9
0
Fork 0
nuttx-bb/nuttx/arch/arm/src/stm32/stm32_i2c.c

889 lines
27 KiB
C

/************************************************************************************
* arch/arm/src/stm32/stm32_i2c.c
*
* Copyright (C) 2011 Uros Platise. All rights reserved.
* Author: Uros Platise <uros.platise@isotel.eu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name NuttX nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
************************************************************************************/
/** \file
* \author Uros Platise
* \brief STM32 I2C Hardware Layer - Device Driver
*
* Supports:
* - Master operation, 100 kHz (standard) and 400 kHz (full speed)
* - Multiple instances (shared bus)
* - Interrupt based operation
*
* Structure naming:
* - Device: structure as defined by the nuttx/i2c/i2c.h
* - Instance: represents each individual access to the I2C driver, obtained by
* the i2c_init(); it extends the Device structure from the nuttx/i2c/i2c.h;
* Instance points to OPS, to common I2C Hardware private data and contains
* its own private data, as frequency, address, mode of operation (in the future)
* - Private: Private data of an I2C Hardware
*
* \todo
* - Check for all possible deadlocks (as BUSY='1' I2C needs to be reset in HW using the I2C_CR1_SWRST)
* - SMBus support (hardware layer timings are already supported) and add SMBA gpio pin
* - Slave support with multiple addresses (on multiple instances):
* - 2 x 7-bit address or
* - 1 x 10 bit adresses + 1 x 7 bit address (?)
* - plus the broadcast address (general call)
* - Multi-master support
* - DMA (to get rid of too many CPU wake-ups and interventions)
* - Be ready for IPMI
**/
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#include <nuttx/arch.h>
#include <nuttx/irq.h>
#include <nuttx/i2c.h>
#include <nuttx/kmalloc.h>
#include <arch/board/board.h>
#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <semaphore.h>
#include <errno.h>
#include <debug.h>
#include "up_arch.h"
#include "stm32_rcc.h"
#include "stm32_i2c.h"
#include "stm32_waste.h"
#if defined(CONFIG_STM32_I2C1) || defined(CONFIG_STM32_I2C2)
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
/* Interrupt wait timeout in milliseconds */
#ifndef CONFIG_STM32_I2CTIMEOMS
# define CONFIG_STM32_I2CTIMEOMS 50
#endif
/************************************************************************************
* Private Types
************************************************************************************/
/** I2C Device Private Data
*/
struct stm32_i2c_priv_s {
uint32_t base;
int refs;
sem_t sem_excl;
sem_t sem_isr;
uint8_t msgc;
struct i2c_msg_s *msgv;
uint8_t * ptr;
int dcnt;
uint16_t flags;
uint32_t status;
};
/** I2C Device, Instance
*/
struct stm32_i2c_inst_s {
struct i2c_ops_s * ops;
struct stm32_i2c_priv_s * priv;
uint32_t frequency;
int address;
uint16_t flags;
};
/************************************************************************************
* Private Data
************************************************************************************/
#if CONFIG_STM32_I2C1
struct stm32_i2c_priv_s stm32_i2c1_priv = {
.base = STM32_I2C1_BASE,
.refs = 0,
.msgc = 0,
.msgv = NULL,
.ptr = NULL,
.dcnt = 0,
