9
0
Fork 0
nuttx-bb/nuttx/fs/nfs/rpc_clnt.c

2176 lines
61 KiB
C

/****************************************************************************
* fs/nfs/rpc_clnt.c
*
* Copyright (C) 2012 Gregory Nutt. All rights reserved.
* Copyright (C) 2012 Jose Pablo Rojas Vargas. All rights reserved.
* Author: Jose Pablo Rojas Vargas <jrojas@nx-engineering.com>
*
* Leveraged from OpenBSD:
*
* Copyright (c) 2004 The Regents of the University of Michigan.
* All rights reserved.
*
* Copyright (c) 2004 Weston Andros Adamson <muzzle@umich.edu>.
* Copyright (c) 2004 Marius Aamodt Eriksen <marius@umich.edu>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 1989, 1991, 1993, 1995 The Regents of the University of
* California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by Rick Macklem at
* The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer. 2.
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution. 3. All advertising
* materials mentioning features or use of this software must display the
* following acknowledgement: This product includes software developed by the
* University of California, Berkeley and its contributors. 4. Neither the
* name of the University nor the names of its contributors may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
****************************************************************************/
#ifndef __FS_NFS_NFS_SOCKET_H
#define __FS_NFS_NFS_SOCKET_H
/****************************************************************************
* Included Files
****************************************************************************/
#include <sys/socket.h>
#include <queue.h>
#include <time.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <debug.h>
#include <nuttx/kmalloc.h>
#include "xdr_subs.h"
#include "nfs_proto.h"
#include "rpc.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Estimate rto for an nfs rpc sent via. an unreliable datagram. Use the mean
* and mean deviation of rtt for the appropriate type of rpc for the frequent
* rpcs and a default for the others. The justification for doing "other"
* this way is that these rpcs happen so infrequently that timer est. would
* probably be stale. Also, since many of these rpcs are non-idempotent, a
* conservative timeout is desired. getattr, lookup - A+2D read, write -
* A+4D other - nm_timeo
*/
#define RPC_RTO(n, t) \
((t) == 0 ? (n)->rc_timeo : \
((t) < 3 ? \
(((((n)->rc_srtt[t-1] + 3) >> 2) + (n)->rc_sdrtt[t-1] + 1) >> 1) : \
((((n)->rc_srtt[t-1] + 7) >> 3) + (n)->rc_sdrtt[t-1] + 1)))
#define RPC_SRTT(s,r) (r)->r_rpcclnt->rc_srtt[rpcclnt_proct((s),\
(r)->r_procnum) - 1]
#define RPC_SDRTT(s,r) (r)->r_rpcclnt->rc_sdrtt[rpcclnt_proct((s),\
(r)->r_procnum) - 1]
/* There is a congestion window for outstanding rpcs maintained per mount
* point. The cwnd size is adjusted in roughly the way that: Van Jacobson,
* Congestion avoidance and Control, In "Proceedings of SIGCOMM '88". ACM,
* August 1988. describes for TCP. The cwnd size is chopped in half on a
* retransmit timeout and incremented by 1/cwnd when each rpc reply is
* received and a full cwnd of rpcs is in progress. (The sent count and cwnd
* are scaled for integer arith.) Variants of "slow start" were tried and
* were found to be too much of a performance hit (ave. rtt 3 times larger),
* I suspect due to the large rtt that nfs rpcs have.
*/
#define RPC_CWNDSCALE 256
#define RPC_MAXCWND (RPC_CWNDSCALE * 32)
#define RPC_ERRSTR_ACCEPTED_SIZE 6
#define RPC_ERRSTR_AUTH_SIZE 6
/****************************************************************************
* Public Data
****************************************************************************/
char *rpc_errstr_accepted[RPC_ERRSTR_ACCEPTED_SIZE] =
{
"", /* no good message... */
"remote server hasn't exported program.",
"remote server can't support version number.",
"program can't support procedure.",
"procedure can't decode params.",
"remote error. remote side memory allocation failure?"
};
char *rpc_errstr_denied[2] =
{
"remote server doesnt support rpc version 2!",
"remote server authentication error."
};
char *rpc_errstr_auth[RPC_ERRSTR_AUTH_SIZE] =
{
"",
"auth error: bad credential (seal broken).",
"auth error: client must begin new session.",
"auth error: bad verifier (seal broken).",
"auth error: verifier expired or replayed.",
"auth error: rejected for security reasons.",
};
/****************************************************************************
* Private Data
****************************************************************************/
//static int rpcclnt_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
/* Static data, mostly RPC constants in XDR form */
static uint32_t rpc_reply;
static uint32_t rpc_call;
static uint32_t rpc_vers;
static uint32_t rpc_msgdenied;
static uint32_t rpc_mismatch;
static uint32_t rpc_auth_unix;
static uint32_t rpc_msgaccepted;
static uint32_t rpc_autherr;
static uint32_t rpc_auth_null;
int rpcclnt_ticks;
struct rpcstats rpcstats;
//struct rpc_call *callmgs;
//struct rpc_reply *replymsg;
/* Queue head for rpctask's */
static dq_queue_t rpctask_q;
//struct callout_handle rpcclnt_timer_handle;
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static int rpcclnt_send(struct socket *so, struct sockaddr *nam,
int procid, int prog, void *call, int reqlen,
struct rpctask *rep);
static int rpcclnt_receive(struct rpctask *rep, struct sockaddr *aname,
int proc, int program, void *reply, size_t resplen);
//, struct rpc_call *);
static int rpcclnt_reply(struct rpctask *myrep, int procid, int prog,
void *reply, size_t resplen);
#ifdef CONFIG_NFS_TCPIP
static int rpcclnt_sndlock(int *flagp, struct rpctask *task);
static void rpcclnt_sndunlock(int *flagp);
static int rpcclnt_rcvlock(struct rpctask *task);
static void rpcclnt_rcvunlock(int *flagp);
static int rpcclnt_sigintr(struct rpcclnt *rpc, struct rpctask *task,
cthread_t *td);
#endif
#ifdef COMP
static void rpcclnt_softterm(struct rpctask *task);
void rpcclnt_timer(void *arg, struct rpc_call *call);
#endif
static uint32_t rpcclnt_proct(struct rpcclnt *rpc, uint32_t procid);
static uint32_t rpcclnt_newxid(void);
static void rpcclnt_fmtheader(FAR struct rpc_call_header *ch,
uint32_t xid, int procid, int prog, int vers);
static int rpcclnt_buildheader(struct rpcclnt *rpc, int procid, int prog, int vers,
struct xidr *value, FAR const void *request,
size_t *reqlen, FAR void *msgbuf);
/****************************************************************************
* Private Functions
****************************************************************************/
/* This is the nfs send routine. For connection based socket types, it must
* be called with an nfs_sndlock() on the socket. "rep == NULL" indicates
* that it has been called from a server. For the client side: - return EINTR
* if the RPC is terminated, 0 otherwise - set TASK_MUSTRESEND if the send fails
* for any reason - do any cleanup required by recoverable socket errors
* (???) For the server side: - return EINTR or ERESTART if interrupted by a
* signal - return EPIPE if a connection is lost for connection based sockets
* (TCP...) - do any cleanup required by recoverable socket errors (???)
