wireshark/epan/dissectors/packet-ieee802154.c

7484 lines
323 KiB
C

/* packet-ieee802154.c
*
* Multipurpose frame support
* By Devan Lai <devanl@davisinstruments.com>
* Copyright 2019 Davis Instruments
*
* IEEE 802.15.4-2015 CCM* nonce for TSCH mode
* By Maxime Brunelle <Maxime.Brunelle@trilliant.com>
* Copyright 2019 Trilliant Inc.
*
* IEEE802154 TAP link type
* By James Ko <jck@exegin.com>
* Copyright 2019 Exegin Technologies Limited
*
* 4-byte FCS support and ACK tracking
* By Carl Levesque Imbeault <carl.levesque@trilliant.com>
* Copyright 2018 Trilliant Inc.
* Integrated and added FCS type enum
* by James Ko <jck@exegin.com>
* Copyright 2019 Exegin Technologies Limited
*
* Auxiliary Security Header support and
* option to force TI CC24xx FCS format
* By Jean-Francois Wauthy <jfw@info.fundp.ac.be>
* Copyright 2009 The University of Namur, Belgium
*
* IEEE 802.15.4 Dissectors for Wireshark
* By Owen Kirby <osk@exegin.com>
* Copyright 2007 Exegin Technologies Limited
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*------------------------------------------------------------
*
* In IEEE 802.15.4 packets, all fields are little endian. And
* Each byte is transmitted least significant bit first (reflected
* bit ordering).
*------------------------------------------------------------
*
* Most IEEE 802.15.4 Packets have the following format:
* | FCF |Seq No| Addressing | Data | FCS |
* |2 bytes|1 byte|0 to 20 bytes|Length-(Overhead) bytes|2/4 Bytes|
*------------------------------------------------------------
*
* Multipurpose frame packets have the following format:
* | FCF | Seq No | Addressing | Data | FCS |
* |1/2 bytes|0/1 bytes|0 to 20 bytes|Length-(Overhead) bytes|2 bytes|
*------------------------------------------------------------
*
* CRC16 is calculated using the x^16 + x^12 + x^5 + 1 polynomial
* as specified by ITU-T, and is calculated over the IEEE 802.15.4
* packet (excluding the FCS) as transmitted over the air. Note,
* that because the least significan bits are transmitted first, this
* will require reversing the bit-order in each byte. Also, unlike
* most CRC algorithms, IEEE 802.15.4 uses an initial and final value
* of 0x0000, instead of 0xffff (which is used by the ITU-T).
*
* For a 4-byte FCS, CRC32 is calculated using the ITU-T CRC32.
*
* (Fun fact: the reference to "a 32-bit CRC equivalent to ANSI X3.66-1979"
* in IEEE Std 802.15.4-2015 nonwithstanding, ANSI X3.66-1979 does not
* describe any 32-bit CRC, only a 16-bit CRC from ITU-T V.41. ITU-T
* V.42 describes both a 16-bit and 32-bit CRC; all the 16-bit CRCs
* floating around seem to use the same generator polynomial,
* x^16 + x^12 + x^5 + 1, but have different initial conditions and
* no-error final remainder; the 32-bit CRC from V.42 and the one
* described in IEEE Std 802.15.4-2015 also use the same generator
* polynomial.)
*------------------------------------------------------------
*
* This dissector supports both link-layer IEEE 802.15.4 captures
* and IEEE 802.15.4 packets encapsulated within other layers.
* Additionally, support has been provided for 16-bit and 32-bit
* FCS, as well as for frames with no FCS but with a 16-bit
* ChipCon/Texas Instruments CC24xx-style metadata field.
*------------------------------------------------------------
*/
/* Include files */
#include "config.h"
#include <epan/packet.h>
#include <epan/decode_as.h>
#include <epan/exceptions.h>
#include <epan/crc16-tvb.h>
#include <epan/crc32-tvb.h>
#include <epan/expert.h>
#include <epan/addr_resolv.h>
#include <epan/address_types.h>
#include <epan/conversation.h>
#include <epan/conversation_table.h>
#include <epan/conversation_filter.h>
#include <epan/prefs.h>
#include <epan/uat.h>
#include <epan/strutil.h>
#include <epan/to_str.h>
#include <epan/show_exception.h>
#include <epan/proto_data.h>
#include <epan/etypes.h>
#include <epan/oui.h>
#include <epan/tap.h>
#include <wsutil/pint.h>
/* Use libgcrypt for cipher libraries. */
#include <wsutil/wsgcrypt.h>
#include "packet-ieee802154.h"
#include "packet-sll.h"
void proto_register_ieee802154(void);
void proto_reg_handoff_ieee802154(void);
/* Dissection Options for dissect_ieee802154_common */
#define DISSECT_IEEE802154_OPTION_CC24xx 0x00000001 /* Frame has TI CC24xx metadata, not an FCS, at the end */
#define DISSECT_IEEE802154_OPTION_ZBOSS 0x00000002 /* ZBOSS traffic dump */
/* ethertype for 802.15.4 tag - encapsulating an Ethernet packet */
static unsigned int ieee802154_ethertype = 0x809A;
/* FCS Types used by user configuration */
#define IEEE802154_CC24XX_METADATA 0 /* Not an FCS, but TI CC24xx metadata */
#define IEEE802154_FCS_16_BIT 1 /* ITU-T CRC16 */
#define IEEE802154_FCS_32_BIT 2 /* ITU-T CRC32 */
static gint ieee802154_fcs_type = IEEE802154_FCS_16_BIT;
/* 802.15.4 TAP Fields */
typedef enum {
IEEE802154_TAP_FCS_TYPE = 0x0000,
IEEE802154_TAP_RSS = 0x0001,
IEEE802154_TAP_BIT_RATE = 0x0002,
IEEE802154_TAP_CHANNEL_ASSIGNMENT = 0x0003,
IEEE802154_TAP_SUN_PHY_INFO = 0x0004,
IEEE802154_TAP_START_OF_FRAME_TS = 0x0005,
IEEE802154_TAP_END_OF_FRAME_TS = 0x0006,
IEEE802154_TAP_ASN = 0x0007,
IEEE802154_TAP_SLOT_START_TS = 0x0008,
IEEE802154_TAP_TIMESLOT_LENGTH = 0x0009,
IEEE802154_TAP_LQI = 0x000A,
IEEE802154_TAP_CHANNEL_FREQUENCY = 0x000B,
IEEE802154_TAP_CHANNEL_PLAN = 0x000C,
IEEE802154_TAP_PHY_HEADER = 0x000D,
} ieee802154_info_type_t;
typedef enum {
PHR_RAW = 0,
PHR_O_QPSK = 1,
PHR_CSS = 2,
PHR_HRP_UWB = 3,
PHR_MSK = 4,
PHR_LRP_UWB = 5,
PHR_SUN_FSK = 6,
PHR_SUN_OFDM = 7,
PHR_SUN_O_QPSK = 8,
PHR_LECIM_FSK = 9,
PHR_TVWS_FSK = 10,
PHR_TVWS_OFDM = 11,
PHR_TVWS_NB_OFDM = 12,
PHR_RCC_LMR = 13,
PHR_CMB_O_QPSK = 14,
PHR_CMB_GFSK = 15,
PHR_TASK = 16,
PHR_RS_GFSK = 17,
PHR_WISUN_FSK_MS = 18,
} ieee802154_tap_phr_type_t;
typedef enum {
IEEE802154_FCS_TYPE_NONE = 0,
IEEE802154_FCS_TYPE_16_BIT = 1, /* ITU-T CRC16 */
IEEE802154_FCS_TYPE_32_BIT = 2, /* ITU-T CRC32 */
} ieee802154_fcs_type_t;
typedef enum {
IEEE802154_SUN_TYPE_FSK_A = 0x00,
IEEE802154_SUN_TYPE_FSK_B = 0x01,
IEEE802154_SUN_TYPE_OQPSK_A = 0x02,
IEEE802154_SUN_TYPE_OQPSK_B = 0x03,
IEEE802154_SUN_TYPE_OQPSK_C = 0x04,
IEEE802154_SUN_TYPE_OFDM_OPT1 = 0x05,
IEEE802154_SUN_TYPE_OFDM_OPT2 = 0x06,
IEEE802154_SUN_TYPE_OFDM_OPT3 = 0x07,
IEEE802154_SUN_TYPE_OFDM_OPT4 = 0x08,
} ieee802154_sun_type_t;
/* boolean value set if the FCS must be ok before payload is dissected */
static gboolean ieee802154_fcs_ok = TRUE;
/* boolean value set to enable ack tracking */
static gboolean ieee802154_ack_tracking = FALSE;
/* boolean value set to enable 802.15.4e dissection compatibility */
static gboolean ieee802154e_compatibility = FALSE;
/* TSCH ASN for nonce in decryption */
static guint64 ieee802154_tsch_asn = 0;
static const char *ieee802154_user = "User";
static wmem_tree_t* mac_key_hash_handlers;
#ifndef ROUND_UP
#define ROUND_UP(_offset_, _align_) (((_offset_) + (_align_) - 1) / (_align_) * (_align_))
#endif
/*
* Address Hash Tables
*
*/
ieee802154_map_tab_t ieee802154_map = { NULL, NULL };
/*
* Static Address Mapping UAT
*
*/
/* UAT entry structure. */
typedef struct {
guchar *eui64;
guint eui64_len;
guint addr16;
guint pan;
} static_addr_t;
/* UAT variables */
static uat_t *static_addr_uat = NULL;
static static_addr_t *static_addrs = NULL;
static guint num_static_addrs = 0;
static void*
addr_uat_copy_cb(void *dest, const void *source, size_t len _U_)
{
const static_addr_t* o = (const static_addr_t*)source;
static_addr_t* d = (static_addr_t*)dest;
d->eui64 = (guchar *)g_memdup2(o->eui64, o->eui64_len);
d->eui64_len = o->eui64_len;
d->addr16 = o->addr16;
d->pan = o->pan;
return dest;
}
/* Sanity-checks a UAT record. */
static gboolean
addr_uat_update_cb(void *r, char **err)
{
static_addr_t *map = (static_addr_t *)r;
/* Ensure a valid short address */
if (map->addr16 >= IEEE802154_NO_ADDR16) {
*err = g_strdup("Invalid short address");
return FALSE;
}
/* Ensure a valid PAN identifier. */
if (map->pan >= IEEE802154_BCAST_PAN) {
*err = g_strdup("Invalid PAN identifier");
return FALSE;
}
/* Ensure a valid EUI-64 length */
if (map->eui64_len != sizeof(guint64)) {
*err = g_strdup("Invalid EUI-64 length");
return FALSE;
}
return TRUE;
} /* ieee802154_addr_uat_update_cb */
static void
addr_uat_free_cb(void *r)
{
static_addr_t *rec = (static_addr_t *)r;
g_free(rec->eui64);
}
/* Field callbacks. */
UAT_HEX_CB_DEF(addr_uat, addr16, static_addr_t)
UAT_HEX_CB_DEF(addr_uat, pan, static_addr_t)
UAT_BUFFER_CB_DEF(addr_uat, eui64, static_addr_t, eui64, eui64_len)
/*
* Decryption Keys UAT
*/
/* UAT variables */
static uat_t *ieee802154_key_uat = NULL;
static ieee802154_key_t *ieee802154_keys = NULL;
static guint num_ieee802154_keys = 0;
static void ieee802154_key_post_update_cb(void)
{
guint i;
GByteArray *bytes;
for (i = 0; i < num_ieee802154_keys; i++)
{
switch (ieee802154_keys[i].hash_type) {
case KEY_HASH_NONE:
case KEY_HASH_ZIP:
/* Get the IEEE 802.15.4 decryption key. */
bytes = g_byte_array_new();
if (hex_str_to_bytes(ieee802154_keys[i].pref_key, bytes, FALSE))
{
if (ieee802154_keys[i].hash_type == KEY_HASH_ZIP) {
char digest[32];
if (!ws_hmac_buffer(GCRY_MD_SHA256, digest, "ZigBeeIP", 8, bytes->data, IEEE802154_CIPHER_SIZE)) {
/* Copy upper hashed bytes to the key */
memcpy(ieee802154_keys[i].key, &digest[IEEE802154_CIPHER_SIZE], IEEE802154_CIPHER_SIZE);
/* Copy lower hashed bytes to the MLE key */
memcpy(ieee802154_keys[i].mle_key, digest, IEEE802154_CIPHER_SIZE);
} else {
/* Just copy the keys verbatim */
memcpy(ieee802154_keys[i].key, bytes->data, IEEE802154_CIPHER_SIZE);
memcpy(ieee802154_keys[i].mle_key, bytes->data, IEEE802154_CIPHER_SIZE);
}
} else {
/* Just copy the keys verbatim */
memcpy(ieee802154_keys[i].key, bytes->data, IEEE802154_CIPHER_SIZE);
memcpy(ieee802154_keys[i].mle_key, bytes->data, IEEE802154_CIPHER_SIZE);
}
}
g_byte_array_free(bytes, TRUE);
break;
case KEY_HASH_THREAD:
/* XXX - TODO? */
break;
}
}
}
static gboolean ieee802154_key_update_cb(void *r, char **err)
{
ieee802154_key_t* rec = (ieee802154_key_t*)r;
GByteArray *bytes;
switch (rec->hash_type) {
case KEY_HASH_NONE:
case KEY_HASH_ZIP:
bytes = g_byte_array_new();
if (hex_str_to_bytes(rec->pref_key, bytes, FALSE) == FALSE)
{
*err = g_strdup("Invalid key");
g_byte_array_free(bytes, TRUE);
return FALSE;
}
if (bytes->len < IEEE802154_CIPHER_SIZE)
{
*err = ws_strdup_printf("Key must be at least %d bytes", IEEE802154_CIPHER_SIZE);
g_byte_array_free(bytes, TRUE);
return FALSE;
}
g_byte_array_free(bytes, TRUE);
break;
case KEY_HASH_THREAD:
/* XXX - TODO? */
break;
}
return TRUE;
}
static void* ieee802154_key_copy_cb(void* n, const void* o, size_t siz _U_) {
ieee802154_key_t* new_record = (ieee802154_key_t*)n;
const ieee802154_key_t* old_record = (const ieee802154_key_t*)o;
new_record->pref_key = g_strdup(old_record->pref_key);
new_record->key_index = old_record->key_index;
new_record->hash_type = old_record->hash_type;
return new_record;
}
static void ieee802154_key_free_cb(void*r) {
ieee802154_key_t* rec = (ieee802154_key_t *)r;
g_free(rec->pref_key);
}
/* Field callbacks. */
UAT_CSTRING_CB_DEF(key_uat, pref_key, ieee802154_key_t)
UAT_DEC_CB_DEF(key_uat, key_index, ieee802154_key_t)
UAT_VS_DEF(key_uat, hash_type, ieee802154_key_t, ieee802154_key_hash, KEY_HASH_NONE, "No hash")
/*-------------------------------------
* Dissector Function Prototypes
*-------------------------------------
*/
/* Dissection Routines. */
static int dissect_ieee802154_nonask_phy (tvbuff_t *, packet_info *, proto_tree *, void *);
static int dissect_ieee802154 (tvbuff_t *, packet_info *, proto_tree *, void *);
static int dissect_ieee802154_nofcs (tvbuff_t *, packet_info *, proto_tree *, void *);
static int dissect_ieee802154_cc24xx (tvbuff_t *, packet_info *, proto_tree *, void *);
static int dissect_ieee802154_tap (tvbuff_t *, packet_info *, proto_tree *, void *);
static tvbuff_t *dissect_zboss_specific (tvbuff_t *, packet_info *, proto_tree *);
static void dissect_ieee802154_common (tvbuff_t *, packet_info *, proto_tree *, guint, guint);
static void ieee802154_dissect_fcs(tvbuff_t *tvb, proto_tree *ieee802154_tree, guint fcs_len, gboolean fcs_ok);
static void ieee802154_dissect_cc24xx_metadata(tvbuff_t *tvb, proto_tree *ieee802154_tree, gboolean fcs_ok);
static ieee802154_fcs_type_t dissect_ieee802154_tap_tlvs(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);
/* Information Elements */
static int dissect_ieee802154_header_ie (tvbuff_t *, packet_info *, proto_tree *, guint, ieee802154_packet *);
static int dissect_ieee802154_payload_ie (tvbuff_t *, packet_info *, proto_tree *, guint, ieee802154_packet *);
static int dissect_802154_eb_filter (tvbuff_t *, packet_info *, proto_tree *, void *);
static int dissect_802154_tsch_time_sync (tvbuff_t *, packet_info *, proto_tree *, void *);
static int dissect_802154_tsch_timeslot (tvbuff_t *, packet_info *, proto_tree *, void *);
static int dissect_802154_tsch_slotframe_link (tvbuff_t *, packet_info *, proto_tree *, void *);
static int dissect_802154_channel_hopping (tvbuff_t *, packet_info *, proto_tree *, void *);
/* Sub-dissector helpers. */
static void dissect_ieee802154_fcf (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *, guint *);
static void dissect_ieee802154_command (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *);
static void dissect_ieee802154_assoc_req (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *);
static void dissect_ieee802154_assoc_rsp (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *);
static void dissect_ieee802154_disassoc (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *);
static void dissect_ieee802154_realign (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *);
static void dissect_ieee802154_gtsreq (tvbuff_t *, packet_info *, proto_tree *, ieee802154_packet *);
/* Decryption helpers. */
static tvbuff_t *dissect_ieee802154_decrypt(tvbuff_t *, guint, packet_info *, ieee802154_packet *, ieee802154_decrypt_info_t*);
static guint ieee802154_set_mac_key(ieee802154_packet *packet, unsigned char *key, unsigned char *alt_key, ieee802154_key_t *uat_key);
static void tsch_ccm_init_nonce(guint64 addr, guint64 asn, gchar* generic_nonce);
/* Initialize Protocol and Registered fields */
static int proto_ieee802154_nonask_phy = -1;
static int hf_ieee802154_nonask_phy_preamble = -1;
static int hf_ieee802154_nonask_phy_sfd = -1;
static int hf_ieee802154_nonask_phy_length = -1;
static int hf_ieee802154_nonask_phr = -1;
static int proto_ieee802154 = -1;
static int proto_ieee802154_tap = -1;
static int hf_ieee802154_frame_length = -1;
static int hf_ieee802154_fcf = -1;
static int hf_ieee802154_frame_type = -1;
static int hf_ieee802154_security = -1;
static int hf_ieee802154_pending = -1;
static int hf_ieee802154_ack_request = -1;
static int hf_ieee802154_pan_id_compression = -1;
static int hf_ieee802154_fcf_reserved = -1;
static int hf_ieee802154_seqno_suppression = -1;
static int hf_ieee802154_ie_present = -1;
static int hf_ieee802154_src_addr_mode = -1;
static int hf_ieee802154_version = -1;
static int hf_ieee802154_dst_addr_mode = -1;
static int hf_ieee802154_mpf_long_frame_control = -1;
static int hf_ieee802154_mpf_dst_addr_mode = -1;
static int hf_ieee802154_mpf_src_addr_mode = -1;
static int hf_ieee802154_mpf_pan_id_present = -1;
static int hf_ieee802154_mpf_security = -1;
static int hf_ieee802154_mpf_seqno_suppression = -1;
static int hf_ieee802154_mpf_pending = -1;
static int hf_ieee802154_mpf_version = -1;
static int hf_ieee802154_mpf_ack_request = -1;
static int hf_ieee802154_mpf_ie_present = -1;
static int hf_ieee802154_header_ies = -1;
static int hf_ieee802154_header_ie_tlv = -1;
static int hf_ieee802154_header_ie_type = -1;
static int hf_ieee802154_header_ie_id = -1;
static int hf_ieee802154_header_ie_length = -1;
static int hf_ieee802154_ie_unknown_content = -1;
static int hf_ieee802154_hie_unsupported = -1;
static int hf_ieee802154_hie_time_correction = -1;
static int hf_ieee802154_hie_ht1 = -1;
static int hf_ieee802154_hie_ht2 = -1;
static int hf_ieee802154_nack = -1;
static int hf_ieee802154_hie_time_correction_time_sync_info = -1;
static int hf_ieee802154_hie_time_correction_value = -1;
static int hf_ieee802154_hie_csl = -1;
static int hf_ieee802154_hie_csl_phase = -1;
static int hf_ieee802154_hie_csl_period = -1;
static int hf_ieee802154_hie_csl_rendezvous_time = -1;
static int hf_ieee802154_hie_rdv = -1;
static int hf_ieee802154_hie_rdv_wakeup_interval = -1;
static int hf_ieee802154_hie_global_time = -1;
static int hf_ieee802154_hie_global_time_value = -1;
static int hf_ieee802154_hie_vendor_specific = -1;
static int hf_ieee802154_hie_vendor_specific_vendor_oui = -1;
static int hf_ieee802154_hie_vendor_specific_content = -1;
static int hf_ieee802154_payload_ies = -1;
static int hf_ieee802154_payload_ie_tlv = -1;
static int hf_ieee802154_payload_ie_type = -1;
static int hf_ieee802154_payload_ie_id = -1;
static int hf_ieee802154_payload_ie_length = -1;
static int hf_ieee802154_pie_unsupported = -1;
static int hf_ieee802154_pie_termination = -1;
static int hf_ieee802154_pie_vendor = -1;
static int hf_ieee802154_pie_vendor_oui = -1;
static int hf_ieee802154_pie_ietf = -1;
static int hf_ieee802154_mlme = -1;
static int hf_ieee802154_mlme_ie_data = -1;
static int hf_ieee802154_mlme_ie_unsupported = -1;
static int hf_ieee802154_psie = -1;
static int hf_ieee802154_psie_type = -1;
static int hf_ieee802154_psie_id_short = -1;
static int hf_ieee802154_psie_length_short = -1;
static int hf_ieee802154_psie_id_long = -1;
static int hf_ieee802154_psie_length_long = -1;
static int hf_ieee802154_tsch_sync = -1;
static int hf_ieee802154_tsch_asn = -1;
static int hf_ieee802154_tsch_join_metric = -1;
static int hf_ieee802154_tsch_slotframe = -1;
static int hf_ieee802154_tsch_link_info = -1;
static int hf_ieee802154_tsch_slotf_link_nb_slotf = -1;
static int hf_ieee802154_tsch_slotf_link_slotf_handle= -1;
static int hf_ieee802154_tsch_slotf_size = -1;
static int hf_ieee802154_tsch_slotf_link_nb_links = -1;
static int hf_ieee802154_tsch_slotf_link_timeslot = -1;
static int hf_ieee802154_tsch_slotf_link_channel_offset = -1;
static int hf_ieee802154_tsch_slotf_link_options = -1;
static int hf_ieee802154_tsch_slotf_link_options_tx = -1;
static int hf_ieee802154_tsch_slotf_link_options_rx = -1;
static int hf_ieee802154_tsch_slotf_link_options_shared = -1;
static int hf_ieee802154_tsch_slotf_link_options_timkeeping = -1;
static int hf_ieee802154_tsch_slotf_link_options_priority = -1;
static int hf_ieee802154_tsch_channel_hopping = -1;
static int hf_ieee802154_tsch_hopping_sequence_id = -1;
static int hf_ieee802154_tsch_timeslot = -1;
static int hf_ieee802154_tsch_timeslot_id = -1;
static int hf_ieee802154_tsch_timeslot_cca_offset = -1;
static int hf_ieee802154_tsch_timeslot_cca = -1;
static int hf_ieee802154_tsch_timeslot_tx_offset = -1;
static int hf_ieee802154_tsch_timeslot_rx_offset = -1;
static int hf_ieee802154_tsch_timeslot_rx_ack_delay = -1;
static int hf_ieee802154_tsch_timeslot_tx_ack_delay = -1;
static int hf_ieee802154_tsch_timeslot_rx_wait = -1;
static int hf_ieee802154_tsch_timeslot_ack_wait = -1;
static int hf_ieee802154_tsch_timeslot_turnaround = -1;
static int hf_ieee802154_tsch_timeslot_max_ack = -1;
static int hf_ieee802154_tsch_timeslot_max_tx = -1;
static int hf_ieee802154_tsch_timeslot_length = -1;
static int hf_ieee802154_psie_eb_filter = -1;
static int hf_ieee802154_psie_eb_filter_pjoin = -1;
static int hf_ieee802154_psie_eb_filter_lqi = -1;
static int hf_ieee802154_psie_eb_filter_lqi_min = -1;