.flags = 0,
.status = 0
};
#endif
#if CONFIG_STM32_I2C2
struct stm32_i2c_priv_s stm32_i2c2_priv = {
.base = STM32_I2C2_BASE,
.refs = 0,
.msgc = 0,
.msgv = NULL,
.ptr = NULL,
.dcnt = 0,
.flags = 0,
.status = 0
};
#endif
/************************************************************************************
* Private Functions
************************************************************************************/
/** Get register value by offset */
static inline uint16_t stm32_i2c_getreg(FAR struct stm32_i2c_priv_s *priv, uint8_t offset)
{
return getreg16(priv->base + offset);
}
/** Put register value by offset */
static inline void stm32_i2c_putreg(FAR struct stm32_i2c_priv_s *priv, uint8_t offset, uint16_t value)
{
putreg16(value, priv->base + offset);
}
/** Modify register value by offset */
static inline void stm32_i2c_modifyreg(FAR struct stm32_i2c_priv_s *priv, uint8_t offset, uint16_t clearbits, uint16_t setbits)
{
modifyreg16(priv->base + offset, clearbits, setbits);
}
void inline stm32_i2c_sem_wait(FAR struct i2c_dev_s *dev)
{
while( sem_wait( &((struct stm32_i2c_inst_s *)dev)->priv->sem_excl ) != 0 ) {
ASSERT(errno == EINTR);
}
}
int inline stm32_i2c_sem_waitisr(FAR struct i2c_dev_s *dev)
{
struct timespec abstime;
irqstate_t flags;
int ret;
flags = irqsave();
do
{
(void)clock_gettime(CLOCK_REALTIME, &abstime);
abstime.tv_nsec += CONFIG_STM32_I2CTIMEOMS * 1000 * 1000;
if (abstime.tv_nsec > 1000 * 1000 * 1000)
{
abstime.tv_sec++;
abstime.tv_nsec -= 1000 * 1000 * 1000;
}
ret = sem_timedwait(&((struct stm32_i2c_inst_s *)dev)->priv->sem_isr, &abstime);
}
while (ret != OK && errno == EINTR);
irqrestore(flags);
return ret;
}
void inline stm32_i2c_sem_post(FAR struct i2c_dev_s *dev)
{
sem_post( &((struct stm32_i2c_inst_s *)dev)->priv->sem_excl );
}
void inline stm32_i2c_sem_init(FAR struct i2c_dev_s *dev)
{
sem_init( &((struct stm32_i2c_inst_s *)dev)->priv->sem_excl, 0, 1);
sem_init( &((struct stm32_i2c_inst_s *)dev)->priv->sem_isr, 0, 0);
}
void inline stm32_i2c_sem_destroy(FAR struct i2c_dev_s *dev)
{
sem_destroy( &((struct stm32_i2c_inst_s *)dev)->priv->sem_excl );
sem_destroy( &((struct stm32_i2c_inst_s *)dev)->priv->sem_isr );
}
static void stm32_i2c_setclock(FAR struct stm32_i2c_priv_s *priv, uint32_t frequency)
{
/* Disable Peripheral if rising time is to be changed,
* and restore state on return. */
uint16_t cr1 = stm32_i2c_getreg(priv, STM32_I2C_CR1_OFFSET);
if (cr1 & I2C_CR1_PE)
stm32_i2c_putreg(priv, STM32_I2C_CR1_OFFSET, cr1 ^ I2C_CR1_PE);
/* Update timing and control registers */
if (frequency < 400000) {
/* Speed: 100 kHz
* Risetime: 1000 ns
* Duty: t_low / t_high = 1
*/
stm32_i2c_putreg(priv, STM32_I2C_CCR_OFFSET, STM32_BOARD_HCLK/200000);
stm32_i2c_putreg(priv, STM32_I2C_TRISE_OFFSET, STM32_BOARD_HCLK/1000000 + 1);
}
else {
/* Speed: 400 kHz
* Duty: t_low / t_high = 2
*/
stm32_i2c_putreg(priv, STM32_I2C_CCR_OFFSET, STM32_BOARD_HCLK/1200000);
stm32_i2c_putreg(priv, STM32_I2C_TRISE_OFFSET, 300*(STM32_BOARD_HCLK / 1000000)/1000 + 1);
}
/* Restore state */
if (cr1 & I2C_CR1_PE)
stm32_i2c_putreg(priv, STM32_I2C_CR1_OFFSET, cr1);
}
static inline void stm32_i2c_sendstart(FAR struct stm32_i2c_priv_s *priv)
{
