9
0
Fork 0
nuttx-bb/nuttx/configs/vsn/src/sif.c

596 lines
17 KiB
C

/****************************************************************************
* config/vsn/src/sif.c
* arch/arm/src/board/sif.c
*
* Copyright (C) 2011 Uros Platise. All rights reserved.
*
* Authors: Uros Platise <uros.platise@isotel.eu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/** \file
* \author Uros Platise
* \brief VSN Sensor Interface
*
* Public interface:
* - sif_init(): should be called just once after system starts, to
* initialize internal data structures, device driver and hardware
* - individual starts() and stops() that control gpio, usart, i2c, ...
* are wrapped throu open() and close()
* - read() and write() are used for streaming
* - ioctl() for configuration
*
* STDOUT Coding 16-bit (little endian):
* - MSB = 0 GPIOs, followed by the both GPIO config bytes
* - MSB = 1 Input AD, centered around 0x4000
*
* STDIN Coding 16-bit (little endian):
* - MSB = 0 GPIOs, followed by the both GPIO config bytes
* - MSB-1 = 0 Analog Output (PWM or Power)
* - MSB-1 = 1 Analog Reference Tap
*
* GPIO Update cycle:
* - if they follow the Analog Output, they are synced with them
* - if they follow the Analog Reference Tap, they are synced with them
* - if either is configured without sample rate value, they are updated
* immediately, same as them
*
* Implementation:
* - Complete internal states and updateing is made via the struct
* vsn_sif_s, which is also accessible thru the ioctl() with
* SNP Message descriptor.
**/
#include <nuttx/config.h>
#include <nuttx/fs.h>
#include <semaphore.h>
#include <nuttx/clock.h>
#include <nuttx/time.h>
#include <nuttx/rtc.h>
#include <nuttx/progmem.h>
#include <nuttx/i2c.h>
#include <nuttx/sensors/st_lis331dl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include "vsn.h"
/****************************************************************************
* Declarations and Structures
****************************************************************************/
#define VSN_SIF_READ_BUFSIZE 128
#define VSN_SIF_WRITE_BUFSIZE 128
typedef unsigned char vsn_sif_state_t;
# define VSN_SIF_STATE_POWERDOWN 0x00 ///< power-down
# define VSN_SIF_STATE_ACT_GPIO 0x01 ///< gpio is active
# define VSN_SIF_STATE_ACT_USART 0x02 ///< usart is active
# define VSN_SIF_STATE_ACT_I2C 0x04 ///< i2c is active
# define VSN_SIF_STATE_ACT_OWIR1 0x08 ///< 1-wire is active on first GPIO
# define VSN_SIF_STATE_ACT_OWIR2 0x10 ///< 1-wire is active on second GPIO
# define VSN_SIF_STATE_ACT_ANOUT 0x20 ///< analog output is active
# define VSN_SIF_STATE_ACT_ANIN 0x40 ///< analog input is active
typedef unsigned char vsn_sif_gpio_t;
# define VSN_SIF_GPIO_STATE_MASK 7
# define VSN_SIF_GPIO_HIGHZ 0 ///< High-Z
# define VSN_SIF_GPIO_PULLUP 1 ///< Pull-Up
# define VSN_SIF_GPIO_PULLDOWN 2 ///< Pull-Down
# define VSN_SIF_GPIO_OUTLOW 3 ///< Set Low
# define VSN_SIF_GPIO_OUTHIGH 4 ///< Set High
# define VSN_SIF_GPIO_DISALT_MASK 0x10 ///< Disable Alternate Function, Mask Bit
# define VSN_SIF_GPIO_TRIG_MASK 0x20 ///< Send data change to the stdout
# define VSN_SIF_GPIO_READ_MASK 0x40 ///< Readout mask
#define VSN_SIF_ANOUT_LOW 0 // Pseudo Analog Output acts as GPIO
#define VSN_SIF_ANOUT_HIGH 1 // Pseudo Analog Output acts as GPIO high
#define VSN_SIF_ANOUT_HIGHPWR 2 // ... acts as high power output
#define VSN_SIF_ANOUT_PWM 3 // ... acts as PWM output
#define VSN_SIF_ANOUT_PWMPWR 4 // acts as power PWM output
#define VSN_SIF_ANIN_GAINMASK 7
#define VSN_SIF_ANIN_GAIN1 0
#define VSN_SIF_ANIN_GAIN2 1
#define VSN_SIF_ANIN_GAIN4 2
