9
0
Fork 0

Add support for lo- and hi-res RTC hardware

git-svn-id: https://nuttx.svn.sourceforge.net/svnroot/nuttx/trunk@4005 7fd9a85b-ad96-42d3-883c-3090e2eb8679
This commit is contained in:
patacongo 2011-10-01 22:09:00 +00:00
parent e468782ea0
commit 4762f40a5e
13 changed files with 750 additions and 307 deletions

View File

@ -2121,3 +2121,8 @@
* configs/sam3u/touchscreen - This is the configuration that I plan to use
to verify the SAM3U-EK touchscreen driver. However, as of this writing,
there is no touchscreen driver for the board.
* CONFIG_RTC_HIRES - Add an option to support either a high-resolution RTC
that completely replaces the system timer tick but may overflow and lose
time when the MCU is off and also for a low-resolution (1 sec/tick) RTC
that can run until 2106 with no overflow. But in this latter case, higher
resolution time must come from the system timer.

View File

@ -12,7 +12,7 @@
<h1><big><font color="#3c34ec">
<i>NuttX RTOS Porting Guide</i>
</font></big></h1>
<p>Last Updated: September 13, 2011</p>
<p>Last Updated: October 1, 2011</p>
</td>
</tr>
</table>
@ -1989,18 +1989,30 @@ CONFIG_SYSTEM_UTC=y
<h4>4.1.20.2 Hardware</h4>
<p>
To enable hardware module use option:
To enable hardware module use the following configuration options:
<p>
<ul><pre>
CONFIG_RTC=y
</pre></ul>
<ul><dl>
<dt><code>CONFIG_RTC</code>
<dd>Enables general support for a hardware RTC.
Specific architectures may require other specific settings.
<dt><code>CONFIG_RTC_HIRES</code>
<dd>The typical RTC keeps time to resolution of 1 second, usually supporting a 32-bit <code>time_t</code> value.
In this case, the RTC is used to &quot;seed&quot; the normal NuttX timer and the NuttX timer provides for higher resoution time.
If <code>CONFIG_RTC_HIRES</code> is enabled in the NuttX configuration, then the RTC provides higher resolution time and completely replaces the system timer for purpose of date and time.
<dt><code>CONFIG_RTC_FREQUENCY</code>
<dd>If <code>CONFIG_RTC_HIRES</code> is defined, then the frequency of the high resolution RTC must be provided.
If <code>CONFIG_RTC_HIRES</code> is not defined, <code>CONFIG_RTC_FREQUENCY</code> is assumed to be one.
<dt><code>CONFIG_RTC_ALARM</code>
<dd>Enable if the RTC hardware supports setting of an alarm.
A callback function will be executed when the alarm goes off
</dl></ul>
<p>
which requires the following three base functions to read time:
</p>
<ul>
<li><code>up_rtcinitialize()</code></li>
<li><code>up_rtc_gettime()</code>. UTC time in seconds.</li>
<li><code>up_rtc_getclock()</code>. Replacement for <code>g_system_tick</code></li>
<li><code>up_rtc_time()</code>. UTC time in seconds.</li>
<li><code>up_rtc_gettime()</code>. Replacement for <code>g_system_tick</code></li>
</ul>
<p>
This module depends on <code>CONFIG_SYSTEM_UTC=y</code>.
@ -2024,15 +2036,17 @@ CONFIG_RTC=y
Running at rate of system base timer, used for time-slicing, and so forth.
</p>
<p>
If hardware RTC is present (<code>CONFIG_RTC</code>) and enabled, then after successful
initiliazation variables are overriden by calls to <code>up_rtc_getclock()</code> which is
If hardware RTC is present (<code>CONFIG_RTC</code>) and and high-resolution timeing
is enabled (<code>CONFIG_RTC_HIRES</code>), then after successful
initiliazation variables are overriden by calls to <code>up_rtc_gettime()</code> which is
running continously even in power-down modes.
</p>
<p>
In the case of <code>CONFIG_RTC</code> is set the <code>g_tickcount</code> and <code>g_system_utc</code> keep
counting at rate of a system timer, which however, is disabled in power-down
mode. By comparing this time and RTC (actual time) one may determine the
actual system active time. To retrieve that variable use:
In the case of <code>CONFIG_RTC_HIRES</code> is set the <code>g_tickcount</code> and
<code>g_system_utc</code> keep counting at rate of a system timer, which however, is
disabled in power-down mode.
By comparing this time and RTC (actual time) one may determine the actual system active time.
To retrieve that variable use:
</p>
<ul><pre>
<li><code>clock_gettime(CLOCK_ACTIVETIME, tp)</code>
@ -4239,10 +4253,35 @@ build
</ul>
<h2>Device Drivers</h2>
<h3>RTC</h3>
<ul>
<li>
<code>CONFIG_RTC</code>:
Enables general support for a hardware RTC.
Specific architectures may require other specific settings.
</li>
<li>
<code>CONFIG_RTC_HIRES</code>:
The typical RTC keeps time to resolution of 1 second, usually supporting a 32-bit <code>time_t</code> value.
In this case, the RTC is used to &quot;seed&quot; the normal NuttX timer and the NuttX timer provides for higher resoution time.
If <code>CONFIG_RTC_HIRES</code> is enabled in the NuttX configuration, then the RTC provides higher resolution time and completely replaces the system timer for purpose of date and time.
</li>
<li>
<code>CONFIG_RTC_FREQUENCY</code>:
If <code>CONFIG_RTC_HIRES</code> is defined, then the frequency of the high resolution RTC must be provided.
If <code>CONFIG_RTC_HIRES</code> is not defined, <code>CONFIG_RTC_FREQUENCY</code> is assumed to be one.
</li>
<li>
<code>CONFIG_RTC_ALARM</code>:
Enable if the RTC hardware supports setting of an alarm.
A callback function will be executed when the alarm goes off
</li>
</ul>
<h3>SPI driver</h3>
<ul>
<li>
<code>CONFIG_SPI_OWNBUS</code> - Set if there is only one active device
<code>CONFIG_SPI_OWNBUS</code>: Set if there is only one active device
on the SPI bus. No locking or SPI configuration will be performed.
It is not necessary for clients to lock, re-configure, etc..
</li>