/* Disable ACK on receive by default and generate START */
stm32_i2c_modifyreg(priv, STM32_I2C_CR1_OFFSET, I2C_CR1_ACK, I2C_CR1_START);
}
static inline void stm32_i2c_sendstop(FAR struct stm32_i2c_priv_s *priv)
{
stm32_i2c_modifyreg(priv, STM32_I2C_CR1_OFFSET, I2C_CR1_ACK, I2C_CR1_STOP);
}
static inline uint32_t stm32_i2c_getstatus(FAR struct stm32_i2c_priv_s *priv)
{
uint32_t status = stm32_i2c_getreg(priv, STM32_I2C_SR1_OFFSET);
status |= (stm32_i2c_getreg(priv, STM32_I2C_SR2_OFFSET) << 16);
return status;
}
/************************************************************************************
* Interrupt Service Routines
************************************************************************************/
//DEBUG TO BE CLEANED
//#define NON_ISR
static int stm32_i2c_isr(struct stm32_i2c_priv_s * priv)
{
uint32_t status = stm32_i2c_getstatus(priv);
#ifdef NON_ISR
static uint32_t isr_count = 0;
static uint32_t old_status = 0xFFFF;
isr_count++;
if (old_status != status) {
printf("status = %8x, count=%d\n", status, isr_count); fflush(stdout);
old_status = status;
}
#endif
/* Was start bit sent */
if (status & I2C_SR1_SB) {
/* Get run-time data */
priv->ptr = priv->msgv->buffer;
priv->dcnt = priv->msgv->length;
priv->flags = priv->msgv->flags;
/* Send address byte and define addressing mode */
stm32_i2c_putreg(priv, STM32_I2C_DR_OFFSET, (priv->flags & I2C_M_TEN) ?
0 :
((priv->msgv->addr << 1) | (priv->flags & I2C_M_READ))
);
/* Set ACK for receive mode */
if (priv->dcnt > 1 && (priv->flags & I2C_M_READ) ) {
stm32_i2c_modifyreg(priv, STM32_I2C_CR1_OFFSET, 0, I2C_CR1_ACK);
}
/* Increment to next pointer and decrement message count */
priv->msgv++;
priv->msgc--;
}
/* In 10-bit addressing mode, was first byte sent */
else if (status & I2C_SR1_ADD10) {
/* \todo Finish 10-bit mode addressing */
}
/* Was address sent, continue with ether sending or reading data */
else if ( !(priv->flags & I2C_M_READ) &&
(status & (I2C_SR1_ADDR | I2C_SR1_TXE)) ) {
if (--priv->dcnt >= 0) { /* Send a byte */
#ifdef NON_ISR
printf("Send byte: %2x\n", *priv->ptr);
#endif
stm32_i2c_putreg(priv, STM32_I2C_DR_OFFSET, *priv->ptr++);
}
}
else if ( (priv->flags & I2C_M_READ) && (status & I2C_SR1_ADDR) ) {
/* Enable RxNE and TxE buffers in order to receive one or multiple bytes */
stm32_i2c_modifyreg(priv, STM32_I2C_CR2_OFFSET, 0, I2C_CR2_ITBUFEN);
}
/* More bytes to read */
else if ( status & I2C_SR1_RXNE ) {
/* Read a byte, if dcnt goes < 0, then read dummy bytes to ack ISRs */
#ifdef NON_ISR
printf("dcnt=%d\n", priv->dcnt);
#endif
if (--priv->dcnt >= 0) {
*priv->ptr++ = stm32_i2c_getreg(priv, STM32_I2C_DR_OFFSET);
#ifdef NON_ISR
printf("Received: %2x\n", *(priv->ptr-1) );
#endif
/* Disable acknowledge when last byte is to be received */
if (priv->dcnt == 1) {
stm32_i2c_modifyreg(priv, STM32_I2C_CR1_OFFSET, I2C_CR1_ACK, 0);
}
}
}
/* Do we have more bytes to send, enable/disable buffer interrupts
* (these ISRs could be replaced by DMAs)
*/
if (priv->dcnt>0) {
stm32_i2c_modifyreg(priv, STM32_I2C_CR2_OFFSET, 0, I2C_CR2_ITBUFEN);
}
else if (priv->dcnt==0 ) {
stm32_i2c_modifyreg(priv, STM32_I2C_CR2_OFFSET, I2C_CR2_ITBUFEN, 0);
}
/* Was last byte received or sent?