static int hf_ieee802154_psie_eb_filter_percent = -1;
static int hf_ieee802154_psie_eb_filter_percent_prob = -1;
static int hf_ieee802154_psie_eb_filter_attr_id = -1;
static int hf_ieee802154_psie_eb_filter_attr_id_bitmap = -1;
static int hf_ieee802154_p_ie_ietf_sub_id = -1;
static int hf_ieee802154_6top = -1;
static int hf_ieee802154_6top_version = -1;
static int hf_ieee802154_6top_type = -1;
static int hf_ieee802154_6top_flags_reserved = -1;
static int hf_ieee802154_6top_code = -1;
static int hf_ieee802154_6top_sfid = -1;
static int hf_ieee802154_6top_seqnum = -1;
static int hf_ieee802154_6top_metadata = -1;
static int hf_ieee802154_6top_cell_options = -1;
static int hf_ieee802154_6top_cell_option_tx = -1;
static int hf_ieee802154_6top_cell_option_rx = -1;
static int hf_ieee802154_6top_cell_option_shared = -1;
static int hf_ieee802154_6top_cell_option_reserved = -1;
static int hf_ieee802154_6top_num_cells = -1;
static int hf_ieee802154_6top_cell_list = -1;
static int hf_ieee802154_6top_rel_cell_list = -1;
static int hf_ieee802154_6top_cand_cell_list = -1;
static int hf_ieee802154_6top_cell = -1;
static int hf_ieee802154_6top_reserved = -1;
static int hf_ieee802154_6top_offset = -1;
static int hf_ieee802154_6top_max_num_cells = -1;
static int hf_ieee802154_6top_slot_offset = -1;
static int hf_ieee802154_6top_channel_offset = -1;
static int hf_ieee802154_6top_total_num_cells = -1;
static int hf_ieee802154_6top_payload = -1;
static int hf_ieee802159_mpx = -1;
static int hf_ieee802159_mpx_transaction_control = -1;
static int hf_ieee802159_mpx_transfer_type = -1;
static int hf_ieee802159_mpx_transaction_id = -1;
static int hf_ieee802159_mpx_transaction_id_as_multiplex_id = -1;
static int hf_ieee802159_mpx_fragment_number = -1;
static int hf_ieee802159_mpx_total_frame_size = -1;
static int hf_ieee802159_mpx_multiplex_id = -1;
static int hf_ieee802159_mpx_kmp_id = -1;
static int hf_ieee802159_mpx_kmp_vendor_oui = -1;
static int hf_ieee802159_mpx_fragment = -1;
static int hf_ieee802159_mpx_wisun_subid = -1;
static int proto_zboss = -1;
static int hf_zboss_direction = -1;
static int hf_zboss_page = -1;
static int hf_zboss_channel = -1;
static int hf_zboss_trace_number = -1;
static int hf_ieee802154_seqno = -1;
static int hf_ieee802154_dst_panID = -1;
static int hf_ieee802154_dst16 = -1;
static int hf_ieee802154_dst64 = -1;
static int hf_ieee802154_src_panID = -1;
static int hf_ieee802154_src16 = -1;
static int hf_ieee802154_src64 = -1;
static int hf_ieee802154_src64_origin = -1;
static int hf_ieee802154_addr16 = -1;
static int hf_ieee802154_addr64 = -1;
static int hf_ieee802154_fcs = -1;
static int hf_ieee802154_fcs32 = -1;
static int hf_ieee802154_rssi = -1;
static int hf_ieee802154_fcs_ok = -1;
static int hf_ieee802154_correlation = -1;
/* Registered fields for Command Packets */
static int hf_ieee802154_cmd_id = -1;
static int hf_ieee802154_cinfo_alt_coord = -1;
static int hf_ieee802154_cinfo_device_type = -1;
static int hf_ieee802154_cinfo_power_src = -1;
static int hf_ieee802154_cinfo_idle_rx = -1;
static int hf_ieee802154_cinfo_sec_capable = -1;
static int hf_ieee802154_cinfo_alloc_addr = -1;
static int hf_ieee802154_assoc_addr = -1;
static int hf_ieee802154_assoc_status = -1;
static int hf_ieee802154_disassoc_reason = -1;
static int hf_ieee802154_realign_pan = -1;
static int hf_ieee802154_realign_caddr = -1;
static int hf_ieee802154_realign_channel = -1;
static int hf_ieee802154_realign_addr = -1;
static int hf_ieee802154_realign_channel_page = -1;
static int hf_ieee802154_gtsreq_len = -1;
static int hf_ieee802154_gtsreq_dir = -1;
static int hf_ieee802154_gtsreq_type = -1;
static int hf_ieee802154_cmd_vendor_oui = -1;
/* Registered fields for Beacon Packets */
static int hf_ieee802154_beacon_order = -1;
static int hf_ieee802154_superframe_order = -1;
static int hf_ieee802154_cap = -1;
static int hf_ieee802154_superframe_battery_ext = -1;
static int hf_ieee802154_superframe_coord = -1;
static int hf_ieee802154_assoc_permit = -1;
static int hf_ieee802154_gts_count = -1;
static int hf_ieee802154_gts_permit = -1;
static int hf_ieee802154_gts_direction = -1;
static int hf_ieee802154_gts_address = -1;
static int hf_ieee802154_pending16 = -1;
static int hf_ieee802154_pending64 = -1;
/* Registered fields for Auxiliary Security Header */
static int hf_ieee802154_aux_security_header = -1;
static int hf_ieee802154_aux_sec_security_control = -1;
static int hf_ieee802154_aux_sec_security_level = -1;
static int hf_ieee802154_aux_sec_key_id_mode = -1;
static int hf_ieee802154_aux_sec_frame_counter_suppression = -1;
static int hf_ieee802154_aux_sec_asn_in_nonce = -1;
static int hf_ieee802154_aux_sec_reserved = -1;
static int hf_ieee802154_aux_sec_frame_counter = -1;
static int hf_ieee802154_aux_sec_key_source = -1;
static int hf_ieee802154_aux_sec_key_source_bytes = -1;
static int hf_ieee802154_aux_sec_key_index = -1;
static int hf_ieee802154_mic = -1;
static int hf_ieee802154_key_number = -1;
/* 802.15.4-2003 security */
static int hf_ieee802154_sec_frame_counter = -1;
static int hf_ieee802154_sec_key_sequence_counter = -1;
/* 802.15.4 ack */
static int hf_ieee802154_no_ack = -1;
static int hf_ieee802154_no_ack_request = -1;
static int hf_ieee802154_ack_in = -1;
static int hf_ieee802154_ack_to = -1;
static int hf_ieee802154_ack_time = -1;
/* 802.15.4 TAP */
static int hf_ieee802154_tap_version = -1;
static int hf_ieee802154_tap_reserved = -1;
static int hf_ieee802154_tap_length = -1;
static int hf_ieee802154_tap_data_length = -1;
static int hf_ieee802154_tap_tlv_type = -1;
static int hf_ieee802154_tap_tlv_length = -1;
static int hf_ieee802154_tap_tlv_unknown = -1;
static int hf_ieee802154_tap_tlv_padding = -1;
static int hf_ieee802154_tap_fcs_type = -1;
static int hf_ieee802154_tap_rss = -1;
static int hf_ieee802154_ch_page = -1;
static int hf_ieee802154_ch_num = -1;
static int hf_ieee802154_bit_rate = -1;
static int hf_ieee802154_sun_band = -1;
static int hf_ieee802154_sun_type = -1;
static int hf_ieee802154_sun_mode = -1;
static int hf_ieee802154_mode_fsk_a = -1;
static int hf_ieee802154_mode_fsk_b = -1;
static int hf_ieee802154_mode_oqpsk_a = -1;
static int hf_ieee802154_mode_oqpsk_b = -1;
static int hf_ieee802154_mode_oqpsk_c = -1;
static int hf_ieee802154_mode_ofdm = -1;
static int hf_ieee802154_sof_ts = -1;
static int hf_ieee802154_eof_ts = -1;
static int hf_ieee802154_slot_start_ts = -1;
static int hf_ieee802154_tap_timeslot_length = -1;
static int hf_ieee802154_tap_lqi = -1;
static int hf_ieee802154_chplan_start = -1;
static int hf_ieee802154_chplan_spacing = -1;
static int hf_ieee802154_chplan_channels = -1;
static int hf_ieee802154_ch_freq = -1;
static int hf_ieee802154_frame_start_offset = -1;
static int hf_ieee802154_frame_duration = -1;
static int hf_ieee802154_frame_end_offset = -1;
static int hf_ieee802154_asn = -1;
static int hf_ieee802154_tap_phr_type = -1;
static int hf_ieee802154_tap_phr_bits = -1;
static int hf_ieee802154_tap_phr_data = -1;
static int hf_ieee802154_tap_phr_fsk = -1;
static int hf_ieee802154_tap_fsk_ms_phr = -1;
static int hf_ieee802154_tap_wisun_ms_phr = -1;
static int hf_ieee802154_tap_phr_fsk_ms = -1;
static int hf_ieee802154_tap_phr_fsk_fcs = -1;
static int hf_ieee802154_tap_phr_fsk_dw = -1;
static int hf_ieee802154_tap_phr_fsk_length = -1;
static int hf_ieee802154_tap_phr_fsk_ms_param = -1;
static int hf_ieee802154_tap_phr_fsk_ms_fec = -1;
static int hf_ieee802154_tap_phr_fsk_ms_checksum = -1;
static int hf_ieee802154_tap_phr_fsk_ms_parity = -1;
static int hf_ieee802154_tap_phr_fsk_ms_mode_page = -1;
static int hf_ieee802154_tap_phr_fsk_ms_mode_scheme = -1;
static int hf_ieee802154_tap_phr_fsk_ms_mode_mode = -1;
static int hf_ieee802154_tap_phr_fsk_ms_mode_addl_mode = -1;
static int hf_ieee802154_tap_phr_wisun_fsk_ms_reserved = -1;
static int hf_ieee802154_tap_phr_wisun_fsk_ms_phymodeid = -1;
/* Bit-masks for SUN FSK PHR per IEEE 802.15.4-2020 19.2.4 */
#define IEEE802154_TAP_PHR_FSK_MS 0x8000
#define IEEE802154_TAP_PHR_FSK_FCS 0x0100
#define IEEE802154_TAP_PHR_FSK_DW 0x0080
#define IEEE802154_TAP_PHR_FSK_LENGTH 0x07ff
/* Bit-masks for SUN FSK Mode Switch PHR per IEEE 802.15.4-2020 19.2.5 */
#define IEEE802154_TAP_PHR_FSK_MS_PARAM 0x6000
#define IEEE802154_TAP_PHR_FSK_MS_FEC 0x1000
#define IEEE802154_TAP_PHR_FSK_MS_MODE 0x0FE0
#define IEEE802154_TAP_PHR_FSK_MS_MODE_PAGE 0x0800
#define IEEE802154_TAP_PHR_FSK_MS_MODE_SCHEME 0x0600
#define IEEE802154_TAP_PHR_FSK_MS_MODE_MODE 0x01E0
#define IEEE802154_TAP_PHR_FSK_MS_CHECKSUM 0x001E
#define IEEE802154_TAP_PHR_FSK_MS_PARITY 0x0001
#define IEEE802154_TAP_PHR_FSK_MS_SCHEME_FSK 0x0000
#define IEEE802154_TAP_PHR_FSK_MS_SCHEME_OFDM 0x0200
#define IEEE802154_TAP_PHR_FSK_MS_SCHEME_OQPSK 0x0400
#define IEEE802154_TAP_PHR_FSK_MS_SCHEME_ADDL 0x0600
/* Bit-masks for Wi-SUN FSK Mode Switch PHR */
#define IEEE802154_TAP_PHR_WISUN_FSK_MS_RESERVED 0x6000
#define IEEE802154_TAP_PHR_WISUN_FSK_MS_PHYMODEID 0x1FE0
typedef struct _ieee802154_transaction_t {
guint64 dst64;
guint64 src64;
gint32 dst_addr_mode;
gint32 src_addr_mode;
guint16 dst16;
guint16 src16;
guint32 rqst_frame;
guint32 ack_frame;
nstime_t rqst_time;
nstime_t ack_time;
gboolean dst_pan_present;
gboolean src_pan_present;
guint16 dst_pan;
guint16 src_pan;
} ieee802154_transaction_t;
static const nstime_t ieee802154_transaction_timeout = NSTIME_INIT_SECS_MSECS(1, 0); // ACKs usually arrive within milliseconds
static wmem_tree_t *transaction_unmatched_pdus;
static wmem_tree_t *transaction_matched_pdus;
static ieee802154_transaction_t *transaction_start(packet_info *pinfo, proto_tree *tree, const ieee802154_packet *packet, guint32 *key);
static ieee802154_transaction_t *transaction_end(packet_info *pinfo, proto_tree *tree, const ieee802154_packet *packet, guint32 *key);
/* Initialize Subtree Pointers */
static gint ett_ieee802154_nonask_phy = -1;
static gint ett_ieee802154_nonask_phy_phr = -1;
static gint ett_ieee802154_tap = -1;
static gint ett_ieee802154_tap_header = -1;
static gint ett_ieee802154_tap_tlv = -1;
static gint ett_ieee802154 = -1;
static gint ett_ieee802154_fcf = -1;
static gint ett_ieee802154_auxiliary_security = -1;
static gint ett_ieee802154_aux_sec_control = -1;
static gint ett_ieee802154_aux_sec_key_id = -1;
static gint ett_ieee802154_fcs = -1;
static gint ett_ieee802154_cmd = -1;
static gint ett_ieee802154_superframe = -1;
static gint ett_ieee802154_gts = -1;
static gint ett_ieee802154_gts_direction = -1;
static gint ett_ieee802154_gts_descriptors = -1;
static gint ett_ieee802154_pendaddr = -1;
static gint ett_ieee802154_header_ies = -1;
static gint ett_ieee802154_header_ie = -1;
static gint ett_ieee802154_header_ie_tlv = -1;
static gint ett_ieee802154_hie_unsupported = -1;
static gint ett_ieee802154_hie_time_correction = -1;
static gint ett_ieee802154_hie_ht = -1;
static gint ett_ieee802154_hie_csl = -1;
static gint ett_ieee802154_hie_rdv = -1;
static gint ett_ieee802154_hie_global_time = -1;
static gint ett_ieee802154_hie_vendor_specific = -1;
static gint ett_ieee802154_payload_ie = -1;
static gint ett_ieee802154_payload_ie_tlv = -1;
static gint ett_ieee802154_pie_termination = -1;
static gint ett_ieee802154_pie_vendor = -1;
static gint ett_ieee802154_pie_ietf = -1;
static gint ett_ieee802154_pie_unsupported = -1;
static gint ett_ieee802154_mlme = -1;
static gint ett_ieee802154_mlme_payload = -1;
static gint ett_ieee802154_mlme_payload_data = -1;
static gint ett_ieee802154_mlme_unsupported = -1;
static gint ett_ieee802154_tsch_slotframe = -1;
static gint ett_ieee802154_tsch_slotframe_list = -1;
static gint ett_ieee802154_tsch_slotframe_link = -1;
static gint ett_ieee802154_tsch_slotframe_link_options = -1;
static gint ett_ieee802154_tsch_timeslot = -1;
static gint ett_ieee802154_tsch_synch = -1;
static gint ett_ieee802154_channel_hopping = -1;
static gint ett_ieee802154_psie = -1;
static gint ett_ieee802154_eb_filter = -1;
static gint ett_ieee802154_eb_filter_bitmap = -1;
static gint ett_ieee802154_zigbee = -1;
static gint ett_ieee802154_zboss = -1;
static gint ett_ieee802154_p_ie_6top = -1;
static gint ett_ieee802154_p_ie_6top_cell_options = -1;
static gint ett_ieee802154_p_ie_6top_cell_list = -1;
static gint ett_ieee802154_p_ie_6top_cand_cell_list = -1;
static gint ett_ieee802154_p_ie_6top_rel_cell_list = -1;
static gint ett_ieee802154_p_ie_6top_cell = -1;
static gint ett_ieee802159_mpx = -1;
static gint ett_ieee802159_mpx_transaction_control = -1;
static gint ett_ieee802154_tap_phr = -1;
static expert_field ei_ieee802154_fcs_bitmask_len = EI_INIT;
static expert_field ei_ieee802154_invalid_addressing = EI_INIT;
static expert_field ei_ieee802154_invalid_panid_compression = EI_INIT;
static expert_field ei_ieee802154_invalid_panid_compression2 = EI_INIT;
static expert_field ei_ieee802154_fcs = EI_INIT;
static expert_field ei_ieee802154_decrypt_error = EI_INIT;
static expert_field ei_ieee802154_dst = EI_INIT;
static expert_field ei_ieee802154_src = EI_INIT;
static expert_field ei_ieee802154_frame_ver = EI_INIT;
/* static expert_field ei_ieee802154_frame_type = EI_INIT; */
static expert_field ei_ieee802154_seqno_suppression = EI_INIT;
static expert_field ei_ieee802154_ack_not_found = EI_INIT;
static expert_field ei_ieee802154_ack_request_not_found = EI_INIT;
static expert_field ei_ieee802154_time_correction_error = EI_INIT;
static expert_field ei_ieee802154_6top_unsupported_type = EI_INIT;
static expert_field ei_ieee802154_6top_unsupported_return_code = EI_INIT;
static expert_field ei_ieee802154_6top_unsupported_command = EI_INIT;
static expert_field ei_ieee802154_ie_unsupported_id = EI_INIT;
static expert_field ei_ieee802154_ie_unknown_extra_content = EI_INIT;
static expert_field ei_ieee802159_mpx_invalid_transfer_type = EI_INIT;
static expert_field ei_ieee802159_mpx_unsupported_kmp = EI_INIT;
static expert_field ei_ieee802159_mpx_unknown_kmp = EI_INIT;
static expert_field ei_ieee802154_missing_payload_ie = EI_INIT;
static expert_field ei_ieee802154_payload_ie_in_header = EI_INIT;
static expert_field ei_ieee802154_unsupported_cmd = EI_INIT;
static expert_field ei_ieee802154_unknown_cmd = EI_INIT;
static expert_field ei_ieee802154_tap_tlv_invalid_type = EI_INIT;
static expert_field ei_ieee802154_tap_tlv_invalid_length = EI_INIT;
static expert_field ei_ieee802154_tap_tlv_padding_not_zeros = EI_INIT;
static expert_field ei_ieee802154_tap_tlv_invalid_fcs_type = EI_INIT;
static expert_field ei_ieee802154_tap_tlv_reserved_not_zero = EI_INIT;
static expert_field ei_ieee802154_tap_no_payload = EI_INIT;
static int ieee802_15_4_short_address_type = -1;
/*
* Dissector handles
* - beacon dissection is always heuristic.
* - the PANID table is for stateful dissectors only (ie: Decode-As)
* - otherwise, data dissectors fall back to the heuristic dissectors.
*/
static dissector_table_t panid_dissector_table;
static heur_dissector_list_t ieee802154_beacon_subdissector_list;
static heur_dissector_list_t ieee802154_heur_subdissector_list;
/* For the IEs and the vendor specific command */
static dissector_table_t header_ie_dissector_table;
static dissector_table_t payload_ie_dissector_table;
static dissector_table_t mlme_ie_dissector_table;
static dissector_table_t cmd_vendor_dissector_table;
static dissector_handle_t zigbee_ie_handle;
static dissector_handle_t zigbee_nwk_handle;
static dissector_handle_t ieee802154_handle;
static dissector_handle_t ieee802154_nonask_phy_handle;
static dissector_handle_t ieee802154_nofcs_handle;
static dissector_handle_t ieee802154_tap_handle;
static int ieee802154_tap = -1;
/* Handles for MPX-IE the Multiplex ID */
static dissector_table_t ethertype_table;
static dissector_handle_t eapol_handle;
static dissector_handle_t lowpan_handle;
static dissector_handle_t wisun_sec_handle;
/* Versions */
static const value_string ieee802154_frame_versions[] = {
{ IEEE802154_VERSION_2003, "IEEE Std 802.15.4-2003" },
{ IEEE802154_VERSION_2006, "IEEE Std 802.15.4-2006" },
{ IEEE802154_VERSION_2015, "IEEE Std 802.15.4-2015" },
{ IEEE802154_VERSION_RESERVED, "Reserved" },
{ 0, NULL }
};
/* Name Strings */
static const value_string ieee802154_frame_types[] = {
{ IEEE802154_FCF_BEACON, "Beacon" },
{ IEEE802154_FCF_DATA, "Data" },
{ IEEE802154_FCF_ACK, "Ack" },
{ IEEE802154_FCF_CMD, "Command" },
{ IEEE802154_FCF_RESERVED, "Reserved" },
{ IEEE802154_FCF_MULTIPURPOSE, "Multipurpose" },
{ IEEE802154_FCF_FRAGMENT, "Fragment or Frak" },
{ IEEE802154_FCF_EXTENDED, "Extended" },
{ 0, NULL }
};
static const value_string ieee802154_addr_modes[] = {
{ IEEE802154_FCF_ADDR_NONE, "None" },
{ IEEE802154_FCF_ADDR_RESERVED, "Reserved" },
{ IEEE802154_FCF_ADDR_SHORT, "Short/16-bit" },
{ IEEE802154_FCF_ADDR_EXT, "Long/64-bit" },
{ 0, NULL }
};
static const value_string ieee802154_cmd_names[] = {
{ IEEE802154_CMD_ASSOC_REQ, "Association Request" },
{ IEEE802154_CMD_ASSOC_RSP, "Association Response" },
{ IEEE802154_CMD_DISASSOC_NOTIFY, "Disassociation Notification" },
{ IEEE802154_CMD_DATA_RQ, "Data Request" },
{ IEEE802154_CMD_PANID_CONFLICT, "PAN ID Conflict" },
{ IEEE802154_CMD_ORPHAN_NOTIFY, "Orphan Notification" },
{ IEEE802154_CMD_BEACON_REQ, "Beacon Request" },
{ IEEE802154_CMD_COORD_REALIGN, "Coordinator Realignment" },
{ IEEE802154_CMD_GTS_REQ, "GTS Request" },
{ IEEE802154_CMD_TRLE_MGMT_REQ, "TRLE Management Request"},
{ IEEE802154_CMD_TRLE_MGMT_RSP, "TRLE Management Response"},
{ IEEE802154_CMD_DSME_ASSOC_REQ, "DSME Association Request"},
{ IEEE802154_CMD_DSME_ASSOC_RSP, "DSME Association Response"},
{ IEEE802154_CMD_DSME_GTS_REQ, "DSME GTS Request"},
{ IEEE802154_CMD_DSME_GTS_RSP, "DSME GTS Response"},
{ IEEE802154_CMD_DSME_GTS_NOTIFY, "DSME GTS Notify"},
{ IEEE802154_CMD_DSME_INFO_REQ, "DSME Information Request"},
{ IEEE802154_CMD_DSME_INFO_RSP, "DSME Information Response"},
{ IEEE802154_CMD_DSME_BEACON_ALLOC_NOTIFY, "DSME Beacon Allocation Notification"},
{ IEEE802154_CMD_DSME_BEACON_COLL_NOTIFY, "DSME Beacon Collision Notification"},
{ IEEE802154_CMD_DSME_LINK_REPORT, "DSME Link Report"},
{ IEEE802154_CMD_RIT_DATA_REQ, "RIT Data Request"},
{ IEEE802154_CMD_DBS_REQ, "DBS Request"},
{ IEEE802154_CMD_DBS_RSP, "DBS Response"},
{ IEEE802154_CMD_RIT_DATA_RSP, "RIT Data Response"},
{ IEEE802154_CMD_VENDOR_SPECIFIC, "Vendor Specific"},
{ 0, NULL }
};
static const value_string ieee802154_sec_level_names[] = {
{ SECURITY_LEVEL_NONE, "No Security" },
{ SECURITY_LEVEL_MIC_32, "32-bit Message Integrity Code" },
{ SECURITY_LEVEL_MIC_64, "64-bit Message Integrity Code" },
{ SECURITY_LEVEL_MIC_128, "128-bit Message Integrity Code" },
{ SECURITY_LEVEL_ENC, "Encryption" },
{ SECURITY_LEVEL_ENC_MIC_32, "Encryption with 32-bit Message Integrity Code" },
{ SECURITY_LEVEL_ENC_MIC_64, "Encryption with 64-bit Message Integrity Code" },
{ SECURITY_LEVEL_ENC_MIC_128, "Encryption with 128-bit Message Integrity Code" },
{ 0, NULL }
};
static const value_string ieee802154_key_id_mode_names[] = {
{ KEY_ID_MODE_IMPLICIT, "Implicit Key" },
{ KEY_ID_MODE_KEY_INDEX, "Indexed Key using the Default Key Source" },
{ KEY_ID_MODE_KEY_EXPLICIT_4, "Explicit Key with 4-octet Key Source" },
{ KEY_ID_MODE_KEY_EXPLICIT_8, "Explicit Key with 8-octet Key Source" },
{ 0, NULL }
};
static const true_false_string ieee802154_gts_direction_tfs = {
"Receive Only",
"Transmit Only"
};
/* The 802.15.4-2003 security suites for the security preferences (only AES-CCM suites are supported). */
/* NOTE: The equivalent 2006 security level identifier enumerations are used to simplify 2003 & 2006 integration! */