#define VSN_SIF_ANIN_GAIN8 3
#define VSN_SIF_ANIN_GAIN16 4
#define VSN_SIF_ANIN_GAIN32 5
#define VSN_SIF_ANIN_GAIN64 6
#define VSN_SIF_ANIN_GAIN128 7
#define VSN_SIF_ANIN_BITS8
#define VSN_SIF_ANIN_BITS9
#define VSN_SIF_ANIN_BITS10
#define VSN_SIF_ANIN_BITS11
#define VSN_SIF_ANIN_BITS12
#define VSN_SIF_ANIN_BITS13
#define VSN_SIF_ANIN_BITS14
#define VSN_SIF_ANIN_OVERSMP1
#define VSN_SIF_ANIN_OVERSMP2
#define VSN_SIF_ANIN_OVERSMP4
#define VSN_SIF_ANIN_OVERSMP8
#define VSN_SIF_ANIN_OVERSMP16
struct vsn_sif_s {
vsn_sif_state_t state; // activity
unsigned char opencnt; // open count
vsn_sif_gpio_t gpio[2];
unsigned char anout_opts;
unsigned short int anout_width;
unsigned short int anout_period; // setting it to 0, disables PWM
unsigned short int anout_samplerate; // as written by write()
unsigned short int anref_width;
unsigned short int anref_period; // setting it to 0, disables PWM
unsigned short int anref_samplerate; // as written by write()
unsigned char anin_opts;
unsigned int anin_samplerate; // returned on read() as 16-bit results
/*--- Private Data ---*/
struct stm32_tim_dev_s * tim3; // Timer3 is used for PWM, and Analog RefTap
struct stm32_tim_dev_s * tim8; // Timer8 is used for Power Switch
struct i2c_dev_s * i2c1;
struct i2c_dev_s * i2c2;
sem_t exclusive_access;
};
/****************************************************************************
* Private data
****************************************************************************/
struct vsn_sif_s vsn_sif;
/****************************************************************************
* Semaphores
****************************************************************************/
void sif_sem_wait(void)
{
while( sem_wait( &vsn_sif.exclusive_access ) != 0 ) {
ASSERT(errno == EINTR);
}
}
void inline sif_sem_post(void)
{
sem_post( &vsn_sif.exclusive_access );
}
/****************************************************************************
* GPIOs and Alternative Functions
****************************************************************************/
void sif_gpios_reset(void)
{
vsn_sif.gpio[0] = vsn_sif.gpio[1] = VSN_SIF_GPIO_HIGHZ;
stm32_configgpio(GPIO_GP1_HIZ);
stm32_configgpio(GPIO_GP2_HIZ);
}
void sif_gpio1_update(void)
{
uint32_t val;
switch(vsn_sif.gpio[0] & VSN_SIF_GPIO_STATE_MASK) {
case VSN_SIF_GPIO_HIGHZ: val = GPIO_GP1_HIZ; break;
case VSN_SIF_GPIO_PULLUP: val = GPIO_GP1_PUP; break;
case VSN_SIF_GPIO_PULLDOWN: val = GPIO_GP1_PDN; break;
case VSN_SIF_GPIO_OUTLOW: val = GPIO_GP1_LOW; break;
case VSN_SIF_GPIO_OUTHIGH: val = GPIO_GP1_HIGH;break;
default: return;
}
if (stm32_configgpio(val) == ERROR)
printf("Error updating1\n");
if ( stm32_gpioread(val) )
vsn_sif.gpio[0] |= VSN_SIF_GPIO_READ_MASK;
else vsn_sif.gpio[0] &= ~VSN_SIF_GPIO_READ_MASK;
}
void sif_gpio2_update(void)
{
uint32_t val;
switch(vsn_sif.gpio[1]) {
case VSN_SIF_GPIO_HIGHZ: val = GPIO_GP2_HIZ; break;
case VSN_SIF_GPIO_PULLUP: val = GPIO_GP2_PUP; break;
case VSN_SIF_GPIO_PULLDOWN: val = GPIO_GP2_PDN; break;
case VSN_SIF_GPIO_OUTLOW: val = GPIO_GP2_LOW; break;
case VSN_SIF_GPIO_OUTHIGH: val = GPIO_GP2_HIGH;break;
default: return;
}
if (stm32_configgpio(val) == ERROR)
printf("Error updating2\n");
if ( stm32_gpioread(val) )
vsn_sif.gpio[1] |= VSN_SIF_GPIO_READ_MASK;
else vsn_sif.gpio[1] &= ~VSN_SIF_GPIO_READ_MASK;
}
int sif_gpios_lock(vsn_sif_state_t peripheral)
{
return ERROR;
}
int sif_gpios_unlock(vsn_sif_state_t peripheral)
{
return ERROR;
}
/****************************************************************************
* Analog Outputs
