1
*/
#define CTL_REG_EHT0 0x00
#define CTL_REG_EHT1 0x01
#define CTL_REG_EHT2 0x02
#define CTL_REG_EHT3 0x03
#define CTL_REG_EHT4 0x04
#define CTL_REG_EHT5 0x05
#define CTL_REG_EHT6 0x06
#define CTL_REG_EHT7 0x07
#define CTL_REG_EPMM0 0x08
#define CTL_REG_EPMM1 0x09
#define CTL_REG_EPMM2 0x0A
#define CTL_REG_EPMM3 0x0B
#define CTL_REG_EPMM4 0x0C
#define CTL_REG_EPMM5 0x0D
#define CTL_REG_EPMM6 0x0E
#define CTL_REG_EPMM7 0x0F
#define CTL_REG_EPMCSL 0x10
#define CTL_REG_EPMCSH 0x11
#define CTL_REG_EPMOL 0x14
#define CTL_REG_EPMOH 0x15
#define CTL_REG_EWOLIE 0x16
#define CTL_REG_EWOLIR 0x17
#define CTL_REG_ERXFCON 0x18
#define CTL_REG_EPKTCNT 0x19
/*
* Control Registers in Bank 2
*/
#define CTL_REG_MACON1 0x00
#define CTL_REG_MACON2 0x01
#define CTL_REG_MACON3 0x02
#define CTL_REG_MACON4 0x03
#define CTL_REG_MABBIPG 0x04
#define CTL_REG_MAIPGL 0x06
#define CTL_REG_MAIPGH 0x07
#define CTL_REG_MACLCON1 0x08
#define CTL_REG_MACLCON2 0x09
#define CTL_REG_MAMXFLL 0x0A
#define CTL_REG_MAMXFLH 0x0B
#define CTL_REG_MAPHSUP 0x0D
#define CTL_REG_MICON 0x11
#define CTL_REG_MICMD 0x12
#define CTL_REG_MIREGADR 0x14
#define CTL_REG_MIWRL 0x16
#define CTL_REG_MIWRH 0x17
#define CTL_REG_MIRDL 0x18
#define CTL_REG_MIRDH 0x19
/*
* Control Registers in Bank 3
*/
#define CTL_REG_MAADR1 0x00
#define CTL_REG_MAADR0 0x01
#define CTL_REG_MAADR3 0x02
#define CTL_REG_MAADR2 0x03
#define CTL_REG_MAADR5 0x04
#define CTL_REG_MAADR4 0x05
#define CTL_REG_EBSTSD 0x06
#define CTL_REG_EBSTCON 0x07
#define CTL_REG_EBSTCSL 0x08
#define CTL_REG_EBSTCSH 0x09
#define CTL_REG_MISTAT 0x0A
#define CTL_REG_EREVID 0x12
#define CTL_REG_ECOCON 0x15
#define CTL_REG_EFLOCON 0x17
#define CTL_REG_EPAUSL 0x18
#define CTL_REG_EPAUSH 0x19
/*
* PHY Register
*/
#define PHY_REG_PHID1 0x02
#define PHY_REG_PHID2 0x03
/* taken from the Linux driver */
#define PHY_REG_PHCON1 0x00
#define PHY_REG_PHCON2 0x10
#define PHY_REG_PHLCON 0x14
/*
* Receive Filter Register (ERXFCON) bits
*/
#define ENC_RFR_UCEN 0x80
#define ENC_RFR_ANDOR 0x40
#define ENC_RFR_CRCEN 0x20
#define ENC_RFR_PMEN 0x10
#define ENC_RFR_MPEN 0x08
#define ENC_RFR_HTEN 0x04
#define ENC_RFR_MCEN 0x02
#define ENC_RFR_BCEN 0x01
/*
* ECON1 Register Bits
*/
#define ENC_ECON1_TXRST 0x80
#define ENC_ECON1_RXRST 0x40
#define ENC_ECON1_DMAST 0x20
#define ENC_ECON1_CSUMEN 0x10
#define ENC_ECON1_TXRTS 0x08
#define ENC_ECON1_RXEN 0x04
#define ENC_ECON1_BSEL1 0x02
#define ENC_ECON1_BSEL0 0x01
/*
* ECON2 Register Bits
*/
#define ENC_ECON2_AUTOINC 0x80
#define ENC_ECON2_PKTDEC 0x40
#define ENC_ECON2_PWRSV 0x20
#define ENC_ECON2_VRPS 0x08
/*
* EIR Register Bits
*/
#define ENC_EIR_PKTIF 0x40
#define ENC_EIR_DMAIF 0x20