static const enum_val_t ieee802154_2003_sec_suite_enums[] = {
{ "AES-CCM-128", "AES-128 Encryption, 128-bit Integrity Protection", SECURITY_LEVEL_ENC_MIC_128 },
{ "AES-CCM-64", "AES-128 Encryption, 64-bit Integrity Protection", SECURITY_LEVEL_ENC_MIC_64 },
{ "AES-CCM-32", "AES-128 Encryption, 32-bit Integrity Protection", SECURITY_LEVEL_ENC_MIC_32 },
{ NULL, NULL, 0 }
};
/* Enumeration for key generation */
static const value_string ieee802154_key_hash_vals[] = {
{ KEY_HASH_NONE, "No hash"},
{ KEY_HASH_ZIP, "ZigBee IP hash" },
{ KEY_HASH_THREAD, "Thread hash" },
{ 0, NULL }
};
static const value_string ieee802154_ie_types[] = {
{ 0, "Header" },
{ 1, "Payload" },
{ 0, NULL }
};
static const value_string ieee802154_psie_types[] = {
{ 0, "Short" },
{ 1, "Long" },
{ 0, NULL }
};
static const value_string ieee802154_header_ie_names[] = {
{ IEEE802154_HEADER_IE_VENDOR_SPECIFIC, "Vendor Specific IE" },
{ IEEE802154_HEADER_IE_CSL, "CSL IE" },
{ IEEE802154_HEADER_IE_RIT, "RIT IE" },
{ IEEE802154_HEADER_IE_DSME_PAN, "DSME PAN descriptor IE" },
{ IEEE802154_HEADER_IE_RENDEZVOUS, "Rendezvous Time IE" },
{ IEEE802154_HEADER_IE_TIME_CORR, "Time Correction IE" },
{ IEEE802154_HEADER_IE_EXT_DSME_PAN, "Extended DSME PAN descriptor IE" },
{ IEEE802154_HEADER_IE_FSCD, "Fragment Sequence Context Description (FSCD) IE" },
{ IEEE802154_HEADER_IE_SMPL_SUPER_FRM, "Simplified Superframe Specification IE" },
{ IEEE802154_HEADER_IE_SMPL_GTS, "Simplified GTS Specification IE" },
{ IEEE802154_HEADER_IE_LECIM, "LECIM Capabilities IE" },
{ IEEE802154_HEADER_IE_TRLE, "TRLE Descriptor" },
{ IEEE802154_HEADER_IE_RCC_CAP, "RCC Capabilities IE" },
{ IEEE802154_HEADER_IE_RCCN, "RCCN Descriptor IE" },
{ IEEE802154_HEADER_IE_GLOBAL_TIME, "Global Time IE" },
{ IEEE802154_HEADER_IE_WISUN, "Wi-SUN IE" },
{ IEEE802154_HEADER_IE_DA_IE, "DA IE" },
{ IEEE802154_HEADER_IE_HT1, "Header Termination 1 IE" },
{ IEEE802154_HEADER_IE_HT2, "Header Termination 2 IE" },
{ 0, NULL }
};
static const true_false_string hf_ieee802154_nack_tfs = {
"Negative Acknowledgement",
"Acknowledgement"
};
static const value_string ieee802154_payload_ie_names[] = {
{ IEEE802154_PAYLOAD_IE_ESDU, "ESDU IE" },
{ IEEE802154_PAYLOAD_IE_MLME, "MLME IE" },
{ IEEE802154_PAYLOAD_IE_VENDOR, "Vendor Specific IE" },
{ IEEE802154_PAYLOAD_IE_MPX, "MPX IE" },
{ IEEE802154_PAYLOAD_IE_WISUN, "Wi-SUN IE" },
{ IEEE802154_PAYLOAD_IE_IETF, "IETF IE" },
{ IEEE802154_PAYLOAD_IE_TERMINATION, "Payload Termination IE" },
{ 0, NULL }
};
static const value_string ieee802154_psie_names[] = {
{ IEEE802154_MLME_SUBIE_CHANNEL_HOPPING, "Channel Hopping IE" },
{ IEEE802154_MLME_SUBIE_TSCH_SYNCH, "TSCH Synchronization IE" },
{ IEEE802154_MLME_SUBIE_TSCH_SLOTFR_LINK, "TSCH Slotframe and Link IE" },
{ IEEE802154_MLME_SUBIE_TSCH_TIMESLOT, "TSCH Timeslot IE" },
{ IEEE802154_MLME_SUBIE_HOPPING_TIMING, "Hopping Timing IE" },
{ IEEE802154_MLME_SUBIE_ENHANCED_BEACON_FILTER, "Enhanced Beacon Filter IE" },
{ IEEE802154_MLME_SUBIE_MAC_METRICS, "MAC Metrics IE" },
{ IEEE802154_MLME_SUBIE_ALL_MAC_METRICS, "All MAC Metrics IE" },
{ IEEE802154_MLME_SUBIE_COEXISTENCE_SPEC, "Coexistence Specification IE" },
{ IEEE802154_MLME_SUBIE_SUN_DEVICE_CAPABILITIES, "SUN Device Capabilities IE" },
{ IEEE802154_MLME_SUBIE_SUN_FSK_GEN_PHY, "SUN FSK Generic PHY IE" },
{ IEEE802154_MLME_SUBIE_MODE_SWITCH_PARAMETER, "Mode Switch Parameter IE" },
{ IEEE802154_MLME_SUBIE_PHY_PARAMETER_CHANGE, "PHY Parameter Change IE" },
{ IEEE802154_MLME_SUBIE_O_QPSK_PHY_MODE, "O-QPSY PHY Mode IE" },
{ IEEE802154_MLME_SUBIE_PCA_ALLOCATION, "PCA Allocation IE" },
{ IEEE802154_MLME_SUBIE_DSSS_OPER_MODE, "LECIM DSSS Operating Mode IE"},
{ IEEE802154_MLME_SUBIE_FSK_OPER_MODE, "LECIM FSK Operating Mode IE" },
{ IEEE802154_MLME_SUBIE_TVWS_PHY_OPE_MODE, "TVWS PHY Operating Mode Description IE" },
{ IEEE802154_MLME_SUBIE_TVWS_DEVICE_CAPAB, "TVWS Device Capabilities IE" },
{ IEEE802154_MLME_SUBIE_TVWS_DEVICE_CATEG, "TVWS Device Category IE" },
{ IEEE802154_MLME_SUBIE_TVWS_DEVICE_IDENTIF, "TVWS Device Identification IE" },
{ IEEE802154_MLME_SUBIE_TVWS_DEVICE_LOCATION, "TVWS Device Location IE" },
{ IEEE802154_MLME_SUBIE_TVWS_CH_INFOR_QUERY, "TVWS Channel Information Query IE" },
{ IEEE802154_MLME_SUBIE_TVWS_CH_INFOR_SOURCE, "TVWS Channel Information Source IE" },
{ IEEE802154_MLME_SUBIE_CTM, "CTM IE" },
{ IEEE802154_MLME_SUBIE_TIMESTAMP, "Timestamp IE" },
{ IEEE802154_MLME_SUBIE_TIMESTAMP_DIFF, "Timestamp Difference IE"},
{ IEEE802154_MLME_SUBIE_TMCP_SPECIFICATION, "TMCTP Specification IE" },
{ IEEE802154_MLME_SUBIE_RCC_PHY_OPER_MODE, "RCC PHY Operating Mode IE" },
{ IEEE802154_IETF_SUBIE_6TOP, "6top IE" },
{ IEEE802154_IETF_SUBIE_6TOP_DRAFT, "6top IE (draft)" },
{ 0, NULL }
};
const value_string zboss_page_names[] = {
{ 0, "2.4 GHz" },
{ 28, "863-868 MHz band"},
{ 29, "868-870, 870-876 MHz band" },
{ 30, "870-876 MHz band" },
{ 31, "915-921 MHz band" },
{ 0, NULL }
};
static const value_string zboss_direction_names[] = {
{ 0, "IN" },
{ 1, "OUT" },
{ 0, NULL }
};
static const value_string tap_tlv_types[] = {
{ IEEE802154_TAP_FCS_TYPE, "FCS type"},
{ IEEE802154_TAP_RSS, "RSS"},
{ IEEE802154_TAP_BIT_RATE, "Bit rate"},
{ IEEE802154_TAP_CHANNEL_ASSIGNMENT, "Channel assignment"},
{ IEEE802154_TAP_SUN_PHY_INFO, "SUN PHY Information"},
{ IEEE802154_TAP_START_OF_FRAME_TS, "Start of frame timestamp"},
{ IEEE802154_TAP_END_OF_FRAME_TS, "End of frame timestamp"},
{ IEEE802154_TAP_ASN, "Absolute Slot Number (ASN)"},
{ IEEE802154_TAP_SLOT_START_TS, "Start of slot timestamp"},
{ IEEE802154_TAP_TIMESLOT_LENGTH, "Slot length"},
{ IEEE802154_TAP_LQI, "Link Quality Indicator"},
{ IEEE802154_TAP_CHANNEL_FREQUENCY, "Channel center frequency"},
{ IEEE802154_TAP_CHANNEL_PLAN, "Channel plan"},
{ IEEE802154_TAP_PHY_HEADER, "PHY Header"},
{ 0, NULL }
};
static const value_string tap_fcs_type_names[] = {
{ IEEE802154_FCS_TYPE_NONE, "None" },
{ IEEE802154_FCS_TYPE_16_BIT, "ITU-T CRC16" },
{ IEEE802154_FCS_TYPE_32_BIT, "ITU-T CRC32" },
{ 0, NULL }
};
/* IEEE 802.15.4 Table 7-19 */
static const value_string sun_bands[] = {
{ 0, "169 MHz [169.400-169.475]" },
{ 1, "450 MHz [450-470]" },
{ 2, "470 MHz [470-510]" },
{ 3, "780 MHz [779-787]" },
{ 4, "863 MHz [863-870]" },
{ 5, "896 MHz [896-901]" },
{ 6, "901 MHz [901-902]" },
{ 7, "915 MHz [902-928]" },
{ 8, "917 MHz [917-923.5]" },
{ 9, "920 MHz [920-928]" },
{ 10, "928 MHz [928-960]" },
{ 11, "920 MHz [920-960]" },
{ 12, "1427 MHz [1427-1518]" },
{ 13, "2450 MHz [2400-2483.5]" },
{ 14, "866 MHz [865-867]" },
{ 15, "870 MHz [870-876]" },
{ 16, "915 MHz-a [902-928 alternate]" },
{ 17, "915 MHz-b [902-907.5 & 915-928]" },
{ 18, "915 MHz-c [915-928]" },
{ 19, "915 MHz-d [915-921]" },
{ 20, "915 MHz-e [915-918]" },
{ 21, "919 MHz [919-923]" },
{ 22, "920 MHz-a [920.5-924.5]" },
{ 23, "920 MHz-b [920-925]" },
{ 24, "867 MHz [866-869]" },
/* Exegin defined numbers for bands in Table 10-1 but not in Table 7-19 */
{ 32, "433 MHz [433.05-434.79]" },
{ 33, "868 MHz [868-868.6]" },
{ 34, "2380 MHz [2360-2400]" },
{ 0, NULL }
};
/* IEEE 802.15.4 Table 7-20 */
static const value_string sun_types[] = {
{ IEEE802154_SUN_TYPE_FSK_A, "FSK-A" },
{ IEEE802154_SUN_TYPE_FSK_B, "FSK-B" },
{ IEEE802154_SUN_TYPE_OQPSK_A, "O-QPSK-A" },
{ IEEE802154_SUN_TYPE_OQPSK_B, "O-QPSK-B" },
{ IEEE802154_SUN_TYPE_OQPSK_C, "O-QPSK-C" },
{ IEEE802154_SUN_TYPE_OFDM_OPT1, "OFDM Option 1" },
{ IEEE802154_SUN_TYPE_OFDM_OPT2, "OFDM Option 2" },
{ IEEE802154_SUN_TYPE_OFDM_OPT3, "OFDM Option 3" },
{ IEEE802154_SUN_TYPE_OFDM_OPT4, "OFDM Option 4" },
{ 0, NULL }
};
static const value_string fsk_a_modes[] = {
{ 0, "4.8 kb/s; 2-FSK; mod index = 1.0; channel spacing = 12.5 kHz" },
{ 1, "9.6 kb/s; 4-FSK; mod index = 0.33; channel spacing = 12.5 kHz" },
{ 2, "10 kb/s; 2-FSK; mod index = 0.5; channel spacing = 12.5 kHz" },
{ 3, "20 kb/s; 2-FSK; mod index = 0.5; channel spacing = 12.5 kHz" },
{ 4, "40 kb/s; 2-FSK; mod index = 0.5; channel spacing = 12.5 kHz" },
{ 5, "4.8 kb/s; 2-FSK; mod index = 0.5; channel spacing = 12.5 kHz" },
{ 6, "2.4 kb/s; 2-FSK; mod index = 2.0; channel spacing = 12.5 kHz" },
{ 7, "9.6 kb/s; 4-FSK; mod index = 0.33; channel spacing = 12.5 kHz" },
{ 0, NULL }
};
static const value_string fsk_b_modes[] = {
{ 0, "50 kb/s; 2-FSK; mod index = 1.0; channel spacing = 200 kHz" },
{ 1, "100 kb/s; 2-FSK; mod index = 1.0; channel spacing = 400 kHz" },
{ 2, "150 kb/s; 2-FSK; mod index = 0.5; channel spacing = 400 kHz" },
{ 3, "200 kb/s; 2-FSK; mod index = 0.5; channel spacing = 400 kHz" },
{ 4, "200 kb/s; 4-FSK; mod index = 0.33; channel spacing = 400 kHz" },
{ 5, "200 kb/s; 2-FSK; mod index = 1.0; channel spacing = 600 kHz" },
{ 6, "400 kb/s; 4-FSK; mod index = 0.33; channel spacing = 600 kHz" },
{ 7, "100 kb/s; 2-FSK; mod index = 0.5; channel spacing = 200 kHz"},
{ 8, "50 kb/s; 2-FSK; mod index = 0.5; channel spacing = 100 kHz"},
{ 9, "150 kb/s; 2-FSK; mod index = 0.5; channel spacing = 200 kHz"},
{ 10, "300 kb/s; 2-FSK; mod index = 0.5; channel spacing = 400 kHz" },
{ 0, NULL }
};
static const value_string oqpsk_a_modes[] = {
{ 0, "chip rate = 100 kchip/s; SpreadingMode = DSSS; RateMode = 0; data rate = 6.25 kb/s"},
{ 1, "chip rate = 100 kchip/s; SpreadingMode = DSSS; RateMode = 1; data rate = 12.5 kb/s"},
{ 2, "chip rate = 100 kchip/s; SpreadingMode = DSSS; RateMode = 2; data rate = 25 kb/s"},
{ 3, "chip rate = 100 kchip/s; SpreadingMode = DSSS; RateMode = 3; data rate = 50 kb/s"},
{ 0, NULL }
};
static const value_string oqpsk_b_modes[] = {
{ 0, "chip rate = 1000 kchip/s; SpreadingMode = DSSS; RateMode = 0; data rate = 31.25 kb/s"},
{ 1, "chip rate = 1000 kchip/s; SpreadingMode = DSSS; RateMode = 1; data rate = 125 kb/s"},
{ 2, "chip rate = 1000 kchip/s; SpreadingMode = DSSS; RateMode = 2; data rate = 250 kb/s"},
{ 3, "chip rate = 1000 kchip/s; SpreadingMode = DSSS; RateMode = 3; data rate = 500 kb/s"},
{ 4, "chip rate = 1000 kchip/s; SpreadingMode = MDSSS; RateMode = 0; data rate = 62.5 kb/s"},
{ 5, "chip rate = 1000 kchip/s; SpreadingMode = MDSSS; RateMode = 1; data rate = 125 kb/s"},
{ 6, "chip rate = 1000 kchip/s; SpreadingMode = MDSSS; RateMode = 2; data rate = 250 kb/s"},
{ 7, "chip rate = 1000 kchip/s; SpreadingMode = MDSSS; RateMode = 3; data rate = 500 kb/s"},
{ 0, NULL }
};
static const value_string oqpsk_c_modes[] = {
{ 0, "chip rate = 2000 kchip/s; SpreadingMode = DSSS; RateMode = 0; data rate = 31.25 kb/s"},
{ 1, "chip rate = 2000 kchip/s; SpreadingMode = DSSS; RateMode = 1; data rate = 125 kb/s"},
{ 2, "chip rate = 2000 kchip/s; SpreadingMode = DSSS; RateMode = 2; data rate = 250 kb/s"},
{ 3, "chip rate = 2000 kchip/s; SpreadingMode = DSSS; RateMode = 3; data rate = 500 kb/s"},
{ 4, "chip rate = 2000 kchip/s; SpreadingMode = MDSSS; RateMode = 0; data rate = 62.5 kb/s"},
{ 5, "chip rate = 2000 kchip/s; SpreadingMode = MDSSS; RateMode = 1; data rate = 125 kb/s"},
{ 6, "chip rate = 2000 kchip/s; SpreadingMode = MDSSS; RateMode = 2; data rate = 250 kb/s"},
{ 7, "chip rate = 2000 kchip/s; SpreadingMode = MDSSS; RateMode = 3; data rate = 500 kb/s"},
{ 0, NULL }
};
static const value_string ofdm_modes[] = {
{ 0, "MCS0" },
{ 1, "MCS1" },
{ 2, "MCS2" },
{ 3, "MCS3" },
{ 4, "MCS4" },
{ 5, "MCS5" },
{ 6, "MCS6" },
{ 0, NULL },
};
static const value_string channel_page_names[] = {
{ 0, "Default" },
{ 1, "ASK" },
{ 2, "O-QPSK" },
{ 3, "CSS" },
{ 4, "HRP UWB" },
{ 5, "780 MHz" },
{ 6, "GFSK" },
{ 7, "MSK" },
{ 8, "LRP_UWB" },
{ 9, "SUN" },
{ 10, "SUN FSK" },
{ 11, "2380 MHz" },
{ 12, "LECIM" },
{ 13, "RCC" },
{ 0, NULL }
};
static const value_string ietf_6top_types[] = {
{ IETF_6TOP_TYPE_REQUEST, "Request" },
{ IETF_6TOP_TYPE_RESPONSE, "Response" },
{ IETF_6TOP_TYPE_CONFIRMATION, "Confirmation" },
{ 0, NULL }
};
static const value_string ietf_6top_command_identifiers[] = {
{ IETF_6TOP_CMD_ADD, "ADD" },
{ IETF_6TOP_CMD_DELETE, "DELETE" },
{ IETF_6TOP_CMD_RELOCATE, "RELOCATE" },
{ IETF_6TOP_CMD_COUNT, "COUNT" },
{ IETF_6TOP_CMD_LIST, "LIST" },
{ IETF_6TOP_CMD_SIGNAL, "SIGNAL" },
{ IETF_6TOP_CMD_CLEAR, "CLEAR" },
{ 0, NULL }
};
static const value_string ietf_6top_return_codes[] = {
{ IETF_6TOP_RC_SUCCESS, "SUCCESS" },
{ IETF_6TOP_RC_EOL, "RC_EOL" },
{ IETF_6TOP_RC_ERR, "RC_ERR" },
{ IETF_6TOP_RC_RESET, "RC_RESET" },
{ IETF_6TOP_RC_ERR_VERSION, "RC_ERR_VERSION" },
{ IETF_6TOP_RC_ERR_SFID, "RC_ERR_SFID" },
{ IETF_6TOP_RC_ERR_SEQNUM, "RC_ERR_SEQNUM" },
{ IETF_6TOP_RC_ERR_CELLLIST, "RC_ERR_CELLLIST" },
{ IETF_6TOP_RC_ERR_BUSY, "RC_ERR_BUSY" },
{ IETF_6TOP_RC_ERR_LOCKED, "RC_ERR_LOCKED" },
{ 0, NULL }
};
static const value_string ietf_6top_cell_options[] = {
{ 0, "ALL" },
{ 1, "TX" },
{ 2, "RX" },
{ 3, "TX|RX" },
{ 4, "SHARED" },
{ 5, "TX|SHARED" },
{ 6, "RX|SHARED" },
{ 7, "TX|RX|SHARED" },
{ 0, NULL}
};
static const value_string mpx_transfer_type_vals[] = {
{ IEEE802159_MPX_FULL_FRAME, "Full Frame" },
{ IEEE802159_MPX_FULL_FRAME_NO_MUXID, "Full frame with compressed Multiplex ID" },
{ IEEE802159_MPX_NON_LAST_FRAGMENT, "Non-last Fragment" },
{ IEEE802159_MPX_LAST_FRAGMENT, "Last Fragment" },
{ IEEE802159_MPX_ABORT, "Abort" },
{ 0, NULL }
};
static const value_string mpx_multiplex_id_vals[] = {
{ IEEE802159_MPX_MULTIPLEX_ID_KMP, "KMP" },
{ IEEE802159_MPX_MULTIPLEX_ID_WISUN, "Wi-SUN" },
{ 0, NULL }
};
// used by the Wi-SUN dissector
const value_string ieee802154_mpx_kmp_id_vals[] = {
{ IEEE802159_MPX_KMP_ID_IEEE8021X, "IEEE 802.1X/MKA" },
{ IEEE802159_MPX_KMP_ID_HIP, "HIP" },
{ IEEE802159_MPX_KMP_ID_IKEV2, "IKEv2" },
{ IEEE802159_MPX_KMP_ID_PANA, "PANA" },
{ IEEE802159_MPX_KMP_ID_DRAGONFLY, "Dragonfly" },
{ IEEE802159_MPX_KMP_ID_IEEE80211_4WH, "IEEE 802.11/4WH" },
{ IEEE802159_MPX_KMP_ID_IEEE80211_GKH, "IEEE 802.11/GKH" },
{ IEEE802159_MPX_KMP_ID_ETSI_TS_102_887_2, "ETSI TS 102 887-2" },
{ IEEE802159_MPX_KMP_ID_VENDOR_SPECIFIC, "Vendor-specific" },
{ 0, NULL }
};
static const value_string mpx_wisun_subid_vals[] = {
{ IEEE802159_MPX_WISUN_SUBID_MHDS, "WM-MHDS" },
{ IEEE802159_MPX_WISUN_SUBID_6LOWPAN, "WM-6LO" },
{ IEEE802159_MPX_WISUN_SUBID_SECURITY, "WM-SEC" },
{ 0, NULL }
};
static const value_string ieee802154_phr_type_vals[] = {
{ PHR_RAW , "RAW" },
{ PHR_O_QPSK , "O-QPSK" },
{ PHR_CSS , "CSS" },
{ PHR_HRP_UWB , "HRP UWB" },
{ PHR_MSK , "MSK" },
{ PHR_LRP_UWB , "LRP UWB" },
{ PHR_SUN_FSK , "SUN FSK" },
{ PHR_SUN_OFDM , "SUN OFDM" },
{ PHR_SUN_O_QPSK , "SUN O-QPSK" },
{ PHR_LECIM_FSK , "LECIM FSK" },
{ PHR_TVWS_FSK , "TVWS FSK" },
{ PHR_TVWS_OFDM , "TVWS OFDM" },
{ PHR_TVWS_NB_OFDM , "TVWS-NB OFDM" },
{ PHR_RCC_LMR , "RCC LMR" },
{ PHR_CMB_O_QPSK , "CMB O-QPSK" },
{ PHR_CMB_GFSK , "CMB GFSK" },
{ PHR_TASK , "TASK" },
{ PHR_RS_GFSK , "RS GFSK" },
{ PHR_WISUN_FSK_MS , "Wi-SUN FSK MS" },
{ 0, NULL }
};
/* SUN FSK PHR fields - IEEE 802.15.4-2020 19.2.4 */
static const true_false_string tfs_fcs_type = { "2-octet FCS", "4-octet FCS" };
static const value_string vals_fsk_ms_page[] = {
{0, "9"},
{1, "10"},
{0, NULL}
};
static const value_string ieee802154_phr_fsk_ms_scheme[] = {
{ 0, "SUN FSK" },
{ 1, "SUN OFDM" },
{ 2, "SUN O-QPSK" },
{ 3, "Additional" },
{ 0, NULL }
};
static const value_string ieee802154_phr_fsk_ms_mode[] = {
{ 1, "SUN FSK operating mode #1" },
{ 2, "SUN FSK operating mode #2" },
{ 4, "SUN FSK operating mode #3" },
{ 8, "SUN FSK operating mode #4" },
{ 0, NULL }
};
static const value_string ieee802154_phr_fsk_ms_additional_modes[] = {
{ 0, "SUN FSK operating mode #5" },
{ 1, "SUN FSK operating mode #1a" },
{ 2, "SUN FSK operating mode #1b" },
{ 0, NULL }
};
/* Wi-SUN phyModeID - Wi-SUN PHY Specification Revision 1v09 Annex F PHY Operating Mode */
static const value_string ieee802154_phr_wisun_phymodeid[] = {
{ 1, "FSK #1a 50ksym/s mod-index 0.5" },
{ 2, "FSK #1b 50ksym/s mod-index 1.0" },
{ 3, "FSK #2a 100ksym/s mod-index 0.5" },
{ 4, "FSK #2b 100ksym/s mod-index 1.0" },
{ 5, "FSK #3 150ksym/s mod-index 0.5" },
{ 6, "FSK #4a 200ksym/s mod-index 0.5" },
{ 7, "FSK #4b 200ksym/s mod-index 1.0" },
{ 8, "FSK #5 300ksym/s mod-index 0.5" },
{ 17, "FSK with FEC #1a 50ksym/s mod-index 0.5" },
{ 18, "FSK with FEC #1b 50ksym/s mod-index 1.0" },
{ 19, "FSK with FEC #2a 100ksym/s mod-index 0.5" },
{ 20, "FSK with FEC #2b 100ksym/s mod-index 1.0" },
{ 21, "FSK with FEC #3 150ksym/s mod-index 0.5" },
{ 22, "FSK with FEC #4a 200ksym/s mod-index 0.5" },
{ 23, "FSK with FEC #4b 200ksym/s mod-index 1.0" },
{ 24, "FSK with FEC #5 300ksym/s mod-index 0.5" },
{ 34, "OFDM Option 1 MCS 2 400kbps" },
{ 35, "OFDM Option 1 MCS 3 800kbps" },
{ 36, "OFDM Option 1 MCS 4 1200kbps" },
{ 37, "OFDM Option 1 MCS 5 1600kbps" },
{ 38, "OFDM Option 1 MCS 6 2400kbps" },
{ 51, "OFDM Option 2 MCS 3 400kbps" },
{ 52, "OFDM Option 2 MCS 4 600kbps" },
{ 53, "OFDM Option 2 MCS 5 800kbps" },
{ 54, "OFDM Option 2 MCS 6 1200kbps" },
{ 68, "OFDM Option 3 MCS 4 300kbps" },
{ 69, "OFDM Option 3 MCS 5 400kbps" },
{ 70, "OFDM Option 3 MCS 6 600kbps" },
{ 84, "OFDM Option 4 MCS 4 150kbps" },
{ 85, "OFDM Option 4 MCS 5 200kbps" },
{ 86, "OFDM Option 4 MCS 6 300kbps" },
{ 0, NULL }
};
/* Preferences for 2003 security */
static gint ieee802154_sec_suite = SECURITY_LEVEL_ENC_MIC_64;
static gboolean ieee802154_extend_auth = TRUE;
/* Macro to check addressing, and throw a warning flag if incorrect. */
#define IEEE802154_CMD_ADDR_CHECK(_pinfo_, _item_, _cmdid_, _x_) \
if (!(_x_)) \
expert_add_info_format(_pinfo_, _item_, &ei_ieee802154_invalid_addressing, \
"Invalid Addressing for %s", \
val_to_str_const(_cmdid_, ieee802154_cmd_names, "Unknown Command"))
/* CRC definitions. IEEE 802.15.4 CRCs vary from ITU-T by using an initial value of
* 0x0000, and no XOR out. IEEE802154_CRC_XOR is defined as 0xFFFF in order to un-XOR
* the output from the ITU-T (CCITT) CRC routines in Wireshark.
*/
#define IEEE802154_CRC_SEED 0x0000
#define IEEE802154_CRC_XOROUT 0xFFFF
#define ieee802154_crc_tvb(tvb, offset) (crc16_ccitt_tvb_seed(tvb, offset, IEEE802154_CRC_SEED) ^ IEEE802154_CRC_XOROUT)
/* For the 32-bit CRC, IEEE 802.15.4 uses ITU-T (CCITT) CRC-32. */
#define ieee802154_crc32_tvb(tvb, offset) (crc32_ccitt_tvb(tvb, offset))
static int ieee802_15_4_short_address_to_str(const address* addr, gchar *buf, int buf_len)
{
guint16 ieee_802_15_4_short_addr = pletoh16(addr->data);
if (ieee_802_15_4_short_addr == 0xffff)
{
(void) g_strlcpy(buf, "Broadcast", buf_len);
return 10;
}
*buf++ = '0';
*buf++ = 'x';
buf = word_to_hex(buf, ieee_802_15_4_short_addr);
*buf = '\0'; /* NULL terminate */
return 7;
}
static int ieee802_15_4_short_address_str_len(const address* addr _U_)
{
return 11;
}
static int ieee802_15_4_short_address_len(void)
{
return 2;
}
/* ======================================================================= */
static conversation_t *_find_or_create_conversation(packet_info *pinfo, const address *src_addr, const address *dst_addr)
{
conversation_t *conv = NULL;
/* Have we seen this conversation before? */
conv = find_conversation(pinfo->num, src_addr, dst_addr, CONVERSATION_NONE, 0, 0, 0);
if (conv == NULL) {
/* No, this is a new conversation. */
conv = conversation_new(pinfo->num, src_addr, dst_addr, CONVERSATION_NONE, 0, 0, 0);
}
return conv;
}
/* ======================================================================= */
static ieee802154_transaction_t *transaction_start(packet_info *pinfo, proto_tree *tree, const ieee802154_packet *packet, guint32 *key)
{
ieee802154_transaction_t *ieee802154_trans;
wmem_tree_key_t ieee802154_key[3];
proto_item *it;
if (!PINFO_FD_VISITED(pinfo)) {
/*
* This is a new request, create a new transaction structure and map it
* to the unmatched table.