****************************************************************************/
static volatile int test = 0, test_irq;
static int sif_anout_isr(int irq, void *context)
{
STM32_TIM_ACKINT(vsn_sif.tim8, 0);
test++;
test_irq = irq;
return OK;
}
int sif_anout_init(void)
{
vsn_sif.tim3 = stm32_tim_init(3);
vsn_sif.tim8 = stm32_tim_init(8);
if (!vsn_sif.tim3 || !vsn_sif.tim8) return ERROR;
// Use the TIM3 as PWM modulated analogue output
STM32_TIM_SETPERIOD(vsn_sif.tim3, 4096);
STM32_TIM_SETCOMPARE(vsn_sif.tim3, GPIO_OUT_PWM_TIM3_CH, 1024);
STM32_TIM_SETCLOCK(vsn_sif.tim3, 36e6);
STM32_TIM_SETMODE(vsn_sif.tim3, STM32_TIM_MODE_UP);
//STM32_TIM_SETCHANNEL(vsn_sif.tim3, GPIO_OUT_PWM_TIM3_CH, STM32_TIM_CH_OUTPWM | STM32_TIM_CH_POLARITY_NEG);
// Use the TIM8 to drive the upper power mosfet
STM32_TIM_SETISR(vsn_sif.tim8, sif_anout_isr, 0);
STM32_TIM_ENABLEINT(vsn_sif.tim8, 0);
STM32_TIM_SETPERIOD(vsn_sif.tim8, 4096);
STM32_TIM_SETCOMPARE(vsn_sif.tim8, GPIO_OUT_PWRPWM_TIM8_CH, 5000);
STM32_TIM_SETCLOCK(vsn_sif.tim8, 36e6);
STM32_TIM_SETMODE(vsn_sif.tim8, STM32_TIM_MODE_UP);
STM32_TIM_SETCHANNEL(vsn_sif.tim8, GPIO_OUT_PWRPWM_TIM8_CH, STM32_TIM_CH_OUTPWM | STM32_TIM_CH_POLARITY_NEG);
vsn_sif.i2c1 = up_i2cinitialize(1);
vsn_sif.i2c2 = up_i2cinitialize(2);
return OK;
}
void sif_anout_update(void)
{
}
void sif_anout_callback(void)
{
// called at rate of PWM interrupt
}
/****************************************************************************
* Analog Input Reference Tap
****************************************************************************/
void sif_anref_init(void)
{
}
/****************************************************************************
* Analog Input Sampler Unit
****************************************************************************/
void sif_anin_reset(void)
{
}
/****************************************************************************
* Device driver functions
****************************************************************************/
int devsif_open(FAR struct file *filep)
{
sif_sem_wait();
vsn_sif.opencnt++;
// Start Hardware
sif_sem_post();
return 0;
}
int devsif_close(FAR struct file *filep)
{
sif_sem_wait();
if (--vsn_sif.opencnt) {
// suspend (powerdown) hardware
sif_gpios_reset();
//STM32_TIM_SETCLOCK(vsn_sif.tim3, 0);
//STM32_TIM_SETCLOCK(vsn_sif.tim8, 0);
}
sif_sem_post();
return 0;
}
static ssize_t devsif_read(FAR struct file *filp, FAR char *buffer, size_t len)
{
sif_sem_wait();
memset(buffer, 0, len);
sif_sem_post();
return len;
}
static ssize_t devsif_write(FAR struct file *filp, FAR const char *buffer, size_t len)
{
sif_sem_wait();
printf("getpid: %d\n", getpid() );
sif_sem_post();
return len;
}
#ifndef CONFIG_DISABLE_POLL
static int devsif_poll(FAR struct file *filp, FAR struct pollfd *fds,
bool setup)
{
if (setup) {
fds->revents |= (fds->events & (POLLIN|POLLOUT));
if (fds->revents != 0) {
sem_post(fds->sem);
}
}
return OK;
}
#endif
int devsif_ioctl(FAR struct file *filep, int cmd, unsigned long arg)
{
sif_sem_wait();
sif_sem_post();
return 0;
}
/****************************************************************************
* Public Functions
****************************************************************************/
static const struct file_operations devsif_fops = {
devsif_open, /* open */
devsif_close, /* close */
devsif_read, /* read */
devsif_write, /* write */
0, /* seek */
devsif_ioctl /* ioctl */
#ifndef CONFIG_DISABLE_POLL
, devsif_poll /* poll */
#endif
};
/** Bring up the Sensor Interface by initializing all of the desired
* hardware components.