*/
static int rpcclnt_send(struct socket *so, struct sockaddr *nam,
int procid, int prog, void *call, int reqlen,
struct rpctask *rep)
{
struct sockaddr *sendnam;
ssize_t nbytes;
#ifdef CONFIG_NFS_TCPIP
int soflags;
#endif
int flags;
int error = OK;
if (rep != NULL)
{
if (rep->r_flags & TASK_SOFTTERM)
{
return EINTR;
}
if ((so = rep->r_rpcclnt->rc_so) == NULL)
{
rep->r_flags |= TASK_MUSTRESEND;
return OK;
}
rep->r_flags &= ~TASK_MUSTRESEND;
#ifdef CONFIG_NFS_TCPIP
soflags = rep->r_rpcclnt->rc_soflags;
#endif
}
#ifdef CONFIG_NFS_TCPIP
else
{
soflags = so->s_flags;
}
if ((soflags & PR_CONNREQUIRED))
{
sendnam = NULL;
{
else
#endif
{
sendnam = nam;
}
if (so->s_type == SOCK_SEQPACKET)
{
flags = MSG_EOR;
}
else
{
flags = 0;
}
/* Send the call message */
/* On success, psock_sendto returns the number of bytes sent;
* On failure, it returns -1 with the specific error in errno.
*/
nbytes = psock_sendto(so, call, reqlen, flags,
sendnam, sizeof(struct sockaddr));
if (nbytes < 0)
{
/* psock_sendto failed, Sample the error value (subsequent
* calls can change the errno value!
*/
error = errno;
fdbg("ERROR: psock_sendto failed: %d\n", error);
if (rep != NULL)
{
fdbg("rpc send error %d for service %s\n", error,
rep->r_rpcclnt->rc_prog->prog_name);
/* Deal with errors for the client side. */
if (rep->r_flags & TASK_SOFTTERM)
{
error = EINTR;
}
else
{
rep->r_flags |= TASK_MUSTRESEND;
}
}
}
return error;
}
/* Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
* done by psock_recvfrom(). For SOCK_STREAM, first get the
* Record Mark to find out how much more there is to get. We must
* lock the socket against other receivers until we have an entire
* rpc request/reply.
*/
static int rpcclnt_receive(struct rpctask *rep, struct sockaddr *aname,
int proc, int program, void *reply, size_t resplen)
//, struct rpc_call *call)
{
struct socket *so;
ssize_t nbytes;
#ifdef CONFIG_NFS_TCPIP
uint32_t resplen;
int sotype;
#endif
int error = 0;
int errval;
#ifdef CONFIG_NFS_TCPIP
/* Set up arguments for psock_recvfrom() */
sotype = rep->r_rpcclnt->rc_sotype;
/* For reliable protocols, lock against other senders/receivers in
* case a reconnect is necessary. For SOCK_STREAM, first get the
* Record Mark to find out how much more there is to get. We must
* lock the socket against other receivers until we have an entire
* rpc request/reply.
*/
if (sotype != SOCK_DGRAM)
{
error = rpcclnt_sndlock(&rep->r_rpcclnt->rc_flag, rep);
if (error != 0)
{
fdbg("ERROR: rpcclnt_sndlock failed: %d\n", error);
return error;
}
tryagain:
/* Check for fatal errors and resending request.
*
* Ugh: If a reconnect attempt just happened, rc_so would
* have changed. NULL indicates a failed attempt that has
* essentially shut down this mount point.
*/
if (rep->r_flags & TASK_SOFTTERM)
{
rpcclnt_sndunlock(&rep->r_rpcclnt->rc_flag);
return EINTR;
}
so = rep->r_rpcclnt->rc_so;
if (so == NULL)
{
error = rpcclnt_reconnect(rep);
if (error)
{
rpcclnt_sndunlock(&rep->r_rpcclnt->rc_flag);
return error;
}
goto tryagain;
}
while (rep->r_flags & TASK_MUSTRESEND)
{
rpcstats.rpcretries++;
error = rpcclnt_send(so, rep->r_rpcclnt->rc_name, call, reqlen, rep);
if (error)
{
if (error == EINTR || error == ERESTART ||
(error = rpcclnt_reconnect(rep)) != 0)
{
rpcclnt_sndunlock(&rep->r_rpcclnt->rc_flag);
return error;
}
goto tryagain;
}
}
rpcclnt_sndunlock(&rep->r_rpcclnt->rc_flag);
if (sotype == SOCK_STREAM)
{
errval = 0;
do
{
socklen_t fromlen = sizeof(*rep->r_rpcclnt->rc_name)
nbytes = psock_recvfrom(so, reply, resplen,
MSG_WAITALL, rep->r_rpcclnt->rc_name,
&fromlen);
if (nbytes < 0)
{
errval = errno;
fdbg("ERROR: psock_recvfrom returned %d\n", errval);
if (errval == EWOULDBLOCK && rep &&
(rep->r_flags & TASK_SOFTTERM) != 0)
{
return EINTR;
}
}
}
while (errval == EWOULDBLOCK);
if (nbytes < 0)
{
error = errval;
}
else if (nbytes < resplen)
{
fdbg("ERROR: Short receive from rpc server %s\n",
rep->r_rpcclnt->rc_prog->prog_name);
fvdbg(" Expected %d bytes, received %d bytes\n",
resplen, nbytes);
error = EPIPE;
}
else
{
error = 0;
}
#warning "What is resplen? This logic is not right!"
resplen = ntohl(resplen) & ~0x80000000;
/* This is SERIOUS! We are out of sync with the
* sender and forcing a disconnect/reconnect is all I
* can do.
*/
else if (resplen > RPC_MAXPACKET)
{
fdbg("ERROR %s (%d) from rpc server %s\n",
"impossible packet length",
resplen, rep->r_rpcclnt->rc_prog->prog_name);
error = EFBIG;
goto errout;
}
errval = 0
do
{
socklen_t fromlen = sizeof(*rep->r_rpcclnt->rc_name);
nbytes = psock_recvfrom(so, reply, sizeof(*reply),
MSG_WAITALL, rep->r_rpcclnt->rc_name,
&fromlen);
if (nbytes < 0)
{
errval = errno;
fdbg("ERROR: psock_recvfrom failed: %d\n", errval);
}
}
while (errval == EWOULDBLOCK || errval == EINTR || errval == ERESTART);
if (nbytes < 0)
{
error = errval;
goto errout;
}
else if (nbytes < resplen)
{
fdbg("ERROR: Short receive from rpc server %s\n",
rep->r_rpcclnt->rc_prog->prog_name);
fvdbg(" Expected %d bytes, received %d bytes\n",
resplen, nbytes);
error = EPIPE;
}
else
{
error = 0;
}
}
else
{
/* NB: Since uio_resid is big, MSG_WAITALL is ignored
* and psock_recvfrom() will return when it has either a
* control msg or a data msg. We have no use for
* control msg., but must grab them and then throw
* them away so we know what is going on.