*/
ieee802154_key[0].length = 2;
ieee802154_key[0].key = key;
ieee802154_key[1].length = 0;
ieee802154_key[1].key = NULL;
ieee802154_trans = wmem_new0(wmem_file_scope(), ieee802154_transaction_t);
if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT)
ieee802154_trans->dst16 = packet->dst16;
else if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)
ieee802154_trans->dst64 = packet->dst64;
ieee802154_trans->dst_addr_mode = packet->dst_addr_mode;
if (packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT)
ieee802154_trans->src16 = packet->src16;
else if (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT)
ieee802154_trans->src64 = packet->src64;
ieee802154_trans->src_addr_mode = packet->src_addr_mode;
if (packet->dst_pan_present) {
ieee802154_trans->dst_pan_present = TRUE;
ieee802154_trans->dst_pan = packet->dst_pan;
}
if (packet->src_pan_present) {
ieee802154_trans->src_pan_present = TRUE;
ieee802154_trans->src_pan = packet->src_pan;
}
ieee802154_trans->rqst_frame = pinfo->num;
ieee802154_trans->ack_frame = 0;
ieee802154_trans->rqst_time = pinfo->abs_ts;
nstime_set_unset(&ieee802154_trans->ack_time);
wmem_tree_insert32_array(transaction_unmatched_pdus, ieee802154_key, (void *)ieee802154_trans);
} else {
/* Already visited this frame */
guint32 frame_num = pinfo->num;
ieee802154_key[0].length = 2;
ieee802154_key[0].key = key;
ieee802154_key[1].length = 1;
ieee802154_key[1].key = &frame_num;
ieee802154_key[2].length = 0;
ieee802154_key[2].key = NULL;
ieee802154_trans = (ieee802154_transaction_t *)wmem_tree_lookup32_array(transaction_matched_pdus, ieee802154_key);
if (!ieee802154_trans) {
/* No ACK found - add field and expert info */
it = proto_tree_add_item(tree, hf_ieee802154_no_ack, NULL, 0, 0, ENC_NA);
proto_item_set_generated(it);
expert_add_info_format(pinfo, it, &ei_ieee802154_ack_not_found, "No ack found to request in frame %u", pinfo->num);
return NULL;
}
}
/* Print state tracking in the tree */
if (ieee802154_trans->ack_frame) {
it = proto_tree_add_uint(tree, hf_ieee802154_ack_in, NULL, 0, 0, ieee802154_trans->ack_frame);
proto_item_set_generated(it);
}
return ieee802154_trans;
} /* transaction_start() */
static ieee802154_transaction_t *transaction_end(packet_info *pinfo, proto_tree *tree, const ieee802154_packet *packet, guint32 *key)
{
ieee802154_transaction_t *ieee802154_trans = NULL;
wmem_tree_key_t ieee802154_key[3];
proto_item *it;
if (!PINFO_FD_VISITED(pinfo)) {
guint32 frame_num;
nstime_t ns;
ieee802154_key[0].length = 2;
ieee802154_key[0].key = key;
ieee802154_key[1].length = 0;
ieee802154_key[1].key = NULL;
ieee802154_trans = (ieee802154_transaction_t *)wmem_tree_lookup32_array(transaction_unmatched_pdus, ieee802154_key);
if (ieee802154_trans == NULL)
return NULL;
/* we have already seen this response, or an identical one */
if (ieee802154_trans->ack_frame != 0)
return NULL;
/* If addresses are present they must match */
if (packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) {
if (packet->src16 != ieee802154_trans->dst16)
return NULL;
}
else if (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) {
if (packet->src64 != ieee802154_trans->dst64)
return NULL;
}
if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) {
if (packet->dst16 != ieee802154_trans->src16)
return NULL;
}
else if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) {
if (packet->dst64 != ieee802154_trans->src64)
return NULL;
}
nstime_delta(&ns, &pinfo->abs_ts, &ieee802154_trans->rqst_time);
if (nstime_cmp(&ns, &ieee802154_transaction_timeout) > 0)
return NULL;
ieee802154_trans->ack_time = ns;
ieee802154_trans->ack_frame = pinfo->num;
/*
* We found a match. Add entries to the matched table for both
* request and ack frames
*/
ieee802154_key[0].length = 2;
ieee802154_key[0].key = key;
ieee802154_key[1].length = 1;
ieee802154_key[1].key = &frame_num;
ieee802154_key[2].length = 0;
ieee802154_key[2].key = NULL;
frame_num = ieee802154_trans->rqst_frame;
wmem_tree_insert32_array(transaction_matched_pdus, ieee802154_key, (void *)ieee802154_trans);
frame_num = ieee802154_trans->ack_frame;
wmem_tree_insert32_array(transaction_matched_pdus, ieee802154_key, (void *)ieee802154_trans);
} else {
/* Already visited this frame */
guint32 frame_num = pinfo->num;
ieee802154_key[0].length = 2;
ieee802154_key[0].key = key;
ieee802154_key[1].length = 1;
ieee802154_key[1].key = &frame_num;
ieee802154_key[2].length = 0;
ieee802154_key[2].key = NULL;
ieee802154_trans = (ieee802154_transaction_t *)wmem_tree_lookup32_array(transaction_matched_pdus, ieee802154_key);
if (!ieee802154_trans) {
/* No ack request found - add field and expert info */
it = proto_tree_add_item(tree, hf_ieee802154_no_ack_request, NULL, 0, 0, ENC_NA);
proto_item_set_generated(it);
expert_add_info_format(pinfo, it, &ei_ieee802154_ack_request_not_found, "No request found to ack in frame %u", pinfo->num);
return NULL;
}
}
if (packet->dst_pan_present == FALSE) {
if (ieee802154_trans->src_pan_present) {
it = proto_tree_add_uint(tree, hf_ieee802154_dst_panID, NULL, 0, 0, ieee802154_trans->src_pan);
proto_item_set_generated(it);
}
else if (ieee802154_trans->dst_pan_present) {
it = proto_tree_add_uint(tree, hf_ieee802154_dst_panID, NULL, 0, 0, ieee802154_trans->dst_pan);
proto_item_set_generated(it);
}
}
if ((packet->src_pan_present == FALSE) && (ieee802154_trans->src_pan_present) && (ieee802154_trans->dst_pan_present)) {
it = proto_tree_add_uint(tree, hf_ieee802154_src_panID, NULL, 0, 0, ieee802154_trans->dst_pan);
proto_item_set_generated(it);
}
if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) {
if (ieee802154_trans->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) {
it = proto_tree_add_uint(tree, hf_ieee802154_dst16, NULL, 0, 0, ieee802154_trans->src16);
proto_item_set_generated(it);
it = proto_tree_add_uint(tree, hf_ieee802154_addr16, NULL, 0, 0, ieee802154_trans->src16);
proto_item_set_hidden(it);
proto_item_set_generated(it);
}
else if (ieee802154_trans->src_addr_mode == IEEE802154_FCF_ADDR_EXT) {
it = proto_tree_add_eui64(tree, hf_ieee802154_dst64, NULL, 0, 0, ieee802154_trans->src64);
proto_item_set_generated(it);
it = proto_tree_add_eui64(tree, hf_ieee802154_addr64, NULL, 0, 0, ieee802154_trans->src64);
proto_item_set_hidden(it);
proto_item_set_generated(it);
}
}
if (packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) {
if (ieee802154_trans->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) {
it = proto_tree_add_uint(tree, hf_ieee802154_src16, NULL, 0, 0, ieee802154_trans->dst16);
proto_item_set_generated(it);
it = proto_tree_add_uint(tree, hf_ieee802154_addr16, NULL, 0, 0, ieee802154_trans->dst16);
proto_item_set_hidden(it);
proto_item_set_generated(it);
}
else if (ieee802154_trans->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) {
it = proto_tree_add_eui64(tree, hf_ieee802154_src64, NULL, 0, 0, ieee802154_trans->dst64);
proto_item_set_generated(it);
it = proto_tree_add_eui64(tree, hf_ieee802154_addr64, NULL, 0, 0, ieee802154_trans->dst64);
proto_item_set_hidden(it);
proto_item_set_generated(it);
}
}
/* Print state tracking in the tree */
it = proto_tree_add_uint(tree, hf_ieee802154_ack_to, NULL, 0, 0, ieee802154_trans->rqst_frame);
proto_item_set_generated(it);
it = proto_tree_add_time(tree, hf_ieee802154_ack_time, NULL, 0, 0, &ieee802154_trans->ack_time);
proto_item_set_generated(it);
return ieee802154_trans;
} /* transaction_end() */
/**
* Dissector helper, parses and displays the frame control field.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields
* @param tree pointer to data tree wireshark uses to display packet.
* @param packet IEEE 802.15.4 packet information.
* @param offset offset into the tvb to find the FCF.
*
*/
static void
dissect_ieee802154_fcf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet, guint *offset)
{
guint16 fcf;
static int * const ieee802154_fields[] = {
&hf_ieee802154_frame_type,
&hf_ieee802154_security,
&hf_ieee802154_pending,
&hf_ieee802154_ack_request,
&hf_ieee802154_pan_id_compression,
&hf_ieee802154_fcf_reserved,
&hf_ieee802154_seqno_suppression,
&hf_ieee802154_ie_present,
&hf_ieee802154_dst_addr_mode,
&hf_ieee802154_version,
&hf_ieee802154_src_addr_mode,
NULL
};
static int* const ieee802154_mpf_short_fields[] = {
&hf_ieee802154_frame_type,
&hf_ieee802154_mpf_long_frame_control,
&hf_ieee802154_mpf_dst_addr_mode,
&hf_ieee802154_mpf_src_addr_mode,
NULL
};
static int* const ieee802154_mpf_long_fields[] = {
&hf_ieee802154_frame_type,
&hf_ieee802154_mpf_long_frame_control,
&hf_ieee802154_mpf_dst_addr_mode,
&hf_ieee802154_mpf_src_addr_mode,
&hf_ieee802154_mpf_pan_id_present,
&hf_ieee802154_mpf_security,
&hf_ieee802154_mpf_seqno_suppression,
&hf_ieee802154_mpf_pending,
&hf_ieee802154_mpf_version,
&hf_ieee802154_mpf_ack_request,
&hf_ieee802154_mpf_ie_present,
NULL
};
/* Get the FCF field. */
fcf = tvb_get_letohs(tvb, *offset);
/* Parse FCF Flags. */
packet->frame_type = (fcf & IEEE802154_FCF_TYPE_MASK);
if (packet->frame_type == IEEE802154_FCF_MULTIPURPOSE) {
/* Multipurpose frames use a different 1 or 2 byte FCF */
packet->long_frame_control = (fcf & IEEE802154_MPF_FCF_LONG_FC) >> 3;
packet->dst_addr_mode = (fcf & IEEE802154_MPF_FCF_DADDR_MASK) >> 4;
packet->src_addr_mode = (fcf & IEEE802154_MPF_FCF_SADDR_MASK) >> 6;
/* The second octet of the FCF is only present if the long frame control bit is set */
if (packet->long_frame_control) {
packet->pan_id_present = (fcf & IEEE802154_MPF_FCF_PAN_ID_PRESENT) >> 8;
packet->security_enable = (fcf & IEEE802154_MPF_FCF_SEC_EN) >> 9;
packet->seqno_suppression = (fcf & IEEE802154_MPF_FCF_SEQNO_SUPPRESSION) >> 10;
packet->frame_pending = (fcf & IEEE802154_MPF_FCF_FRAME_PND) >> 11;
packet->version = (fcf & IEEE802154_MPF_FCF_VERSION) >> 12;
packet->ack_request = (fcf & IEEE802154_MPF_FCF_ACK_REQ) >> 14;
packet->ie_present = (fcf & IEEE802154_MPF_FCF_IE_PRESENT) >> 15;
}
else {
packet->security_enable = FALSE;
packet->seqno_suppression = FALSE;
packet->frame_pending = FALSE;
packet->version = 0;
packet->ack_request = FALSE;
packet->ie_present = FALSE;
}
if (ieee802154e_compatibility) {
if (((tvb_reported_length(tvb) == IEEE802154E_LE_WUF_LEN)) && !packet->long_frame_control) {
/* Check if this is an IEEE 802.15.4e LE-multipurpose Wake-up Frame, which has a single-octet FCF
* and a static layout that cannot be inferred from the FCF alone. */
guint16 ie_header = tvb_get_letohs(tvb, (*offset) + 6);
guint16 id = (guint16)((ie_header & IEEE802154_HEADER_IE_ID_MASK) >> 7);
guint16 length = (guint16)(ie_header & IEEE802154_HEADER_IE_LENGTH_MASK);
if ((id == IEEE802154_HEADER_IE_RENDEZVOUS) && (length == 2)) {
/* This appears to be a WUF, as identified by containing a single
* Rendezvous Time Header IE with only a rendezvous time. */
packet->ie_present = TRUE;
packet->pan_id_present = TRUE;
}
}
}
}
else {
/* Standard 802.15.4 FCF */
packet->security_enable = (fcf & IEEE802154_FCF_SEC_EN) >> 3;
packet->frame_pending = (fcf & IEEE802154_FCF_FRAME_PND) >> 4;
packet->ack_request = (fcf & IEEE802154_FCF_ACK_REQ) >> 5;
packet->pan_id_compression = (fcf & IEEE802154_FCF_PAN_ID_COMPRESSION) >> 6;
/* bit 7 reserved */
packet->seqno_suppression = (fcf & IEEE802154_FCF_SEQNO_SUPPRESSION) >> 8;
packet->ie_present = (fcf & IEEE802154_FCF_IE_PRESENT) >> 9;
packet->dst_addr_mode = (fcf & IEEE802154_FCF_DADDR_MASK) >> 10;
packet->version = (fcf & IEEE802154_FCF_VERSION) >> 12;
packet->src_addr_mode = (fcf & IEEE802154_FCF_SADDR_MASK) >> 14;
}
if ((packet->version == IEEE802154_VERSION_2015) && (packet->frame_type == IEEE802154_FCF_BEACON)) {
proto_item_append_text(tree, " Enhanced Beacon");
col_set_str(pinfo->cinfo, COL_INFO, "Enhanced Beacon");
}
else {
proto_item_append_text(tree, " %s", val_to_str_const(packet->frame_type, ieee802154_frame_types, "Reserved"));
col_set_str(pinfo->cinfo, COL_INFO, val_to_str_const(packet->frame_type, ieee802154_frame_types, "Reserved"));
}
if (packet->frame_type == IEEE802154_FCF_MULTIPURPOSE) {
if (packet->long_frame_control) {
proto_tree_add_bitmask(tree, tvb, *offset, hf_ieee802154_fcf,
ett_ieee802154_fcf, ieee802154_mpf_long_fields, ENC_LITTLE_ENDIAN);
*offset += 2;
}
else {
proto_tree_add_bitmask_len(tree, tvb, *offset, 1, hf_ieee802154_fcf,
ett_ieee802154_fcf, ieee802154_mpf_short_fields,
&ei_ieee802154_fcs_bitmask_len, ENC_LITTLE_ENDIAN);
*offset += 1;
}
}
else {
proto_tree_add_bitmask(tree, tvb, *offset, hf_ieee802154_fcf,
ett_ieee802154_fcf, ieee802154_fields, ENC_LITTLE_ENDIAN);
*offset += 2;
}
} /* dissect_ieee802154_fcf */
void register_ieee802154_mac_key_hash_handler(guint hash_identifier, ieee802154_set_key_func key_func)
{
/* Ensure no duplication */
DISSECTOR_ASSERT(wmem_tree_lookup32(mac_key_hash_handlers, hash_identifier) == NULL);
wmem_tree_insert32(mac_key_hash_handlers, hash_identifier, (void*)key_func);
}
void dissect_ieee802154_aux_sec_header_and_key(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, ieee802154_packet *packet, guint *offset)
{
proto_tree *field_tree, *header_tree;
proto_item *ti, *hidden_item;
guint8 security_control;
guint aux_length = 1; /* Minimum length of the auxiliary header. */
static int * const security_fields[] = {
&hf_ieee802154_aux_sec_security_level,
&hf_ieee802154_aux_sec_key_id_mode,
&hf_ieee802154_aux_sec_frame_counter_suppression,
&hf_ieee802154_aux_sec_asn_in_nonce,
&hf_ieee802154_aux_sec_reserved,
NULL
};
/* Parse the security control field. */
security_control = tvb_get_guint8(tvb, *offset);
packet->security_level = (ieee802154_security_level)(security_control & IEEE802154_AUX_SEC_LEVEL_MASK);
packet->key_id_mode = (ieee802154_key_id_mode)((security_control & IEEE802154_AUX_KEY_ID_MODE_MASK) >> IEEE802154_AUX_KEY_ID_MODE_SHIFT);
if (packet->version == IEEE802154_VERSION_2015) {
packet->frame_counter_suppression = security_control & IEEE802154_AUX_FRAME_COUNTER_SUPPRESSION_MASK ? TRUE : FALSE;
}
/* Compute the length of the auxiliary header and create a subtree. */
if (!packet->frame_counter_suppression) aux_length += 4;
if (packet->key_id_mode != KEY_ID_MODE_IMPLICIT) aux_length++;
if (packet->key_id_mode == KEY_ID_MODE_KEY_EXPLICIT_4) aux_length += 4;
if (packet->key_id_mode == KEY_ID_MODE_KEY_EXPLICIT_8) aux_length += 8;
ti = proto_tree_add_item(tree, hf_ieee802154_aux_security_header, tvb, *offset, aux_length, ENC_NA);
header_tree = proto_item_add_subtree(ti, ett_ieee802154_auxiliary_security);
/* Security Control Field */
proto_tree_add_bitmask(header_tree, tvb, *offset, hf_ieee802154_aux_sec_security_control, ett_ieee802154_aux_sec_control, security_fields, ENC_NA);
(*offset)++;
/* Frame Counter Field */
if (!packet->frame_counter_suppression) {
proto_tree_add_item_ret_uint(header_tree, hf_ieee802154_aux_sec_frame_counter, tvb, *offset, 4, ENC_LITTLE_ENDIAN, &packet->frame_counter);
(*offset) += 4;
}
else {
packet->asn = ieee802154_tsch_asn;
}
/* Key identifier field(s). */
if (packet->key_id_mode != KEY_ID_MODE_IMPLICIT) {
/* Create a subtree. */
field_tree = proto_tree_add_subtree(header_tree, tvb, *offset, 1,
ett_ieee802154_aux_sec_key_id, &ti, "Key Identifier Field"); /* Will fix length later. */
/* Add key source, if it exists. */
if (packet->key_id_mode == KEY_ID_MODE_KEY_EXPLICIT_4) {
packet->key_source.addr32 = tvb_get_ntohl(tvb, *offset);
proto_tree_add_uint64(field_tree, hf_ieee802154_aux_sec_key_source, tvb, *offset, 4, packet->key_source.addr32);
hidden_item = proto_tree_add_item(field_tree, hf_ieee802154_aux_sec_key_source_bytes, tvb, *offset, 4, ENC_NA);
proto_item_set_hidden(hidden_item);
proto_item_set_len(ti, 1 + 4);
(*offset) += 4;
}
if (packet->key_id_mode == KEY_ID_MODE_KEY_EXPLICIT_8) {
packet->key_source.addr64 = tvb_get_ntoh64(tvb, *offset);
proto_tree_add_uint64(field_tree, hf_ieee802154_aux_sec_key_source, tvb, *offset, 8, packet->key_source.addr64);
hidden_item = proto_tree_add_item(field_tree, hf_ieee802154_aux_sec_key_source_bytes, tvb, *offset, 8, ENC_NA);
proto_item_set_hidden(hidden_item);
proto_item_set_len(ti, 1 + 8);
(*offset) += 8;
}
/* Add key identifier. */
packet->key_index = tvb_get_guint8(tvb, *offset);
proto_tree_add_uint(field_tree, hf_ieee802154_aux_sec_key_index, tvb, *offset, 1, packet->key_index);
(*offset)++;
}
}
tvbuff_t *decrypt_ieee802154_payload(tvbuff_t * tvb, guint offset, packet_info * pinfo, proto_tree* key_tree,
ieee802154_packet * packet, ieee802154_decrypt_info_t* decrypt_info,
ieee802154_set_key_func set_key_func, ieee802154_decrypt_func decrypt_func)
{
proto_item* ti;
unsigned char key[IEEE802154_CIPHER_SIZE];
unsigned char alt_key[IEEE802154_CIPHER_SIZE];
tvbuff_t * payload_tvb = NULL;
/* Lookup the key. */
for (decrypt_info->key_number = 0; decrypt_info->key_number < num_ieee802154_keys; decrypt_info->key_number++) {
guint nkeys = set_key_func(packet, key, alt_key, &ieee802154_keys[decrypt_info->key_number]);
if (nkeys >= 1) {
/* Try with the initial key */
decrypt_info->key = key;
payload_tvb = decrypt_func(tvb, offset, pinfo, packet, decrypt_info);
if (!((*decrypt_info->status == DECRYPT_PACKET_MIC_CHECK_FAILED) || (*decrypt_info->status == DECRYPT_PACKET_DECRYPT_FAILED))) {
break;
}
}
if (nkeys >= 2) {
/* Try also with the alternate key */
decrypt_info->key = alt_key;
payload_tvb = decrypt_func(tvb, offset, pinfo, packet, decrypt_info);
if (!((*decrypt_info->status == DECRYPT_PACKET_MIC_CHECK_FAILED) || (*decrypt_info->status == DECRYPT_PACKET_DECRYPT_FAILED))) {
break;
}
}
}
decrypt_info->key = NULL;
if (decrypt_info->key_number == num_ieee802154_keys) {
/* None of the stored keys seemed to work */
*decrypt_info->status = DECRYPT_PACKET_NO_KEY;
}
/* Store the key number used for retrieval */
ti = proto_tree_add_uint(key_tree, hf_ieee802154_key_number, tvb, 0, 0, decrypt_info->key_number);
proto_item_set_hidden(ti);
return payload_tvb;
}
/**
* Check if the CRC-OK flag in the CC24xx metadata trailer is true
* @param tvb the IEEE 802.15.4 frame
* @return if the flag is true
*/
static gboolean
is_cc24xx_crc_ok(tvbuff_t *tvb)
{
return tvb_get_letohs(tvb, tvb_reported_length(tvb)-2) & IEEE802154_CC24xx_CRC_OK ? TRUE : FALSE;
}
/**
* Verify the 16/32 bit IEEE 802.15.4 FCS
* @param tvb the IEEE 802.15.4 frame from the FCF up to and including the FCS
* @return if the computed FCS matches the transmitted FCS
*/
static gboolean
is_fcs_ok(tvbuff_t *tvb, guint fcs_len)
{
if (fcs_len == 2) {
/* The FCS is in the last two bytes of the packet. */
guint16 fcs = tvb_get_letohs(tvb, tvb_reported_length(tvb)-2);
guint16 fcs_calc = (guint16) ieee802154_crc_tvb(tvb, tvb_reported_length(tvb)-2);
return fcs == fcs_calc;
}
else {
/* The FCS is in the last four bytes of the packet. */
guint32 fcs = tvb_get_letohl(tvb, tvb_reported_length(tvb)-4);
guint32 fcs_calc = ieee802154_crc32_tvb(tvb, tvb_reported_length(tvb)-4);
return fcs == fcs_calc;
}
}
/**
* Dissector for IEEE 802.15.4 packets with a PHY for which there's a
* 4-octet preamble, a 1-octet SFD, and a 1-octet PHY header
* with the uppermost bit reserved and the remaining 7 bits being
* the frame length, and a 16-bit CRC value at the end.
*
* Currently, those are the following PHYs:
*
* O-QPSK
* Binary phase-shift keying (BPSK)
* GFSK
* MSK
* RCC DSSS BPSK
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields
* @param tree pointer to data tree wireshark uses to display packet.
*/
static int
dissect_ieee802154_nonask_phy(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
proto_tree *ieee802154_tree = NULL;
proto_item *proto_root = NULL;
guint offset = 0;
guint8 phr;
tvbuff_t* mac;
/* Create the protocol tree. */
if (tree) {
proto_root = proto_tree_add_protocol_format(tree, proto_ieee802154_nonask_phy, tvb, 0, tvb_captured_length(tvb), "IEEE 802.15.4 non-ASK PHY");
ieee802154_tree = proto_item_add_subtree(proto_root, ett_ieee802154_nonask_phy);
}
/* Add the protocol name. */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "IEEE 802.15.4 non-ASK PHY");
phr = tvb_get_guint8(tvb,offset+4+1);
if (tree) {
guint loffset = offset;
static int * const phr_fields[] = {
&hf_ieee802154_nonask_phy_length,
NULL
};
proto_tree_add_item(ieee802154_tree, hf_ieee802154_nonask_phy_preamble, tvb, loffset, 4, ENC_LITTLE_ENDIAN);
loffset +=4 ;
proto_tree_add_item(ieee802154_tree, hf_ieee802154_nonask_phy_sfd, tvb, loffset, 1, ENC_LITTLE_ENDIAN);
loffset +=1 ;
proto_tree_add_bitmask(ieee802154_tree, tvb, loffset, hf_ieee802154_nonask_phr, ett_ieee802154_nonask_phy_phr,
phr_fields, ENC_NA);
}
offset += 4+2*1;
mac = tvb_new_subset_length_caplen(tvb,offset,-1, phr & IEEE802154_PHY_LENGTH_MASK);
/* These always have the FCS at the end. */
/*
* Call the common dissector; FCS length is 2, and no flags.
*/
dissect_ieee802154_common(mac, pinfo, ieee802154_tree, 2, 0);
return tvb_captured_length(tvb);
} /* dissect_ieee802154_nonask_phy */
/* Return the length in octets for the user configured
* FCS/metadata following the PHY Payload */
static guint
ieee802154_fcs_type_len(guint i)
{
guint fcs_type_lengths[] = { 2, 2, 4 };
if (i < array_length(fcs_type_lengths)) {
return fcs_type_lengths[i];
}
return 0;
}
/**
* Dissector for IEEE 802.15.4 packet with an FCS containing a 16/32-bit
* CRC value, or TI CC24xx metadata, at the end.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields.
* @param tree pointer to data tree wireshark uses to display packet.
*/
static int
dissect_ieee802154(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
tvbuff_t *new_tvb = dissect_zboss_specific(tvb, pinfo, tree);
guint options = 0;
guint fcs_len;
/* Set the default FCS length based on the FCS type in the configuration */
fcs_len = ieee802154_fcs_type_len(ieee802154_fcs_type);
if (ieee802154_fcs_type == IEEE802154_CC24XX_METADATA) {
options = DISSECT_IEEE802154_OPTION_CC24xx;
}
if (new_tvb != tvb) {
/* ZBOSS traffic dump: always TI metadata trailer, always ZigBee */
options = DISSECT_IEEE802154_OPTION_CC24xx|DISSECT_IEEE802154_OPTION_ZBOSS;
fcs_len = 2;
}
/* Call the common dissector. */
dissect_ieee802154_common(new_tvb, pinfo, tree, fcs_len, options);
return tvb_captured_length(tvb);
} /* dissect_ieee802154 */
/**
* Dissector for IEEE 802.15.4 packet with no FCS present.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields
* @param tree pointer to data tree wireshark uses to display packet.
* @return captured length.
*/
static int
dissect_ieee802154_nofcs(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void * data _U_)
{
/*
* Call the common dissector; FCS length is 0, and no flags.
*/
dissect_ieee802154_common(tvb, pinfo, tree, 0, 0);
return tvb_captured_length(tvb);
} /* dissect_ieee802154_nofcs */
/**
* Dissector for IEEE 802.15.4 packet dump produced by ZBOSS
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields
* @param tree pointer to data tree wireshark uses to display packet.
* @return new tvb subset if this is really ZBOSS dump, else oririnal tvb.
*/
static tvbuff_t *
dissect_zboss_specific(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree)
{
proto_tree *zboss_tree;
proto_item *proto_root;
guint off = 0;
guint32 direction_byte, page_byte, channel;
if (tvb_captured_length(tvb) > 5)
{
if (tvb_get_guint8(tvb, off++) == 'Z'
&& tvb_get_guint8(tvb, off++) == 'B'
&& tvb_get_guint8(tvb, off++) == 'O'
&& tvb_get_guint8(tvb, off++) == 'S'
&& tvb_get_guint8(tvb, off++) == 'S')
{
/* Create the protocol tree. */
proto_root = proto_tree_add_protocol_format(tree, proto_zboss, tvb, 0, tvb_captured_length(tvb), "ZBOSS dump");
zboss_tree = proto_item_add_subtree(proto_root, ett_ieee802154_zboss);
proto_tree_add_item_ret_uint(zboss_tree, hf_zboss_direction, tvb, off, 1, ENC_NA, &direction_byte);
proto_item_append_text(proto_root, ", %s", direction_byte ? "OUT" : "IN");
proto_tree_add_item_ret_uint(zboss_tree, hf_zboss_page, tvb, off, 1, ENC_NA, &page_byte);
proto_item_append_text(proto_root, ", page %u", page_byte);
off++;
proto_tree_add_item_ret_uint(zboss_tree, hf_zboss_channel, tvb, off, 1, ENC_NA, &channel);
proto_item_append_text(proto_root, ", channel %u", channel);
off++;
proto_tree_add_item(zboss_tree, hf_zboss_trace_number, tvb, off, 4, ENC_LITTLE_ENDIAN);
off += 4;
return tvb_new_subset_remaining(tvb, off);
}
}
return tvb;
} /* dissect_zboss_specific */
/**
* Dissector for IEEE 802.15.4 packet with 2 bytes of ChipCon/Texas
* Instruments compatible metadata at the end of the frame, and no FCS.
* This is typically called by layers encapsulating an IEEE 802.15.4 packet.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields
* @param tree pointer to data tree wireshark uses to display packet.
*/
static int
dissect_ieee802154_cc24xx(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void * data _U_)
{
/*
* Call the common dissector.
* 2 bytes of metadata at the end of the packet data.
*/
dissect_ieee802154_common(tvb, pinfo, tree, 2, DISSECT_IEEE802154_OPTION_CC24xx);
return tvb_captured_length(tvb);
} /* dissect_ieee802154_cc24xx */
/**
* Dissector for IEEE 802.15.4 TAP packet
*
* Contains optional TLVs and encapsulates an IEEE 802.15.4 packet.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields
* @param tree pointer to data tree wireshark uses to display packet.