*/
if (priv->dcnt<=0 && (status & I2C_SR1_BTF)) {
#ifdef NON_ISR
printf("BTF\n");
#endif
stm32_i2c_getreg(priv, STM32_I2C_DR_OFFSET); /* ACK ISR */
/* Do we need to terminate or restart after this byte */
/* If there are more messages to send, then we may:
* - continue with repeated start
* - or just continue sending writeable part
* - or we close down by sending the stop bit
*/
if (priv->msgc) {
if (priv->msgv->flags & I2C_M_NORESTART) {
priv->ptr = priv->msgv->buffer;
priv->dcnt = priv->msgv->length;
priv->flags = priv->msgv->flags;
priv->msgv++;
priv->msgc--;
stm32_i2c_modifyreg(priv, STM32_I2C_CR2_OFFSET, 0, I2C_CR2_ITBUFEN); // Restart this ISR!
}
else {
stm32_i2c_sendstart(priv);
}
}
else if (priv->msgv) {
#ifdef NON_ISR
printf("stop2: status = %8x\n", status);
#endif
stm32_i2c_sendstop(priv);
sem_post( &priv->sem_isr );
priv->msgv = NULL; /* mark that we have stopped with this transaction */
}
}
/* Check for errors, in which case, stop the transfer and return
* Note that in master reception mode AF becomes set on last byte
* since ACK is not returned. We should ignore this error.
*/
if (status & I2C_SR1_ERRORMASK) {
stm32_i2c_putreg(priv, STM32_I2C_SR1_OFFSET, 0); /* clear flags */
sem_post( &priv->sem_isr );
}
priv->status = status;
return OK;
}
/* Decode ***************************************************************************/
#if CONFIG_STM32_I2C1
static int stm32_i2c1_isr(int irq, void *context)
{
return stm32_i2c_isr(&stm32_i2c1_priv);
}
#endif
#if CONFIG_STM32_I2C2
static int stm32_i2c2_isr(int irq, void *context)
{
return stm32_i2c_isr(&stm32_i2c2_priv);
}
#endif
/************************************************************************************
* Private Initialization and Deinitialization
************************************************************************************/
/** Setup the I2C hardware, ready for operation with defaults */
static int stm32_i2c_init(FAR struct stm32_i2c_priv_s *priv)
{
/* Power-up and configure GPIOs */
switch( priv->base ) {
#if CONFIG_STM32_I2C1
case STM32_I2C1_BASE:
/* enable power and reset the peripheral */
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_I2C1EN);
modifyreg32(STM32_RCC_APB1RSTR, 0, RCC_APB1RSTR_I2C1RST);
modifyreg32(STM32_RCC_APB1RSTR, RCC_APB1RSTR_I2C1RST, 0);
/* configure pins */
if (stm32_configgpio(GPIO_I2C1_SCL)==ERROR) return ERROR;
if (stm32_configgpio(GPIO_I2C1_SDA)==ERROR) {
stm32_unconfiggpio(GPIO_I2C1_SCL);
return ERROR;
}
/* attach ISRs */
irq_attach(STM32_IRQ_I2C1EV, stm32_i2c1_isr);
irq_attach(STM32_IRQ_I2C1ER, stm32_i2c1_isr);
up_enable_irq(STM32_IRQ_I2C1EV);
up_enable_irq(STM32_IRQ_I2C1ER);
break;
#endif
#if CONFIG_STM32_I2C2
case STM32_I2C2_BASE:
/* enable power and reset the peripheral */
modifyreg32(STM32_RCC_APB1ENR, 0, RCC_APB1ENR_I2C2EN);
modifyreg32(STM32_RCC_APB1RSTR, 0, RCC_APB1RSTR_I2C2RST);
modifyreg32(STM32_RCC_APB1RSTR, RCC_APB1RSTR_I2C2RST, 0);
/* configure pins */
if (stm32_configgpio(GPIO_I2C2_SCL)==ERROR) return ERROR;
if (stm32_configgpio(GPIO_I2C2_SDA)==ERROR) {
stm32_unconfiggpio(GPIO_I2C2_SCL);
return ERROR;
}
/* attach ISRs */
irq_attach(STM32_IRQ_I2C2EV, stm32_i2c2_isr);
irq_attach(STM32_IRQ_I2C2ER, stm32_i2c2_isr);
up_enable_irq(STM32_IRQ_I2C2EV);
up_enable_irq(STM32_IRQ_I2C2ER);
break;
#endif
default: return ERROR;
}
/* Set peripheral frequency, where it must be at least 2 MHz
* for 100 kHz or 4 MHz for 400 kHz. Enable interrupt generation.