#define ENC_EIR_LINKIF 0x10
#define ENC_EIR_TXIF 0x08
#define ENC_EIR_WOLIF 0x04
#define ENC_EIR_TXERIF 0x02
#define ENC_EIR_RXERIF 0x01
/*
* ESTAT Register Bits
*/
#define ENC_ESTAT_INT 0x80
#define ENC_ESTAT_LATECOL 0x10
#define ENC_ESTAT_RXBUSY 0x04
#define ENC_ESTAT_TXABRT 0x02
#define ENC_ESTAT_CLKRDY 0x01
/*
* EIE Register Bits
*/
#define ENC_EIE_INTIE 0x80
#define ENC_EIE_PKTIE 0x40
#define ENC_EIE_DMAIE 0x20
#define ENC_EIE_LINKIE 0x10
#define ENC_EIE_TXIE 0x08
#define ENC_EIE_WOLIE 0x04
#define ENC_EIE_TXERIE 0x02
#define ENC_EIE_RXERIE 0x01
/*
* MACON1 Register Bits
*/
#define ENC_MACON1_LOOPBK 0x10
#define ENC_MACON1_TXPAUS 0x08
#define ENC_MACON1_RXPAUS 0x04
#define ENC_MACON1_PASSALL 0x02
#define ENC_MACON1_MARXEN 0x01
/*
* MACON2 Register Bits
*/
#define ENC_MACON2_MARST 0x80
#define ENC_MACON2_RNDRST 0x40
#define ENC_MACON2_MARXRST 0x08
#define ENC_MACON2_RFUNRST 0x04
#define ENC_MACON2_MATXRST 0x02
#define ENC_MACON2_TFUNRST 0x01
/*
* MACON3 Register Bits
*/
#define ENC_MACON3_PADCFG2 0x80
#define ENC_MACON3_PADCFG1 0x40
#define ENC_MACON3_PADCFG0 0x20
#define ENC_MACON3_TXCRCEN 0x10
#define ENC_MACON3_PHDRLEN 0x08
#define ENC_MACON3_HFRMEN 0x04
#define ENC_MACON3_FRMLNEN 0x02
#define ENC_MACON3_FULDPX 0x01
/*
* MICMD Register Bits
*/
#define ENC_MICMD_MIISCAN 0x02
#define ENC_MICMD_MIIRD 0x01
/*
* MISTAT Register Bits
*/
#define ENC_MISTAT_NVALID 0x04
#define ENC_MISTAT_SCAN 0x02
#define ENC_MISTAT_BUSY 0x01
/*
* PHID1 and PHID2 values
*/
#define ENC_PHID1_VALUE 0x0083
#define ENC_PHID2_VALUE 0x1400
#define ENC_PHID2_MASK 0xFC00
#define ENC_SPI_SLAVE_CS 0x00010000 /* pin P1.16 */
#define ENC_RESET 0x00020000 /* pin P1.17 */
#define FAILSAFE_VALUE 5000
/*
* Controller memory layout:
*
* 0x0000 - 0x17ff 6k bytes receive buffer
* 0x1800 - 0x1fff 2k bytes transmit buffer
*/
/* Use the lower memory for receiver buffer. See errata pt. 5 */
#define ENC_RX_BUF_START 0x0000
#define ENC_TX_BUF_START 0x1800
/* taken from the Linux driver */
#define ENC_RX_BUF_END 0x17ff
#define ENC_TX_BUF_END 0x1fff
/* maximum frame length */
#define ENC_MAX_FRM_LEN 1518
#define enc_enable() PUT32(IO1CLR, ENC_SPI_SLAVE_CS)
#define enc_disable() PUT32(IO1SET, ENC_SPI_SLAVE_CS)
#define enc_cfg_spi() spi_set_cfg(0, 0, 0); spi_set_clock(8);
static unsigned char encReadReg (unsigned char regNo);
static void encWriteReg (unsigned char regNo, unsigned char data);
static void encWriteRegRetry (unsigned char regNo, unsigned char data, int c);
static void encReadBuff (unsigned short length, unsigned char *pBuff);
static void encWriteBuff (unsigned short length, unsigned char *pBuff);
static void encBitSet (unsigned char regNo, unsigned char data);