*/
static int
dissect_ieee802154_tap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void * data _U_)
{
proto_tree *info_tree = NULL;
proto_tree *header_tree = NULL;
proto_item *proto_root = NULL;
proto_item *ti = NULL;
guint32 version = 0;
guint32 length = 0;
guint32 data_length = 0;
tvbuff_t* tlv_tvb;
tvbuff_t* payload_tvb;
ieee802154_fcs_type_t tap_fcs_type;
guint fcs_len;
/* Check the version in the TAP header */
version = tvb_get_guint8(tvb, 0);
if (version != 0) {
/* Malformed packet. We do not understand any other version at this time */
return 0;
}
/* Get the total length of the header and TLVs */
length = tvb_get_letohs(tvb, 2);
if (length > tvb_captured_length(tvb)) {
/* Malformed packet. The TLVs exceeds our captured packet. */
return 0;
}
/* Create the protocol tree */
proto_root = proto_tree_add_protocol_format(tree, proto_ieee802154_tap, tvb, 0, length, "IEEE 802.15.4 TAP");
info_tree = proto_item_add_subtree(proto_root, ett_ieee802154_tap);
header_tree = proto_tree_add_subtree(info_tree, tvb, 0, 4, ett_ieee802154_tap_header, &proto_root, "Header");
proto_tree_add_item(header_tree, hf_ieee802154_tap_version, tvb, 0, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(header_tree, hf_ieee802154_tap_reserved, tvb, 1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(header_tree, hf_ieee802154_tap_length, tvb, 2, 2, ENC_LITTLE_ENDIAN);
/* Add the protocol name. */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "IEEE 802.15.4 TAP");
/* Create a new tvb subset with only the TLVs to dissect */
tlv_tvb = tvb_new_subset_length(tvb, 4, length - 4);
tap_fcs_type = dissect_ieee802154_tap_tlvs(tlv_tvb, pinfo, info_tree);
/* Set the FCS length based on the FCS type */
switch (tap_fcs_type) {
case IEEE802154_FCS_TYPE_NONE:
fcs_len = 0;
break;
case IEEE802154_FCS_TYPE_16_BIT:
fcs_len = 2;
break;
case IEEE802154_FCS_TYPE_32_BIT:
fcs_len = 4;
break;
default:
/* Not valid */
return tvb_captured_length(tvb);
}
/* Report the remaining bytes as the IEEE 802.15.4 Data Length */
data_length = tvb_reported_length_remaining(tvb, length);
ti = proto_tree_add_uint(info_tree, hf_ieee802154_tap_data_length, NULL, 0, 0, data_length);
proto_item_set_generated(ti);
if (data_length > 0) {
/*
* Call the common dissector with the real 802.15.4 data which follows the TLV header.
* Create a separate packet bytes pane for the real data.
* Specified FCS length, no flags.
*/
payload_tvb = tvb_new_child_real_data(tvb, tvb_get_ptr(tvb, length, data_length), data_length, data_length);
add_new_data_source(pinfo, payload_tvb, "IEEE 802.15.4 Data");
dissect_ieee802154_common(payload_tvb, pinfo, tree, fcs_len, 0);
}
else {
expert_add_info(pinfo, ti, &ei_ieee802154_tap_no_payload);
}
return tvb_captured_length(tvb);
} /* dissect_ieee802154_tap */
/**
* IEEE 802.15.4 packet dissection routine for Wireshark.
*
* This function extracts all the information first before displaying.
* If payload exists, that portion will be passed into another dissector
* for further processing.
*
* This is called after the individual dissect_ieee802154* functions
* have been called to determine what sort of FCS is present, if any.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields
* @param tree pointer to data tree Wireshark uses to display packet.
* @param options bitwise or of dissector options (see DISSECT_IEEE802154_OPTION_xxx).
*/
static void
dissect_ieee802154_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint fcs_len, guint options)
{
proto_tree *ieee802154_tree;
ieee802154_packet *packet;
gboolean fcs_present;
gboolean fcs_ok;
tvbuff_t* no_fcs_tvb;
if (fcs_len != 0) {
/*
* Well, this packet should, in theory, have an FCS or CC24xx
* metadata.
* Do we have the entire packet, and does it have enough data for
* the FCS/metadata?
*/
guint reported_len = tvb_reported_length(tvb);
if (reported_len < fcs_len) {
/*
* The packet is claimed not to even have enough data
* for the FCS/metadata. Pretend it doesn't have one.
*/
no_fcs_tvb = tvb;
fcs_present = FALSE;
fcs_ok = TRUE; // assume OK if not present
} else {
/*
* The packet is claimed to have enough data for the
* FCS/metadata.
* Slice it off from the reported length.
*/
reported_len -= fcs_len;
no_fcs_tvb = tvb_new_subset_length(tvb, 0, reported_len);
/*
* Is the FCS/metadata present in the captured data?
* reported_len is now the length of the packet without the
* FCS/metadata, so the FCS/metadata begins at an offset of
* reported_len.
*/
if (tvb_bytes_exist(tvb, reported_len, fcs_len)) {
/*
* Yes. Check whether the FCS was OK.
*
* If we have an FCS, check it.
* If we have metadata, check its "FCS OK" flag.
*/
fcs_present = TRUE;
fcs_ok = options & DISSECT_IEEE802154_OPTION_CC24xx ? is_cc24xx_crc_ok(tvb) : is_fcs_ok(tvb, fcs_len);
} else {
/*
* No.
*
* Either 1) this means that there was a snapshot length
* in effect when the capture was done, and that sliced
* some or all of the FCS/metadata off or 2) this is a
* capture with no FCS/metadata, using the same link-layer
* header type value as captures with the FCS/metadata,
* and indicating the lack of the FCS/metadata by having
* the captured length be the length of the packet minus
* the length of the FCS/metadata and the actual length
* being the length of the packet including the FCS/metadata,
* rather than by using the "no FCS" link-layer header type.
*
* We could try to distinguish between them by checking
* for a captured length that's exactly fcs_len bytes
* less than the actual length. That would allow us to
* report packets that are cut short just before, or in
* the middle of, the FCS as having been cut short by the
* snapshot length.
*
* However, we can't distinguish between a packet that
* happened to be cut fcs_len bytes short due to a
* snapshot length being in effect when the capture was
* done and a packet that *wasn't* cut short by a snapshot
* length but that doesn't include the FCS/metadata.
* Let's hope that rarely happens.
*/
fcs_present = FALSE;
fcs_ok = TRUE; // assume OK if not present
}
}
} else {
no_fcs_tvb = tvb;
fcs_present = FALSE;
fcs_ok = TRUE; // assume OK if not present
}
guint mhr_len = ieee802154_dissect_header(no_fcs_tvb, pinfo, tree, 0, &ieee802154_tree, &packet);
if (!mhr_len || tvb_reported_length_remaining(no_fcs_tvb, mhr_len) < 0 ) {
return;
}
if ((packet->src_addr_mode != IEEE802154_FCF_ADDR_NONE) && (packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE)) {
_find_or_create_conversation(pinfo, &pinfo->dl_src, &pinfo->dl_dst);
}
if (ieee802154_ack_tracking && (packet->ack_request || packet->frame_type == IEEE802154_FCF_ACK)) {
guint32 key[2] = {0};
key[0] = packet->seqno;
if (pinfo->rec->presence_flags & WTAP_HAS_INTERFACE_ID) {
key[1] = pinfo->rec->rec_header.packet_header.interface_id;
}
if (packet->ack_request) {
transaction_start(pinfo, ieee802154_tree, packet, key);
}
else {
transaction_end(pinfo, ieee802154_tree, packet, key);
}
}
tvbuff_t* payload = ieee802154_decrypt_payload(no_fcs_tvb, mhr_len, pinfo, ieee802154_tree, packet);
if (payload) {
guint pie_size = ieee802154_dissect_payload_ies(payload, pinfo, ieee802154_tree, packet);
payload = tvb_new_subset_remaining(payload, pie_size);
if (options & DISSECT_IEEE802154_OPTION_ZBOSS && packet->frame_type == IEEE802154_FCF_DATA) {
if ((!fcs_ok && ieee802154_fcs_ok) || !tvb_reported_length(payload)) {
call_data_dissector(payload, pinfo, tree);
} else {
call_dissector_with_data(zigbee_nwk_handle, payload, pinfo, tree, packet);
}
} else {
ieee802154_dissect_frame_payload(payload, pinfo, ieee802154_tree, packet, fcs_ok);
}
}
if (fcs_present) {
if (options & DISSECT_IEEE802154_OPTION_CC24xx)
ieee802154_dissect_cc24xx_metadata(tvb, ieee802154_tree, fcs_ok);
else
ieee802154_dissect_fcs(tvb, ieee802154_tree, fcs_len, fcs_ok);
/* If the CRC is invalid, make a note of it in the info column. */
if (!fcs_ok) {
col_append_str(pinfo->cinfo, COL_INFO, ", Bad FCS");
proto_item_append_text(proto_tree_get_parent(ieee802154_tree), ", Bad FCS");
/* Flag packet as having a bad crc. */
expert_add_info(pinfo, proto_tree_get_parent(ieee802154_tree), &ei_ieee802154_fcs);
}
} else {
if (ieee802154_tree) {
/* Even if the FCS isn't present, add the fcs_ok field to the tree to
* help with filter. Be sure not to make it visible though.
*/
proto_item *ti = proto_tree_add_boolean_format_value(ieee802154_tree, hf_ieee802154_fcs_ok, tvb, 0, 0, fcs_ok, "Unknown");
proto_item_set_hidden(ti);
}
}
tap_queue_packet(ieee802154_tap, pinfo, NULL);
}
guint
ieee802154_dissect_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint options, proto_tree **created_header_tree, ieee802154_packet **parsed_info)
{
proto_tree *ieee802154_tree = NULL;
proto_item *proto_root = NULL;
proto_item *hidden_item;
proto_item *ti;
guint offset = 0;
ieee802154_packet *packet = wmem_new0(pinfo->pool, ieee802154_packet);
ieee802154_short_addr addr16;
ieee802154_hints_t *ieee_hints;
packet->short_table = ieee802154_map.short_table;
/* Allocate frame data with hints for upper layers */
if (!PINFO_FD_VISITED(pinfo) ||
(ieee_hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_ieee802154, 0)) == NULL) {
ieee_hints = wmem_new0(wmem_file_scope(), ieee802154_hints_t);
p_add_proto_data(wmem_file_scope(), pinfo, proto_ieee802154, 0, ieee_hints);
}
/* Save a pointer to the whole packet */
ieee_hints->packet = packet;
/* Create the protocol tree. */
if (tree) {
proto_root = proto_tree_add_protocol_format(tree, proto_ieee802154, tvb, 0, tvb_captured_length(tvb), "IEEE 802.15.4");
ieee802154_tree = proto_item_add_subtree(proto_root, ett_ieee802154);
}
/* Add the protocol name. */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "IEEE 802.15.4");
/* Set out parameters */
*created_header_tree = ieee802154_tree;
*parsed_info = packet;
/* Add the packet length to the filter field */
hidden_item = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_frame_length, NULL, 0, 0, tvb_reported_length(tvb));
proto_item_set_hidden(hidden_item);
/* Frame Control Field */
dissect_ieee802154_fcf(tvb, pinfo, ieee802154_tree, packet, &offset);
/* Sequence Number */
if (packet->seqno_suppression) {
if (packet->version != IEEE802154_VERSION_2015 && packet->frame_type != IEEE802154_FCF_MULTIPURPOSE) {
expert_add_info(pinfo, proto_root, &ei_ieee802154_seqno_suppression);
}
} else { /* IEEE 802.15.4 Sequence Number Suppression */
packet->seqno = tvb_get_guint8(tvb, offset);
if (tree) {
proto_tree_add_uint(ieee802154_tree, hf_ieee802154_seqno, tvb, offset, 1, packet->seqno);
/* For Ack packets display this in the root. */
if (packet->frame_type == IEEE802154_FCF_ACK) {
proto_item_append_text(proto_root, ", Sequence Number: %u", packet->seqno);
}
}
offset += 1;
}
/*
* ADDRESSING FIELDS
*/
/* Clear out the addressing strings. */
clear_address(&pinfo->net_dst);
clear_address(&pinfo->dl_dst);
clear_address(&pinfo->dst);
clear_address(&pinfo->net_src);
clear_address(&pinfo->dl_src);
clear_address(&pinfo->src);
if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_RESERVED) {
/* Invalid Destination Address Mode. Abort Dissection. */
expert_add_info(pinfo, proto_root, &ei_ieee802154_dst);
return 0;
}
if (packet->src_addr_mode == IEEE802154_FCF_ADDR_RESERVED) {
/* Invalid Source Address Mode. Abort Dissection. */
expert_add_info(pinfo, proto_root, &ei_ieee802154_src);
return 0;
}
if (packet->frame_type == IEEE802154_FCF_MULTIPURPOSE) {
/* Multipurpose frames have a different set of frame versions, with 0 as the only valid version */
if (packet->version != 0) {
/* Unknown Frame Version for Multipurpose frames. Abort Dissection */
expert_add_info(pinfo, proto_root, &ei_ieee802154_frame_ver);
return 0;
}
/* The source PAN ID is always omitted in multipurpose frames */
packet->src_pan_present = FALSE;
if (packet->pan_id_present) {
packet->dst_pan_present = TRUE;
}
}
else if (packet->version == IEEE802154_VERSION_RESERVED) {
/* Unknown Frame Version. Abort Dissection. */
expert_add_info(pinfo, proto_root, &ei_ieee802154_frame_ver);
return 0;
}
else if ((packet->version == IEEE802154_VERSION_2003) || /* For Frame Version 0b00 and */
(packet->version == IEEE802154_VERSION_2006)) { /* 0b01 effect defined in section 7.2.1.5 */
if ((packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE) && /* if both destination and source */
(packet->src_addr_mode != IEEE802154_FCF_ADDR_NONE)) { /* addressing information is present */
if (packet->pan_id_compression == 1) { /* PAN IDs are identical */
packet->dst_pan_present = TRUE;
packet->src_pan_present = FALSE; /* source PAN ID is omitted */
}
else { /* PAN IDs are different, both shall be included in the frame */
packet->dst_pan_present = TRUE;
packet->src_pan_present = TRUE;
}
}
else {
if (packet->pan_id_compression == 1) { /* all remaining cases pan_id_compression must be zero */
expert_add_info(pinfo, proto_root, &ei_ieee802154_invalid_panid_compression);
return 0;
}
else {
/* only either the destination or the source addressing information is present */
if ((packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE) && /* Present */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE)) { /* Not Present */
packet->dst_pan_present = TRUE;
packet->src_pan_present = FALSE;
}
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->src_addr_mode != IEEE802154_FCF_ADDR_NONE)) { /* Present */
packet->dst_pan_present = FALSE;
packet->src_pan_present = TRUE;
}
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE)) { /* Not Present */
packet->dst_pan_present = FALSE;
packet->src_pan_present = FALSE;
}
else {
expert_add_info(pinfo, proto_root, &ei_ieee802154_invalid_addressing);
return 0;
}
}
}
}
else if (packet->version == IEEE802154_VERSION_2015) {
/* for Frame Version 0b10 PAN Id Compression only applies to these frame types */
if ((packet->frame_type == IEEE802154_FCF_BEACON) ||
(packet->frame_type == IEEE802154_FCF_DATA) ||
(packet->frame_type == IEEE802154_FCF_ACK) ||
(packet->frame_type == IEEE802154_FCF_CMD) ) {
/* Implements Table 7-6 of IEEE 802.15.4-2015
*
* Destination Address Source Address Destination PAN ID Source PAN ID PAN ID Compression
*-------------------------------------------------------------------------------------------------
* 1. Not Present Not Present Not Present Not Present 0
* 2. Not Present Not Present Present Not Present 1
* 3. Present Not Present Present Not Present 0
* 4. Present Not Present Not Present Not Present 1
*
* 5. Not Present Present Not Present Present 0
* 6. Not Present Present Not Present Not Present 1
*
* 7. Extended Extended Present Not Present 0
* 8. Extended Extended Not Present Not Present 1
*
* 9. Short Short Present Present 0
* 10. Short Extended Present Present 0
* 11. Extended Short Present Present 0
*
* 12. Short Extended Present Not Present 1
* 13. Extended Short Present Not Present 1
* 14. Short Short Present Not Present 1
*/
/* Row 1 */
if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->pan_id_compression == 0)) {
packet->dst_pan_present = FALSE;
packet->src_pan_present = FALSE;
}
/* Row 2 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->pan_id_compression == 1)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = FALSE;
}
/* Row 3 */
else if ((packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE) && /* Present */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->pan_id_compression == 0)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = FALSE;
}
/* Row 4 */
else if ((packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE) && /* Present */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->pan_id_compression == 1)) {
packet->dst_pan_present = FALSE;
packet->src_pan_present = FALSE;
}
/* Row 5 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->src_addr_mode != IEEE802154_FCF_ADDR_NONE) && /* Present */
(packet->pan_id_compression == 0)) {
packet->dst_pan_present = FALSE;
packet->src_pan_present = TRUE;
}
/* Row 6 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) && /* Not Present */
(packet->src_addr_mode != IEEE802154_FCF_ADDR_NONE) && /* Present */
(packet->pan_id_compression == 1)) {
packet->dst_pan_present = FALSE;
packet->src_pan_present = FALSE;
}
/* Row 7 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) && /* Extended */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && /* Extended */
(packet->pan_id_compression == 0)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = FALSE;
}
/* Row 8 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) && /* Extended */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && /* Extended */
(packet->pan_id_compression == 1)) {
packet->dst_pan_present = FALSE;
packet->src_pan_present = FALSE;
}
/* Row 9 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) && /* Short */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) && /* Short */
(packet->pan_id_compression == 0)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = (ieee802154e_compatibility ? FALSE : TRUE);
}
/* Row 10 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) && /* Short */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && /* Extended */
(packet->pan_id_compression == 0)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = (ieee802154e_compatibility ? FALSE : TRUE);
}
/* Row 11 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) && /* Extended */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) && /* Short */
(packet->pan_id_compression == 0)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = (ieee802154e_compatibility ? FALSE : TRUE);
}
/* Row 12 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) && /* Short */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) && /* Extended */
(packet->pan_id_compression == 1)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = FALSE;
}
/* Row 13 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) && /* Extended */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) && /* Short */
(packet->pan_id_compression == 1)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = FALSE;
}
/* Row 14 */
else if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) && /* Short */
(packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) && /* Short */
(packet->pan_id_compression == 1)) {
packet->dst_pan_present = TRUE;
packet->src_pan_present = FALSE;
}
else {
expert_add_info(pinfo, proto_root, &ei_ieee802154_invalid_panid_compression2);
return 0;
}
}
else { /* Frame Type is neither Beacon, Data, Ack, nor Command: PAN ID Compression is not used */
packet->dst_pan_present = FALSE; /* no PAN ID will */
packet->src_pan_present = FALSE; /* be present */
}
}
else {
/* Unknown Frame Version. Abort Dissection. */
expert_add_info(pinfo, proto_root, &ei_ieee802154_frame_ver);
return 0;
}
/*
* Addressing Fields
*/
/* Destination PAN Id */
if (packet->dst_pan_present) {
packet->dst_pan = tvb_get_letohs(tvb, offset);
if (ieee802154_tree) {
proto_tree_add_uint(ieee802154_tree, hf_ieee802154_dst_panID, tvb, offset, 2, packet->dst_pan);
}
offset += 2;
}
/* Destination Address */
if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) {
gchar* dst_addr;
/* Get the address. */
packet->dst16 = tvb_get_letohs(tvb, offset);
/* Provide address hints to higher layers that need it. */
if (ieee_hints) {
ieee_hints->dst16 = packet->dst16;
}
set_address_tvb(&pinfo->dl_dst, ieee802_15_4_short_address_type, 2, tvb, offset);
copy_address_shallow(&pinfo->dst, &pinfo->dl_dst);
dst_addr = address_to_str(pinfo->pool, &pinfo->dst);
proto_tree_add_uint(ieee802154_tree, hf_ieee802154_dst16, tvb, offset, 2, packet->dst16);
proto_item_append_text(proto_root, ", Dst: %s", dst_addr);
ti = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_addr16, tvb, offset, 2, packet->dst16);
proto_item_set_generated(ti);
proto_item_set_hidden(ti);
col_append_fstr(pinfo->cinfo, COL_INFO, ", Dst: %s", dst_addr);
offset += 2;
}
else if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT) {
guint64 *p_addr = (guint64 *)wmem_new(pinfo->pool, guint64);
/* Get the address */
packet->dst64 = tvb_get_letoh64(tvb, offset);
/* Copy and convert the address to network byte order. */
*p_addr = pntoh64(&(packet->dst64));
/* Display the destination address. */
/* XXX - OUI resolution doesn't happen when displaying resolved
* EUI64 addresses; that should probably be fixed in
* epan/addr_resolv.c.
*/
set_address(&pinfo->dl_dst, AT_EUI64, 8, p_addr);
copy_address_shallow(&pinfo->dst, &pinfo->dl_dst);
if (tree) {
proto_tree_add_item(ieee802154_tree, hf_ieee802154_dst64, tvb, offset, 8, ENC_LITTLE_ENDIAN);
proto_item_append_text(proto_root, ", Dst: %s", eui64_to_display(pinfo->pool, packet->dst64));
ti = proto_tree_add_item(ieee802154_tree, hf_ieee802154_addr64, tvb, offset, 8, ENC_LITTLE_ENDIAN);
proto_item_set_generated(ti);
proto_item_set_hidden(ti);
}
col_append_fstr(pinfo->cinfo, COL_INFO, ", Dst: %s", eui64_to_display(pinfo->pool, packet->dst64));
offset += 8;
}
/* Source PAN Id */
if (packet->src_pan_present) {
packet->src_pan = tvb_get_letohs(tvb, offset);
proto_tree_add_uint(ieee802154_tree, hf_ieee802154_src_panID, tvb, offset, 2, packet->src_pan);
offset += 2;
}
else {
if (packet->dst_pan_present) {
packet->src_pan = packet->dst_pan;
}
else {
packet->src_pan = IEEE802154_BCAST_PAN;
}
}
if (ieee_hints) {
ieee_hints->src_pan = packet->src_pan;
}
/* Source Address */
if (packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) {
gchar* src_addr;
/* Get the address. */
packet->src16 = tvb_get_letohs(tvb, offset);
if (!PINFO_FD_VISITED(pinfo)) {
/* If we know our extended source address from previous packets,
* provide a pointer to it in a hint for upper layers */
addr16.addr = packet->src16;
addr16.pan = packet->src_pan;
if (ieee_hints) {
ieee_hints->src16 = packet->src16;
ieee_hints->map_rec = (ieee802154_map_rec *)
g_hash_table_lookup(ieee802154_map.short_table, &addr16);
}
}
set_address_tvb(&pinfo->dl_src, ieee802_15_4_short_address_type, 2, tvb, offset);
copy_address_shallow(&pinfo->src, &pinfo->dl_src);
src_addr = address_to_str(pinfo->pool, &pinfo->src);
/* Add the addressing info to the tree. */
if (tree) {
proto_tree_add_uint(ieee802154_tree, hf_ieee802154_src16, tvb, offset, 2, packet->src16);
proto_item_append_text(proto_root, ", Src: %s", src_addr);
ti = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_addr16, tvb, offset, 2, packet->src16);
proto_item_set_generated(ti);
proto_item_set_hidden(ti);
if (ieee_hints && ieee_hints->map_rec) {
/* Display inferred source address info */
ti = proto_tree_add_eui64(ieee802154_tree, hf_ieee802154_src64, tvb, offset, 0,
ieee_hints->map_rec->addr64);
proto_item_set_generated(ti);
ti = proto_tree_add_eui64(ieee802154_tree, hf_ieee802154_addr64, tvb, offset, 0, ieee_hints->map_rec->addr64);
proto_item_set_generated(ti);
proto_item_set_hidden(ti);
if ( ieee_hints->map_rec->start_fnum ) {
ti = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_src64_origin, tvb, 0, 0,
ieee_hints->map_rec->start_fnum);
}
else {
ti = proto_tree_add_uint_format_value(ieee802154_tree, hf_ieee802154_src64_origin, tvb, 0, 0,
ieee_hints->map_rec->start_fnum, "Pre-configured");
}
proto_item_set_generated(ti);
}
}
col_append_fstr(pinfo->cinfo, COL_INFO, ", Src: %s", src_addr);
offset += 2;
}
else if (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) {
guint64 *p_addr = (guint64 *)wmem_new(pinfo->pool, guint64);
/* Get the address. */
packet->src64 = tvb_get_letoh64(tvb, offset);
/* Copy and convert the address to network byte order. */
*p_addr = pntoh64(&(packet->src64));
/* Display the source address. */
/* XXX - OUI resolution doesn't happen when displaying resolved
* EUI64 addresses; that should probably be fixed in
* epan/addr_resolv.c.
*/
set_address(&pinfo->dl_src, AT_EUI64, 8, p_addr);
copy_address_shallow(&pinfo->src, &pinfo->dl_src);
if (tree) {
proto_tree_add_item(ieee802154_tree, hf_ieee802154_src64, tvb, offset, 8, ENC_LITTLE_ENDIAN);
proto_item_append_text(proto_root, ", Src: %s", eui64_to_display(pinfo->pool, packet->src64));
ti = proto_tree_add_item(ieee802154_tree, hf_ieee802154_addr64, tvb, offset, 8, ENC_LITTLE_ENDIAN);
proto_item_set_generated(ti);
proto_item_set_hidden(ti);
}
col_append_fstr(pinfo->cinfo, COL_INFO, ", Src: %s", eui64_to_display(pinfo->pool, packet->src64));
offset += 8;
}
/* Existence of the Auxiliary Security Header is controlled by the Security Enabled Field */
if ((packet->security_enable) && (packet->version != IEEE802154_VERSION_2003) && !(options & IEEE802154_DISSECT_HEADER_OPTION_NO_AUX_SEC_HDR)) {
dissect_ieee802154_aux_sec_header_and_key(tvb, pinfo, ieee802154_tree, packet, &offset);
}
/*
* NONPAYLOAD FIELDS
*
*/
/* All of the beacon fields, except the beacon payload are considered nonpayload. */
if (((packet->version == IEEE802154_VERSION_2003) || (packet->version == IEEE802154_VERSION_2006)) && (packet->frame_type != IEEE802154_FCF_MULTIPURPOSE)) {
if (packet->frame_type == IEEE802154_FCF_BEACON) { /* Regular Beacon. Some are not present in frame version (Enhanced) Beacons */
dissect_ieee802154_superframe(tvb, pinfo, ieee802154_tree, &offset); /* superframe spec */
dissect_ieee802154_gtsinfo(tvb, pinfo, ieee802154_tree, &offset); /* GTS information fields */
dissect_ieee802154_pendaddr(tvb, pinfo, ieee802154_tree, &offset); /* Pending address list */
}
if (packet->frame_type == IEEE802154_FCF_CMD) {
/**
* In IEEE802.15.4-2003 and 2006 the command identifier is considered to be part of the header
* and is thus not encrypted. For IEEE802.15.4-2012e and later the command id is considered to be
* part of the payload, is encrypted, and follows the payload IEs. Thus we only parse the command id
* here for 2006 and earlier frames. */
packet->command_id = tvb_get_guint8(tvb, offset);
if (tree) {
proto_tree_add_uint(ieee802154_tree, hf_ieee802154_cmd_id, tvb, offset, 1, packet->command_id);
}
offset++;
/* Display the command identifier in the info column. */
col_set_str(pinfo->cinfo, COL_INFO, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command"));
}
}
else {
if (packet->ie_present) {
offset += dissect_ieee802154_header_ie(tvb, pinfo, ieee802154_tree, offset, packet);
}
}
/* IEEE 802.15.4-2003 may have security information pre-pended to payload */
if (packet->security_enable && (packet->version == IEEE802154_VERSION_2003)) {
/* Store security suite preference in the 2006 security level identifier to simplify 2003 integration! */
packet->security_level = (ieee802154_security_level)ieee802154_sec_suite;
/* Frame Counter and Key Sequence Counter prepended to the payload of an encrypted frame */
if (IEEE802154_IS_ENCRYPTED(packet->security_level)) {
packet->frame_counter = tvb_get_letohl (tvb, offset);
proto_tree_add_uint(ieee802154_tree, hf_ieee802154_sec_frame_counter, tvb, offset, (int)sizeof(guint32), packet->frame_counter);
offset += (int)sizeof(guint32);
packet->key_sequence_counter = tvb_get_guint8 (tvb, offset);
proto_tree_add_uint(ieee802154_tree, hf_ieee802154_sec_key_sequence_counter, tvb, offset, (int)sizeof(guint8), packet->key_sequence_counter);
offset += (int)sizeof(guint8);
}
}
return offset;
}
/*
* XXX - "mhr_len" is really a general offset; this is used elsewhere.