View File

@ -6,6 +6,7 @@
*
* With extensions, modifications by:
*
* Copyright (C) 2011 Gregory Nutt. All rights reserved.
* Author: Gregroy Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
@ -932,7 +933,7 @@ static inline void stm32_i2c_enablefsmc(uint32_t ahbenr)
}
}
#else
# define stm32_i2c_disablefsmc() (0)
# define stm32_i2c_disablefsmc(priv) (0)
# define stm32_i2c_enablefsmc(ahbenr)
#endif

View File

@ -33,14 +33,7 @@
*
************************************************************************************/
/** \file
* \author Uros Platise
* \brief STM32 Real-Time Clock
*
* \addtogroup STM32_RTC
* \{
*
* The STM32 RTC Driver offers standard precision of 1 Hz or High Resolution
/* The STM32 RTC Driver offers standard precision of 1 Hz or High Resolution
* operating at rate up to 16384 Hz. It provides UTC time and alarm interface
* with external output pin (for wake-up).
*
@ -53,9 +46,13 @@
* - time is a combination of clock and upper bits stored in backuped domain
* with unit of 1 [s]
*
* \todo Error Handling in case LSE fails during start-up or during operation.
* TODO: Error Handling in case LSE fails during start-up or during operation.
*/
/************************************************************************************
* Included Files
************************************************************************************/
#include <nuttx/config.h>
#include <nuttx/arch.h>
#include <nuttx/irq.h>
@ -74,21 +71,78 @@
#include "stm32_rtc.h"
#include "stm32_waste.h"
/************************************************************************************
* Pre-processor Definitions
************************************************************************************/
/* Configuration ********************************************************************/
#if defined(CONFIG_STM32_BKP)
#ifdef CONFIG_RTC_HIRES
# ifndef CONFIG_RTC_FREQUENCY
# error "CONFIG_RTC_FREQUENCY is required for CONFIG_RTC_HIRES"
# elif CONFIG_RTC_FREQUENCY != 16384
# error "Only hi-res CONFIG_RTC_FREQUENCY of 16384Hz is supported"
# endif
# ifndef CONFIG_STM32_BKP
# error "CONFIG_STM32_BKP is required for CONFIG_RTC_HIRES"
# endif
#else
# ifndef CONFIG_RTC_FREQUENCY
# define CONFIG_RTC_FREQUENCY 1
# endif
# if CONFIG_RTC_FREQUENCY != 1
# error "Only lo-res CONFIG_RTC_FREQUENCY of 1Hz is supported"
# endif
#endif
/* RTC/BKP Definitions *************************************************************/
/* STM32_RTC_PRESCALAR_VALUE
* RTC pre-scalar value. The RTC is driven by a 32,768Hz input clock. This input
* value is divided by this value (plus one) to generate the RTC frequency.
* RTC_TIMEMSB_REG
* The BKP module register used to hold the RTC overflow value. Overflows are
* only handled in hi-res mode.
* RTC_CLOCKS_SHIFT
* The shift used to convert the hi-res timer LSB to one second. Not used with
* the lo-res timer.
*/
#ifdef CONFIG_RTC_HIRES
# define STM32_RTC_PRESCALAR_VALUE STM32_RTC_PRESCALER_MIN
# define RTC_TIMEMSB_REG STM32_BKP_DR1
# define RTC_CLOCKS_SHIFT 14
#else
# define STM32_RTC_PRESCALAR_VALUE STM32_RTC_PRESCALER_SECOND
#endif
/************************************************************************************
* Configuration of the RTC Backup Register (16-bit)
* Private Types
************************************************************************************/
#define RTC_TIMEMSB_REG STM32_BKP_DR1
struct rtc_regvals_s
{
uint16_t cntl;
uint16_t cnth;
#ifdef CONFIG_RTC_HIRES
uint16_t ovf;
#endif
};
/************************************************************************************
* Private Data
************************************************************************************/
/** Variable determines the state of the LSE oscilator.
* Possible errors:
/* Callback to use when the alarm expires */
#ifdef CONFIG_RTC_ALARM
static alarmcb_t g_alarmcb;
#endif
/************************************************************************************
* Public Data
************************************************************************************/
/* Variable determines the state of the LSE oscilator.
* Possible errors:
* - on start-up
* - during operation, reported by LSE interrupt
*/
@ -99,113 +153,265 @@ volatile bool g_rtc_enabled = false;
* Private Functions
************************************************************************************/
/************************************************************************************
* Name: stm32_rtc_beginwr
*
* Description:
* Enter configuration mode
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
************************************************************************************/
static inline void stm32_rtc_beginwr(void)
{
/* Previous write is done? */
while( (getreg16(STM32_RTC_CRL) & RTC_CRL_RTOFF)==0 ) up_waste();
/* Previous write is done? */