*/
errval = 0;
do
{
socklen_t fromlen = sizeof(*rep->r_rpcclnt->rc_name);
nbytes = psock_recvfrom(so, reply, sizeof(*reply), 0,
rep->r_rpcclnt->rc_name, &fromlen);
if (nbytes < 0)
{
errval = errno;
fdbg("ERROR: psock_recvfrom failed: %d\n", errval);
if (errval == EWOULDBLOCK && rep)
{
if (rep->r_flags & TASK_SOFTTERM)
{
return EINTR;
}
}
}
}
while (errval == EWOULDBLOCK || nbytes == 0);
if (nbytes < 0)
{
error = errval;
goto errout;
}
else if (nbytes < resplen)
{
fdbg("ERROR: Short receive from rpc server %s\n",
rep->r_rpcclnt->rc_prog->prog_name);
fvdbg(" Expected %d bytes, received %d bytes\n",
resplen, nbytes);
error = EPIPE;
}
else
{
error = 0;
}
}
errout:
if (error != 0 && error != EINTR && error != ERESTART)
{
if (error != EPIPE)
{
fdbg("ERROR: Receive error %d from rpc server %s\n",
error, rep->r_rpcclnt->rc_prog->prog_name);
}
error = rpcclnt_sndlock(&rep->r_rpcclnt->rc_flag, rep);
if (error == 0)
{
error = rpcclnt_reconnect(rep);
}
if (error == 0)
{
goto tryagain;
}
}
}
else
#endif
{
so = rep->r_rpcclnt->rc_so;
if (so == NULL)
{
return EACCES;
}
socklen_t fromlen = sizeof(struct sockaddr);
nbytes = psock_recvfrom(so, reply, resplen, 0, aname, &fromlen);
if (nbytes < 0)
{
errval = errno;
fdbg("ERROR: psock_recvfrom failed: %d\n", errval);
error = errval;
}
}
return error;
}
/* Implement receipt of reply on a socket. We must search through the list of
* received datagrams matching them with outstanding requests using the xid,
* until ours is found.
*/
static int rpcclnt_reply(struct rpctask *myrep, int procid, int prog,
void *reply, size_t resplen)
{
struct rpctask *rep;
struct rpc_reply_header replyheader;
struct rpcclnt *rpc = myrep->r_rpcclnt;
int32_t t1;
uint32_t rxid;
int error;
int count;
/* Loop around until we get our own reply */
for (count = 0; count < 9; count++)
{
/* Lock against other receivers so that I don't get stuck in
* sbwait() after someone else has received my reply for me.
* Also necessary for connection based protocols to avoid
* race conditions during a reconnect.
*/
#ifdef CONFIG_NFS_TCPIP
error = rpcclnt_rcvlock(myrep);
if (error)
{
return error;
}
#endif
/* Get the next Rpc reply off the socket */
error = rpcclnt_receive(myrep, rpc->rc_name, procid, prog, reply, resplen);
#ifdef CONFIG_NFS_TCPIP
rpcclnt_rcvunlock(&rpc->rc_flag);
#endif
if (error != 0)
{
/* Ignore routing errors on connectionless
* protocols??
*/
if (RPCIGNORE_SOERROR(rpc->rc_soflags, error))
{
if (myrep->r_flags & TASK_GETONEREP)
{
return 0;
}
fdbg("ignoring routing error on connectionless protocol\n");
continue;
}
return error;
}
memcpy(&replyheader, reply, sizeof(struct rpc_reply_header));
/* Get the xid and check that it is an rpc replysvr */
rxid = replyheader.rp_xid;
if (replyheader.rp_direction != rpc_reply)
{
rpcstats.rpcinvalid++;
if (myrep->r_flags & TASK_GETONEREP)
{
return 0;
}
continue;
}
/* Loop through the request list to match up the reply Iff no
* match, just drop the datagram
*/
for (rep = (struct rpctask *)rpctask_q.head; rep != NULL;
rep = (struct rpctask *)rep->r_chain.flink)
{
if (rxid == rep->r_xid)
{
/* Update congestion window. Do the additive
* increase of one rpc/rtt.
*/
if (rpc->rc_cwnd <= rpc->rc_sent)
{
rpc->rc_cwnd +=
(RPC_CWNDSCALE * RPC_CWNDSCALE + (rpc->rc_cwnd >> 1)) / rpc->rc_cwnd;
if (rpc->rc_cwnd > RPC_MAXCWND)
{
rpc->rc_cwnd = RPC_MAXCWND;
}
}
rep->r_flags &= ~TASK_SENT;
rpc->rc_sent -= RPC_CWNDSCALE;
/* Update rtt using a gain of 0.125 on the
* mean and a gain of 0.25 on the deviation.
*/
if (rep->r_flags & TASK_TIMING)
{
/* Since the timer resolution of
* NFS_HZ is so course, it can often
* result in r_rtt == 0. Since r_rtt
* == N means that the actual rtt is
* between N+dt and N+2-dt ticks, add
* 1.
*/
t1 = rep->r_rtt + 1;
t1 -= (RPC_SRTT(rpc, rep) >> 3);
RPC_SRTT(rpc, rep) += t1;
if (t1 < 0)
{
t1 = -t1;
}
t1 -= (RPC_SDRTT(rpc, rep) >> 2);
RPC_SDRTT(rpc, rep) += t1;
}
rpc->rc_timeouts = 0;
break;
}
}
/* If not matched to a request, drop it. If it's mine, get
* out.
*/
if (rep == 0)
{
fdbg("rpc reply not matched\n");
rpcstats.rpcunexpected++;
return ENOMSG;
}
else if (rep == myrep)
{
return 0;
}
if (myrep->r_flags & TASK_GETONEREP)
{
return 0;
}
}
return ENONET;
}
#ifdef CONFIG_NFS_TCPIP
static int rpcclnt_sigintr(struct rpcclnt *rpc, struct rpctask *task,
cthread_t *td)
{
struct proc *p;
sigset_t tmpset;
if (rpc == NULL)
{
return EFAULT;
}
if (ISSET(rpc->rc_flag, RPCCLNT_REDIRECT))
{
return 0;
}
if (task && ISSET(task->r_flags, TASK_SOFTTERM))
{
return EINTR;
}
if (!ISSET(rpc->rc_flag, RPCCLNT_INT))
{
return 0;
}
if (td == NULL)
{
return 0;
}
p = cthread_proc(td);
PROC_LOCK(p);
tmpset = p->p_siglist;
SIGSETNAND(tmpset, td->td_sigmask);
mtx_lock(&p->p_sigacts->ps_mtx);
SIGSETNAND(tmpset, p->p_sigacts->ps_sigignore);
mtx_unlock(&p->p_sigacts->ps_mtx);
if (SIGNOTEMPTY(p->p_siglist) && RPCCLNTINT_SIGMASK(tmpset))
{
PROC_UNLOCK(p);
return EINTR;
}
PROC_UNLOCK(p);
return 0;
}
/* Lock a socket against others. Necessary for STREAM sockets to ensure you
* get an entire rpc request/reply and also to avoid race conditions between
* the processes with nfs requests in progress when a reconnect is necessary.