**/
int sif_init(void)
{
/* Initialize data-structure */
vsn_sif.state = VSN_SIF_STATE_POWERDOWN;
vsn_sif.opencnt = 0;
sem_init(&vsn_sif.exclusive_access, 0, 1);
/* Initialize hardware */
sif_gpios_reset();
if ( sif_anout_init() != OK ) return -1;
/* If everything is okay, register the driver */
(void)register_driver("/dev/sif0", &devsif_fops, 0666, NULL);
return OK;
}
/** SIF Utility
*
* Provides direct access to the sensor connector, readings, and diagnostic.
**/
int sif_main(int argc, char *argv[])
{
if (argc >= 2) {
if (!strcmp(argv[1], "init")) {
return sif_init();
}
else if (!strcmp(argv[1], "gpio") && argc == 4) {
vsn_sif.gpio[0] = atoi(argv[2]);
vsn_sif.gpio[1] = atoi(argv[3]);
sif_gpio1_update();
sif_gpio2_update();
printf("GPIO States: %2x %2x\n", vsn_sif.gpio[0], vsn_sif.gpio[1] );
return 0;
}
else if (!strcmp(argv[1], "pwr") && argc == 3) {
int val = atoi(argv[2]);
STM32_TIM_SETCOMPARE(vsn_sif.tim8, GPIO_OUT_PWRPWM_TIM8_CH, val);
return 0;
}
else if (!strcmp(argv[1], "time") && argc == 3) {
struct timespec t_set;
t_set.tv_sec = atoi(argv[2]);
clock_settime(CLOCK_REALTIME, &t_set);
}
else if (!strcmp(argv[1], "free") ) {
uint16_t page = 0, stpage = 0xFFFF;
int status;
do {
status = up_progmem_ispageerased(page++);
/* Is this beginning of new free space section */
if (status == 0) {
if (stpage == 0xFFFF) stpage = page-1;
}
else if (status != 0) {
if (stpage != 0xFFFF) {
printf("Free Range:\t%d\t-\t%d\n", stpage, page-2);
stpage = 0xFFFF;
}
}
}
while (status >= 0);
}
else if (!strcmp(argv[1], "erase") && argc == 3 ) {
int page = atoi(argv[2]);
printf("Erase result: %d\n", up_progmem_erasepage(page) );
}
else if (!strcmp(argv[1], "flash") && argc == 3 ) {
uint16_t page = atoi(argv[2]);
uint32_t addr = page * up_progmem_pagesize(page);
printf("Write result: %d (writing to address %xh)\n",
up_progmem_write( addr, "Test", 4 ), addr);
}
else if (!strcmp(argv[1], "i2c") && argc == 3) {
int val = atoi(argv[2]);
I2C_SETFREQUENCY(vsn_sif.i2c1, 100000);
struct st_lis331dl_dev_s * lis = st_lis331dl_init(vsn_sif.i2c1, val);
if (lis) {
const struct st_lis331dl_vector_s * a;
int i;
uint32_t time_stamp = clock_systimer();
/* Set to 400 Hz : 3 = 133 Hz/axis */
st_lis331dl_setconversion(lis, false, true);
/* Sample some values */
for (i=0; i<1000; ) {
if ( (a = st_lis331dl_getreadings(lis)) ) {
i++;
printf("%d %d %d\n", a->x, a->y, a->z);
}
else if (errno != 11) {
printf("Readings errno %d\n", errno);
break;
}
}
printf("Time diff = %d\n", clock_systimer() - time_stamp);
st_lis331dl_deinit(lis);
}
else printf("Exit point: errno=%d\n", errno);
return 0;
}
}
fprintf(stderr, "%s:\tinit\n\tgpio\tA B\n\tpwr\tval\n", argv[0]);
struct timespec t_active;
clock_gettime(CLOCK_ACTIVETIME, &t_active);
fprintf(stderr, "rtc time = %u / %u, active = %u / %u, time / systick = %u / %u\n",
up_rtc_gettime(), up_rtc_getclock(),
t_active.tv_sec, t_active.tv_nsec,
time(NULL), clock_systimer() );
return -1;
}