/* Enter Config mode, Set Value and Exit */
modifyreg16(STM32_RTC_CRL, 0, RTC_CRL_CNF);
while ((getreg16(STM32_RTC_CRL) & RTC_CRL_RTOFF) == 0)
{
up_waste();
}
/* Enter Config mode, Set Value and Exit */
modifyreg16(STM32_RTC_CRL, 0, RTC_CRL_CNF);
}
/************************************************************************************
* Name: stm32_rtc_endwr
*
* Description:
* Exit configuration mode
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
************************************************************************************/
static inline void stm32_rtc_endwr(void)
{
modifyreg16(STM32_RTC_CRL, RTC_CRL_CNF, 0);
modifyreg16(STM32_RTC_CRL, RTC_CRL_CNF, 0);
}
/** Wait for registerred to synchronise with RTC module, call after power-up only */
/************************************************************************************
* Name: stm32_rtc_wait4rsf
*
* Description:
* Wait for registers to synchronise with RTC module, call after power-up only
*
* Input Parameters:
* None
*
* Returned Value:
* None
*
************************************************************************************/
static inline void stm32_rtc_wait4rsf(void)
{
modifyreg16(STM32_RTC_CRL, RTC_CRL_RSF, 0);
while( !(getreg16(STM32_RTC_CRL) & RTC_CRL_RSF) ) up_waste();
modifyreg16(STM32_RTC_CRL, RTC_CRL_RSF, 0);
while (!(getreg16(STM32_RTC_CRL) & RTC_CRL_RSF))
{
up_waste();
}
}
/************************************************************************************
* Interrupt Service Routines
* Name: up_rtc_breakout
*
* Description:
* Set the RTC to the provided time.
*
* Input Parameters:
* tp - the time to use
*
* Returned Value:
* None
*
************************************************************************************/
static int stm32_rtc_overflow_isr(int irq, void *context)
#ifdef CONFIG_RTC_HIRES
static void up_rtc_breakout(FAR const struct timespec *tp,
FAR struct rtc_regvals_s *regvals)
{
uint16_t source = getreg16( STM32_RTC_CRL );
if (source & RTC_CRL_OWF) {
putreg16( getreg16(RTC_TIMEMSB_REG) + 1, RTC_TIMEMSB_REG );
}
if (source & RTC_CRL_ALRF) {
/* Alarm */
}
/* Clear pending flags, leave RSF high */
putreg16( RTC_CRL_RSF, STM32_RTC_CRL );
return 0;
uint64_t frac;
uint32_t cnt;
uint16_t ovf;
/* Break up the time in seconds + milleconds into the correct values for our use */
frac = ((uint64_t)tp->tv_nsec * CONFIG_RTC_FREQUENCY) / 1000000000;
cnt = (tp->tv_sec << RTC_CLOCKS_SHIFT) | ((uint32_t)frac & (CONFIG_RTC_FREQUENCY-1));
ovf = (tp->tv_sec >> (32 - RTC_CLOCKS_SHIFT));
/* Then return the broken out time */
regvals->cnth = cnt >> 16;
regvals->cntl = cnt & 0xffff;
regvals->ovf = ovf;
}
#else
static inline void up_rtc_breakout(FAR const struct timespec *tp,
FAR struct rtc_regvals_s *regvals)
{
/* The low-res timer is easy... tv_sec holds exactly the value needed by the
* CNTH/CNTL registers.
*/
regvals->cnth = (uint16_t)((uint32_t)tp->tv_sec >> 16);
regvals->cntl = (uint16_t)((uint32_t)tp->tv_sec & 0xffff);
}
#endif
/************************************************************************************
* Public Function - Initialization
* Name: stm32_rtc_interrupt
*
* Description:
* RTC interrupt service routine
*
* Input Parameters:
* irq - The IRQ number that generated the interrupt
* context - Architecture specific register save information.
*
* Returned Value:
* Zero (OK) on success; A negated errno value on failure.
*
************************************************************************************/
#if defined(CONFIG_RTC_HIRES) || defined(CONFIG_RTC_ALARM)
static int stm32_rtc_interrupt(int irq, void *context)
{
uint16_t source = getreg16(STM32_RTC_CRL);
#ifdef CONFIG_RTC_HIRES
if ((source & RTC_CRL_OWF) != 0)
{
putreg16(getreg16(RTC_TIMEMSB_REG) + 1, RTC_TIMEMSB_REG);
}
#endif
#ifdef CONFIG_RTC_ALARM
if ((source & RTC_CRL_ALRF) != 0 && g_alarmcb != NULL)
{
/* Alarm callback */
g_alarmcb();
g_alarmcb = NULL;
}
#endif
/* Clear pending flags, leave RSF high */
putreg16(RTC_CRL_RSF, STM32_RTC_CRL);
return 0;
}
#endif
/************************************************************************************
* Public Functions
************************************************************************************/
/************************************************************************************
* Name: up_rtcinitialize
*
* Description:
* Initialize the hardware RTC per the select configuration. This function is
* called once during the OS initialization sequence
*
* Input Parameters:
* None
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
/** Power-up RTC
*
* \param prescaler A 20-bit value determines the time base, and is defined as:
* f = 32768 / (prescaler + 1)
*
* \return State of the RTC unit
*
* \retval OK If RTC has been successfully configured.