*/
tvbuff_t*
ieee802154_decrypt_payload(tvbuff_t *tvb, guint mhr_len, packet_info *pinfo, proto_tree *ieee802154_tree, ieee802154_packet *packet)
{
proto_item *proto_root = proto_tree_get_parent(ieee802154_tree);
proto_tree *tree = proto_tree_get_parent_tree(ieee802154_tree);
unsigned char rx_mic[IEEE802154_CIPHER_SIZE];
guint rx_mic_len = IEEE802154_MIC_LENGTH(packet->security_level);
ieee802154_decrypt_status status = DECRYPT_NOT_ENCRYPTED;
tvbuff_t *payload_tvb;
/* Encrypted Payload. */
if (packet->security_enable) {
ieee802154_decrypt_info_t decrypt_info;
decrypt_info.rx_mic = rx_mic;
decrypt_info.rx_mic_length = &rx_mic_len;
decrypt_info.status = &status;
decrypt_info.key = NULL; /* payload function will fill that in */
/* call with NULL tree since we add the key_number below without hiding it */
payload_tvb = decrypt_ieee802154_payload(tvb, mhr_len, pinfo, NULL, packet, &decrypt_info,
ieee802154_set_mac_key, dissect_ieee802154_decrypt);
/* Get the unencrypted data if decryption failed. */
if (!payload_tvb) {
/* Deal with possible truncation and the MIC field at the end. */
gint reported_len = tvb_reported_length(tvb)-mhr_len-rx_mic_len;
payload_tvb = tvb_new_subset_length(tvb, mhr_len, reported_len);
}
/* Display the MIC. */
if (rx_mic_len) {
if (tvb_bytes_exist(tvb, tvb_reported_length(tvb) - rx_mic_len, rx_mic_len)) {
proto_tree_add_item(ieee802154_tree, hf_ieee802154_mic, tvb, tvb_reported_length(tvb)-rx_mic_len, rx_mic_len, ENC_NA);
}
}
/* Display the reason for failure, and abort if the error was fatal. */
switch (status) {
case DECRYPT_PACKET_SUCCEEDED:
{
proto_item *pi = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_key_number, tvb, 0, 0, decrypt_info.key_number);
proto_item_set_generated(pi);
break;
}
case DECRYPT_NOT_ENCRYPTED:
break; // nothing to do
case DECRYPT_FRAME_COUNTER_SUPPRESSION_UNSUPPORTED:
expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "Decryption of 802.15.4-2015 with frame counter suppression is not supported");
call_data_dissector(payload_tvb, pinfo, tree);
return NULL;
case DECRYPT_PACKET_TOO_SMALL:
expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "Packet was too small to include the CRC and MIC");
call_data_dissector(payload_tvb, pinfo, tree);
return NULL;
case DECRYPT_PACKET_NO_EXT_SRC_ADDR:
expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "No extended source address - can't decrypt");
call_data_dissector(payload_tvb, pinfo, tree);
return NULL;
case DECRYPT_PACKET_NO_KEY:
expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "No encryption key set - can't decrypt");
call_data_dissector(payload_tvb, pinfo, tree);
return NULL;
case DECRYPT_PACKET_DECRYPT_FAILED:
expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "Decrypt failed");
call_data_dissector(payload_tvb, pinfo, tree);
return NULL;
case DECRYPT_PACKET_MIC_CHECK_FAILED:
expert_add_info_format(pinfo, proto_root, &ei_ieee802154_decrypt_error, "MIC check failed");
/*
* Abort only if the payload was encrypted, in which case we
* probably didn't decrypt the packet right (eg: wrong key).
*/
if (IEEE802154_IS_ENCRYPTED(packet->security_level)) {
call_data_dissector(payload_tvb, pinfo, tree);
return NULL;
}
break;
}
}
/* Plaintext Payload. */
else {
/* Deal with possible truncation. */
gint reported_len = tvb_reported_length(tvb)-mhr_len;
payload_tvb = tvb_new_subset_length(tvb, mhr_len, reported_len);
}
return payload_tvb;
}
guint ieee802154_dissect_payload_ies(tvbuff_t *tvb, packet_info *pinfo, proto_tree *ieee802154_tree, ieee802154_packet *packet)
{
/* Presence of Payload IEs is defined by the termination of the Header IEs */
if (packet->payload_ie_present) {
if (tvb_reported_length(tvb) > 2) {
return (guint) dissect_ieee802154_payload_ie(tvb, pinfo, ieee802154_tree, 0, packet);
} else {
expert_add_info(pinfo, proto_tree_get_parent(ieee802154_tree), &ei_ieee802154_missing_payload_ie);
}
}
return 0;
}
guint ieee802154_dissect_frame_payload(tvbuff_t *tvb, packet_info *pinfo, proto_tree *ieee802154_tree, ieee802154_packet *packet, gboolean fcs_ok)
{
tvbuff_t *payload_tvb = tvb;
proto_tree *tree = proto_tree_get_parent_tree(ieee802154_tree);
heur_dtbl_entry_t *hdtbl_entry;
/* There are commands without payload */
if (tvb_captured_length(payload_tvb) > 0 || packet->frame_type == IEEE802154_FCF_CMD) {
/*
* Wrap the sub-dissection in a try/catch block in case the payload is
* broken. First we store the current protocol so we can fix it if an
* exception is thrown by the subdissectors.
*/
const char* saved_proto = pinfo->current_proto;
/* Try to dissect the payload. */
TRY {
switch (packet->frame_type) {
case IEEE802154_FCF_BEACON:
if (!dissector_try_heuristic(ieee802154_beacon_subdissector_list, payload_tvb, pinfo, tree, &hdtbl_entry, packet)) {
/* Could not subdissect, call the data dissector instead. */
call_data_dissector(payload_tvb, pinfo, tree);
}
break;
case IEEE802154_FCF_CMD:
dissect_ieee802154_command(payload_tvb, pinfo, ieee802154_tree, packet);
break;
case IEEE802154_FCF_DATA:
/* Sanity-check. */
if ((!fcs_ok && ieee802154_fcs_ok) || !tvb_reported_length(payload_tvb)) {
call_data_dissector(payload_tvb, pinfo, tree);
break;
}
/* Try the PANID dissector table for stateful dissection. */
if (dissector_try_uint_new(panid_dissector_table, packet->src_pan, payload_tvb, pinfo, tree, TRUE, packet)) {
break;
}
/* Try again with the destination PANID (if different) */
if (((packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) ||
(packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)) &&
(packet->dst_pan != packet->src_pan) &&
dissector_try_uint_new(panid_dissector_table, packet->src_pan, payload_tvb, pinfo, tree, TRUE, packet)) {
break;
}
/* Try heuristic dissection. */
if (dissector_try_heuristic(ieee802154_heur_subdissector_list, payload_tvb, pinfo, tree, &hdtbl_entry, packet)) break;
/* Fall-through to dump undissectable payloads. */
/* FALL THROUGH */
default:
/* Could not subdissect, call the data dissector instead. */
call_data_dissector(payload_tvb, pinfo, tree);
} /* switch */
}
CATCH_ALL {
/*
* Someone encountered an error while dissecting the payload. But
* we haven't yet finished processing all of our layer. Catch and
* display the exception, then fall-through to finish displaying
* the FCS (which we display last so the frame is ordered correctly
* in the tree).
*/
show_exception(payload_tvb, pinfo, tree, EXCEPT_CODE, GET_MESSAGE);
pinfo->current_proto = saved_proto;
}
ENDTRY;
}
return tvb_captured_length(tvb);
}
/**
* Dissect the FCS at the end of the frame.
* That is only displayed if the included length of the tvb encompasses it.
*
* @param tvb the 802.15.4 frame tvb
* @param ieee802154_tree the 802.15.4 protocol tree
* @param fcs_len length of the FCS field
* @param fcs_ok set to FALSE to indicate FCS verification failed
*/
static void
ieee802154_dissect_fcs(tvbuff_t *tvb, proto_tree *ieee802154_tree, guint fcs_len, gboolean fcs_ok)
{
proto_item *ti;
/* The FCS should be the last bytes of the reported packet. */
guint offset = tvb_reported_length(tvb)-fcs_len;
/* Dissect the FCS only if it exists (captures which don't or can't get the
* FCS will simply truncate the packet to omit it, but should still set the
* reported length to cover the original packet length), so if the snapshot
* is too short for an FCS don't make a fuss.
*/
if (ieee802154_tree) {
if (fcs_len == 2) {
guint16 fcs = tvb_get_letohs(tvb, offset);
ti = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_fcs, tvb, offset, 2, fcs);
if (fcs_ok) {
proto_item_append_text(ti, " (Correct)");
}
else {
proto_item_append_text(ti, " (Incorrect, expected FCS=0x%04x)", ieee802154_crc_tvb(tvb, offset));
}
/* To Help with filtering, add the fcs_ok field to the tree. */
ti = proto_tree_add_boolean(ieee802154_tree, hf_ieee802154_fcs_ok, tvb, offset, 2, (guint32) fcs_ok);
proto_item_set_hidden(ti);
}
else {
guint32 fcs = tvb_get_letohl(tvb, offset);
ti = proto_tree_add_uint(ieee802154_tree, hf_ieee802154_fcs32, tvb, offset, 4, fcs);
if (fcs_ok) {
proto_item_append_text(ti, " (Correct)");
}
else {
proto_item_append_text(ti, " (Incorrect, expected FCS=0x%08x)", ieee802154_crc32_tvb(tvb, offset));
}
/* To Help with filtering, add the fcs_ok field to the tree. */
ti = proto_tree_add_boolean(ieee802154_tree, hf_ieee802154_fcs_ok, tvb, offset, 2, (guint32) fcs_ok);
proto_item_set_hidden(ti);
}
}
} /* ieee802154_dissect_fcs */
/**
* Dissect the TI CC24xx metadata at the end of the frame.
* That is only displayed if the included length of the tvb encompasses it.
*
* @param tvb the 802.15.4 frame tvb
* @param ieee802154_tree the 802.15.4 protocol tree
* @param fcs_ok set to FALSE to indicate FCS verification failed
*/
static void
ieee802154_dissect_cc24xx_metadata(tvbuff_t *tvb, proto_tree *ieee802154_tree, gboolean fcs_ok)
{
/* The metadata should be the last 2 bytes of the reported packet. */
guint offset = tvb_reported_length(tvb)-2;
/* Dissect the metadata only if it exists (captures which don't or can't get the
* metadata will simply truncate the packet to omit it, but should still set the
* reported length to cover the original packet length), so if the snapshot
* is too short for the metadata don't make a fuss.
*/
if (ieee802154_tree) {
proto_tree *field_tree;
guint16 metadata = tvb_get_letohs(tvb, offset);
/* Create a subtree for the metadata. */
field_tree = proto_tree_add_subtree_format(ieee802154_tree, tvb, offset, 2, ett_ieee802154_fcs, NULL,
"TI CC24xx-format metadata: FCS %s", (fcs_ok) ? "OK" : "Bad");
/* Display metadata contents. */
proto_tree_add_boolean(field_tree, hf_ieee802154_fcs_ok, tvb, offset, 1, (guint32) (metadata & IEEE802154_CC24xx_CRC_OK));
proto_tree_add_int(field_tree, hf_ieee802154_rssi, tvb, offset++, 1, (gint8) (metadata & IEEE802154_CC24xx_RSSI));
proto_tree_add_uint(field_tree, hf_ieee802154_correlation, tvb, offset, 1, (guint8) ((metadata & IEEE802154_CC24xx_CORRELATION) >> 8));
}
} /* ieee802154_dissect_cc24xx_metadata */
static void
dissect_ieee802154_tap_sun_phy(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint offset, guint length)
{
(void) pinfo;
if (length == 3) {
guint32 band;
guint32 sun_type;
guint32 mode;
proto_tree_add_item_ret_uint(tree, hf_ieee802154_sun_band, tvb, offset, 1, ENC_LITTLE_ENDIAN, &band);
proto_item_append_text(proto_tree_get_parent(tree), ": Band: %s (%u)", val_to_str_const(band, sun_bands, "Unknown"), band);
proto_tree_add_item_ret_uint(tree, hf_ieee802154_sun_type, tvb, offset+1, 1, ENC_LITTLE_ENDIAN, &sun_type);
if (sun_type < array_length(sun_types)) {
proto_item_append_text(proto_tree_get_parent(tree), ", Type: %s (%u)", val_to_str_const(sun_type, sun_types, "Unknown"), sun_type);
}
switch (sun_type) {
case IEEE802154_SUN_TYPE_FSK_A:
proto_tree_add_item_ret_uint(tree, hf_ieee802154_mode_fsk_a, tvb, offset+2, 1, ENC_LITTLE_ENDIAN, &mode);
proto_item_append_text(proto_tree_get_parent(tree), ", Mode: %u", mode);
break;
case IEEE802154_SUN_TYPE_FSK_B:
proto_tree_add_item_ret_uint(tree, hf_ieee802154_mode_fsk_b, tvb, offset+2, 1, ENC_LITTLE_ENDIAN, &mode);
proto_item_append_text(proto_tree_get_parent(tree), ", Mode: %u", mode);
break;
case IEEE802154_SUN_TYPE_OQPSK_A:
proto_tree_add_item_ret_uint(tree, hf_ieee802154_mode_oqpsk_a, tvb, offset+2, 1, ENC_LITTLE_ENDIAN, &mode);
proto_item_append_text(proto_tree_get_parent(tree), ", Mode: %u", mode);
break;
case IEEE802154_SUN_TYPE_OQPSK_B:
proto_tree_add_item_ret_uint(tree, hf_ieee802154_mode_oqpsk_b, tvb, offset+2, 1, ENC_LITTLE_ENDIAN, &mode);
proto_item_append_text(proto_tree_get_parent(tree), ", Mode: %u", mode);
break;
case IEEE802154_SUN_TYPE_OQPSK_C:
proto_tree_add_item_ret_uint(tree, hf_ieee802154_mode_oqpsk_c, tvb, offset+2, 1, ENC_LITTLE_ENDIAN, &mode);
proto_item_append_text(proto_tree_get_parent(tree), ", Mode: %u", mode);
break;
case IEEE802154_SUN_TYPE_OFDM_OPT1:
case IEEE802154_SUN_TYPE_OFDM_OPT2:
case IEEE802154_SUN_TYPE_OFDM_OPT3:
case IEEE802154_SUN_TYPE_OFDM_OPT4:
proto_tree_add_item_ret_uint(tree, hf_ieee802154_mode_ofdm, tvb, offset+2, 1, ENC_LITTLE_ENDIAN, &mode);
proto_item_append_text(proto_tree_get_parent(tree), ", Mode: %u", mode);
break;
default:
proto_tree_add_item(tree, hf_ieee802154_sun_mode, tvb, offset+2, 1, ENC_LITTLE_ENDIAN);
break;
} /* switch (sun_type) */
}
} /* dissect_ieee802154_tap_sun_phy */
static void
dissect_ieee802154_tap_phy_header(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint offset, guint length)
{
guint32 phr_type;
guint32 phr_bits;
proto_tree_add_item_ret_uint(tree, hf_ieee802154_tap_phr_type, tvb, offset, 2, ENC_LITTLE_ENDIAN, &phr_type);
proto_tree_add_item_ret_uint(tree, hf_ieee802154_tap_phr_bits, tvb, offset+2, 2, ENC_LITTLE_ENDIAN, &phr_bits);
switch (phr_type) {
case PHR_WISUN_FSK_MS: {
guint32 phr_data = tvb_get_letohs(tvb, offset+4);
if (phr_data & IEEE802154_TAP_PHR_FSK_MS) {
static int* const ieee802154_tap_phr_fsk_wisun_ms_fields[] = {
&hf_ieee802154_tap_phr_fsk_ms,
&hf_ieee802154_tap_phr_wisun_fsk_ms_reserved,
&hf_ieee802154_tap_phr_wisun_fsk_ms_phymodeid,
&hf_ieee802154_tap_phr_fsk_ms_checksum,
&hf_ieee802154_tap_phr_fsk_ms_parity,
NULL
};
proto_item *pi = proto_tree_add_bitmask_with_flags(tree, tvb, offset+4, hf_ieee802154_tap_wisun_ms_phr,
ett_ieee802154_tap_phr, ieee802154_tap_phr_fsk_wisun_ms_fields, ENC_LITTLE_ENDIAN, BMT_NO_TFS);
if (phr_data & IEEE802154_TAP_PHR_WISUN_FSK_MS_RESERVED) {
expert_add_info(NULL, pi, &ei_ieee802154_tap_tlv_reserved_not_zero);
}
/* TODO: expert info BCH(15,11) checksum check */
/* TODO: expert info parity check */
}
break;
}
case PHR_SUN_FSK: {
guint32 phr_data = tvb_get_letohs(tvb, offset+4);
if (phr_data & IEEE802154_TAP_PHR_FSK_MS) {
int *const *fields;
if ((phr_data & IEEE802154_TAP_PHR_FSK_MS_MODE_SCHEME) == IEEE802154_TAP_PHR_FSK_MS_SCHEME_FSK) {
/* SUN FSK */
static int* const ieee802154_tap_phr_fsk_ms_fields[] = {
&hf_ieee802154_tap_phr_fsk_ms,
&hf_ieee802154_tap_phr_fsk_ms_param,
&hf_ieee802154_tap_phr_fsk_ms_fec,
&hf_ieee802154_tap_phr_fsk_ms_mode_page,
&hf_ieee802154_tap_phr_fsk_ms_mode_scheme,
&hf_ieee802154_tap_phr_fsk_ms_mode_mode,
&hf_ieee802154_tap_phr_fsk_ms_checksum,
&hf_ieee802154_tap_phr_fsk_ms_parity,
NULL
};
fields = ieee802154_tap_phr_fsk_ms_fields;
}
else if ((phr_data & IEEE802154_TAP_PHR_FSK_MS_MODE_SCHEME) == IEEE802154_TAP_PHR_FSK_MS_SCHEME_OFDM ||
(phr_data & IEEE802154_TAP_PHR_FSK_MS_MODE_SCHEME) == IEEE802154_TAP_PHR_FSK_MS_SCHEME_OQPSK) {
/* SUN OFDM or SUN O-QPSK */
static int* const ieee802154_tap_phr_fsk_ms_ofdm_fields[] = {
&hf_ieee802154_tap_phr_fsk_ms,
&hf_ieee802154_tap_phr_fsk_ms_param,
&hf_ieee802154_tap_phr_fsk_ms_fec,
&hf_ieee802154_tap_phr_fsk_ms_mode_page,
&hf_ieee802154_tap_phr_fsk_ms_mode_scheme,
&hf_ieee802154_tap_phr_fsk_ms_checksum,
&hf_ieee802154_tap_phr_fsk_ms_parity,
NULL
};
fields = ieee802154_tap_phr_fsk_ms_ofdm_fields;
}
else /* if ((phr_data & IEEE802154_TAP_PHR_FSK_MS_MODE_SCHEME) == IEEE802154_TAP_PHR_FSK_MS_SCHEME_ADDL) */ {
/* Additional Modes */
static int* const ieee802154_tap_phr_fsk_ms_addl_fields[] = {
&hf_ieee802154_tap_phr_fsk_ms,
&hf_ieee802154_tap_phr_fsk_ms_param,
&hf_ieee802154_tap_phr_fsk_ms_fec,
&hf_ieee802154_tap_phr_fsk_ms_mode_page,
&hf_ieee802154_tap_phr_fsk_ms_mode_scheme,
&hf_ieee802154_tap_phr_fsk_ms_mode_addl_mode,
&hf_ieee802154_tap_phr_fsk_ms_checksum,
&hf_ieee802154_tap_phr_fsk_ms_parity,
NULL
};
fields = ieee802154_tap_phr_fsk_ms_addl_fields;
}
proto_tree_add_bitmask_with_flags(tree, tvb, offset+4, hf_ieee802154_tap_fsk_ms_phr,
ett_ieee802154_tap_phr, fields, ENC_LITTLE_ENDIAN, BMT_NO_TFS);
/* TODO: expert info BCH(15,11) checksum check */
/* TODO: expert info parity check */
}
else {
static int* const ieee802154_tap_phr_fsk_fields[] = {
&hf_ieee802154_tap_phr_fsk_ms,
&hf_ieee802154_tap_phr_fsk_fcs,
&hf_ieee802154_tap_phr_fsk_dw,
&hf_ieee802154_tap_phr_fsk_length,
NULL
};
proto_tree_add_bitmask_with_flags(tree, tvb, offset+4, hf_ieee802154_tap_phr_fsk,
ett_ieee802154_tap_phr, ieee802154_tap_phr_fsk_fields, ENC_LITTLE_ENDIAN, BMT_NO_FLAGS);
}
break;
}
case PHR_O_QPSK:
case PHR_CSS:
case PHR_HRP_UWB:
case PHR_MSK:
case PHR_LRP_UWB:
case PHR_SUN_OFDM:
case PHR_SUN_O_QPSK:
case PHR_LECIM_FSK:
case PHR_TVWS_FSK:
case PHR_TVWS_OFDM:
case PHR_TVWS_NB_OFDM:
case PHR_RCC_LMR:
case PHR_CMB_O_QPSK:
case PHR_CMB_GFSK:
case PHR_TASK:
case PHR_RS_GFSK:
/* TODO: write specific dissectors for these PHR types */
/* fall-through with RAW dissection */
case PHR_RAW:
default: {
proto_tree_add_item(tree, hf_ieee802154_tap_phr_data, tvb, offset+4, length-4, ENC_NA);
break;
}
}
}
/**
* Create a tree for a TAP TLV
*
* @param tree the tree to append this item to
* @param tvb the tv buffer
* @param offset offset into the tvbuff to begin dissection
* @param type TLV type
* @param length TLV length
* @returns the tree created for the Payload IE
*/
static proto_tree*
ieee802154_create_tap_tlv_tree(proto_tree *tree, tvbuff_t *tvb, gint offset, guint32 *type, guint32 *length)
{
proto_tree *subtree = NULL;
proto_item *ti = NULL;
guint32 subtree_length;
*length = tvb_get_letohs(tvb, offset+2);
subtree_length = 4 + *length;
if (*length % 4) {
subtree_length += (4 - *length % 4);
}
subtree = proto_tree_add_subtree(tree, tvb, offset, subtree_length, ett_ieee802154_tap_tlv, &ti, "");
/* Check if we have a valid TLV */
proto_tree_add_item_ret_uint(subtree, hf_ieee802154_tap_tlv_type, tvb, offset, 2, ENC_LITTLE_ENDIAN, type);
if (*type < array_length(tap_tlv_types)) {
proto_item_append_text(ti, "%s", val_to_str_const(*type, tap_tlv_types, "Unknown"));
}
else {
expert_add_info(NULL, ti, &ei_ieee802154_tap_tlv_invalid_type);
}
proto_tree_add_item(subtree, hf_ieee802154_tap_tlv_length, tvb, offset+2, 2, ENC_LITTLE_ENDIAN);
if (!tvb_bytes_exist(tvb, offset+4, *length)) {
expert_add_info(NULL, ti, &ei_ieee802154_tap_tlv_invalid_length);
}
return subtree;
} /* ieee802154_create_tap_tlv_tree */
static ieee802154_fcs_type_t
dissect_ieee802154_tap_tlvs(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
guint32 type;
guint32 length;
gint offset = 0;
proto_item *ti;
proto_tree *tlvtree;
guint32 tap_fcs_type;
const char *type_str;
nstime_t nstime;
guint64 frame_start_ts = 0;
guint64 frame_end_ts = 0;
guint64 slot_start_ts = 0;
double delta_us = 0;
guint32 timeslot_length = 0;
/* Default the FCS type to NONE when parsing TAP packets */
tap_fcs_type = IEEE802154_FCS_TYPE_NONE;
while (tvb_bytes_exist(tvb, offset, 4)) {
tlvtree = ieee802154_create_tap_tlv_tree(tree, tvb, offset, &type, &length);
offset += 4;
switch (type) {
case IEEE802154_TAP_FCS_TYPE:
ti = proto_tree_add_item_ret_uint(tlvtree, hf_ieee802154_tap_fcs_type, tvb, offset, 1,
ENC_LITTLE_ENDIAN, &tap_fcs_type);
type_str = try_val_to_str(tap_fcs_type, tap_fcs_type_names);
if (type_str == NULL) {
/* Invalid - flag it as such */
expert_add_info(NULL, ti, &ei_ieee802154_tap_tlv_invalid_fcs_type);
/* Use "Unknown" for the parent */
type_str = "Unknown";
}
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %s (%u)",
type_str, tap_fcs_type);
break;
case IEEE802154_TAP_RSS: {
gfloat rss = tvb_get_ieee_float(tvb, offset, ENC_LITTLE_ENDIAN);
proto_tree_add_float_format_value(tlvtree, hf_ieee802154_tap_rss, tvb, offset, 4, rss, "%.2f dBm", rss);
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %.2f dBm", rss);
break;
}
case IEEE802154_TAP_BIT_RATE: {
guint32 bitrate;
proto_tree_add_item_ret_uint(tlvtree, hf_ieee802154_bit_rate, tvb, offset, 4, ENC_LITTLE_ENDIAN, &bitrate);
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %.3f kbps", bitrate/1000.0);
break;
}
case IEEE802154_TAP_CHANNEL_ASSIGNMENT: {
guint32 channel;
guint32 page;
proto_tree_add_item_ret_uint(tlvtree, hf_ieee802154_ch_num, tvb, offset, 2, ENC_LITTLE_ENDIAN, &channel);
proto_tree_add_item_ret_uint(tlvtree, hf_ieee802154_ch_page, tvb, offset+2, 1, ENC_LITTLE_ENDIAN, &page);
proto_item_append_text(proto_tree_get_parent(tlvtree), ": Page: %s (%u), Number: %u", val_to_str_const(page, channel_page_names, "Unknown"), page, channel);
break;
}
case IEEE802154_TAP_SUN_PHY_INFO:
dissect_ieee802154_tap_sun_phy(tvb, pinfo, tlvtree, offset, length);
break;
case IEEE802154_TAP_START_OF_FRAME_TS:
proto_tree_add_item_ret_uint64(tlvtree, hf_ieee802154_sof_ts, tvb, offset, 8,
ENC_LITTLE_ENDIAN, &frame_start_ts);
nstime.secs = (time_t)frame_start_ts / 1000000000L;
nstime.nsecs = frame_start_ts % 1000000000UL;
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %s s", rel_time_to_secs_str(pinfo->pool, &nstime));
break;
case IEEE802154_TAP_END_OF_FRAME_TS:
proto_tree_add_item_ret_uint64(tlvtree, hf_ieee802154_eof_ts, tvb, offset, 8,
ENC_LITTLE_ENDIAN, &frame_end_ts);
nstime.secs = (time_t)frame_end_ts / 1000000000L;
nstime.nsecs = frame_end_ts % 1000000000UL;
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %s s", rel_time_to_secs_str(pinfo->pool, &nstime));
break;
case IEEE802154_TAP_ASN:
proto_tree_add_item_ret_uint64(tlvtree, hf_ieee802154_asn, tvb, offset, 8, ENC_LITTLE_ENDIAN, &ieee802154_tsch_asn);
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %"PRIu64, ieee802154_tsch_asn);
break;
case IEEE802154_TAP_SLOT_START_TS:
proto_tree_add_item_ret_uint64(tlvtree, hf_ieee802154_slot_start_ts, tvb, offset, 8,
ENC_LITTLE_ENDIAN, &slot_start_ts);
nstime.secs = (time_t)slot_start_ts / 1000000000L;
nstime.nsecs = slot_start_ts % 1000000000UL;
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %s s", rel_time_to_secs_str(pinfo->pool, &nstime));
break;
case IEEE802154_TAP_TIMESLOT_LENGTH:
proto_tree_add_item_ret_uint(tlvtree, hf_ieee802154_tap_timeslot_length, tvb, offset, 4,
ENC_LITTLE_ENDIAN, &timeslot_length);
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %"PRIu32" %s", timeslot_length, units_microseconds.singular);
break;
case IEEE802154_TAP_LQI: {
guint32 lqi;
proto_tree_add_item_ret_uint(tlvtree, hf_ieee802154_tap_lqi, tvb, offset, 1, ENC_LITTLE_ENDIAN, &lqi);
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %u", lqi);
break;
}
case IEEE802154_TAP_CHANNEL_FREQUENCY: {
gfloat freq = tvb_get_ieee_float(tvb, offset, ENC_LITTLE_ENDIAN);
proto_tree_add_float_format_value(tlvtree, hf_ieee802154_ch_freq, tvb, offset, 4, freq, "%.3f kHz", freq);
proto_item_append_text(proto_tree_get_parent(tlvtree), ": %.3f kHz", freq);
break;
}
case IEEE802154_TAP_CHANNEL_PLAN: {
guint32 count;
gfloat ch0_freq = tvb_get_ieee_float(tvb, offset, ENC_LITTLE_ENDIAN);
gfloat spacing = tvb_get_ieee_float(tvb, offset+4, ENC_LITTLE_ENDIAN);
proto_tree_add_float_format_value(tlvtree, hf_ieee802154_chplan_start, tvb, offset, 4, ch0_freq, "%.3f kHz", ch0_freq);