static void encBitClr (unsigned char regNo, unsigned char data);
static void encReset (void);
static void encInit (unsigned char *pEthAddr);
static unsigned short phyRead (unsigned char addr);
static void phyWrite(unsigned char, unsigned short);
static void encPoll (void);
static void encRx (void);
#define m_nic_read(reg) encReadReg(reg)
#define m_nic_write(reg, data) encWriteReg(reg, data)
#define m_nic_write_retry(reg, data, count) encWriteRegRetry(reg, data, count)
#define m_nic_read_data(len, buf) encReadBuff((len), (buf))
#define m_nic_write_data(len, buf) encWriteBuff((len), (buf))
/* bit field set */
#define m_nic_bfs(reg, data) encBitSet(reg, data)
/* bit field clear */
#define m_nic_bfc(reg, data) encBitClr(reg, data)
static unsigned char bank = 0; /* current bank in enc28j60 */
static unsigned char next_pointer_lsb;
static unsigned char next_pointer_msb;
static unsigned char buffer[ENC_MAX_FRM_LEN];
static int rxResetCounter = 0;
#define RX_RESET_COUNTER 1000;
/*-----------------------------------------------------------------------------
* Always returns 0
*/
int eth_init (bd_t * bis)
{
unsigned char estatVal;
uchar enetaddr[6];
/* configure GPIO */
(*((volatile unsigned long *) IO1DIR)) |= ENC_SPI_SLAVE_CS;
(*((volatile unsigned long *) IO1DIR)) |= ENC_RESET;
/* CS and RESET active low */
PUT32 (IO1SET, ENC_SPI_SLAVE_CS);
PUT32 (IO1SET, ENC_RESET);
spi_init ();
/* taken from the Linux driver - dangerous stuff here! */
/* Wait for CLKRDY to become set (i.e., check that we can communicate with
the ENC) */
do
{
estatVal = m_nic_read(CTL_REG_ESTAT);
} while ((estatVal & 0x08) || (~estatVal & ENC_ESTAT_CLKRDY));
/* initialize controller */
encReset ();
eth_getenv_enetaddr("ethaddr", enetaddr);
encInit (enetaddr);
m_nic_bfs (CTL_REG_ECON1, ENC_ECON1_RXEN); /* enable receive */
return 0;
}
int eth_send (volatile void *packet, int length)
{
/* check frame length, etc. */
/* TODO: */
/* switch to bank 0 */
m_nic_bfc (CTL_REG_ECON1, (ENC_ECON1_BSEL1 | ENC_ECON1_BSEL0));
/* set EWRPT */
m_nic_write (CTL_REG_EWRPTL, (ENC_TX_BUF_START & 0xff));
m_nic_write (CTL_REG_EWRPTH, (ENC_TX_BUF_START >> 8));
/* set ETXND */
m_nic_write (CTL_REG_ETXNDL, (length + ENC_TX_BUF_START) & 0xFF);
m_nic_write (CTL_REG_ETXNDH, (length + ENC_TX_BUF_START) >> 8);
/* set ETXST */
m_nic_write (CTL_REG_ETXSTL, ENC_TX_BUF_START & 0xFF);
m_nic_write (CTL_REG_ETXSTH, ENC_TX_BUF_START >> 8);
/* write packet */
m_nic_write_data (length, (unsigned char *) packet);
/* taken from the Linux driver */
/* Verify that the internal transmit logic has not been altered by excessive
collisions. See Errata B4 12 and 14.