*/
stm32_i2c_putreg(priv, STM32_I2C_CR2_OFFSET,
#ifndef NON_ISR
I2C_CR2_ITERREN | I2C_CR2_ITEVFEN | // I2C_CR2_ITBUFEN |
#endif
(STM32_BOARD_HCLK / 1000000)
);
stm32_i2c_setclock(priv, 100000);
/* Enable I2C */
stm32_i2c_putreg(priv, STM32_I2C_CR1_OFFSET, I2C_CR1_PE);
return OK;
}
/** Shutdown the I2C hardware */
static int stm32_i2c_deinit(FAR struct stm32_i2c_priv_s *priv)
{
/* Disable I2C */
stm32_i2c_putreg(priv, STM32_I2C_CR1_OFFSET, 0);
switch( priv->base ) {
#if CONFIG_STM32_I2C1
case STM32_I2C1_BASE:
stm32_unconfiggpio(GPIO_I2C1_SCL);
stm32_unconfiggpio(GPIO_I2C1_SDA);
up_disable_irq(STM32_IRQ_I2C1EV);
up_disable_irq(STM32_IRQ_I2C1ER);
irq_detach(STM32_IRQ_I2C1EV);
irq_detach(STM32_IRQ_I2C1ER);
modifyreg32(STM32_RCC_APB1ENR, RCC_APB1ENR_I2C1EN, 0);
break;
#endif
#if CONFIG_STM32_I2C2
case STM32_I2C2_BASE:
stm32_unconfiggpio(GPIO_I2C2_SCL);
stm32_unconfiggpio(GPIO_I2C2_SDA);
up_disable_irq(STM32_IRQ_I2C1EV);
up_disable_irq(STM32_IRQ_I2C1ER);
irq_detach(STM32_IRQ_I2C1EV);
irq_detach(STM32_IRQ_I2C1ER);
modifyreg32(STM32_RCC_APB1ENR, RCC_APB1ENR_I2C2EN, 0);
break;
#endif
default: return ERROR;
}
return OK;
}
/************************************************************************************
* Device Driver OPS - Blocking Type
************************************************************************************/
uint32_t stm32_i2c_setfrequency(FAR struct i2c_dev_s *dev, uint32_t frequency)
{
stm32_i2c_sem_wait(dev);
#if STM32_BOARD_HCLK < 4000000
((struct stm32_i2c_inst_s *)dev)->frequency = 100000;
#else
((struct stm32_i2c_inst_s *)dev)->frequency = frequency;
#endif
stm32_i2c_sem_post(dev);
return ((struct stm32_i2c_inst_s *)dev)->frequency;
}
int stm32_i2c_setaddress(FAR struct i2c_dev_s *dev, int addr, int nbits)
{
stm32_i2c_sem_wait(dev);
((struct stm32_i2c_inst_s *)dev)->address = addr;
((struct stm32_i2c_inst_s *)dev)->flags = (nbits == 10) ? I2C_M_TEN : 0;
stm32_i2c_sem_post(dev);
return OK;
}
int stm32_i2c_process(FAR struct i2c_dev_s *dev, FAR struct i2c_msg_s *msgs, int count)
{
struct stm32_i2c_inst_s *inst = (struct stm32_i2c_inst_s *)dev;
uint32_t status = 0;
int status_errno = 0;
ASSERT(count);
/* wait as stop might still be in progress
*
* \todo GET RID OF THIS PERFORMANCE LOSS and for() loop
*/
for (; stm32_i2c_getreg(inst->priv, STM32_I2C_CR1_OFFSET) & I2C_CR1_STOP; ) up_waste();
/* Old transfers are done */
inst->priv->msgv = msgs;
inst->priv->msgc = count;
/* Set clock (on change it toggles I2C_CR1_PE !) */
stm32_i2c_setclock(inst->priv, inst->frequency);
/* Trigger start condition, then the process moves into the ISR */
stm32_i2c_sendstart(inst->priv);
#ifdef NON_ISR
do {
do {
stm32_i2c_isr(&stm32_i2c1_priv);
status = inst->priv->status;
} while( status & (I2C_SR2_BUSY<<16) );
}
while( sem_trywait( &((struct stm32_i2c_inst_s *)dev)->priv->sem_isr ) != 0 );
#else