proto_item_append_text(proto_tree_get_parent(tlvtree), ": Start %.3f kHz", ch0_freq);
proto_tree_add_float_format_value(tlvtree, hf_ieee802154_chplan_spacing, tvb, offset+4, 4, spacing, "%.3f kHz", spacing);
proto_item_append_text(proto_tree_get_parent(tlvtree), ", Spacing %.3f kHz", spacing);
proto_tree_add_item_ret_uint(tlvtree, hf_ieee802154_chplan_channels, tvb, offset+8, 2, ENC_LITTLE_ENDIAN, &count);
proto_item_append_text(proto_tree_get_parent(tlvtree), ", Channels %u", count);
break;
}
case IEEE802154_TAP_PHY_HEADER:
dissect_ieee802154_tap_phy_header(tvb, pinfo, tlvtree, offset, length);
break;
default:
proto_tree_add_item(tlvtree, hf_ieee802154_tap_tlv_unknown, tvb, offset, length, ENC_NA);
proto_item_append_text(proto_tree_get_parent(tlvtree), "Unknown TLV");
break;
} /* switch (tlv_type) */
if (length%4) {
guint32 zero = 0;
GByteArray *padding = g_byte_array_sized_new(4);
ti = proto_tree_add_bytes_item(tlvtree, hf_ieee802154_tap_tlv_padding, tvb, offset+length, 4-length%4, ENC_NA, padding, NULL, NULL);
if (memcmp(&zero, padding->data, 4-length%4)) {
expert_add_info(NULL, ti, &ei_ieee802154_tap_tlv_padding_not_zeros);
}
g_byte_array_free(padding, TRUE);
}
offset += ROUND_UP(length, 4);
} /* while */
/* if we have both slot start and frame start timestamp, show frame start offset */
if (slot_start_ts && frame_start_ts) {
delta_us = (double)(frame_start_ts - slot_start_ts) / 1000;
ti = proto_tree_add_double_format_value(tree, hf_ieee802154_frame_start_offset, NULL, 0, 0, delta_us, "%.3f %s", delta_us, units_microseconds.singular);
proto_item_set_generated(ti);
}
/* if we have both start and end frame timestamp, show frame duration */
if (frame_start_ts && frame_end_ts) {
delta_us = (double)(frame_end_ts - frame_start_ts) / 1000;
ti = proto_tree_add_double_format_value(tree, hf_ieee802154_frame_duration, NULL, 0, 0, delta_us, "%.3f %s", delta_us, units_microseconds.singular);
proto_item_set_generated(ti);
}
/* if we have start of slot, timeslot length, and end of frame timestamp, show frame overflow (+ve) or underflow (-ve) */
if (timeslot_length && frame_end_ts && slot_start_ts) {
/* overflow = frame_end_ts - slot_start_ts - timeslot_length */
delta_us = (double)(frame_end_ts - slot_start_ts) / 1000;
delta_us -= timeslot_length;
ti = proto_tree_add_double_format_value(tree, hf_ieee802154_frame_end_offset, NULL, 0, 0, delta_us, "%.3f %s", delta_us, units_microseconds.singular);
proto_item_set_generated(ti);
}
return (ieee802154_fcs_type_t)tap_fcs_type;
} /* dissect_ieee802154_tap_tlvs */
/*
* Information Elements Processing (IEs)
*/
/**
* Create a tree for a Payload IE incl. the TLV header and append the IE name to the parent item
*
* @param tvb the tv buffer
* @param tree the tree to append this item to
* @param hf field index
* @param ett tree index
* @returns the tree created for the Payload IE
*/
proto_tree*
ieee802154_create_pie_tree(tvbuff_t *tvb, proto_tree *tree, int hf, gint ett)
{
proto_item *subitem;
proto_tree *subtree;
header_field_info *hfinfo;
static int * const tlv_fields[] = {
&hf_ieee802154_payload_ie_type,
&hf_ieee802154_payload_ie_id,
&hf_ieee802154_payload_ie_length,
NULL
};
subitem = proto_tree_add_item(tree, hf, tvb, 0, tvb_reported_length(tvb), ENC_NA);
subtree = proto_item_add_subtree(subitem, ett);
proto_tree_add_bitmask_with_flags(subtree, tvb, 0, hf_ieee802154_payload_ie_tlv, ett_ieee802154_payload_ie_tlv,
tlv_fields, ENC_LITTLE_ENDIAN, BMT_NO_FLAGS);
hfinfo = proto_registrar_get_nth(hf);
if (hfinfo && hfinfo->name) {
proto_item_append_text(proto_tree_get_parent(tree), ", %s", hfinfo->name);
}
return subtree;
}
/**
* Create a tree for a Payload Sub-IE incl. the TLV header and append the IE name to the parent item
*
* @param tvb the tv buffer
* @param tree the tree to append this item to
* @param hf field index
* @param ett tree index
* @returns the tree created for the Payload IE
*/
static proto_tree*
ieee802154_create_psie_tree(tvbuff_t *tvb, proto_tree *tree, int hf, gint ett)
{
proto_item *subitem;
proto_tree *subtree;
header_field_info *hfinfo;
subitem = proto_tree_add_item(tree, hf, tvb, 0, tvb_reported_length(tvb), ENC_NA);
subtree = proto_item_add_subtree(subitem, ett);
if (tvb_get_letohs(tvb, 0) & IEEE802154_PSIE_TYPE_MASK) {
static int * const fields_long[] = {
&hf_ieee802154_psie_type,
&hf_ieee802154_psie_id_long,
&hf_ieee802154_psie_length_long,
NULL
};
proto_tree_add_bitmask(subtree, tvb, 0, hf_ieee802154_psie, ett_ieee802154_psie, fields_long, ENC_LITTLE_ENDIAN);
}
else {
static int * const fields_short[] = {
&hf_ieee802154_psie_type,
&hf_ieee802154_psie_id_short,
&hf_ieee802154_psie_length_short,
NULL
};
proto_tree_add_bitmask(subtree, tvb, 0, hf_ieee802154_psie, ett_ieee802154_psie, fields_short, ENC_LITTLE_ENDIAN);
}
hfinfo = proto_registrar_get_nth(hf);
if (hfinfo && hfinfo->name) {
proto_item_append_text(proto_tree_get_parent(tree), ", %s", hfinfo->name);
}
return subtree;
}
/**
* Subdissector for the MLME Channel Hopping Payload IE
*/
static int
dissect_802154_channel_hopping(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_tree *subtree = ieee802154_create_psie_tree(tvb, tree, hf_ieee802154_tsch_channel_hopping, ett_ieee802154_mlme_payload);
proto_tree_add_item(subtree, hf_ieee802154_tsch_hopping_sequence_id, tvb, 2, 1, ENC_LITTLE_ENDIAN);
if (tvb_reported_length_remaining(tvb, 3) > 1) {
/* TODO: There's still a huge amount of optional stuff that could follow */
proto_tree_add_item(subtree, hf_ieee802154_mlme_ie_data, tvb, 3, tvb_reported_length_remaining(tvb, 3), ENC_NA);
}
return tvb_reported_length(tvb);
} /* dissect_802154_channel_hopping */
/**
* Subdissector for the Nested MLME IE for TSCH Synchronization
*/
static int
dissect_802154_tsch_time_sync(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_tree *subtree = ieee802154_create_psie_tree(tvb, tree, hf_ieee802154_tsch_sync, ett_ieee802154_tsch_synch);
proto_tree_add_item(subtree, hf_ieee802154_tsch_asn, tvb, 2, 5, ENC_LITTLE_ENDIAN);
proto_tree_add_item(subtree, hf_ieee802154_tsch_join_metric, tvb, 7, 1, ENC_LITTLE_ENDIAN);
return 8;
}/* dissect_802154_tsch_time_sync*/
/**
* Subdissector for the Nested MLME IE for TSCH Slotframe and Link
*/
static int
dissect_802154_tsch_slotframe_link(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
guint8 nb_slotframes;
guint8 slotframe_index;
proto_tree *subtree;
guint offset = 0;
subtree = ieee802154_create_psie_tree(tvb, tree, hf_ieee802154_tsch_slotframe, ett_ieee802154_tsch_slotframe);
offset += 2;
nb_slotframes = tvb_get_guint8(tvb, offset);
proto_tree_add_item(subtree, hf_ieee802154_tsch_slotf_link_nb_slotf, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset += 1;
for (slotframe_index = 1; slotframe_index <= nb_slotframes; slotframe_index++) {
/* Create a tree for the slotframe. */
guint8 nb_links = tvb_get_guint8(tvb, offset + 3);
proto_item *sf_item = proto_tree_add_subtree_format(subtree, tvb, offset, 4 + (5 * nb_links),
ett_ieee802154_tsch_slotframe, NULL,
"Slotframes [%u]", slotframe_index);
proto_tree *sf_tree = proto_item_add_subtree(sf_item, ett_ieee802154_tsch_slotframe_list);
proto_tree_add_item(sf_tree, hf_ieee802154_tsch_slotf_link_slotf_handle, tvb, offset, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sf_tree, hf_ieee802154_tsch_slotf_size, tvb, offset + 1, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sf_tree, hf_ieee802154_tsch_slotf_link_nb_links, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
/* Create a tree for each link in the slotframe. */
offset += 4;
while (nb_links > 0) {
static int * const fields_options[] = {
&hf_ieee802154_tsch_slotf_link_options_tx,
&hf_ieee802154_tsch_slotf_link_options_rx,
&hf_ieee802154_tsch_slotf_link_options_shared,
&hf_ieee802154_tsch_slotf_link_options_timkeeping,
&hf_ieee802154_tsch_slotf_link_options_priority,
NULL
};
proto_item *link_item = proto_tree_add_item(sf_tree, hf_ieee802154_tsch_link_info, tvb, offset, 5, ENC_NA);
proto_tree *link_tree = proto_item_add_subtree(link_item, ett_ieee802154_tsch_slotframe_link);
proto_tree_add_item(link_tree, hf_ieee802154_tsch_slotf_link_timeslot, tvb, offset, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(link_tree, hf_ieee802154_tsch_slotf_link_channel_offset, tvb, offset + 2, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_bitmask(link_tree, tvb, offset + 4, hf_ieee802154_tsch_slotf_link_options, ett_ieee802154_tsch_slotframe_link_options, fields_options, ENC_LITTLE_ENDIAN);
nb_links -= 1;
offset += 5;
}
}
return offset;
}/* dissect_802154_tsch_slotframe_link */
/**
* Subdissector for the Nested MLME IE for TSCH Timeslot Description
*/
static int
dissect_802154_tsch_timeslot(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_tree *subtree = ieee802154_create_psie_tree(tvb, tree, hf_ieee802154_tsch_timeslot, ett_ieee802154_tsch_timeslot);
guint offset = 2;
proto_tree_add_item(subtree, hf_ieee802154_tsch_timeslot_id, tvb, 2, 1, ENC_LITTLE_ENDIAN);
offset++;
if (tvb_reported_length(tvb) > offset) {
const int timeslot_fields[] = {
hf_ieee802154_tsch_timeslot_cca_offset,
hf_ieee802154_tsch_timeslot_cca,
hf_ieee802154_tsch_timeslot_tx_offset,
hf_ieee802154_tsch_timeslot_rx_offset,
hf_ieee802154_tsch_timeslot_rx_ack_delay,
hf_ieee802154_tsch_timeslot_tx_ack_delay,
hf_ieee802154_tsch_timeslot_rx_wait,
hf_ieee802154_tsch_timeslot_ack_wait,
hf_ieee802154_tsch_timeslot_turnaround,
hf_ieee802154_tsch_timeslot_max_ack,
};
unsigned int i;
for (i = 0; i < sizeof(timeslot_fields)/sizeof(timeslot_fields[1]); i++) {
proto_tree_add_item(subtree, timeslot_fields[i], tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
}
/* The last two fields are may have different encodings depending on the length of the IE. */
if (tvb_reported_length_remaining(tvb, offset) > 4) {
proto_tree_add_item(subtree, hf_ieee802154_tsch_timeslot_max_tx, tvb, offset, 3, ENC_LITTLE_ENDIAN);
offset += 3;
proto_tree_add_item(subtree, hf_ieee802154_tsch_timeslot_length, tvb, offset, 3, ENC_LITTLE_ENDIAN);
offset += 3;
}
else {
proto_tree_add_item(subtree, hf_ieee802154_tsch_timeslot_max_tx, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
proto_tree_add_item(subtree, hf_ieee802154_tsch_timeslot_length, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
}
}
return offset;
} /* dissect_802154_tsch_timeslot */
/**
* Subdissector for the 6TOP Protocol contained within the Payload Information Elements.
*/
static int
dissect_ietf_ie(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *ies_tree, void *data _U_)
{
const guint8 supported_6p_version = 0x00;
proto_tree *p_inf_elem_tree = ieee802154_create_pie_tree(tvb, ies_tree, hf_ieee802154_pie_ietf, ett_ieee802154_pie_ietf);
guint offset = 2;
guint pie_length = tvb_reported_length(tvb) - 2;
guint8 version;
guint8 type;
guint8 code;
guint8 num_cells = 0;
gboolean have_cell_list = FALSE;
int i;
proto_item *sixtop_item = NULL;
proto_tree *sixtop_tree = NULL;
proto_item *cell_list_item = NULL;
proto_tree *cell_list_tree = NULL;
proto_item *cell_item = NULL;
proto_tree *cell_tree = NULL;
proto_item *type_item = NULL;
proto_item *code_item = NULL;
const gchar *code_str = NULL;
static int * const cell_options[] = {
&hf_ieee802154_6top_cell_option_tx,
&hf_ieee802154_6top_cell_option_rx,
&hf_ieee802154_6top_cell_option_shared,
&hf_ieee802154_6top_cell_option_reserved,
NULL
};
if (pie_length < 5) {
return pie_length + 2;
}
version = tvb_get_guint8(tvb, offset + 1) & IETF_6TOP_VERSION;
if (version != supported_6p_version) {
return pie_length + 2;
}
type = (tvb_get_guint8(tvb, offset + 1) & IETF_6TOP_TYPE) >> 4;
code = tvb_get_guint8(tvb, offset + 2);
proto_tree_add_item(p_inf_elem_tree, hf_ieee802154_p_ie_ietf_sub_id, tvb, offset, 1, ENC_LITTLE_ENDIAN);
sixtop_item = proto_tree_add_item(p_inf_elem_tree, hf_ieee802154_6top, tvb, offset, pie_length, ENC_NA);
sixtop_tree = proto_item_add_subtree(sixtop_item, ett_ieee802154_p_ie_6top);
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_version, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
type_item = proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_type, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_flags_reserved, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
code_item = proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_code, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_sfid, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_seqnum, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
col_set_str(pinfo->cinfo, COL_PROTOCOL, "6top");
if (type == IETF_6TOP_TYPE_REQUEST) {
code_str = val_to_str_const(code, ietf_6top_command_identifiers,"Unknown");
col_add_fstr(pinfo->cinfo, COL_INFO, "6P %s Request", code_str);
} else {
code_str = val_to_str_const(code, ietf_6top_return_codes,"Unknown");
col_add_fstr(pinfo->cinfo, COL_INFO, "6P %s (%s)",
val_to_str_const(type, ietf_6top_types,"Unknown"), code_str);
}
proto_item_append_text(code_item, " (%s)", code_str);
offset += 5;
pie_length -= 5;
if (type == IETF_6TOP_TYPE_REQUEST) {
switch (code) {
case IETF_6TOP_CMD_ADD:
case IETF_6TOP_CMD_DELETE:
case IETF_6TOP_CMD_RELOCATE:
if (pie_length < 4) {
break;
}
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_metadata, tvb, offset, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_bitmask(sixtop_tree, tvb, offset + 2, hf_ieee802154_6top_cell_options, ett_ieee802154_p_ie_6top_cell_options, cell_options, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_num_cells, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
num_cells = tvb_get_guint8(tvb, offset + 3);
pie_length -= 4;
offset += 4;
if (pie_length > 0 && (pie_length % 4) == 0) {
have_cell_list = TRUE;
}
break;
case IETF_6TOP_CMD_COUNT:
if (pie_length < 3) {
break;
}
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_metadata, tvb, offset, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_bitmask(sixtop_tree, tvb, offset + 2, hf_ieee802154_6top_cell_options, ett_ieee802154_p_ie_6top_cell_options, cell_options, ENC_LITTLE_ENDIAN);
pie_length -= 3;
offset += 3;
break;
case IETF_6TOP_CMD_LIST:
if (pie_length != 8) {
break;
}
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_metadata, tvb, offset, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_bitmask(sixtop_tree, tvb, offset + 2, hf_ieee802154_6top_cell_options, ett_ieee802154_p_ie_6top_cell_options, cell_options, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_reserved, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_offset, tvb, offset + 4, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_max_num_cells, tvb, offset + 6, 2, ENC_LITTLE_ENDIAN);
pie_length -= 8;
offset += 8;
break;
case IETF_6TOP_CMD_SIGNAL:
if (pie_length < 2) {
break;
}
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_metadata, tvb, offset, 2, ENC_LITTLE_ENDIAN);
if (pie_length > 2) {
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_payload, tvb, offset + 2, pie_length - 2, ENC_NA);
}
offset += pie_length;
pie_length = 0;
break;
case IETF_6TOP_CMD_CLEAR:
if (pie_length < 2) {
break;
}
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_metadata, tvb, offset, 2, ENC_LITTLE_ENDIAN);
pie_length -= 2;
offset += 2;
break;
default:
/* unsupported command */
expert_add_info(pinfo, code_item, &ei_ieee802154_6top_unsupported_command);
break;
}
} else if (type == IETF_6TOP_TYPE_RESPONSE || type == IETF_6TOP_TYPE_CONFIRMATION) {
switch(code) {
case IETF_6TOP_RC_SUCCESS:
if (pie_length > 0) {
if (pie_length == 2) {
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_total_num_cells, tvb, offset, 2, ENC_LITTLE_ENDIAN);
pie_length -= 2;
offset += 2;
} else if ((pie_length % 4) == 0) {
have_cell_list = TRUE;
} else {
proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_payload, tvb, offset, pie_length, ENC_NA);
offset += pie_length;
pie_length = 0;
}
}
break;
case IETF_6TOP_RC_EOL:
if(pie_length > 0 && (pie_length % 4) == 0) {
have_cell_list = TRUE;
}
break;
case IETF_6TOP_RC_ERR:
case IETF_6TOP_RC_RESET:
case IETF_6TOP_RC_ERR_VERSION:
case IETF_6TOP_RC_ERR_SFID:
case IETF_6TOP_RC_ERR_SEQNUM:
case IETF_6TOP_RC_ERR_CELLLIST:
case IETF_6TOP_RC_ERR_BUSY:
case IETF_6TOP_RC_ERR_LOCKED:
/* They have no other field */
break;
default:
/* unsupported return code */
expert_add_info(pinfo, code_item, &ei_ieee802154_6top_unsupported_return_code);
break;
}
} else {
/* unsupported type */
expert_add_info(pinfo, type_item, &ei_ieee802154_6top_unsupported_type);
}
if (have_cell_list) {
if (type == IETF_6TOP_TYPE_REQUEST && code == IETF_6TOP_CMD_RELOCATE) {
cell_list_item = proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_rel_cell_list, tvb, offset, pie_length, ENC_NA);
cell_list_tree = proto_item_add_subtree(cell_list_item, ett_ieee802154_p_ie_6top_rel_cell_list);
/* num_cells is expected to be set properly */
for (i = 0; i < num_cells; offset += 4, i++) {
cell_item = proto_tree_add_item(cell_list_tree, hf_ieee802154_6top_cell, tvb, offset, 4, ENC_NA);
cell_tree = proto_item_add_subtree(cell_item, ett_ieee802154_p_ie_6top_cell);
proto_tree_add_item(cell_tree, hf_ieee802154_6top_slot_offset, tvb, offset, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(cell_tree, hf_ieee802154_6top_channel_offset, tvb, offset + 2, 2, ENC_LITTLE_ENDIAN);
}
pie_length -= num_cells * 4;
cell_list_item = proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_cand_cell_list, tvb, offset, pie_length, ENC_NA);
cell_list_tree = proto_item_add_subtree(cell_list_item, ett_ieee802154_p_ie_6top_cand_cell_list);
for (i = 0; pie_length > 0; pie_length -= 4, offset += 4, i++) {
cell_item = proto_tree_add_item(cell_list_tree, hf_ieee802154_6top_cell, tvb, offset, 4, ENC_NA);
cell_tree = proto_item_add_subtree(cell_item, ett_ieee802154_p_ie_6top_cell);
proto_tree_add_item(cell_tree, hf_ieee802154_6top_slot_offset, tvb, offset, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(cell_tree, hf_ieee802154_6top_channel_offset, tvb, offset + 2, 2, ENC_LITTLE_ENDIAN);
}
} else {
cell_list_item = proto_tree_add_item(sixtop_tree, hf_ieee802154_6top_cell_list, tvb, offset, pie_length, ENC_NA);
cell_list_tree = proto_item_add_subtree(cell_list_item, ett_ieee802154_p_ie_6top_cell_list);
for (i = 0; pie_length > 0; pie_length -= 4, offset += 4, i++) {
cell_item = proto_tree_add_item(cell_list_tree, hf_ieee802154_6top_cell, tvb, offset, 4, ENC_NA);
cell_tree = proto_item_add_subtree(cell_item, ett_ieee802154_p_ie_6top_cell);
proto_tree_add_item(cell_tree, hf_ieee802154_6top_slot_offset, tvb, offset, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(cell_tree, hf_ieee802154_6top_channel_offset, tvb, offset + 2, 2, ENC_LITTLE_ENDIAN);
}
}
}
return offset;
} /* dissect_ieee802154_6top */
/**
* Subdissector for the Superframe specification sub-field within the beacon frame.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields (unused).
* @param tree pointer to command subtree.
* @param offset offset into the tvbuff to begin dissection.
*/
void
dissect_ieee802154_superframe(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint *offset)
{
static int * const superframe[] = {
&hf_ieee802154_beacon_order,
&hf_ieee802154_superframe_order,
&hf_ieee802154_cap,
&hf_ieee802154_superframe_battery_ext,
&hf_ieee802154_superframe_coord,
&hf_ieee802154_assoc_permit,
NULL
};
proto_tree_add_bitmask_text(tree, tvb, *offset, 2, "Superframe Specification: ", NULL , ett_ieee802154_superframe, superframe, ENC_LITTLE_ENDIAN, BMT_NO_INT|BMT_NO_TFS);
(*offset) += 2;
} /* dissect_ieee802154_superframe */
/**
* Subdissector for the GTS information fields within the beacon frame.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields (unused).
* @param tree pointer to command subtree.
* @param offset offset into the tvbuff to begin dissection.
*/
void
dissect_ieee802154_gtsinfo(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint *offset)
{
proto_tree *field_tree = NULL;
proto_tree *subtree = NULL;
proto_item *ti;
guint8 gts_spec;
guint8 gts_count;
/* Get and display the GTS specification field */
gts_spec = tvb_get_guint8(tvb, *offset);
gts_count = gts_spec & IEEE802154_GTS_COUNT_MASK;
if (tree) {
/* Add Subtree for GTS information. */
if (gts_count) {
field_tree = proto_tree_add_subtree(tree, tvb, *offset, 2 + (gts_count * 3), ett_ieee802154_gts, NULL, "GTS");
}
else {
field_tree = proto_tree_add_subtree(tree, tvb, *offset, 1, ett_ieee802154_gts, NULL, "GTS");
}
proto_tree_add_uint(field_tree, hf_ieee802154_gts_count, tvb, *offset, 1, gts_count);
proto_tree_add_boolean(field_tree, hf_ieee802154_gts_permit, tvb, *offset, 1, gts_spec & IEEE802154_GTS_PERMIT_MASK);
}
(*offset) += 1;
/* If the GTS descriptor count is nonzero, then the GTS directions mask and descriptor list are present. */
if (gts_count) {
guint8 gts_directions = tvb_get_guint8(tvb, *offset);
guint gts_rx = 0;
int i;
/* Display the directions mask. */
if (tree) {
proto_tree *dir_tree;
/* Create a subtree. */
dir_tree = proto_tree_add_subtree(field_tree, tvb, *offset, 1, ett_ieee802154_gts_direction, &ti, "GTS Directions");
/* Add the directions to the subtree. */
for (i=0; i<gts_count; i++) {
gboolean dir = gts_directions & IEEE802154_GTS_DIRECTION_SLOT(i);
proto_tree_add_boolean_format(dir_tree, hf_ieee802154_gts_direction, tvb, *offset, 1, dir, "GTS Slot %i: %s", i+1, dir?"Receive Only":"Transmit Only");
if (dir) gts_rx++;
} /* for */
proto_item_append_text(ti, ": %i Receive & %i Transmit", gts_rx, gts_count - gts_rx);
}
(*offset) += 1;
/* Create a subtree for the GTS descriptors. */
subtree = proto_tree_add_subtree(field_tree, tvb, *offset, gts_count * 3, ett_ieee802154_gts_descriptors, NULL, "GTS Descriptors");
/* Get and display the GTS descriptors. */
for (i=0; i<gts_count; i++) {
guint16 gts_addr = tvb_get_letohs(tvb, (*offset));
guint8 gts_slot = tvb_get_guint8(tvb, (*offset)+2);
guint8 gts_length = (gts_slot & IEEE802154_GTS_LENGTH_MASK) >> IEEE802154_GTS_LENGTH_SHIFT;
gts_slot = (gts_slot & IEEE802154_GTS_SLOT_MASK);
if (tree) {
/* Add address, slot, and time length fields. */
ti = proto_tree_add_uint(subtree, hf_ieee802154_gts_address, tvb, (*offset), 3, gts_addr);
proto_item_append_text(ti, ", Slot: %i", gts_slot);
proto_item_append_text(ti, ", Length: %i", gts_length);
}
(*offset) += 3;
} /* for */
}
} /* dissect_ieee802154_gtsinfo */
/**
* Subdissector for the pending address list fields within the beacon frame.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields (unused).
* @param tree pointer to command subtree.
* @param offset into the tvbuff to begin dissection.