*/
static int rpcclnt_sndlock(int *flagp, struct rpctask *task)
{
int slpflag = 0, slptimeo = 0;
if (task)
{
if (task->r_rpcclnt->rc_flag & RPCCLNT_INT)
slpflag = PCATCH;
}
while (*flagp & RPCCLNT_SNDLOCK)
{
if (rpcclnt_sigintr(task->r_rpcclnt, task, p))
{
return EINTR;
}
*flagp |= RPCCLNT_WANTSND;
if (slpflag == PCATCH)
{
slpflag = 0;
slptimeo = 2 * CLOCKS_PER_SEC;
}
}
*flagp |= RPCCLNT_SNDLOCK;
return 0;
}
/* Unlock the stream socket for others. */
static void rpcclnt_sndunlock(int *flagp)
{
if ((*flagp & RPCCLNT_SNDLOCK) == 0)
{
panic("rpc sndunlock");
}
*flagp &= ~RPCCLNT_SNDLOCK;
if (*flagp & RPCCLNT_WANTSND)
{
*flagp &= ~RPCCLNT_WANTSND;
}
}
static int rpcclnt_rcvlock(struct rpctask *task)
{
int *flagp = &task->r_rpcclnt->rc_flag;
int slpflag, slptimeo = 0;
if (*flagp & RPCCLNT_INT)
{
slpflag = PCATCH;
}
else
{
slpflag = 0;
}
while (*flagp & RPCCLNT_RCVLOCK)
{
if (rpcclnt_sigintr(task->r_rpcclnt, task, task->r_td))
{
return EINTR;
}
*flagp |= RPCCLNT_WANTRCV;
tsleep((caddr_t) flagp, slpflag | (PZERO - 1), "rpcrcvlk", slptimeo);
if (slpflag == PCATCH)
{
slpflag = 0;
slptimeo = 2 * CLOCKS_PER_SEC;
}
}
*flagp |= RPCCLNT_RCVLOCK;
return 0;
}
/* Unlock the stream socket for others. */
static void rpcclnt_rcvunlock(int *flagp)
{
if ((*flagp & RPCCLNT_RCVLOCK) == 0)
{
panic("nfs rcvunlock");
}
*flagp &= ~RPCCLNT_RCVLOCK;
if (*flagp & RPCCLNT_WANTRCV)
{
*flagp &= ~RPCCLNT_WANTRCV;
wakeup((caddr_t) flagp);
}
}
#endif
static uint32_t rpcclnt_proct(struct rpcclnt *rpc, uint32_t procid)
{
if (rpc->rc_proctlen != 0 && rpc->rc_proct != NULL &&
procid < rpc->rc_proctlen)
{
return rpc->rc_proct[procid];
}
return 0;
}
#ifdef COMP
static void rpcclnt_softterm(struct rpctask *task)
{
task->r_flags |= TASK_SOFTTERM;
if (task->r_flags & TASK_SENT)
{
task->r_rpcclnt->rc_sent -= RPC_CWNDSCALE;
task->r_flags &= ~TASK_SENT;
}
}
#endif
/* Get a new (non-zero) xid */
static uint32_t rpcclnt_newxid(void)
{
static uint32_t rpcclnt_xid = 0;
static uint32_t rpcclnt_xid_touched = 0;
int xidp = 0;
srand(time(NULL));
if ((rpcclnt_xid == 0) && (rpcclnt_xid_touched == 0))
{
rpcclnt_xid = rand();
rpcclnt_xid_touched = 1;
}
else
{
do
{
xidp = rand();
}
while ((xidp % 256) == 0);
rpcclnt_xid += xidp;
}
return rpcclnt_xid;
}
/* Format the common part of the call header */
static void rpcclnt_fmtheader(FAR struct rpc_call_header *ch,
uint32_t xid, int prog, int vers, int procid)
{
/* Format the call header */
ch->rp_xid = txdr_unsigned(xid);
ch->rp_direction = rpc_call;
ch->rp_rpcvers = rpc_vers;
ch->rp_prog = txdr_unsigned(prog);
ch->rp_vers = txdr_unsigned(vers);
ch->rp_proc = txdr_unsigned(procid);
/* rpc_auth part (auth_unix as root) */
ch->rpc_auth.authtype = rpc_auth_null;
//call->rpc_auth.authlen = 0;
#ifdef CONFIG_NFS_UNIX_AUTH
ch->rpc_unix.stamp = txdr_unsigned(1);
ch->rpc_unix.hostname = 0;
ch->rpc_unix.uid = setuid;
ch->rpc_unix.gid = setgid;
ch->rpc_unix.gidlist = 0;
#endif
/* rpc_verf part (auth_null) */
ch->rpc_verf.authtype = rpc_auth_null;
//call->rpc_verf.authlen = 0;
}
/* Build the RPC header and fill in the authorization info. */
static int rpcclnt_buildheader(struct rpcclnt *rpc, int procid, int prog, int vers,
struct xidr *value, FAR const void *request,
size_t *reqlen, FAR void *msgbuf)
{
uint32_t xid;
/* The RPC header.*/
/* Get a new (non-zero) xid */
xid = rpcclnt_newxid();
/* Perform the binding depending on the protocol type */
if (prog == PMAPPROG)
{
if (procid == PMAPPROC_GETPORT)
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_pmap *callmsg = (struct rpc_call_pmap *)msgbuf;
memcpy(&callmsg->pmap, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct call_args_pmap));
*reqlen = sizeof(struct rpc_call_pmap);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
else if (procid == PMAPPROC_UNSET)
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_pmap *callmsg = (struct rpc_call_pmap *)msgbuf;;
memcpy(&callmsg->pmap, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct call_args_pmap));
*reqlen = sizeof(struct rpc_call_pmap);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
}
else if (prog == RPCPROG_MNT)
{
if (procid == RPCMNT_UMOUNT)
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_mount *callmsg = (struct rpc_call_mount *)msgbuf;
memcpy(&callmsg->mount, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct call_args_mount));
*reqlen = sizeof(struct rpc_call_mount);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
else if (procid == RPCMNT_MOUNT)
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_mount *callmsg = (struct rpc_call_mount *)msgbuf;
memcpy(&callmsg->mount, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct call_args_mount));
*reqlen = sizeof(struct rpc_call_mount);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
}
else if (prog == NFS_PROG)
{
switch (procid)
{
case NFSPROC_CREATE:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_create *callmsg = (struct rpc_call_create *)msgbuf;
memcpy(&callmsg->create, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct CREATE3args));
*reqlen = sizeof(struct rpc_call_create);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_LOOKUP:
{
/* Copy the variable length, caller-provided data into the call
* message structure.
