/* * Copyright 2008-2009 Freescale Semiconductor, Inc. * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include #include #include #include #include #include #include #include "mp.h" DECLARE_GLOBAL_DATA_PTR; u32 get_my_id() { return mfspr(SPRN_PIR); } int cpu_reset(int nr) { volatile ccsr_pic_t *pic = (void *)(CONFIG_SYS_MPC85xx_PIC_ADDR); out_be32(&pic->pir, 1 << nr); /* the dummy read works around an errata on early 85xx MP PICs */ (void)in_be32(&pic->pir); out_be32(&pic->pir, 0x0); return 0; } int cpu_status(int nr) { u32 *table, id = get_my_id(); if (nr == id) { table = (u32 *)get_spin_virt_addr(); printf("table base @ 0x%p\n", table); } else { table = (u32 *)get_spin_virt_addr() + nr * NUM_BOOT_ENTRY; printf("Running on cpu %d\n", id); printf("\n"); printf("table @ 0x%p\n", table); printf(" addr - 0x%08x\n", table[BOOT_ENTRY_ADDR_LOWER]); printf(" pir - 0x%08x\n", table[BOOT_ENTRY_PIR]); printf(" r3 - 0x%08x\n", table[BOOT_ENTRY_R3_LOWER]); printf(" r6 - 0x%08x\n", table[BOOT_ENTRY_R6_LOWER]); } return 0; } static u8 boot_entry_map[4] = { 0, BOOT_ENTRY_PIR, BOOT_ENTRY_R3_LOWER, BOOT_ENTRY_R6_LOWER, }; int cpu_release(int nr, int argc, char *argv[]) { u32 i, val, *table = (u32 *)get_spin_virt_addr() + nr * NUM_BOOT_ENTRY; u64 boot_addr; if (nr == get_my_id()) { printf("Invalid to release the boot core.\n\n"); return 1; } if (argc != 4) { printf("Invalid number of arguments to release.\n\n"); return 1; } boot_addr = simple_strtoull(argv[0], NULL, 16); /* handle pir, r3, r6 */ for (i = 1; i < 4; i++) { if (argv[i][0] != '-') { u8 entry = boot_entry_map[i]; val = simple_strtoul(argv[i], NULL, 16); table[entry] = val; } } table[BOOT_ENTRY_ADDR_UPPER] = (u32)(boot_addr >> 32); /* ensure all table updates complete before final address write */ eieio(); table[BOOT_ENTRY_ADDR_LOWER] = (u32)(boot_addr & 0xffffffff); return 0; } u32 determine_mp_bootpg(void) { /* if we have 4G or more of memory, put the boot page at 4Gb-4k */ if ((u64)gd->ram_size > 0xfffff000) return (0xfffff000); return (gd->ram_size - 4096); } ulong get_spin_phys_addr(void) { extern ulong __secondary_start_page; extern ulong __spin_table; return (determine_mp_bootpg() + (ulong)&__spin_table - (ulong)&__secondary_start_page); } ulong get_spin_virt_addr(void) { extern ulong __secondary_start_page; extern ulong __spin_table; return (CONFIG_BPTR_VIRT_ADDR + (ulong)&__spin_table - (ulong)&__secondary_start_page); } #ifdef CONFIG_FSL_CORENET static void plat_mp_up(unsigned long bootpg) { u32 up, cpu_up_mask, whoami; u32 *table = (u32 *)get_spin_virt_addr(); volatile ccsr_gur_t *gur; volatile ccsr_local_t *ccm; volatile ccsr_rcpm_t *rcpm; volatile ccsr_pic_t *pic; int timeout = 10; u32 nr_cpus; struct law_entry e; gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); ccm = (void *)(CONFIG_SYS_FSL_CORENET_CCM_ADDR); rcpm = (void *)(CONFIG_SYS_FSL_CORENET_RCPM_ADDR); pic = (void *)(CONFIG_SYS_MPC85xx_PIC_ADDR); nr_cpus = ((in_be32(&pic->frr) >> 8) & 0xff) + 1; whoami = in_be32(&pic->whoami); cpu_up_mask = 1 << whoami; out_be32(&ccm->bstrl, bootpg); e = find_law(bootpg); out_be32(&ccm->bstrar, LAW_EN | e.trgt_id << 20 | LAW_SIZE_4K); /* disable time base at the platform */ out_be32(&rcpm->ctbenrl, cpu_up_mask); /* release the hounds */ up = ((1 << nr_cpus) - 1); out_be32(&gur->brrl, up); /* wait for everyone */ while (timeout) { int i; for (i = 0; i < nr_cpus; i++) { if (table[i * NUM_BOOT_ENTRY + BOOT_ENTRY_ADDR_LOWER]) cpu_up_mask |= (1 << i); }; if ((cpu_up_mask & up) == up) break; udelay(100); timeout--; } if (timeout == 0) printf("CPU up timeout. CPU up mask is %x should be %x\n", cpu_up_mask, up); /* enable time base at the platform */ out_be32(&rcpm->ctbenrl, 0); mtspr(SPRN_TBWU, 0); mtspr(SPRN_TBWL, 0); out_be32(&rcpm->ctbenrl, (1 << nr_cpus) - 1); #ifdef CONFIG_MPC8xxx_DISABLE_BPTR /* * Disabling Boot Page Translation allows the memory region 0xfffff000 * to 0xffffffff to be used normally. Leaving Boot Page Translation * enabled remaps 0xfffff000 to SDRAM which makes that memory region * unusable for normal operation but it does allow OSes to easily * reset a processor core to put it back into U-Boot's spinloop. */ clrbits_be32(&ecm->bptr, 0x80000000); #endif } #else static void plat_mp_up(unsigned long bootpg) { u32 up, cpu_up_mask, whoami; u32 *table = (u32 *)get_spin_virt_addr(); volatile u32 bpcr; volatile ccsr_local_ecm_t *ecm = (void *)(CONFIG_SYS_MPC85xx_ECM_ADDR); volatile ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR); volatile ccsr_pic_t *pic = (void *)(CONFIG_SYS_MPC85xx_PIC_ADDR); u32 devdisr; int timeout = 10; whoami = in_be32(&pic->whoami); out_be32(&ecm->bptr, 0x80000000 | (bootpg >> 12)); /* disable time base at the platform */ devdisr = in_be32(&gur->devdisr); if (whoami) devdisr |= MPC85xx_DEVDISR_TB0; else devdisr |= MPC85xx_DEVDISR_TB1; out_be32(&gur->devdisr, devdisr); /* release the hounds */ up = ((1 << cpu_numcores()) - 1); bpcr = in_be32(&ecm->eebpcr); bpcr |= (up << 24); out_be32(&ecm->eebpcr, bpcr); asm("sync; isync; msync"); cpu_up_mask = 1 << whoami; /* wait for everyone */ while (timeout) { int i; for (i = 0; i < cpu_numcores(); i++) { if (table[i * NUM_BOOT_ENTRY + BOOT_ENTRY_ADDR_LOWER]) cpu_up_mask |= (1 << i); }; if ((cpu_up_mask & up) == up) break; udelay(100); timeout--; } if (timeout == 0) printf("CPU up timeout. CPU up mask is %x should be %x\n", cpu_up_mask, up); /* enable time base at the platform */ if (whoami) devdisr |= MPC85xx_DEVDISR_TB1; else devdisr |= MPC85xx_DEVDISR_TB0; out_be32(&gur->devdisr, devdisr); mtspr(SPRN_TBWU, 0); mtspr(SPRN_TBWL, 0); devdisr &= ~(MPC85xx_DEVDISR_TB0 | MPC85xx_DEVDISR_TB1); out_be32(&gur->devdisr, devdisr); #ifdef CONFIG_MPC8xxx_DISABLE_BPTR /* * Disabling Boot Page Translation allows the memory region 0xfffff000 * to 0xffffffff to be used normally. Leaving Boot Page Translation * enabled remaps 0xfffff000 to SDRAM which makes that memory region * unusable for normal operation but it does allow OSes to easily * reset a processor core to put it back into U-Boot's spinloop. */ clrbits_be32(&ecm->bptr, 0x80000000); #endif } #endif void cpu_mp_lmb_reserve(struct lmb *lmb) { u32 bootpg = determine_mp_bootpg(); lmb_reserve(lmb, bootpg, 4096); } void setup_mp(void) { extern ulong __secondary_start_page; extern ulong __bootpg_addr; ulong fixup = (ulong)&__secondary_start_page; u32 bootpg = determine_mp_bootpg(); /* Store the bootpg's SDRAM address for use by secondary CPU cores */ __bootpg_addr = bootpg; /* look for the tlb covering the reset page, there better be one */ int i = find_tlb_idx((void *)CONFIG_BPTR_VIRT_ADDR, 1); /* we found a match */ if (i != -1) { /* map reset page to bootpg so we can copy code there */ disable_tlb(i); set_tlb(1, CONFIG_BPTR_VIRT_ADDR, bootpg, /* tlb, epn, rpn */ MAS3_SX|MAS3_SW|MAS3_SR, MAS2_I, /* perms, wimge */ 0, i, BOOKE_PAGESZ_4K, 1); /* ts, esel, tsize, iprot */ memcpy((void *)CONFIG_BPTR_VIRT_ADDR, (void *)fixup, 4096); plat_mp_up(bootpg); } else { puts("WARNING: No reset page TLB. " "Skipping secondary core setup\n"); } }