#if 1
/* Wait for an ISR, if there was a timeout, fetch latest status to get the BUSY flag */
if (stm32_i2c_sem_waitisr(dev) == ERROR) {
status = stm32_i2c_getstatus(inst->priv);
status_errno = ETIMEDOUT;
}
else status = inst->priv->status & 0xFFFF; /* clear SR2 (BUSY flag) as we've done successfully */
#else
do {
printf("%x, %d\n", inst->priv->status, isr_count );
}
while( sem_trywait( &inst->priv->sem_isr ) != 0 );
#endif
#endif
if (status & I2C_SR1_BERR) { /* Bus Error */
status_errno = EIO;
}
else if (status & I2C_SR1_ARLO) { /* Arbitration Lost (master mode) */
status_errno = EAGAIN;
}
else if (status & I2C_SR1_AF) { /* Acknowledge Failure */
status_errno = ENXIO;
}
else if (status & I2C_SR1_OVR) { /* Overrun/Underrun */
status_errno = EIO;
}
else if (status & I2C_SR1_PECERR) { /* PEC Error in reception */
status_errno = EPROTO;
}
else if (status & I2C_SR1_TIMEOUT) {/* Timeout or Tlow Error */
status_errno = ETIME;
}
else if (status & (I2C_SR2_BUSY<<16) ) { /* I2C Bus is for some reason busy */
status_errno = EBUSY;
}
// printf("end_count = %d, dcnt=%d\n", isr_count, inst->priv->dcnt); fflush(stdout);
stm32_i2c_sem_post(dev);
errno = status_errno;
return -status_errno;
}
int stm32_i2c_write(FAR struct i2c_dev_s *dev, const uint8_t *buffer, int buflen)
{
stm32_i2c_sem_wait(dev); /* ensure that address or flags don't change meanwhile */
struct i2c_msg_s msgv = {
.addr = ((struct stm32_i2c_inst_s *)dev)->address,
.flags = ((struct stm32_i2c_inst_s *)dev)->flags,
.buffer = (uint8_t *)buffer,
.length = buflen
};
return stm32_i2c_process(dev, &msgv, 1);
}
int stm32_i2c_read(FAR struct i2c_dev_s *dev, uint8_t *buffer, int buflen)
{
stm32_i2c_sem_wait(dev); /* ensure that address or flags don't change meanwhile */
struct i2c_msg_s msgv = {
.addr = ((struct stm32_i2c_inst_s *)dev)->address,
.flags = ((struct stm32_i2c_inst_s *)dev)->flags | I2C_M_READ,
.buffer = buffer,
.length = buflen
};
return stm32_i2c_process(dev, &msgv, 1);
}
#ifdef CONFIG_I2C_WRITEREAD
int stm32_i2c_writeread(FAR struct i2c_dev_s *dev, const uint8_t *wbuffer, int wbuflen,
uint8_t *buffer, int buflen)
{
stm32_i2c_sem_wait(dev); /* ensure that address or flags don't change meanwhile */
struct i2c_msg_s msgv[2] = {
{
.addr = ((struct stm32_i2c_inst_s *)dev)->address,
.flags = ((struct stm32_i2c_inst_s *)dev)->flags,
.buffer = (uint8_t *)wbuffer, /* this is really ugly, sorry const ... */
.length = wbuflen
},
{
.addr = ((struct stm32_i2c_inst_s *)dev)->address,
.flags = ((struct stm32_i2c_inst_s *)dev)->flags | ((buflen>0) ? I2C_M_READ : I2C_M_NORESTART),
.buffer = buffer,
.length = (buflen>0) ? buflen : -buflen
}
};
return stm32_i2c_process(dev, msgv, 2);
}
#endif
#ifdef CONFIG_I2C_TRANSFER
int stm32_i2c_transfer(FAR struct i2c_dev_s *dev, FAR struct i2c_msg_s *msgs, int count)
{