* \retval ERROR On error, if LSE does not start.
**/
int up_rtcinitialize(void)
{
/* For this initial version we use predefined value */
/* For this initial version we use predefined value */
uint32_t prescaler = STM32_RTC_PRESCALER_MIN;
uint32_t prescaler = STM32_RTC_PRESCALER_MIN;
/* Set access to the peripheral, enable power and LSE */
stm32_pwr_enablebkp();
stm32_rcc_enablelse();
// \todo Get state from this function, if everything is
// okay and whether it is already enabled (if it was disabled
// reset upper time register)
g_rtc_enabled = true;
/* Set access to the peripheral, enable power and LSE */
// \todo Possible stall? should we set the timeout period? and return with -1
stm32_rtc_wait4rsf();
/* Configure prescaler, note that these are write-only registers */
#ifdef CONFIG_RTC_HIRES
stm32_pwr_enablebkp();
#endif
stm32_rcc_enablelse();
stm32_rtc_beginwr();
putreg16(prescaler >> 16, STM32_RTC_PRLH);
putreg16(prescaler & 0xFFFF, STM32_RTC_PRLL);
stm32_rtc_endwr();
/* Configure Overflow Interrupt */
irq_attach(STM32_IRQ_RTC, stm32_rtc_overflow_isr);
up_enable_irq(STM32_IRQ_RTC);
/* TODO: Get state from this function, if everything is
* okay and whether it is already enabled (if it was disabled
* reset upper time register)
*/
/* Previous write is done? This is required prior writing into CRH */
while( (getreg16(STM32_RTC_CRL) & RTC_CRL_RTOFF)==0 ) up_waste();
modifyreg16(STM32_RTC_CRH, 0, RTC_CRH_OWIE);
/* Alarm Int via EXTI Line */
// STM32_IRQ_RTCALR /* 41: RTC alarm through EXTI line interrupt */
g_rtc_enabled = true;
return OK;
/* TODO: Possible stall? should we set the timeout period? and return with -1 */
stm32_rtc_wait4rsf();
/* Configure prescaler, note that these are write-only registers */
stm32_rtc_beginwr();
putreg16(prescaler >> 16, STM32_RTC_PRLH);
putreg16(prescaler & 0xFFFF, STM32_RTC_PRLL);
stm32_rtc_endwr();
/* Configure RTC interrupt to catch overflow and alarm interrupts. */
#if defined(CONFIG_RTC_HIRES) || defined(CONFIG_RTC_ALARM)
irq_attach(STM32_IRQ_RTC, stm32_rtc_interrupt);
up_enable_irq(STM32_IRQ_RTC);
#endif
/* Previous write is done? This is required prior writing into CRH */
while ((getreg16(STM32_RTC_CRL) & RTC_CRL_RTOFF) == 0)
{
up_waste();
}
modifyreg16(STM32_RTC_CRH, 0, RTC_CRH_OWIE);
/* Alarm Int via EXTI Line */
/* STM32_IRQ_RTCALR 41: RTC alarm through EXTI line interrupt */
return OK;
}
/** Get time (counter) value
*
* \return time, where the unit depends on the prescaler value
**/
clock_t up_rtc_getclock(void)
/************************************************************************************
* Name: up_rtc_time
*
* Description:
* Get the current time in seconds.
*
* Input Parameters:
* None
*
* Returned Value:
* The current time in seconds
*
************************************************************************************/
#ifdef CONFIG_RTC_HIRES
time_t up_rtc_time(void)
{
struct timespec ts;
/* In the hi-res case, this function is just a wrapper for up_rtc_gettime */
(void)up_rtc_gettime(&ts);
return ts.tv_sec;
}
#else
time_t up_rtc_time(void)
{
irqstate_t flags;
uint16_t cnth;
@ -243,98 +449,176 @@ clock_t up_rtc_getclock(void)
while (cntl < tmp);
irqrestore(flags);
/* Then return the full 32-bit counter value */
/* Okay.. the samples should be as close together in time as possible and
* we can be assured that no clock rollover occurred between the samples.
*
* Return the time in seconds.
*/
return ((uint32_t)cnth << 16) | (uint32_t)cntl;
return (time_t)cnth << 16 | (time_t)cntl;
}
#endif
/** Set time (counter) value
*
* \param time The unit depends on the prescaler value
**/
/************************************************************************************
* Name: up_rtc_gettime
*
* Description:
* Get the current time from the high resolution RTC clock.
*
* Input Parameters:
* tp - The location to return the high resolution time value.
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
void up_rtc_setclock(clock_t newclock)
#ifdef CONFIG_RTC_HIRES
int up_rtc_gettime(FAR struct timespec *tp)
{
stm32_rtc_beginwr();
putreg16(newclock >> 16, STM32_RTC_CNTH);
putreg16(newclock & 0xFFFF, STM32_RTC_CNTL);
stm32_rtc_endwr();
}
irqstate_t flags;
uint32_t ls;
uint32_t ms;
uint16_t ovf;
uint16_t cnth;
uint16_t cntl;
uint16_t tmp;
time_t up_rtc_gettime(void)
/* The RTC counter is read from two 16-bit registers to form one 32-bit
* value. Because these are non-atomic operations, many things can happen
* between the two reads: This thread could get suspended or interrrupted
* or the lower 16-bit counter could rollover between reads. Disabling
* interrupts will prevent suspensions and interruptions:
*/
flags = irqsave();
/* And the following loop will handle any clock rollover events that may
* happen between samples. Most of the time (like 99.9%), the following