*/
struct rpc_call_lookup *callmsg = (struct rpc_call_lookup *)msgbuf;
memcpy(&callmsg->lookup, request, *reqlen);
/* Return the full size of the message (the size of variable data
* plus the size of the messages header).
*/
*reqlen += sizeof(struct rpc_call_header);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_READ:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_read *callmsg = (struct rpc_call_read *)msgbuf;
memcpy(&callmsg->read, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct READ3args));
*reqlen = sizeof(struct rpc_call_read);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_WRITE:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_write *callmsg = (struct rpc_call_write *)msgbuf;
memcpy(&callmsg->write, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct WRITE3args));
*reqlen = sizeof(struct rpc_call_write);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_READDIR:
{
/* Copy the variable length, caller-provided data into the call
* message structure.
*/
struct rpc_call_readdir *callmsg = (struct rpc_call_readdir *)msgbuf;
memcpy(&callmsg->readdir, request, *reqlen);
/* Return the full size of the message (the size of variable data
* plus the size of the messages header).
*/
*reqlen += sizeof(struct rpc_call_header);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_FSSTAT:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_fs *callmsg = (struct rpc_call_fs *)msgbuf;
memcpy(&callmsg->fs, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct FS3args));
*reqlen = sizeof(struct rpc_call_fs);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_REMOVE:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_remove *callmsg = (struct rpc_call_remove *)msgbuf;
memcpy(&callmsg->remove, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct REMOVE3args));
*reqlen = sizeof(struct rpc_call_remove);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_GETATTR:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_fs *callmsg = (struct rpc_call_fs *)msgbuf;
memcpy(&callmsg->fs, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct FS3args));
*reqlen = sizeof(struct rpc_call_fs);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_MKDIR:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_mkdir *callmsg = (struct rpc_call_mkdir *)msgbuf;
memcpy(&callmsg->mkdir, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct MKDIR3args));
*reqlen = sizeof(struct rpc_call_mkdir);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_RMDIR:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_rmdir *callmsg = (struct rpc_call_rmdir *)msgbuf;
memcpy(&callmsg->rmdir, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct RMDIR3args));
*reqlen = sizeof(struct rpc_call_rmdir);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_RENAME:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_rename *callmsg = (struct rpc_call_rename *)msgbuf;
memcpy(&callmsg->rename, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct RENAME3args));
*reqlen = sizeof(struct rpc_call_rename);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
case NFSPROC_FSINFO:
{
/* Copy the variable, caller-provided data into the call message structure */
struct rpc_call_fs *callmsg = (struct rpc_call_fs *)msgbuf;
memcpy(&callmsg->fs, request, *reqlen);
/* Return the full size of the message (including messages headers) */
DEBUGASSERT(*reqlen == sizeof(struct FS3args));
*reqlen = sizeof(struct rpc_call_fs);
/* Format the message header */
rpcclnt_fmtheader(&callmsg->ch, xid, prog, vers, procid);
value->xid = callmsg->ch.rp_xid;
return 0;
}
default:
fdbg("No support for procid %d\n", procid);
break;
}
}
return ESRCH;
}
/****************************************************************************
* Public Functions
****************************************************************************/
void rpcclnt_init(void)
{
rpcclnt_ticks = (CLOCKS_PER_SEC * RPC_TICKINTVL + 500) / 1000;
if (rpcclnt_ticks < 1)
{
rpcclnt_ticks = 1;
}
rpcstats.rpcretries = 0;
rpcstats.rpcrequests = 0;
rpcstats.rpctimeouts = 0;
rpcstats.rpcunexpected = 0;
rpcstats.rpcinvalid = 0;
/* RPC constants how about actually using more than one of these! */
rpc_reply = txdr_unsigned(RPC_REPLY);
rpc_vers = txdr_unsigned(RPC_VER2);
rpc_call = txdr_unsigned(RPC_CALL);
rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
rpc_autherr = txdr_unsigned(RPC_AUTHERR);
rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
rpc_auth_null = txdr_unsigned(RPCAUTH_NULL);
/* Initialize rpctask queue */
dq_init(&rpctask_q);
//rpcclnt_timer(NULL, callmgs);
fvdbg("rpc initialized\n");
}
/*
void
rpcclnt_uninit(void)
{
fvdbg("uninit\n");
untimeout(rpcclnt_timer, (void *)NULL, rpcclnt_timer_handle);
}
*/
/* Initialize sockets and congestion for a new RPC connection. We do not free
* the sockaddr if error.
*/
int rpcclnt_connect(struct rpcclnt *rpc)
{
struct socket *so;
int error;
struct sockaddr *saddr;
struct sockaddr_in sin;
struct sockaddr_in *sa;
struct call_args_pmap sdata;
struct call_args_mount mountd;
struct rpc_reply_pmap rdata;
struct rpc_reply_mount mdata;
struct timeval tv;
uint16_t tport;
int errval;
fvdbg("Connecting\n");
/* Create the socket */
saddr = rpc->rc_name;
memset(&sin, 0, sizeof(sin));
/* Create an instance of the socket state structure */
so = (struct socket *)kzalloc(sizeof(struct socket));
if (!so)
{
fdbg("ERROR: Failed to allocate socket structure\n");
return ENOMEM;
}
error = psock_socket(saddr->sa_family, rpc->rc_sotype, rpc->rc_soproto, so);
if (error < 0)
{
errval = errno;
fdbg("ERROR: psock_socket failed: %d", errval);
return error;
}
so->s_crefs = 1;
rpc->rc_so = so;
rpc->rc_soflags = so->s_flags;
/* Always set receive timeout to detect server crash and reconnect.
* Otherwise, we can get stuck in psock_receive forever.
*/
tv.tv_sec = 1;
tv.tv_usec = 0;
error = psock_setsockopt(rpc->rc_so, SOL_SOCKET, SO_RCVTIMEO,
(const void *)&tv, sizeof(tv));
if (error < 0)
{
errval = errno;
fdbg("ERROR: psock_setsockopt failed: %d\n", errval);
goto bad;
}
/* Some servers require that the client port be a reserved port
* number. We always allocate a reserved port, as this prevents
* filehandle disclosure through UDP port capture.