*/
if (m_nic_read(CTL_REG_EIR) & ENC_EIR_TXERIF) {
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_TXRST);
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_TXRST);
}
m_nic_bfc(CTL_REG_EIR, (ENC_EIR_TXERIF | ENC_EIR_TXIF));
/* set ECON1.TXRTS */
m_nic_bfs (CTL_REG_ECON1, ENC_ECON1_TXRTS);
return 0;
}
/*****************************************************************************
* This function resets the receiver only. This function may be called from
* interrupt-context.
*/
static void encReceiverReset (void)
{
unsigned char econ1;
econ1 = m_nic_read (CTL_REG_ECON1);
if ((econ1 & ENC_ECON1_RXRST) == 0) {
m_nic_bfs (CTL_REG_ECON1, ENC_ECON1_RXRST);
rxResetCounter = RX_RESET_COUNTER;
}
}
/*****************************************************************************
* receiver reset timer
*/
static void encReceiverResetCallback (void)
{
m_nic_bfc (CTL_REG_ECON1, ENC_ECON1_RXRST);
m_nic_bfs (CTL_REG_ECON1, ENC_ECON1_RXEN); /* enable receive */
}
/*-----------------------------------------------------------------------------
* Check for received packets. Call NetReceive for each packet. The return
* value is ignored by the caller.
*/
int eth_rx (void)
{
if (rxResetCounter > 0 && --rxResetCounter == 0) {
encReceiverResetCallback ();
}
encPoll ();
return 0;
}
void eth_halt (void)
{
m_nic_bfc (CTL_REG_ECON1, ENC_ECON1_RXEN); /* disable receive */
}
/*****************************************************************************/
static void encPoll (void)
{
unsigned char eir_reg;
volatile unsigned char estat_reg;
unsigned char pkt_cnt;
#ifdef CONFIG_USE_IRQ
/* clear global interrupt enable bit in enc28j60 */
m_nic_bfc (CTL_REG_EIE, ENC_EIE_INTIE);
#endif
estat_reg = m_nic_read (CTL_REG_ESTAT);
eir_reg = m_nic_read (CTL_REG_EIR);
if (eir_reg & ENC_EIR_TXIF) {
/* clear TXIF bit in EIR */
m_nic_bfc (CTL_REG_EIR, ENC_EIR_TXIF);
}
/* We have to use pktcnt and not pktif bit, see errata pt. 6 */
/* move to bank 1 */
m_nic_bfc (CTL_REG_ECON1, ENC_ECON1_BSEL1);
m_nic_bfs (CTL_REG_ECON1, ENC_ECON1_BSEL0);
/* read pktcnt */
pkt_cnt = m_nic_read (CTL_REG_EPKTCNT);
if (pkt_cnt > 0) {
if ((eir_reg & ENC_EIR_PKTIF) == 0) {
/*printf("encPoll: pkt cnt > 0, but pktif not set\n"); */
}
encRx ();
/* clear PKTIF bit in EIR, this should not need to be done but it
seems like we get problems if we do not */
m_nic_bfc (CTL_REG_EIR, ENC_EIR_PKTIF);
}
if (eir_reg & ENC_EIR_RXERIF) {
printf ("encPoll: rx error\n");
m_nic_bfc (CTL_REG_EIR, ENC_EIR_RXERIF);
}
if (eir_reg & ENC_EIR_TXERIF) {
printf ("encPoll: tx error\n");
m_nic_bfc (CTL_REG_EIR, ENC_EIR_TXERIF);
}