* loop will execute only once. In the rare rollover case, it should
* execute no more than 2 times.
*/
do
{
tmp = getreg16(STM32_RTC_CNTL);
cnth = getreg16(STM32_RTC_CNTH);
ovf = getreg16(RTC_TIMEMSB_REG);
cntl = getreg16(STM32_RTC_CNTL);
}
/* The second sample of CNTL could be less than the first sample of CNTL
* only if rollover occurred. In that case, CNTH may or may not be out
* of sync. The best thing to do is try again until we know that no
* rollover occurred.
*/
while (cntl < tmp);
irqrestore(flags);
/* Okay.. the samples should be as close together in time as possible and
* we can be assured that no clock rollover occurred between the samples.
*
* Create a 32-bit value from the LS and MS 16-bit RTC counter values and
* from the MS and overflow 16-bit counter values.
*/
ls = (uint32_t)cnth << 16 | (uint32_t)cntl;
ms = (uint32_t)ovf << 16 | (uint32_t)cnth;
/* Then we can save the time in seconds and fractional seconds. */
tp->tv_sec = (ms << (32-RTC_CLOCKS_SHIFT-16)) | (ls >> (RTC_CLOCKS_SHIFT+16));
tp->tv_nsec = (ls & (CONFIG_RTC_FREQUENCY-1)) * (1000000000/CONFIG_RTC_FREQUENCY);
return OK;
}
#endif
/************************************************************************************
* Name: up_rtc_settime
*
* Description:
* Set the RTC to the provided time.
*
* Input Parameters:
* tp - the time to use
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
int up_rtc_settime(FAR const struct timespec *tp)
{
/* Fetch time from LSB (hardware counter) and MSB (backup domain)
* Take care on overflow of the LSB:
* - it may overflow just after reading the up_rtc_getclock, transition
* from 0xFF...FF -> 0x000000
* - ISR would be generated to increment the RTC_TIMEMSB_REG
* - Wrong result would when: DR+1 and LSB is old, resulting in ~DR+2
* instead of just DR+1
*/
struct rtc_regvals_s regvals;
irqstate_t flags;
irqstate_t irqs = irqsave();
uint32_t time_lsb = up_rtc_getclock();
uint32_t time_msb = getreg16(RTC_TIMEMSB_REG);
irqrestore( irqs );
/* Use the upper bits of the LSB and lower bits of the MSB
* structured as:
* time = time[31:18] from MSB[13:0] | time[17:0] from time_lsb[31:14]
*/
time_lsb >>= RTC_CLOCKS_SHIFT;
time_msb <<= (32-RTC_CLOCKS_SHIFT);
time_msb &= ~((1<<(32-RTC_CLOCKS_SHIFT))-1);
return time_msb | time_lsb;
/* Break out the time values */
up_rtc_breakout(tp, &regvals);
/* Then write the broken out values to the RTC counter and BKP overflow register
* (hi-res mode only)
*/
flags = irqsave();
stm32_rtc_beginwr();
putreg16(regvals.cnth, STM32_RTC_CNTH);
putreg16(regvals.cntl, STM32_RTC_CNTL);
stm32_rtc_endwr();
#ifdef CONFIG_RTC_HIRES
putreg16(regvals.ovf, RTC_TIMEMSB_REG);
#endif
irqrestore(flags);
return OK;
}
void up_rtc_settime(time_t newtime)
/************************************************************************************
* Name: up_rtc_setalarm
*
* Description:
* Set up a alarm.
*
* Input Parameters:
* tp - the time to set the alarm
* callback - the function to call when the alarm expires.
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
#ifdef CONFIG_RTC_ALARM
int up_rtc_setalarm(FAR const struct timespec *tp, alarmcb_t callback);
{
/* Do reverse compared to gettime above */
uint32_t time_lsb = newtime << RTC_CLOCKS_SHIFT |
(up_rtc_getclock() & ((1<<RTC_CLOCKS_SHIFT)-1));
uint32_t time_msb = newtime >> (32-RTC_CLOCKS_SHIFT);
irqstate_t irqs = irqsave();
up_rtc_setclock(time_lsb);
putreg16( time_msb, RTC_TIMEMSB_REG );
irqrestore( irqs );
}
struct rtc_regvals_s regvals;
irqstate_t flags;
int ret = -EBUSY;
/** Set ALARM at which time ALARM callback is going to be generated
*
* The function sets the alarm and return present time at the time
* of setting the alarm.
*
* Note that If actual time has already passed callback will not be
* generated and it is up to the higher level code to compare the
* returned (actual) time and desired time of alarm.
*
* \param attime The unit depends on the prescaler value
* \return presenttime, where the unit depends on the prescaler value
**/
clock_t up_rtc_setalarm(clock_t atclock)
{
stm32_rtc_beginwr();
putreg16(atclock >> 16, STM32_RTC_ALRH);
putreg16(atclock & 0xFFFF, STM32_RTC_ALRL);
stm32_rtc_endwr();
return up_rtc_getclock();
}
/* Is there already something waiting on the ALARM? */
/** Set alarm output pin */
void stm32_rtc_settalarmpin(bool activate)
{
}
if (g_alarmcb == NULL)
{
/* No.. Save the callback function pointer */
#endif // defined(CONFIG_STM32_BKP)
/** \} */
g_alarmcb = callback;
/* Break out the time values */
up_rtc_breakout(tp, &regvals);
/* The set the alarm */
flags = irqsave();
stm32_rtc_beginwr();
putreg16(regvals.cnth, STM32_RTC_ALRH);
putreg16(regvals.cntl, STM32_RTC_ALRL);
stm32_rtc_endwr();
irqrestore(flags);
ret = OK;
}
return ret;
}
#endif