*/
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
tport = 1024;
errval = 0;
do
{
tport--;
sin.sin_port = htons(tport);
error = psock_bind(rpc->rc_so, (struct sockaddr *)&sin, sizeof(sin));
if (error < 0)
{
errval = errno;
fdbg("ERROR: psock_bind failed: %d\n", errval);
}
}
while (errval == EADDRINUSE && tport > 1024 / 2);
if (error)
{
fdbg("ERROR: psock_bind failed: %d\n", errval);
goto bad;
}
/* Initialize congestion variables */
rpc->rc_srtt[0] = (RPC_TIMEO << 3);
rpc->rc_srtt[1] = (RPC_TIMEO << 3);
rpc->rc_srtt[2] = (RPC_TIMEO << 3);
rpc->rc_srtt[3] = (RPC_TIMEO << 3);
rpc->rc_sdrtt[0] = 0;
rpc->rc_sdrtt[1] = 0;
rpc->rc_sdrtt[2] = 0;
rpc->rc_sdrtt[3] = 0;
rpc->rc_cwnd = RPC_MAXCWND / 2; /* Initial send window */
rpc->rc_sent = 0;
rpc->rc_timeouts = 0;
/* Protocols that do not require connections may be optionally left
* unconnected for servers that reply from a port other than
* NFS_PORT.
*/
#ifdef CONFIG_NFS_TCPIP
if (rpc->rc_soflags == PR_CONNREQUIRED)
{
error = ENOTCONN;
goto bad;
}
else
#endif
{
error = psock_connect(rpc->rc_so, saddr, sizeof(*saddr));
if (error < 0)
{
errval = errno;
fdbg("ERROR: psock_connect to PMAP port failed: %d", errval);
goto bad;
}
/* Do the RPC to get a dynamic bounding with the server using ppmap.
* Get port number for MOUNTD.
*/
memset(&sdata, 0, sizeof(struct call_args_pmap));
memset(&rdata, 0, sizeof(struct rpc_reply_pmap));
sdata.prog = txdr_unsigned(RPCPROG_MNT);
sdata.vers = txdr_unsigned(RPCMNT_VER1);
sdata.proc = txdr_unsigned(IPPROTO_UDP);
sdata.port = 0;
error = rpcclnt_request(rpc, PMAPPROC_GETPORT, PMAPPROG, PMAPVERS,
(FAR const void *)&sdata, sizeof(struct call_args_pmap),
(FAR void *)&rdata, sizeof(struct rpc_reply_pmap));
if (error != 0)
{
fdbg("ERROR: rpcclnt_request failed: %d\n", error);
goto bad;
}
sa = (FAR struct sockaddr_in *)saddr;
sa->sin_port = htons(fxdr_unsigned(uint32_t, rdata.pmap.port));
error = psock_connect(rpc->rc_so, saddr, sizeof(*saddr));
if (error < 0)
{
errval = errno;
fdbg("ERROR: psock_connect MOUNTD port failed: %d\n", errval);
goto bad;
}
/* Do RPC to mountd. */
memset(&mountd, 0, sizeof(struct call_args_mount));
memset(&mdata, 0, sizeof(struct rpc_reply_mount));
strncpy(mountd.rpath, rpc->rc_path, 90);
mountd.len = txdr_unsigned(sizeof(mountd.rpath));
error = rpcclnt_request(rpc, RPCMNT_MOUNT, RPCPROG_MNT, RPCMNT_VER1,
(FAR const void *)&mountd, sizeof(struct call_args_mount),
(FAR void *)&mdata, sizeof(struct rpc_reply_mount));
if (error != 0)
{
fdbg("ERROR: rpcclnt_request failed: %d\n", error);
goto bad;
}
error = fxdr_unsigned(uint32_t, mdata.mount.status);
if (error != 0)
{
fdbg("ERROR: Bad mount status: %d\n", error);
goto bad;
}
memcpy(&rpc->rc_fh, &mdata.mount.fhandle, sizeof(nfsfh_t));
/* Do the RPC to get a dynamic bounding with the server using PMAP.
* NFS port in the socket.
*/
memset(&sdata, 0, sizeof(struct call_args_pmap));
memset(&rdata, 0, sizeof(struct rpc_reply_pmap));
sa->sin_port = htons(PMAPPORT);
error = psock_connect(rpc->rc_so, saddr, sizeof(*saddr));
if (error < 0)
{
errval = errno;
fdbg("ERROR: psock_connect PMAP port failed: %d\n", errval);
goto bad;
}
sdata.prog = txdr_unsigned(NFS_PROG);
sdata.vers = txdr_unsigned(NFS_VER3);
sdata.proc = txdr_unsigned(IPPROTO_UDP);
sdata.port = 0;
error = rpcclnt_request(rpc, PMAPPROC_GETPORT, PMAPPROG, PMAPVERS,
(FAR const void *)&sdata, sizeof(struct call_args_pmap),
(FAR void *)&rdata, sizeof(struct rpc_reply_pmap));
if (error != 0)
{
fdbg("ERROR: rpcclnt_request failed: %d\n", error);
goto bad;
}
sa->sin_port = htons(fxdr_unsigned(uint32_t, rdata.pmap.port));
error = psock_connect(rpc->rc_so, saddr, sizeof(*saddr));
if (error)
{
fdbg("psock_connect NFS port returns %d\n", error);
goto bad;
}
}
return OK;
bad:
rpcclnt_disconnect(rpc);
return error;
}
/* Reconnect routine: Called when a connection is broken on a reliable
* protocol. - clean up the old socket - nfs_connect() again - set
* TASK_MUSTRESEND for all outstanding requests on mount point If this
* fails the mount point is DEAD! nb: Must be called with the
* nfs_sndlock() set on the mount point.
*/
#ifdef CONFIG_NFS_TCPIP
int rpcclnt_reconnect(struct rpctask *rep)
{
struct rpctask *rp;
struct rpcclnt *rpc = rep->r_rpcclnt;
int error;
rpcclnt_disconnect(rpc);
do
{
error = rpcclnt_connect(rpc);
if (error != 0)
{
fdbg("ERROR: rpcclnt_connect failed: %d\n", error);
if (error == EINTR || error == ERESTART)
{
return EINTR;
}
}
}
while (error != 0)
/* Loop through outstanding request list and fix up all
* requests on old socket.
*/
for (rp = (struct rpctask *)rpctask_q->head; rp != NULL;
rp = (struct rpctask *)rp->r_chain.blink)
{
if (rp->r_rpcclnt == rpc)
{
rp->r_flags |= TASK_MUSTRESEND;
}
}
return 0;
}
#endif
void rpcclnt_disconnect(struct rpcclnt *rpc)
{
struct socket *so;
if (rpc->rc_so != NULL)
{
so = rpc->rc_so;
(void)psock_close(so);
}
}
int rpcclnt_umount(struct rpcclnt *rpc)
{
struct sockaddr *saddr;
struct sockaddr_in *sa;
struct call_args_pmap sdata;
struct rpc_reply_pmap rdata;
struct call_args_mount mountd;
struct rpc_reply_mount mdata;
int error;
saddr = rpc->rc_name;
sa = (FAR struct sockaddr_in *)saddr;
/* Do the RPC to get a dynamic bounding with the server using ppmap.