#ifdef CONFIG_USE_IRQ
/* set global interrupt enable bit in enc28j60 */
m_nic_bfs (CTL_REG_EIE, ENC_EIE_INTIE);
#endif
}
static void encRx (void)
{
unsigned short pkt_len;
unsigned short copy_len;
unsigned short status;
unsigned char eir_reg;
unsigned char pkt_cnt = 0;
unsigned short rxbuf_rdpt;
/* switch to bank 0 */
m_nic_bfc (CTL_REG_ECON1, (ENC_ECON1_BSEL1 | ENC_ECON1_BSEL0));
m_nic_write (CTL_REG_ERDPTL, next_pointer_lsb);
m_nic_write (CTL_REG_ERDPTH, next_pointer_msb);
do {
m_nic_read_data (6, buffer);
next_pointer_lsb = buffer[0];
next_pointer_msb = buffer[1];
pkt_len = buffer[2];
pkt_len |= (unsigned short) buffer[3] << 8;
status = buffer[4];
status |= (unsigned short) buffer[5] << 8;
if (pkt_len <= ENC_MAX_FRM_LEN)
copy_len = pkt_len;
else
copy_len = 0;
if ((status & (1L << 7)) == 0) /* check Received Ok bit */
copy_len = 0;
/* taken from the Linux driver */
/* check if next pointer is resonable */
if ((((unsigned int)next_pointer_msb << 8) |
(unsigned int)next_pointer_lsb) >= ENC_TX_BUF_START)
copy_len = 0;
if (copy_len > 0) {
m_nic_read_data (copy_len, buffer);
}
/* advance read pointer to next pointer */
m_nic_write (CTL_REG_ERDPTL, next_pointer_lsb);
m_nic_write (CTL_REG_ERDPTH, next_pointer_msb);
/* decrease packet counter */
m_nic_bfs (CTL_REG_ECON2, ENC_ECON2_PKTDEC);
/* taken from the Linux driver */
/* Only odd values should be written to ERXRDPTL,
* see errata B4 pt.13
*/
rxbuf_rdpt = (next_pointer_msb << 8 | next_pointer_lsb) - 1;
if ((rxbuf_rdpt < (m_nic_read(CTL_REG_ERXSTH) << 8 |
m_nic_read(CTL_REG_ERXSTL))) || (rxbuf_rdpt >
(m_nic_read(CTL_REG_ERXNDH) << 8 |
m_nic_read(CTL_REG_ERXNDL)))) {
m_nic_write(CTL_REG_ERXRDPTL, m_nic_read(CTL_REG_ERXNDL));
m_nic_write(CTL_REG_ERXRDPTH, m_nic_read(CTL_REG_ERXNDH));
} else {
m_nic_write(CTL_REG_ERXRDPTL, rxbuf_rdpt & 0xFF);
m_nic_write(CTL_REG_ERXRDPTH, rxbuf_rdpt >> 8);
}
/* move to bank 1 */
m_nic_bfc (CTL_REG_ECON1, ENC_ECON1_BSEL1);
m_nic_bfs (CTL_REG_ECON1, ENC_ECON1_BSEL0);
/* read pktcnt */
pkt_cnt = m_nic_read (CTL_REG_EPKTCNT);
/* switch to bank 0 */
m_nic_bfc (CTL_REG_ECON1,
(ENC_ECON1_BSEL1 | ENC_ECON1_BSEL0));
if (copy_len == 0) {
eir_reg = m_nic_read (CTL_REG_EIR);
encReceiverReset ();
printf ("eth_rx: copy_len=0\n");
continue;
}
NetReceive ((unsigned char *) buffer, pkt_len);
eir_reg = m_nic_read (CTL_REG_EIR);
} while (pkt_cnt); /* Use EPKTCNT not EIR.PKTIF flag, see errata pt. 6 */
}
static void encWriteReg (unsigned char regNo, unsigned char data)
{
spi_lock ();
enc_cfg_spi ();
enc_enable ();
spi_write (0x40 | regNo); /* write in regNo */
spi_write (data);
