osmocom-bb/src/target/trx_toolkit/fake_pm.py

78 lines
2.2 KiB
Python
Raw Normal View History

# -*- coding: utf-8 -*-
# TRX Toolkit
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
# Power measurement emulation
#
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
# (C) 2017-2018 by Vadim Yanitskiy <axilirator@gmail.com>
#
# All Rights Reserved
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
from random import randint
class FakePM:
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
""" Power measurement emulation for fake transceivers.
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
There is no such thing like RF signal level in fake Um-interface,
so we need to emulate this. The main idea is to have a list of
all running and idle transceivers. As soon as a measurement
request is received, FakePM will attempt to find a running
transceiver on a given frequency.
The result of such "measurement" is a random RSSI value
in one of the following ranges:
- trx_min ... trx_max - if at least one TRX was found,
- noise_min ... noise_max - no TRX instances were found.
FIXME: it would be great to average the rate of bursts
and indicated power / attenuation values for all
matching transceivers, so "pure traffic" ARFCNs
would be handled properly.
"""
def __init__(self, noise_min, noise_max, trx_min, trx_max):
# Init list of transceivers
self.trx_list = []
# RSSI randomization ranges
self.noise_min = noise_min
self.noise_max = noise_max
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
self.trx_min = trx_min
self.trx_max = trx_max
@property
def rssi_noise(self):
return randint(self.noise_min, self.noise_max)
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
@property
def rssi_trx(self):
return randint(self.trx_min, self.trx_max)
trx_toolkit/transceiver.py: add frequency hopping support There are two ways to implement frequency hopping: a) The Transceiver is configured with the hopping parameters, in particular HSN, MAIO, and the list of ARFCNs (channels), so the actual Rx/Tx frequencies are changed by the Transceiver itself depending on the current TDMA frame number. b) The L1 maintains several Transceivers (two or more), so each instance is assigned one dedicated RF carrier frequency, and hence the number of available hopping frequencies is equal to the number of Transceivers. In this case, it's the task of the L1 to commutate bursts between Transceivers (frequencies). Variant a) is commonly known as "synthesizer frequency hopping" whereas b) is known as "baseband frequency hopping". For the MS side, a) is preferred, because a phone usually has only one Transceiver (per RAT). On the other hand, b) is more suitable for the BTS side, because it's relatively easy to implement and there is no technical limitation on the amount of Transceivers. FakeTRX obviously does support b) since multi-TRX feature has been implemented, as well as a) by resolving UL/DL frequencies using a preconfigured (by the L1) set of the hopping parameters. The later can be enabled using the SETFH control command: CMD SETFH <HSN> <MAIO> <RXF1> <TXF1> [... <RXFN> <TXFN>] where <RXFN> and <TXFN> is a pair of Rx/Tx frequencies (in kHz) corresponding to one ARFCN the Mobile Allocation. Note that the channel list is expected to be sorted in ascending order. NOTE: in the current implementation, mode a) applies to the whole Transceiver and all its timeslots, so using in for the BTS side does not make any sense (imagine BCCH hopping together with DCCH). Change-Id: I587e4f5da67c7b7f28e010ed46b24622c31a3fdd
2020-05-14 10:03:25 +00:00
def measure(self, freq, fn = None):
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
# Iterate over all known transceivers
for trx in self.trx_list:
if not trx.running:
continue
trx_toolkit/transceiver.py: add frequency hopping support There are two ways to implement frequency hopping: a) The Transceiver is configured with the hopping parameters, in particular HSN, MAIO, and the list of ARFCNs (channels), so the actual Rx/Tx frequencies are changed by the Transceiver itself depending on the current TDMA frame number. b) The L1 maintains several Transceivers (two or more), so each instance is assigned one dedicated RF carrier frequency, and hence the number of available hopping frequencies is equal to the number of Transceivers. In this case, it's the task of the L1 to commutate bursts between Transceivers (frequencies). Variant a) is commonly known as "synthesizer frequency hopping" whereas b) is known as "baseband frequency hopping". For the MS side, a) is preferred, because a phone usually has only one Transceiver (per RAT). On the other hand, b) is more suitable for the BTS side, because it's relatively easy to implement and there is no technical limitation on the amount of Transceivers. FakeTRX obviously does support b) since multi-TRX feature has been implemented, as well as a) by resolving UL/DL frequencies using a preconfigured (by the L1) set of the hopping parameters. The later can be enabled using the SETFH control command: CMD SETFH <HSN> <MAIO> <RXF1> <TXF1> [... <RXFN> <TXFN>] where <RXFN> and <TXFN> is a pair of Rx/Tx frequencies (in kHz) corresponding to one ARFCN the Mobile Allocation. Note that the channel list is expected to be sorted in ascending order. NOTE: in the current implementation, mode a) applies to the whole Transceiver and all its timeslots, so using in for the BTS side does not make any sense (imagine BCCH hopping together with DCCH). Change-Id: I587e4f5da67c7b7f28e010ed46b24622c31a3fdd