* Get port number for MOUNTD.
*/
memset(&sdata, 0, sizeof(struct call_args_pmap));
memset(&rdata, 0, sizeof(struct rpc_reply_pmap));
sa->sin_port = htons(PMAPPORT);
error = psock_connect(rpc->rc_so, saddr, sizeof(*saddr));
if (error)
{
fdbg("psock_connect MOUNTD port returns %d\n", error);
goto bad;
}
sdata.prog = txdr_unsigned(RPCPROG_MNT);
sdata.vers = txdr_unsigned(RPCMNT_VER1);
sdata.proc = txdr_unsigned(IPPROTO_UDP);
sdata.port = 0;
error = rpcclnt_request(rpc, PMAPPROC_GETPORT, PMAPPROG, PMAPVERS,
(FAR const void *)&sdata, sizeof(struct call_args_pmap),
(FAR void *)&rdata, sizeof(struct rpc_reply_pmap));
if (error != 0)
{
fdbg("ERROR: rpcclnt_request failed: %d\n", error);
goto bad;
}
sa->sin_port = htons(fxdr_unsigned(uint32_t, rdata.pmap.port));
error = psock_connect(rpc->rc_so, saddr, sizeof(*saddr));
if (error)
{
fdbg("psock_connect MOUNTD port returns %d\n", error);
goto bad;
}
/* Do RPC to umountd. */
memset(&mountd, 0, sizeof(struct call_args_mount));
memset(&mdata, 0, sizeof(struct rpc_reply_mount));
strncpy(mountd.rpath, rpc->rc_path, 92);
mountd.len = txdr_unsigned(sizeof(mountd.rpath));
error = rpcclnt_request(rpc, RPCMNT_UMOUNT, RPCPROG_MNT, RPCMNT_VER1,
(FAR const void *)&mountd, sizeof(struct call_args_mount),
(FAR void *)&mdata, sizeof(struct rpc_reply_mount));
if (error != 0)
{
fdbg("ERROR: rpcclnt_request failed: %d\n", error);
goto bad;
}
if ((fxdr_unsigned(uint32_t, mdata.mount.status)) != 0)
{
fdbg("error unmounting with the server %d\n", error);
goto bad;
}
return OK;
bad:
rpcclnt_disconnect(rpc);
return error;
}
#ifdef CONFIG_NFS_TCPIP
void rpcclnt_safedisconnect(struct rpcclnt *rpc)
{
struct rpctask dummytask;
memset((void *)dummytask, 0, sizeof(*call));
dummytask.r_rpcclnt = rpc;
rpcclnt_rcvlock(&dummytask);
rpcclnt_disconnect(rpc);
rpcclnt_rcvunlock(&rpc->rc_flag);
}
#endif
/* Code from nfs_request - goes something like this - fill in task struct -
* links task into list - calls nfs_send() for first transmit - calls
* nfs_receive() to get reply - fills in reply (which should be initialized
* prior to calling), which is valid when 0.
*
* Note that reply->result_* are invalid unless reply->type ==
* RPC_MSGACCEPTED and reply->status == RPC_SUCCESS and that reply->verf_*
* are invalid unless reply->type == RPC_MSGACCEPTED
*/
int rpcclnt_request(FAR struct rpcclnt *rpc, int procnum, int prog,
int version,
FAR const void *request, size_t reqlen,
FAR void *response, size_t resplen)
{
struct rpc_reply_header replymgs;
struct rpc_reply_header replyheader;
struct rpctask *task = NULL;
struct xidr value;
int error = 0;
/* Set aside memory on the stack to hold the largest call message */
union
{
struct rpc_call_pmap pmap;
struct rpc_call_mount mountd;
struct rpc_call_create create;
struct rpc_call_lookup lookup;
struct rpc_call_write write;
struct rpc_call_read read;
struct rpc_call_remove removef;
struct rpc_call_rename renamef;
struct rpc_call_mkdir mkdir;
struct rpc_call_rmdir rmdir;
struct rpc_call_readdir readdir;
struct rpc_call_fs fs;
} u;
/* Clear the call message memory */
memset(&u, 0, sizeof(u));
/* Create an instance of the task state structure */
task = (struct rpctask *)kzalloc(sizeof(struct rpctask));
if (!task)
{
fdbg("ERROR: Failed to allocate reply msg structure\n");
return -ENOMEM;
}
error = rpcclnt_buildheader(rpc, procnum, prog, version, &value,
request, &reqlen, (FAR void*)&u);
if (error)
{
fdbg("ERROR: Building call header error\n");
goto rpcmout;
}
task->r_rpcclnt = rpc;
task->r_xid = value.xid;
task->r_procnum = procnum;
if (rpc->rc_flag & RPCCLNT_SOFT)
{
task->r_retry = rpc->rc_retry;
}
else
{
task->r_retry = RPC_MAXREXMIT + 1; /* past clip limit */
}
task->r_rtt = task->r_rexmit = 0;
if (rpcclnt_proct(rpc, procnum) > 0)
{
task->r_flags = TASK_TIMING;
}
else
{
task->r_flags = 0;
}
/* Do the client side RPC. */
rpcstats.rpcrequests++;
/* Chain request into list of outstanding requests. Be sure to put it
* LAST so timer finds oldest requests first.
*/
dq_addlast(&task->r_chain, &rpctask_q);
/* If backing off another request or avoiding congestion, don't send
* this one now but let timer do it. If not timing a request, do it
* now.