enc_disable ();
enc_enable ();
spi_write (0x1f); /* write reg 0x1f */
enc_disable ();
spi_unlock ();
}
static void encWriteRegRetry (unsigned char regNo, unsigned char data, int c)
{
unsigned char readback;
int i;
spi_lock ();
for (i = 0; i < c; i++) {
enc_cfg_spi ();
enc_enable ();
spi_write (0x40 | regNo); /* write in regNo */
spi_write (data);
enc_disable ();
enc_enable ();
spi_write (0x1f); /* write reg 0x1f */
enc_disable ();
spi_unlock (); /* we must unlock spi first */
readback = encReadReg (regNo);
spi_lock ();
if (readback == data)
break;
}
spi_unlock ();
if (i == c) {
printf ("enc28j60: write reg %d failed\n", regNo);
}
}
static unsigned char encReadReg (unsigned char regNo)
{
unsigned char rxByte;
spi_lock ();
enc_cfg_spi ();
enc_enable ();
spi_write (0x1f); /* read reg 0x1f */
bank = spi_read () & 0x3;
enc_disable ();
enc_enable ();
spi_write (regNo);
rxByte = spi_read ();
/* check if MAC or MII register */
if (((bank == 2) && (regNo <= 0x1a)) ||
((bank == 3) && (regNo <= 0x05 || regNo == 0x0a))) {
/* ignore first byte and read another byte */
rxByte = spi_read ();
}
enc_disable ();
spi_unlock ();
return rxByte;
}
static void encReadBuff (unsigned short length, unsigned char *pBuff)
{
spi_lock ();
enc_cfg_spi ();
enc_enable ();
spi_write (0x20 | 0x1a); /* read buffer memory */
while (length--) {
if (pBuff != NULL)
*pBuff++ = spi_read ();
else
spi_write (0);
}
enc_disable ();
spi_unlock ();
}
static void encWriteBuff (unsigned short length, unsigned char *pBuff)
{
spi_lock ();
enc_cfg_spi ();
enc_enable ();
spi_write (0x60 | 0x1a); /* write buffer memory */
spi_write (0x00); /* control byte */
while (length--)
spi_write (*pBuff++);
enc_disable ();
spi_unlock ();
}
static void encBitSet (unsigned char regNo, unsigned char data)
{
spi_lock ();
enc_cfg_spi ();
enc_enable ();
spi_write (0x80 | regNo); /* bit field set */
spi_write (data);
enc_disable ();
spi_unlock ();
}
static void encBitClr (unsigned char regNo, unsigned char data)
{
spi_lock ();
enc_cfg_spi ();
enc_enable ();
spi_write (0xA0 | regNo); /* bit field clear */
spi_write (data);
enc_disable ();
spi_unlock ();
}
static void encReset (void)
{
spi_lock ();
enc_cfg_spi ();
enc_enable ();
spi_write (0xff); /* soft reset */
enc_disable ();
spi_unlock ();
/* sleep 1 ms. See errata pt. 2 */
udelay (1000);
}
static void encInit (unsigned char *pEthAddr)
{
unsigned short phid1 = 0;
unsigned short phid2 = 0;
/* switch to bank 0 */
m_nic_bfc (CTL_REG_ECON1, (ENC_ECON1_BSEL1 | ENC_ECON1_BSEL0));
/*
* Setup the buffer space. The reset values are valid for the
* other pointers.