View File

@ -268,6 +268,7 @@ CONFIG_WIRELESS=y
#
CONFIG_RTC=y
CONFIG_RTC_HIRES=y
CONFIG_RTC_FREQUENCY=16384
CONFIG_SYSTEM_UTC=y
#

View File

@ -714,9 +714,8 @@ int sif_main(int argc, char *argv[])
struct timespec t_active;
clock_gettime(CLOCK_ACTIVETIME, &t_active);
fprintf(stderr, "rtc time = %u / %u, active = %u / %u, time / systick = %u / %u\n",
up_rtc_gettime(), up_rtc_getclock(),
t_active.tv_sec, t_active.tv_nsec,
fprintf(stderr, "rtc time = %u, active = %u / %u, time / systick = %u / %u\n",
up_rtc_time(), t_active.tv_sec, t_active.tv_nsec,
time(NULL), clock_systimer() );
return -1;
}

View File

@ -172,7 +172,7 @@ extern "C" {
*
****************************************************************************/
#if defined(CONFIG_RTC) || !__HAVE_KERNEL_GLOBALS
#if defined(CONFIG_SYSTEM_UTC) || !__HAVE_KERNEL_GLOBALS
EXTERN uint32_t clock_systimer(void);
#endif

View File

@ -4,6 +4,11 @@
* Copyright(C) 2011 Uros Platise. All rights reserved.
* Author: Uros Platise <uros.platise@isotel.eu>
*
* With extensions, modifications by:
*
* Copyright (C) 2011 Gregory Nutt. All rights reserved.
* Author: Gregroy Nutt <gnutt@nuttx.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
@ -44,19 +49,51 @@
#include <stdint.h>
#include <stdbool.h>
#include <nuttx/clock.h>
#include <time.h>
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
/* Configuration ************************************************************/
/* CONFIG_RTC - Enables general support for a hardware RTC. Specific
* architectures may require other specific settings.
*
* CONFIG_RTC_HIRES - The typical RTC keeps time to resolution of 1 second,
* usually supporting a 32-bit time_t value. In this case, the RTC is
* used to "seed" the normal NuttX timer and the NuttX timer provides
* for higher resoution time.
*
* If CONFIG_RTC_HIRES is enabled in the NuttX configuration, then the
* RTC provides higher resolution time and completely replaces the system
* timer for purpose of date and time.
*
* CONFIG_RTC_FREQUENCY - If CONFIG_RTC_HIRES is defined, then the frequency
* of the high resolution RTC must be provided. If CONFIG_RTC_HIRES is
* not defined, CONFIG_RTC_FREQUENCY is assumed to be one.
*
* CONFIG_RTC_ALARM - Enable if the RTC hardware supports setting of an
* alarm. A callback function will be executed when the alarm goes off
*/
#define RTC_CLOCKS_PER_SEC 16384
#define RTC_CLOCKS_SHIFT 14
#ifdef CONFIG_RTC_HIRES
# ifndef CONFIG_RTC_FREQUENCY
# error "CONFIG_RTC_FREQUENCY is required for CONFIG_RTC_HIRES"
# endif
#else
# ifndef CONFIG_RTC_FREQUENCY
# define CONFIG_RTC_FREQUENCY 1
# endif
# if CONFIG_RTC_FREQUENCY != 1
# error "The low resolution RTC must have frequency 1Hz"
# endif
#endif
/****************************************************************************
* Public Types
****************************************************************************/
/* The form of an alarm callback */
typedef void (alarmcb_t)(void);
/****************************************************************************
* Public Variables
@ -83,32 +120,92 @@ extern "C" {
#define EXTERN extern
#endif
/****************************************************************************
/************************************************************************************
* Name: up_rtcinitialize
*
* Description:
* Initialize the periodic timer interface. This function is called once
* from the clock_initialize() function.
* Initialize the hardware RTC per the select configuration. This function is
* called once during the OS initialization sequence
*
* Input Parameters:
* None
*
* Returned Value:
* Returns OK if RTC has successfully started, otherwise ERROR.
* Zero (OK) on success; a negated errno on failure
*
****************************************************************************/
************************************************************************************/
EXTERN int up_rtcinitialize(void);
EXTERN int up_rtcinitialize(void);
EXTERN clock_t up_rtc_getclock(void);
EXTERN void up_rtc_setclock(clock_t clock);
/************************************************************************************
* Name: up_rtc_time
*
* Description:
* Get the current time in seconds. This is similar to the standard time()
* function.
*
* Input Parameters:
* None
*
* Returned Value:
* The current time in seconds
*
************************************************************************************/
EXTERN time_t up_rtc_gettime(void);
EXTERN void up_rtc_settime(time_t time);
EXTERN time_t up_rtc_time(void);
EXTERN clock_t up_rtc_setalarm(clock_t atclock);
/************************************************************************************
* Name: up_rtc_gettime
*
* Description:
* Get the current time from the high resolution RTC clock.
*
* Input Parameters:
* tp - The location to return the high resolution time value.
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
/* This callback is provided by the clock module and called by the RTC ISR */
#ifdef CONFIG_RTC_HIRES
EXTERN int up_rtc_gettime(FAR struct timespec *tp);
#endif
EXTERN void clock_rtcalarmcb(clock_t clock);
/************************************************************************************
* Name: up_rtc_settime
*
* Description:
* Set the RTC to the provided time.
*
* Input Parameters:
* tp - the time to use
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
EXTERN int up_rtc_settime(FAR const struct timespec *tp);
/************************************************************************************
* Name: up_rtc_setalarm
*
* Description:
* Set up a alarm.
*
* Input Parameters:
* tp - the time to set the alarm
* callback - the function to call when the alarm expires.
*
* Returned Value:
* Zero (OK) on success; a negated errno on failure
*
************************************************************************************/
#ifdef CONFIG_RTC_ALARM
EXTERN int up_rtc_setalarm(FAR const struct timespec *tp, alarmcb_t callback);
#endif
#undef EXTERN
#if defined(__cplusplus)