*/
if (rpc->rc_so && (rpc->rc_sotype == SOCK_DGRAM ||
(rpc->rc_flag & RPCCLNT_DUMBTIMR) ||
rpc->rc_sent < rpc->rc_cwnd))
{
#ifdef CONFIG_NFS_TCPIP
if (rpc->rc_soflags & PR_CONNREQUIRED)
{
error = rpcclnt_sndlock(&rpc->rc_flag, task);
}
#endif
if (error == 0)
{
error = rpcclnt_send(rpc->rc_so, rpc->rc_name, procnum, prog,
(FAR void*)&u, reqlen, task);
#ifdef CONFIG_NFS_TCPIP
if (rpc->rc_soflags & PR_CONNREQUIRED)
{
rpcclnt_sndunlock(&rpc->rc_flag);
}
#endif
}
if (error == 0 && (task->r_flags & TASK_MUSTRESEND) == 0)
{
rpc->rc_sent += RPC_CWNDSCALE;
task->r_flags |= TASK_SENT;
}
}
else
{
task->r_rtt = -1;
}
/* Wait for the reply from our send. */
if (error == 0 || error == EPIPE)
{
error = rpcclnt_reply(task, procnum, prog, response, resplen);
if (error != 0)
{
fvdbg("rpcclnt_reply returned: %d\n", error);
}
}
/* RPC done, unlink the request. */
dq_rem(&task->r_chain, &rpctask_q);
/* Decrement the outstanding request count. */
if (task->r_flags & TASK_SENT)
{
task->r_flags &= ~TASK_SENT; /* paranoia */
rpc->rc_sent -= RPC_CWNDSCALE;
}
if (error != 0)
{
goto rpcmout;
}
/* Break down the rpc header and check if ok */
memset(&replymgs, 0, sizeof(replymgs));
memcpy(&replyheader, response, sizeof(struct rpc_reply_header));
replymgs.type = fxdr_unsigned(uint32_t, replyheader.type);
if (replymgs.type == RPC_MSGDENIED)
{
replymgs.status = fxdr_unsigned(uint32_t, replyheader.status);
switch (replymgs.status)
{
case RPC_MISMATCH:
/*replymgs.stat.mismatch_info.low =
fxdr_unsigned(uint32_t, replyheader.stat.mismatch_info.low);
replymgs.stat.mismatch_info.high =
fxdr_unsigned(uint32_t, replyheader.stat.mismatch_info.high);*/
fdbg("RPC_MSGDENIED: RPC_MISMATCH error\n");
error = EOPNOTSUPP;
break;
case RPC_AUTHERR:
//replymgs.stat.autherr = fxdr_unsigned(uint32_t, replyheader.stat.autherr);
fdbg("RPC_MSGDENIED: RPC_AUTHERR error\n");
error = EACCES;
break;
default:
error = EOPNOTSUPP;
break;
}
goto rpcmout;
}
else if (replymgs.type != RPC_MSGACCEPTED)
{
error = EOPNOTSUPP;
goto rpcmout;
}
/* Verifier */
/*replymgs.rpc_verfi.authtype =
fxdr_unsigned(enum auth_flavor, replyheader.rpc_verfi.authtype);
replymgs.rpc_verfi.authlen =
fxdr_unsigned(uint32_t, replyheader.rpc_verfi.authlen);*/
if (replymgs.status == RPC_SUCCESS)
{
fvdbg("RPC_SUCCESS\n");
}
else if (replymgs.status == RPC_PROGMISMATCH)
{
/*replymgs.stat.mismatch_info.low =
fxdr_unsigned(uint32_t, replyheader.stat.mismatch_info.low);
replymgs.stat.mismatch_info.high =
fxdr_unsigned(uint32_t, replyheader.stat.mismatch_info.high);*/
fdbg("RPC_MSGACCEPTED: RPC_PROGMISMATCH error\n");
error = EOPNOTSUPP;
}
else if (replymgs.status > 5)
{
error = EOPNOTSUPP;
goto rpcmout;
}
rpcmout:
kfree(task);
return error;
}
#undef COMP
#ifdef COMP
/* Nfs timer routine Scan the nfsreq list and retranmit any requests that
* have timed out To avoid retransmission attempts on STREAM sockets (in the
* future) make sure to set the r_retry field to 0 (implies nm_retry == 0).
*/
void rpcclnt_timer(void *arg, struct rpc_call *call)
{
struct rpctask *rep;
struct socket *so;
struct rpcclnt *rpc;
int timeo, error;
for (rep = (struct rpctask *)rpctask_q.head; rep != NULL;
rep = (struct rpctask *)rep->r_chain.flink)
{
rpc = rep->r_rpcclnt;
if (rep->r_flags & TASK_SOFTTERM)
{
continue;
}
if (rep->r_rtt >= 0)
{
rep->r_rtt++;
if (rpc->rc_flag & RPCCLNT_DUMBTIMR)
{
timeo = rpc->rc_timeo;
}
else
{
timeo = RPC_RTO(rpc, rpcclnt_proct(rep->r_rpcclnt, rep->r_procnum));
}
if (rpc->rc_timeouts > 0)
{
timeo *= rpcclnt_backoff[rpc->rc_timeouts - 1];
}
if (rep->r_rtt <= timeo)
{
continue;
}
if (rpc->rc_timeouts < 8)
{
rpc->rc_timeouts++;
}
}
/* Check for server not responding */
if ((rep->r_flags & TASK_TPRINTFMSG) == 0 &&
rep->r_rexmit > rpc->rc_deadthresh)
{
fdbg("Server is not responding\n");
rep->r_flags |= TASK_TPRINTFMSG;
}
if (rep->r_rexmit >= rep->r_retry)
{ /* too many */
rpcstats.rpctimeouts++;
rep->r_flags |= TASK_SOFTTERM;
continue;
}
if (rpc->rc_sotype != SOCK_DGRAM)
{
if (++rep->r_rexmit > RPC_MAXREXMIT)
{
rep->r_rexmit = RPC_MAXREXMIT;
}
continue;
}
if ((so = rpc->rc_so) == NULL)
{
continue;
}
/* If there is enough space and the window allows.. Resend it
* Set r_rtt to -1 in case we fail to send it now.
*/
rep->r_rtt = -1;
if ((rpc->rc_flag & RPCCLNT_DUMBTIMR) || (rep->r_flags & TASK_SENT) ||
rpc->rc_sent < rpc->rc_cwnd)
{
if ((rpc->rc_flag & RPCCLNT_NOCONN) == 0)
{
error = psock_sendto(so, call, sizeof(*call), 0, NULL, 0);
}
else
{
error = psock_sendto(so, call, sizeof(*call), 0, rpc->rc_name,
sizeof(*rpc->rc_name));
}
if (error < 0)
{
/* Iff first send, start timing else turn
* timing off, backoff timer and divide
* congestion window by 2.
*/
if (rep->r_flags & TASK_SENT)
{
rep->r_flags &= ~TASK_TIMING;
if (++rep->r_rexmit > RPC_MAXREXMIT)
{
rep->r_rexmit = RPC_MAXREXMIT;
}
rpc->rc_cwnd >>= 1;
if (rpc->rc_cwnd < RPC_CWNDSCALE)
{
rpc->rc_cwnd = RPC_CWNDSCALE;
}
rpcstats.rpcretries++;
}
else
{
rep->r_flags |= TASK_SENT;
rpc->rc_sent += RPC_CWNDSCALE;
}
rep->r_rtt = 0;
}
}
}
// rpcclnt_timer_handle = timeout(rpcclnt_timer, NULL, rpcclnt_ticks);
}
#endif
#ifdef COMP
int rpcclnt_cancelreqs(struct rpcclnt *rpc)
{
struct rpctask *task;
int i;
for (task = (struct rpctask *)rpctask_q.head; task;
task = (struct rpctask *)task->r_chain.flink)
{
if (rpc != task->r_rpcclnt || (task->r_flags & TASK_SOFTTERM))
{
continue;
}
rpcclnt_softterm(task);
}
for (i = 0; i < 30; i++)
{
for (task = (struct rpctask *)&rpctask_q.head; task;
task = (struct rpctask *)task->r_chain.flink)
{
if (rpc == task->r_rpcclnt)
{
break;
}
}
if (task == NULL)
{
return 0;
}
}
return EBUSY;
}
#endif
#endif