*/
/* We shall not write to ERXST, see errata pt. 5. Instead we
have to make sure that ENC_RX_BUS_START is 0. */
m_nic_write_retry (CTL_REG_ERXSTL, (ENC_RX_BUF_START & 0xFF), 1);
m_nic_write_retry (CTL_REG_ERXSTH, (ENC_RX_BUF_START >> 8), 1);
/* taken from the Linux driver */
m_nic_write_retry (CTL_REG_ERXNDL, (ENC_RX_BUF_END & 0xFF), 1);
m_nic_write_retry (CTL_REG_ERXNDH, (ENC_RX_BUF_END >> 8), 1);
m_nic_write_retry (CTL_REG_ERDPTL, (ENC_RX_BUF_START & 0xFF), 1);
m_nic_write_retry (CTL_REG_ERDPTH, (ENC_RX_BUF_START >> 8), 1);
next_pointer_lsb = (ENC_RX_BUF_START & 0xFF);
next_pointer_msb = (ENC_RX_BUF_START >> 8);
/* verify identification */
phid1 = phyRead (PHY_REG_PHID1);
phid2 = phyRead (PHY_REG_PHID2);
if (phid1 != ENC_PHID1_VALUE
|| (phid2 & ENC_PHID2_MASK) != ENC_PHID2_VALUE) {
printf ("ERROR: failed to identify controller\n");
printf ("phid1 = %x, phid2 = %x\n",
phid1, (phid2 & ENC_PHID2_MASK));
printf ("should be phid1 = %x, phid2 = %x\n",
ENC_PHID1_VALUE, ENC_PHID2_VALUE);
}
/*
* --- MAC Initialization ---
*/
/* Pull MAC out of Reset */
/* switch to bank 2 */
m_nic_bfc (CTL_REG_ECON1, ENC_ECON1_BSEL0);
m_nic_bfs (CTL_REG_ECON1, ENC_ECON1_BSEL1);
/* enable MAC to receive frames */
/* added some bits from the Linux driver */
m_nic_write_retry (CTL_REG_MACON1
,(ENC_MACON1_MARXEN | ENC_MACON1_TXPAUS | ENC_MACON1_RXPAUS)
,10);
/* configure pad, tx-crc and duplex */
/* added a bit from the Linux driver */
m_nic_write_retry (CTL_REG_MACON3
,(ENC_MACON3_PADCFG0 | ENC_MACON3_TXCRCEN | ENC_MACON3_FRMLNEN)
,10);
/* added 4 new lines from the Linux driver */
/* Allow infinite deferals if the medium is continously busy */
m_nic_write_retry(CTL_REG_MACON4, (1<<6) /*ENC_MACON4_DEFER*/, 10);
/* Late collisions occur beyond 63 bytes */
m_nic_write_retry(CTL_REG_MACLCON2, 63, 10);
/* Set (low byte) Non-Back-to_Back Inter-Packet Gap. Recommended 0x12 */
m_nic_write_retry(CTL_REG_MAIPGL, 0x12, 10);
/*
* Set (high byte) Non-Back-to_Back Inter-Packet Gap. Recommended
* 0x0c for half-duplex. Nothing for full-duplex
*/
m_nic_write_retry(CTL_REG_MAIPGH, 0x0C, 10);
/* set maximum frame length */
m_nic_write_retry (CTL_REG_MAMXFLL, (ENC_MAX_FRM_LEN & 0xff), 10);
m_nic_write_retry (CTL_REG_MAMXFLH, (ENC_MAX_FRM_LEN >> 8), 10);
/*
* Set MAC back-to-back inter-packet gap. Recommended 0x12 for half duplex
* and 0x15 for full duplex.