stm32_i2c_sem_wait(dev); /* ensure that address or flags don't change meanwhile */
return stm32_i2c_process(dev, msgs, count);
}
#endif
/************************************************************************************
* Device Structures, Instantiation
************************************************************************************/
struct i2c_ops_s stm32_i2c_ops = {
.setfrequency = stm32_i2c_setfrequency,
.setaddress = stm32_i2c_setaddress,
.write = stm32_i2c_write,
.read = stm32_i2c_read
#ifdef CONFIG_I2C_WRITEREAD
, .writeread = stm32_i2c_writeread
#endif
#ifdef CONFIG_I2C_TRANSFER
, .transfer = stm32_i2c_transfer
#endif
#ifdef CONFIG_I2C_SLAVE
, .setownaddress = stm32_i2c_setownaddress,
.registercallback = stm32_i2c_registercallback
#endif
};
/************************************************************************************
* Public Function - Initialization
************************************************************************************/
FAR struct i2c_dev_s * up_i2cinitialize(int port)
{
struct stm32_i2c_priv_s * priv = NULL; /* private data of device with multiple instances */
struct stm32_i2c_inst_s * inst = NULL; /* device, single instance */
int irqs;
#if STM32_BOARD_HCLK < 4000000
# warning STM32_I2C_INIT: Peripheral clock must be at least 4 MHz to support 400 kHz operation.
#endif
#if STM32_BOARD_HCLK < 2000000
# warning STM32_I2C_INIT: Peripheral clock must be at least 2 MHz to support 100 kHz operation.
return NULL;
#endif
/* Get I2C private structure */
switch(port) {
#if CONFIG_STM32_I2C1
case 1: priv = (struct stm32_i2c_priv_s *)&stm32_i2c1_priv; break;
#endif
#if CONFIG_STM32_I2C2
case 2: priv = (struct stm32_i2c_priv_s *)&stm32_i2c2_priv; break;
#endif
default: return NULL;
}
/* Allocate instance */
if ( !(inst = kmalloc( sizeof(struct stm32_i2c_inst_s) )) ) return NULL;
/* initialize instance */
inst->ops = &stm32_i2c_ops;
inst->priv = priv;
inst->frequency = 100000;
inst->address = 0;
inst->flags = 0;
/* Init private data for the first time, increment refs count,
* power-up hardware and configure GPIOs.
*/
irqs = irqsave();
if ((volatile int)priv->refs++ == 0) {
stm32_i2c_sem_init( (struct i2c_dev_s *)inst );
stm32_i2c_init( priv );
}
irqrestore(irqs);
return (struct i2c_dev_s *)inst;
}
int up_i2cuninitialize(FAR struct i2c_dev_s * dev)
{
int irqs;
ASSERT(dev);
/* Decrement refs and check for underflow */
if ( ((struct stm32_i2c_inst_s *)dev)->priv->refs == 0 )
return ERROR;
irqs = irqsave();
if ( --((struct stm32_i2c_inst_s *)dev)->priv->refs ) {
irqrestore(irqs);
kfree(dev);
return OK;
}
irqrestore(irqs);
/* Disable power and other HW resource (GPIO's) */
stm32_i2c_deinit( ((struct stm32_i2c_inst_s *)dev)->priv );
/* Release unused resources */
stm32_i2c_sem_destroy( (struct i2c_dev_s *)dev );
kfree(dev);
return OK;
}
#endif /* defined(CONFIG_STM32_I2C1) && defined(CONFIG_STM32_I2C2) */