View File

@ -77,7 +77,7 @@
* power down modes. Unit is 1 second.
*/
#ifdef CONFIG_RTC
#ifdef CONFIG_SYSTEM_UTC
# define CLOCK_ACTIVETIME 1
#endif

View File

@ -113,7 +113,12 @@ int clock_gettime(clockid_t clock_id, struct timespec *tp)
if (clock_id == CLOCK_REALTIME && tp)
{
/* If CONFIG_SYSTEM_UTC is not defined, then we have to get the time
* from g_system_timer.
*/
#ifndef CONFIG_SYSTEM_UTC
/* Get the elapsed time since power up (in milliseconds) biased
* as appropriate.
*/
@ -151,47 +156,18 @@ int clock_gettime(clockid_t clock_id, struct timespec *tp)
tp->tv_sec = (time_t)secs;
tp->tv_nsec = (long)nsecs;
#else /* if CONFIG_SYSTEM_UTC=y */
#else /* CONFIG_SYSTEM_UTC */
#ifdef CONFIG_RTC
/* CONFIG_SYSTEM_UTC is defined. But we might be able to get the time
* from the hardware if a high resolution RTC is available.
*/
#ifdef CONFIG_RTC_HIRES
if (g_rtc_enabled)
{
/* up_rtc_gettime() returns the time in seconds and up_rtc_getclock()
* will return the time int RTC clock ticks. Under the hood, these
* are probably based on the same running time. However, since we
* sample this time twice, we have to add the following strange logic
* to assure that the fractional second value does not rollover to
* a full second between sampling times.
*/
/* Get the hi-resolution time from the RTC */
clock_t rtc_frac; /* Current fractional seconds in RTC ticks */
clock_t rtc_last; /* Previous fractional seconds in RTC ticks */
time_t rtc_sec; /* Current seconds */
/* Interrupts are disabled here only to prevent interrupts and context
* switches from interfering with the consecutive time samples. I
* expect to go through this loop 1 time 99.9% of the time and then
* only twice on the remaining cornercases.
*/
flags = irqsave();
rtc_frac = up_rtc_getclock() & (RTC_CLOCKS_PER_SEC-1);
do
{
rtc_last = rtc_frac;
rtc_sec = up_rtc_gettime();
rtc_frac = up_rtc_getclock() & (RTC_CLOCKS_PER_SEC-1);
}
while (rtc_frac < rtc_last);
irqrestore(flags);
/* Okay.. the samples should be as close together in time as possible
* and we can be assured that no fractional second rollover occurred
* between the samples.
*/
tp->tv_sec = rtc_sec;
tp->tv_nsec = rtc_frac * (1000000000/RTC_CLOCKS_PER_SEC);
ret = up_rtc_gettime(tp);
}
else
#endif
@ -209,17 +185,16 @@ int clock_gettime(clockid_t clock_id, struct timespec *tp)
tp->tv_sec = system_utc;
tp->tv_nsec = tickcount * (1000000000/TICK_PER_SEC);
}
#endif
#endif /* CONFIG_SYSTEM_UTC */
sdbg("Returning tp=(%d,%d)\n",
(int)tp->tv_sec, (int)tp->tv_nsec);
sdbg("Returning tp=(%d,%d)\n", (int)tp->tv_sec, (int)tp->tv_nsec);
}
/* CLOCK_ACTIVETIME is non-standard. Returns active UTC time, which is
* disabled during power down modes. Unit is 1 second.
*/
#ifdef CONFIG_RTC
#ifdef CONFIG_SYSTEM_UTC
else if (clock_id == CLOCK_ACTIVETIME && g_rtc_enabled && tp)
{
/* Disable interrupts while g_system_utc and g_tickcount are sampled