2020-05-14 10:03:25 +00:00
# FIXME: we need to know current TDMA frame number here,
# because some transceivers may use frequency hopping
if trx.fh is not None and fn is None:
continue
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
# Match by given frequency
trx_toolkit/transceiver.py: add frequency hopping support There are two ways to implement frequency hopping: a) The Transceiver is configured with the hopping parameters, in particular HSN, MAIO, and the list of ARFCNs (channels), so the actual Rx/Tx frequencies are changed by the Transceiver itself depending on the current TDMA frame number. b) The L1 maintains several Transceivers (two or more), so each instance is assigned one dedicated RF carrier frequency, and hence the number of available hopping frequencies is equal to the number of Transceivers. In this case, it's the task of the L1 to commutate bursts between Transceivers (frequencies). Variant a) is commonly known as "synthesizer frequency hopping" whereas b) is known as "baseband frequency hopping". For the MS side, a) is preferred, because a phone usually has only one Transceiver (per RAT). On the other hand, b) is more suitable for the BTS side, because it's relatively easy to implement and there is no technical limitation on the amount of Transceivers. FakeTRX obviously does support b) since multi-TRX feature has been implemented, as well as a) by resolving UL/DL frequencies using a preconfigured (by the L1) set of the hopping parameters. The later can be enabled using the SETFH control command: CMD SETFH <HSN> <MAIO> <RXF1> <TXF1> [... <RXFN> <TXFN>] where <RXFN> and <TXFN> is a pair of Rx/Tx frequencies (in kHz) corresponding to one ARFCN the Mobile Allocation. Note that the channel list is expected to be sorted in ascending order. NOTE: in the current implementation, mode a) applies to the whole Transceiver and all its timeslots, so using in for the BTS side does not make any sense (imagine BCCH hopping together with DCCH). Change-Id: I587e4f5da67c7b7f28e010ed46b24622c31a3fdd
2020-05-14 10:03:25 +00:00
if trx.get_tx_freq(fn) == freq:
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
return self.rssi_trx
trx_toolkit/fake_trx.py: refactor global class hierarchy This change is a big step towards handling of multiple transceivers in a single process, i.e. multiple MS and multiple BTS connections. The old class hierarchy wasn't flexible enough, because initially fake_trx was designed as a bridge between OsmocomBB and OsmoBTS, but not as the burst router. There were two separate, but 90% similar implementations of the CTRL interface, two variations of each simulation parameter - one for UL, another for DL. The following new classes are introduced: - Transceiver - represents a single transceiver, that can be used as for the BTS side, as for the MS side. Each instance has its own CTRL, DATA, and (optionally) CLCK interfaces, among with basic state variables, such as both RX / TX freq., power state (running or idle) and list of active timeslots. - CTRLInterfaceTRX - unified control interface handler for common transceiver management commands, such as POWERON, RXTUNE, and SETSLOT. Deprecates both CTRLInterface{BB|BTS}. - FakeTRX - basically, a child of Transceiver, extended with RF path (burst loss, RSSI, TA, ToA) simulation. Implements a custom CTRL command handler for CTRLInterfaceTRX. The following classes were refactored: - BurstForwarder - still performs burst forwarding, but now it doesn't store any simulation parameters, and doesn't know who is BTS, and who is MS. Actually, BurstForwarder transforms each L12TRX message into a TRX2L1 message, and dispatches it between running transceivers with matching RX frequency and matching timeslot. - FakePM - still generates random RSSI values, but doesn't distinguish between MS and BTS anymore. As soon as a measurement request is received, it attempts to find at least one running TRX on a given frequency. Please note that fake_trx.py still does handle only a single pair of MS and BTS. No regressions have been observed. Both new and refactored classes were documented. Change-Id: Ice44e2b22566b3652ef6d43896055963b13ab185 Related: OS#3667
2018-12-10 10:39:51 +00:00
return self.rssi_noise