*/
m_nic_write_retry (CTL_REG_MABBIPG, 0x12, 10);
/* set MAC address */
/* switch to bank 3 */
m_nic_bfs (CTL_REG_ECON1, (ENC_ECON1_BSEL0 | ENC_ECON1_BSEL1));
m_nic_write_retry (CTL_REG_MAADR0, pEthAddr[5], 1);
m_nic_write_retry (CTL_REG_MAADR1, pEthAddr[4], 1);
m_nic_write_retry (CTL_REG_MAADR2, pEthAddr[3], 1);
m_nic_write_retry (CTL_REG_MAADR3, pEthAddr[2], 1);
m_nic_write_retry (CTL_REG_MAADR4, pEthAddr[1], 1);
m_nic_write_retry (CTL_REG_MAADR5, pEthAddr[0], 1);
/*
* PHY Initialization taken from the Linux driver
*/
/* Prevent automatic loopback of data beeing transmitted by setting
ENC_PHCON2_HDLDIS */
phyWrite(PHY_REG_PHCON2, (1<<8));
/* LEDs configuration
* LEDA: LACFG = 0100 -> display link status
* LEDB: LBCFG = 0111 -> display TX & RX activity
* STRCH = 1 -> LED pulses
*/
phyWrite(PHY_REG_PHLCON, 0x0472);
/* Reset PDPXMD-bit => half duplex */
phyWrite(PHY_REG_PHCON1, 0);
/*
* Receive settings
*/
#ifdef CONFIG_USE_IRQ
/* enable interrupts */
m_nic_bfs (CTL_REG_EIE, ENC_EIE_PKTIE);
m_nic_bfs (CTL_REG_EIE, ENC_EIE_TXIE);
m_nic_bfs (CTL_REG_EIE, ENC_EIE_RXERIE);
m_nic_bfs (CTL_REG_EIE, ENC_EIE_TXERIE);
m_nic_bfs (CTL_REG_EIE, ENC_EIE_INTIE);
#endif
}
/*****************************************************************************
*
* Description:
* Read PHY registers.
*
* NOTE! This function will change to Bank 2.
*
* Params:
* [in] addr address of the register to read
*
* Returns:
* The value in the register
*/
static unsigned short phyRead (unsigned char addr)
{
unsigned short ret = 0;
/* move to bank 2 */
m_nic_bfc (CTL_REG_ECON1, ENC_ECON1_BSEL0);
m_nic_bfs (CTL_REG_ECON1, ENC_ECON1_BSEL1);
/* write address to MIREGADR */
m_nic_write (CTL_REG_MIREGADR, addr);
/* set MICMD.MIIRD */
m_nic_write (CTL_REG_MICMD, ENC_MICMD_MIIRD);
/* taken from the Linux driver */
/* move to bank 3 */
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL0);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL1);
/* poll MISTAT.BUSY bit until operation is complete */
while ((m_nic_read (CTL_REG_MISTAT) & ENC_MISTAT_BUSY) != 0) {
static int cnt = 0;
if (cnt++ >= 1000) {
/* GJ - this seems extremely dangerous! */
/* printf("#"); */
cnt = 0;
}
}
/* taken from the Linux driver */
/* move to bank 2 */
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_BSEL0);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL1);
/* clear MICMD.MIIRD */
m_nic_write (CTL_REG_MICMD, 0);
ret = (m_nic_read (CTL_REG_MIRDH) << 8);
ret |= (m_nic_read (CTL_REG_MIRDL) & 0xFF);
return ret;
}
/*****************************************************************************
*
* Taken from the Linux driver.
* Description:
* Write PHY registers.
*
* NOTE! This function will change to Bank 3.
*
* Params:
* [in] addr address of the register to write to
* [in] data to be written
*
* Returns:
* None
*/
static void phyWrite(unsigned char addr, unsigned short data)
{
/* move to bank 2 */
m_nic_bfc(CTL_REG_ECON1, ENC_ECON1_BSEL0);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL1);
/* write address to MIREGADR */
m_nic_write(CTL_REG_MIREGADR, addr);
m_nic_write(CTL_REG_MIWRL, data & 0xff);
m_nic_write(CTL_REG_MIWRH, data >> 8);
/* move to bank 3 */
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL0);
m_nic_bfs(CTL_REG_ECON1, ENC_ECON1_BSEL1);
/* poll MISTAT.BUSY bit until operation is complete */
while((m_nic_read(CTL_REG_MISTAT) & ENC_MISTAT_BUSY) != 0) {
static int cnt = 0;
if(cnt++ >= 1000) {
cnt = 0;
}
}
}