View File

@ -54,6 +54,12 @@
* Definitions
****************************************************************************/
#ifdef CONFIG_RTC
# ifndef CONFIG_SYSTEM_UTC
# error "In order to support hardware RTC system must have set the CONFIG_SYSTEM_UTC=y"
# endif
#endif
/* Standard time definitions (in units of seconds) */
#define SEC_PER_MIN ((time_t)60)
@ -85,11 +91,11 @@
****************************************************************************/
#if CONFIG_SYSTEM_UTC
volatile time_t g_system_utc = 0;
volatile time_t g_system_utc;
#else
volatile clock_t g_system_timer = 0;
struct timespec g_basetime = {0,0};
uint32_t g_tickbias = 0;
volatile clock_t g_system_timer;
struct timespec g_basetime;
uint32_t g_tickbias;
#endif
/**************************************************************************
@ -102,11 +108,11 @@ uint32_t g_tickbias = 0;
#if CONFIG_SYSTEM_UTC
#if TICK_PER_SEC > 32767
volatile uint32_t g_tickcount = 0;
volatile uint32_t g_tickcount;
#elif TICK_PER_SEC > 255
volatile uint16_t g_tickcount = 0;
volatile uint16_t g_tickcount;
#else
volatile uint8_t g_tickcount = 0;
volatile uint8_t g_tickcount;
#endif
#endif /* CONFIG_SYSTEM_UTC */
@ -114,7 +120,7 @@ volatile uint8_t g_tickcount = 0;
* Private Functions
**************************************************************************/
/****************************************************************************
* Function: clock_timer
* Function: incr_utc
*
* Description:
* This function must be called once every time the real
@ -139,9 +145,57 @@ static inline void incr_utc(void)
#endif
/****************************************************************************
* Private Functions
* Function: clock_inittime
*
* Description:
* Get the initial time value from the best source available.
*
****************************************************************************/
#ifdef CONFIG_RTC
#ifdef CONFIG_RTC_HIRES
static inline void clock_inittime(FAR struct timespec *tp)
{
/* Get the complete time from the hi-res RTC. */
(void)up_rtc_gettime(tp);
}
#else
static inline void clock_inittime(FAR struct timespec *tp)
{
/* Get the seconds (only) from the lo-res RTC */
tp->tv_sec = up_rtc_time();
tp->tv_nsec = 0;
}
#endif /* CONFIG_RTC_HIRES */
#else /* CONFIG_RTC */
static inline void clock_inittime(FAR struct timespec *tp)
{
time_t jdn = 0;
/* Get the EPOCH-relative julian date from the calendar year,
* month, and date
*/
jdn = clock_calendar2utc(CONFIG_START_YEAR, CONFIG_START_MONTH,
CONFIG_START_DAY);
/* Set the base time as seconds into this julian day. */
tp->tv_sec = jdn * SEC_PER_DAY;
tp->tv_nsec = 0;
}
#endif /* CONFIG_RTC */
/****************************************************************************
* Public Functions
****************************************************************************/
@ -156,48 +210,26 @@ static inline void incr_utc(void)
void clock_initialize(void)
{
#ifndef CONFIG_SYSTEM_UTC
time_t jdn = 0;
#endif
/* Initialize the real time close (this should be un-nesssary except on a
* restart).
*/
#ifdef CONFIG_SYSTEM_UTC
g_system_utc = 0;
#else
g_system_timer = 0;
struct timespec ts;
#endif
/* Do we have hardware RTC support? */
/* Initialize the RTC hardware */
#ifdef CONFIG_RTC
#ifndef CONFIG_SYSTEM_UTC
# error In order to support hardware RTC system must have set the CONFIG_SYSTEM_UTC=y
#endif
up_rtcinitialize();
#endif
#ifndef CONFIG_SYSTEM_UTC
/* Initialize the time value */
/* Get the EPOCH-relative julian date from the calendar year,
* month, and date
*/
jdn = clock_calendar2utc(CONFIG_START_YEAR, CONFIG_START_MONTH,
CONFIG_START_DAY);
/* Set the base time as seconds into this julian day. */
g_basetime.tv_sec = jdn * SEC_PER_DAY;
g_basetime.tv_nsec = 0;
/* These is no time bias from this time. */
g_tickbias = 0;
#ifdef CONFIG_SYSTEM_UTC
clock_inittime(&ts);
g_system_utc = ts.tv_sec;
g_tickcount = ((ts.tv_nsec > 10) * CLOCKS_PER_SEC) / (1000000000 >> 10);
#else
clock_inittime(&g_basetime);
g_system_timer = 0;
g_tickbias = 0;
#endif
}

View File

@ -43,6 +43,8 @@
#include <time.h>
#include <errno.h>
#include <debug.h>
#include <arch/irq.h>
#include "clock_internal.h"
/************************************************************************
@ -85,7 +87,7 @@
*
************************************************************************/
int clock_settime(clockid_t clock_id, const struct timespec *tp)
int clock_settime(clockid_t clock_id, FAR const struct timespec *tp)
{
int ret = OK;
@ -116,12 +118,13 @@ int clock_settime(clockid_t clock_id, const struct timespec *tp)
#ifdef CONFIG_RTC
if (g_rtc_enabled)
{
up_rtc_settime(tp->tv_sec);
up_rtc_settime(tp);
}
else
#endif
g_system_utc = tp->tv_sec;
{
g_system_utc = tp->tv_sec;
}
#endif
sdbg("basetime=(%d,%d) tickbias=%d\n",
@ -133,10 +136,25 @@ int clock_settime(clockid_t clock_id, const struct timespec *tp)
* disabled during power down modes. Unit is 1 second.
*/
#ifdef CONFIG_RTC
else if (clock_id == CLOCK_ACTIVETIME && g_rtc_enabled && tp)
#ifdef CONFIG_SYSTEM_UTC
else if (clock_id == CLOCK_ACTIVETIME && tp)
{
irqstate_t flags;
uint32_t tickcount;
/* Calculate the number of ticks correspond to the nanosecond count...
* exercising care to avoid overflows. This could still overflow
* if CLOCKS_PER_SEC is very large (something like 4096).
*/
tickcount = ((tp->tv_nsec >> 10) * CLOCKS_PER_SEC) / (1000000000 >> 10);
/* Then set the UTC time (seconds) plus the tickcount (fractional seconds */
flags = irqsave();
g_system_utc = tp->tv_sec;
g_tickcount = tickcount;
irqrestore(flags);
}
#endif

View File

@ -85,20 +85,12 @@ uint32_t clock_systimer(void)
uint32_t tickcount;
#endif
/* Fetch the g_system_timer value from timer hardware, if available */
#ifdef CONFIG_RTC
/* Check if the periodic timer is initialized
#ifdef CONFIG_RTC_HIRES
/* Fetch the g_system_timer value from timer hardware, if available.
*
* Note that the unit of the g_system_timer and and up_rtc_getclock() do
* Note that the unit of the g_system_timer and and up_rtc_gettime() do
* not have the same unit.
*/
if (g_rtc_enabled)
{
/* return up_rtc_getclock(); */
}
#endif
#ifndef CONFIG_SYSTEM_UTC