*/
void
dissect_ieee802154_pendaddr(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint *offset)
{
proto_tree *subtree;
guint8 pend_spec;
guint8 pend_num16;
guint8 pend_num64;
int i;
/* Get the Pending Addresses specification fields */
pend_spec = tvb_get_guint8(tvb, *offset);
pend_num16 = pend_spec & IEEE802154_PENDADDR_SHORT_MASK;
pend_num64 = (pend_spec & IEEE802154_PENDADDR_LONG_MASK) >> IEEE802154_PENDADDR_LONG_SHIFT;
/* Add Subtree for the addresses */
subtree = proto_tree_add_subtree_format(tree, tvb, *offset, 1 + 2*pend_num16 + 8*pend_num64,
ett_ieee802154_pendaddr, NULL, "Pending Addresses: %i Short and %i Long", pend_num16, pend_num64);
(*offset) += 1;
for (i=0; i<pend_num16; i++) {
guint16 addr = tvb_get_letohs(tvb, *offset);
proto_tree_add_uint(subtree, hf_ieee802154_pending16, tvb, *offset, 2, addr);
(*offset) += 2;
} /* for */
for (i=0; i<pend_num64; i++) {
proto_tree_add_item(subtree, hf_ieee802154_pending64, tvb, *offset, 8, ENC_LITTLE_ENDIAN);
(*offset) += 8;
} /* for */
} /* dissect_ieee802154_pendaddr */
/*
* Header IEs
*/
/**
* Create a tree for a Header IE incl. the TLV header and append the IE name to the parent item
*
* @param tvb the tv buffer
* @param tree the tree to append this item to
* @param hf field index
* @param ett tree index
* @returns the tree created for the Header IE
*/
proto_tree*
ieee802154_create_hie_tree(tvbuff_t *tvb, proto_tree *tree, int hf, gint ett)
{
proto_item *subitem;
proto_tree *subtree;
header_field_info *hfinfo;
static int * const tlv_fields[] = {
&hf_ieee802154_header_ie_type,
&hf_ieee802154_header_ie_id,
&hf_ieee802154_header_ie_length,
NULL
};
subitem = proto_tree_add_item(tree, hf, tvb, 0, tvb_reported_length(tvb), ENC_NA);
subtree = proto_item_add_subtree(subitem, ett);
proto_tree_add_bitmask_with_flags(subtree, tvb, 0, hf_ieee802154_header_ie_tlv, ett_ieee802154_header_ie_tlv,
tlv_fields, ENC_LITTLE_ENDIAN, BMT_NO_FLAGS);
hfinfo = proto_registrar_get_nth(hf);
if (hfinfo && hfinfo->name) {
proto_item_append_text(proto_tree_get_parent(tree), ", %s", hfinfo->name);
}
return subtree;
}
/*
* The dissectors for the individual Header IEs
* They are called via call_dissector with the tvb including the IE header and data as ieee802154_packet
*/
/**
* Dissect the CSL IE (7.4.2.3)
*/
static int
dissect_hie_csl(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_tree *subtree = ieee802154_create_hie_tree(tvb, tree, hf_ieee802154_hie_csl, ett_ieee802154_hie_csl);
proto_tree_add_item(subtree, hf_ieee802154_hie_csl_phase, tvb, 2, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(subtree, hf_ieee802154_hie_csl_period, tvb, 4, 2, ENC_LITTLE_ENDIAN);
if (tvb_reported_length(tvb) >= 8) {
proto_tree_add_item(subtree, hf_ieee802154_hie_csl_rendezvous_time, tvb, 6, 2, ENC_LITTLE_ENDIAN);
return 2 + 6;
}
return 2 + 4;
}
/**
* Dissect the Rendez-Vous Time IE (7.4.2.6)
* The IE is made of 2 fields:
* - RendezVous Time: in 802.15.4-2015, this is exactly the same field as in the CSL IE
* - Wake-Up Interval: the spec text is unclear about the field being optional or not. This dissector assumes it is
*/
static int
dissect_hie_rendezvous_time(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_tree *subtree = ieee802154_create_hie_tree(tvb, tree, hf_ieee802154_hie_rdv, ett_ieee802154_hie_rdv);
// reuse field from CSL IE
proto_tree_add_item(subtree, hf_ieee802154_hie_csl_rendezvous_time, tvb, 2, 2, ENC_LITTLE_ENDIAN);
// In 802.15.4-2015, Rendez-Vous Time IE is only present in CSL Wake-Up Frames
// Update the packet information
col_set_str(pinfo->cinfo, COL_INFO, "CSL Wake-up Frame");
col_append_fstr(pinfo->cinfo, COL_INFO, ", Rendez-Vous Time: %d", tvb_get_guint16(tvb, 2, ENC_LITTLE_ENDIAN));
// Assume Wake-Up Interval is optional. Spec says "only present [...] when macCslInterval is nonzero"
if (tvb_reported_length(tvb) >= 6) {
proto_tree_add_item(subtree, hf_ieee802154_hie_rdv_wakeup_interval, tvb, 4, 2, ENC_LITTLE_ENDIAN);
return 2 + 4;
}
return 2 + 2;
}
/**
* Dissect the Time Correction Header IE (7.4.2.7)
*
* This field is constructed by taking a signed 16-bit 2's compliment time
* correction in the range of -2048 us to 2047 us, AND'ing it with 0xfff, and
* OR'ing again with 0x8000 to indicate a negative acknowledgment.
*/
static int
dissect_hie_time_correction(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *ies_tree, void *data _U_)
{
static int * const fields[] = {
&hf_ieee802154_hie_time_correction_value,
&hf_ieee802154_nack,
NULL
};
proto_tree *tree = ieee802154_create_hie_tree(tvb, ies_tree, hf_ieee802154_hie_time_correction, ett_ieee802154_hie_time_correction);
guint16 time_sync_value = tvb_get_letohs(tvb, 2);
proto_tree_add_bitmask_with_flags(tree, tvb, 2, hf_ieee802154_hie_time_correction_time_sync_info, ett_ieee802154_header_ie,
fields, ENC_LITTLE_ENDIAN, BMT_NO_FLAGS);
if (time_sync_value & ~(0x8fff)) {
expert_add_info(pinfo, proto_tree_get_parent(tree), &ei_ieee802154_time_correction_error);
}
if (time_sync_value & 0x8000) {
proto_item_append_text(proto_tree_get_parent(ies_tree), ": NACK");
}
return 2 + 2;
}
static int
dissect_hie_global_time(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_tree *subtree = ieee802154_create_hie_tree(tvb, tree, hf_ieee802154_hie_global_time, ett_ieee802154_hie_global_time);
proto_tree_add_item(subtree, hf_ieee802154_hie_global_time_value, tvb, 2, 4, ENC_TIME_SECS|ENC_LITTLE_ENDIAN);
return 2 + 4;
}
/**
* Dissect the Vendor Specific IE (7.4.2.2)
*/
static int
dissect_hie_vendor_specific(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
proto_tree *subtree = ieee802154_create_hie_tree(tvb, tree, hf_ieee802154_hie_vendor_specific,
ett_ieee802154_hie_vendor_specific);
guint hie_length = tvb_reported_length(tvb) - 2;
guint offset = 2;
tvb_get_letoh24(tvb, offset);
proto_tree_add_item(subtree, hf_ieee802154_hie_vendor_specific_vendor_oui, tvb, offset, 3, ENC_LITTLE_ENDIAN);
offset += 3; /* adjust for vendor OUI */
hie_length -= 3;
proto_tree_add_item(subtree, hf_ieee802154_hie_vendor_specific_content, tvb, offset, hie_length, ENC_NA);
return tvb_reported_length(tvb);
}
/**
* Subdissector for Header IEs (Information Elements)
*
* Since the header is never encrypted and the payload may be encrypted,
* we dissect header and payload IEs separately.
* The termination of the Header IE tells us whether there are any
* payload IEs to follow.
*
* @param tvb the tv buffer
* @param pinfo pointer to packet information fields.
* @param tree the tree to append this item to
* @param orig_offset offset into the tvbuff to begin dissection.
* @param packet IEEE 802.15.4 packet information.
*/
static int
dissect_ieee802154_header_ie(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, guint orig_offset, ieee802154_packet *packet)
{
// GCC emits a spurious -Wclobbered if offset is used as function parameter (even with volatile)
volatile guint offset = orig_offset;
proto_item *ies_item = proto_tree_add_item(tree, hf_ieee802154_header_ies, tvb, offset, -1, ENC_NA);
proto_tree *ies_tree = proto_item_add_subtree(ies_item, ett_ieee802154_header_ie);
volatile gint remaining = tvb_reported_length_remaining(tvb, offset) - IEEE802154_MIC_LENGTH(packet->security_level);
// Loop as long as we don't:
//
// 1) run out of data;
// 2) get a header termination IE.
//
// See Table 9-6 "Termination IE inclusion rules" of IEEE Std 802.15.4-2015;
// unless we have no payload IEs and no payload data, we *have* to have
// a header termination IE to end the list of header IEs, so the "run out
// of data" check needs only to check whether there's any data
// left in the tvbuff (which has already had the FCS removed from
// it), other than a MIC if present - if we have no payload IEs or
// payload data, there might still be a MIC to Check the Message
// Integrity.
//
// XXX - we should make sure we have enough data left for an IE header,
// and report a malformed frame if not, and if we do have enough data,
// make sure we have enough data for the full IE, and report a malformed
// frame if not.
do {
volatile int consumed = 0;
guint16 ie_header = tvb_get_letohs(tvb, offset);
guint16 id = (guint16) ((ie_header & IEEE802154_HEADER_IE_ID_MASK) >> 7);
guint16 length = (guint16) (ie_header & IEEE802154_HEADER_IE_LENGTH_MASK);
tvbuff_t *ie_tvb = tvb_new_subset_length(tvb, offset, 2 + length);
if (id == IEEE802154_HEADER_IE_HT1 || id == IEEE802154_HEADER_IE_HT2) {
int hf_term_ie = (id == IEEE802154_HEADER_IE_HT1) ? hf_ieee802154_hie_ht1 : hf_ieee802154_hie_ht2;
ieee802154_create_hie_tree(ie_tvb, ies_tree, hf_term_ie, ett_ieee802154_hie_ht);
consumed = 2;
} else {
TRY {
consumed = dissector_try_uint_new(header_ie_dissector_table, id, ie_tvb, pinfo, ies_tree, FALSE, packet);
if (consumed == 0) {
proto_tree *subtree = ieee802154_create_hie_tree(ie_tvb, ies_tree, hf_ieee802154_hie_unsupported,
ett_ieee802154_hie_unsupported);
proto_tree_add_item(subtree, hf_ieee802154_ie_unknown_content, ie_tvb, 2, length, ENC_NA);
consumed = 2 + length;
if (ie_header & IEEE802154_PAYLOAD_IE_TYPE_MASK) {
expert_add_info(pinfo, ies_tree, &ei_ieee802154_payload_ie_in_header);
} else {
expert_add_info(pinfo, ies_tree, &ei_ieee802154_ie_unsupported_id);
}
}
}
CATCH_ALL {
show_exception(tvb, pinfo, ies_tree, EXCEPT_CODE, GET_MESSAGE);
consumed = 2 + length;
}
ENDTRY;
}
if (consumed < 2 + length) {
proto_tree_add_item(ies_tree, hf_ieee802154_ie_unknown_content, ie_tvb, consumed, 2 + length - consumed, ENC_NA);
expert_add_info(pinfo, ies_item, &ei_ieee802154_ie_unknown_extra_content);
}
offset += 2 + length;
remaining -= 2 + length;
if (id == IEEE802154_HEADER_IE_HT1 || id == IEEE802154_HEADER_IE_HT2) {
packet->payload_ie_present = (id == IEEE802154_HEADER_IE_HT1);
break;
}
} while (remaining > 0);
proto_item_set_len(ies_item, offset - orig_offset);
return offset - orig_offset;
}
static int
dissect_802154_eb_filter(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void *data _U_)
{
guint8 filter;
guint8 attr_len;
proto_tree *subtree;
guint offset = 0;
static int * const fields_eb_filter[] = {
&hf_ieee802154_psie_eb_filter_pjoin,
&hf_ieee802154_psie_eb_filter_lqi,
&hf_ieee802154_psie_eb_filter_percent,
&hf_ieee802154_psie_eb_filter_attr_id,
/* reserved 5-7 */
NULL
};
subtree = ieee802154_create_psie_tree(tvb, tree, hf_ieee802154_psie_eb_filter, ett_ieee802154_eb_filter);
offset += 2;
filter = tvb_get_guint8(tvb, offset);
proto_tree_add_bitmask(subtree, tvb, offset, hf_ieee802154_psie_eb_filter,
ett_ieee802154_eb_filter_bitmap, fields_eb_filter, ENC_NA);
offset++;
if (filter & IEEE802154_MLME_PSIE_EB_FLT_LQI) {
proto_tree_add_item(subtree, hf_ieee802154_psie_eb_filter_lqi_min, tvb, offset, 1, ENC_NA);
offset++;
}
if (filter & IEEE802154_MLME_PSIE_EB_FLT_PERCENT) {
proto_tree_add_item(subtree, hf_ieee802154_psie_eb_filter_percent_prob, tvb, offset, 1, ENC_NA);
offset++;
}
attr_len = (guint8) ((filter & IEEE802154_MLME_PSIE_EB_FLT_ATTR_LEN) >> 3);
if (attr_len) {
/* just display in hex until we know how to decode */
proto_tree_add_item(subtree, hf_ieee802154_psie_eb_filter_attr_id_bitmap, tvb, offset, attr_len, ENC_LITTLE_ENDIAN);
offset += attr_len;
}
return offset;
}
/**
* Subdissector for MLME IEs
*/
static int
dissect_pie_mlme(tvbuff_t *tvb, packet_info *pinfo, proto_tree *ies_tree, void *data)
{
proto_tree *tree = ieee802154_create_pie_tree(tvb, ies_tree, hf_ieee802154_mlme, ett_ieee802154_mlme);
volatile guint offset = 2;
while (tvb_reported_length_remaining(tvb, offset) > 1) {
guint16 psie_ie = tvb_get_letohs(tvb, offset);
volatile guint16 psie_id;
tvbuff_t *volatile psie_tvb;
if (psie_ie & IEEE802154_PSIE_TYPE_MASK) {
/* long format: Table 7-17-Sub-ID allocation for long format */
psie_id = (guint16) ((psie_ie & IEEE802154_PSIE_ID_MASK_LONG) >> 11);
psie_tvb = tvb_new_subset_length(tvb, offset, (psie_ie & IEEE802154_PSIE_LENGTH_MASK_LONG) + 2);
}
else {
/* short format: Table 7-16-Sub-ID allocation for short format */
psie_id = (guint16) ((psie_ie & IEEE802154_PSIE_ID_MASK_SHORT) >> 8);
psie_tvb = tvb_new_subset_length(tvb, offset, (psie_ie & IEEE802154_PSIE_LENGTH_MASK_SHORT) + 2);
}
offset += tvb_reported_length(psie_tvb);
/* Pass the tvb off to a subdissector. */
TRY {
guint consumed = dissector_try_uint_new(mlme_ie_dissector_table, psie_id, psie_tvb, pinfo, tree, FALSE, data);
if (consumed == 0) {
proto_tree *subtree = ieee802154_create_psie_tree(psie_tvb, tree, hf_ieee802154_mlme_ie_unsupported, ett_ieee802154_mlme_unsupported);
if (tvb_reported_length(psie_tvb) > 2) {
proto_tree_add_item(subtree, hf_ieee802154_mlme_ie_data, psie_tvb, 2, -1, ENC_NA);
}
expert_add_info(pinfo, subtree, &ei_ieee802154_ie_unsupported_id);
}
}
CATCH_ALL {
show_exception(tvb, pinfo, ies_tree, EXCEPT_CODE, GET_MESSAGE);
}
ENDTRY;
}
return offset;
}
/**
* Subdissector for MPX IEs (IEEE 802.15.9)
*/
static int
dissect_mpx_ie(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *ies_tree, void *data _U_)
{
static int * const fields[] = {
&hf_ieee802159_mpx_transaction_id,
&hf_ieee802159_mpx_transfer_type,
NULL
};
static int * const fields_compressed_multiplex_id[] = {
&hf_ieee802159_mpx_transaction_id_as_multiplex_id,
&hf_ieee802159_mpx_transfer_type,
NULL
};
proto_tree *tree = ieee802154_create_pie_tree(tvb, ies_tree, hf_ieee802159_mpx, ett_ieee802159_mpx);
guint offset = 2;
guint8 transaction_control = tvb_get_guint8(tvb, offset);
guint8 transfer_type = (guint8) (transaction_control & IEEE802159_MPX_TRANSFER_TYPE_MASK);
guint8 transaction_id = (guint8) ((transaction_control & IEEE802159_MPX_TRANSACTION_ID_MASK) >> IEEE802159_MPX_TRANSACTION_ID_SHIFT);
gint32 multiplex_id = -1;
guint8 fragment_number;
if (transfer_type == IEEE802159_MPX_FULL_FRAME_NO_MUXID) {
proto_tree_add_bitmask_with_flags(tree, tvb, offset, hf_ieee802159_mpx_transaction_control, ett_ieee802159_mpx_transaction_control,
fields_compressed_multiplex_id, ENC_LITTLE_ENDIAN, BMT_NO_FLAGS);
multiplex_id = transaction_id;
} else {
proto_tree_add_bitmask_with_flags(tree, tvb, offset, hf_ieee802159_mpx_transaction_control, ett_ieee802159_mpx_transaction_control,
fields, ENC_LITTLE_ENDIAN, BMT_NO_FLAGS);
}
offset += 1;
switch (transfer_type) { // cf. IEEE 802.15.9 Table 18 - Summary of different MPX IE formats
case IEEE802159_MPX_FULL_FRAME:
multiplex_id = tvb_get_letohs(tvb, offset);
proto_tree_add_uint_format_value(tree, hf_ieee802159_mpx_multiplex_id, tvb, offset, 2, multiplex_id, "%s (0x%04x)",
val_to_str_const(multiplex_id, (multiplex_id > 1500) ? etype_vals : mpx_multiplex_id_vals, "Unknown"), multiplex_id);
offset += 2;
break;
case IEEE802159_MPX_FULL_FRAME_NO_MUXID:
break; // nothing to do
case IEEE802159_MPX_NON_LAST_FRAGMENT:
fragment_number = tvb_get_guint8(tvb, offset);
proto_tree_add_item(tree, hf_ieee802159_mpx_fragment_number, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset += 1;
if (fragment_number == 0) {
proto_tree_add_item(tree, hf_ieee802159_mpx_total_frame_size, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
multiplex_id = tvb_get_letohs(tvb, offset);
proto_tree_add_item(tree, hf_ieee802159_mpx_multiplex_id, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
}
break;
case IEEE802159_MPX_LAST_FRAGMENT:
proto_tree_add_item(tree, hf_ieee802159_mpx_fragment_number, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset += 1;
break;
case IEEE802159_MPX_ABORT:
if (tvb_reported_length_remaining(tvb, offset) == 2) {
proto_tree_add_item(tree, hf_ieee802159_mpx_total_frame_size, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
}
return offset;
default: // reserved values -> warning and return
expert_add_info(pinfo, proto_tree_get_parent(tree), &ei_ieee802159_mpx_invalid_transfer_type);
return offset;
}
// TODO: reassembly
dissector_handle_t dissector = NULL;
if (multiplex_id == IEEE802159_MPX_MULTIPLEX_ID_KMP) {
guint8 kmp_id = tvb_get_guint8(tvb, offset);
proto_tree_add_item(tree, hf_ieee802159_mpx_kmp_id, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset += 1;
switch (kmp_id) {
case IEEE802159_MPX_KMP_ID_IEEE8021X:
case IEEE802159_MPX_KMP_ID_IEEE80211_4WH:
case IEEE802159_MPX_KMP_ID_IEEE80211_GKH:
dissector = eapol_handle;
break;
// TODO
case IEEE802159_MPX_KMP_ID_HIP:
case IEEE802159_MPX_KMP_ID_IKEV2:
case IEEE802159_MPX_KMP_ID_PANA:
case IEEE802159_MPX_KMP_ID_DRAGONFLY:
case IEEE802159_MPX_KMP_ID_ETSI_TS_102_887_2:
expert_add_info(pinfo, proto_tree_get_parent(tree), &ei_ieee802159_mpx_unsupported_kmp);
break;
case IEEE802159_MPX_KMP_ID_VENDOR_SPECIFIC:
proto_tree_add_item(tree, hf_ieee802159_mpx_kmp_vendor_oui, tvb, offset, 3, ENC_BIG_ENDIAN);
offset += 3;
break;
// Unknown
default:
expert_add_info(pinfo, proto_tree_get_parent(tree), &ei_ieee802159_mpx_unknown_kmp);
}
}
else if (multiplex_id == IEEE802159_MPX_MULTIPLEX_ID_WISUN) {
guint8 subid = tvb_get_guint8(tvb, offset);
proto_tree_add_item(tree, hf_ieee802159_mpx_wisun_subid, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset += 1;
switch (subid) {
case IEEE802159_MPX_WISUN_SUBID_6LOWPAN:
dissector = lowpan_handle;
break;
case IEEE802159_MPX_WISUN_SUBID_SECURITY:
dissector = wisun_sec_handle;
break;
case IEEE802159_MPX_WISUN_SUBID_MHDS:
expert_add_info(pinfo, proto_tree_get_parent(tree), &ei_ieee802159_mpx_unsupported_kmp);
break;
default:
expert_add_info(pinfo, proto_tree_get_parent(tree), &ei_ieee802159_mpx_unknown_kmp);
break;
}
}
else if (multiplex_id > 1500) {
dissector = dissector_get_uint_handle(ethertype_table, (guint)multiplex_id);
}
if (transfer_type == IEEE802159_MPX_FULL_FRAME || transfer_type == IEEE802159_MPX_FULL_FRAME_NO_MUXID) {
tvbuff_t * payload = tvb_new_subset_remaining(tvb, offset);
if (dissector) {
call_dissector(dissector, payload, pinfo, proto_tree_get_root(tree)); // exceptions are caught in our caller
} else {
call_data_dissector(payload, pinfo, proto_tree_get_root(tree));
}
} else {
proto_tree_add_item(tree, hf_ieee802159_mpx_fragment, tvb, offset, tvb_reported_length_remaining(tvb, offset), ENC_NA);
}
offset = tvb_reported_length(tvb);
return offset;
}
/**
* Subdissector for Vendor Specific Payload IEs (Information Elements)
*/
static int
dissect_pie_vendor(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *ies_tree, void *data _U_)
{
proto_tree *tree = ieee802154_create_pie_tree(tvb, ies_tree, hf_ieee802154_pie_vendor, ett_ieee802154_pie_vendor);
guint offset = 2;
guint pie_length = tvb_reported_length(tvb) - 2;
tvbuff_t *next_tvb;
guint32 vendor_oui;
vendor_oui = tvb_get_letoh24(tvb, offset);
proto_tree_add_item(tree, hf_ieee802154_pie_vendor_oui, tvb, offset, 3, ENC_LITTLE_ENDIAN);
offset += 3; /* adjust for vendor OUI */
pie_length -= 3;
next_tvb = tvb_new_subset_length(tvb, offset, pie_length);
switch (vendor_oui) {
case OUI_ZIGBEE:
call_dissector_with_data(zigbee_ie_handle, next_tvb, pinfo, tree, &pie_length);
break;
default:
call_data_dissector(next_tvb, pinfo, tree);
break;
}
return tvb_reported_length(tvb);
}
/**
* Subdissector for Payload IEs (Information Elements)
*
* @param tvb the tv buffer
* @param pinfo pointer to packet information fields.
* @param tree the tree to append this item to
* @param orig_offset offset into the tvbuff to begin dissection.
* @param packet IEEE 802.15.4 packet information.
*/
static int
dissect_ieee802154_payload_ie(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint orig_offset, ieee802154_packet *packet)
{
// GCC emits a spurious -Wclobbered if offset is used as function parameter (even with volatile)
volatile guint offset = orig_offset;
proto_item *ies_item = proto_tree_add_item(tree, hf_ieee802154_payload_ies, tvb, offset, -1, ENC_NA);
proto_tree *ies_tree = proto_item_add_subtree(ies_item, ett_ieee802154_payload_ie);
do {
volatile int consumed = 0;
guint16 ie_header = tvb_get_letohs(tvb, offset);
guint16 id = (guint16) ((ie_header & IEEE802154_PAYLOAD_IE_ID_MASK) >> 11);
volatile guint16 length = (guint16) (ie_header & IEEE802154_PAYLOAD_IE_LENGTH_MASK);
tvbuff_t *ie_tvb = tvb_new_subset_length(tvb, offset, 2 + length);
if (id == IEEE802154_PAYLOAD_IE_TERMINATION) {
ieee802154_create_pie_tree(ie_tvb, ies_tree, hf_ieee802154_pie_termination, ett_ieee802154_pie_termination);
consumed = 2;
} else {
TRY {
consumed = dissector_try_uint_new(payload_ie_dissector_table, id, ie_tvb, pinfo, ies_tree, FALSE, packet);
if (consumed == 0) {
proto_tree *subtree = ieee802154_create_pie_tree(ie_tvb, ies_tree, hf_ieee802154_pie_unsupported,
ett_ieee802154_pie_unsupported);
proto_tree_add_item(subtree, hf_ieee802154_ie_unknown_content, ie_tvb, 2, length, ENC_NA);
consumed = 2 + length;
expert_add_info(pinfo, proto_tree_get_parent(subtree), &ei_ieee802154_ie_unsupported_id);
}
}
CATCH_ALL {
show_exception(tvb, pinfo, ies_tree, EXCEPT_CODE, GET_MESSAGE);
consumed = 2 + length;
}
ENDTRY;
}
if (consumed < 2 + length) {
proto_tree_add_item(ies_tree, hf_ieee802154_ie_unknown_content, ie_tvb, consumed, 2 + length - consumed, ENC_NA);
expert_add_info(pinfo, ies_item, &ei_ieee802154_ie_unknown_extra_content);
}
offset += 2 + length;
if (id == IEEE802154_PAYLOAD_IE_TERMINATION) {
break;
}
} while (tvb_reported_length_remaining(tvb, offset) > 1);
proto_item_set_len(ies_item, offset - orig_offset);
return offset - orig_offset;
}
static const true_false_string tfs_cinfo_device_type = { "FFD", "RFD" };
static const true_false_string tfs_cinfo_power_src = { "AC/Mains Power", "Battery" };
/**
* Command subdissector routine for the Association request command.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields.
* @param tree pointer to protocol tree.
* @param packet IEEE 802.15.4 packet information.
*/
static void
dissect_ieee802154_assoc_req(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet)
{
guint8 cap;
proto_tree *subtree;
static int * const capability[] = {
&hf_ieee802154_cinfo_alt_coord,
&hf_ieee802154_cinfo_device_type,
&hf_ieee802154_cinfo_power_src,
&hf_ieee802154_cinfo_idle_rx,
&hf_ieee802154_cinfo_sec_capable,
&hf_ieee802154_cinfo_alloc_addr,
NULL
};
cap = tvb_get_guint8(tvb, 0);
col_append_fstr(pinfo->cinfo, COL_INFO, ", %s", tfs_get_string(cap & IEEE802154_CMD_CINFO_DEVICE_TYPE, &tfs_cinfo_device_type));
/* Create a subtree for this command frame. */
subtree = proto_tree_add_subtree(tree, tvb, 0, 1, ett_ieee802154_cmd, NULL,
val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command"));
/* Get and display capability info. */
proto_tree_add_bitmask_list(subtree, tvb, 0, 1, capability, ENC_NA);
/* Call the data dissector for any leftover bytes. */
if (tvb_reported_length(tvb) > 1) {
call_data_dissector(tvb_new_subset_remaining(tvb, 1), pinfo, tree);
}
} /* dissect_ieee802154_assoc_req */
/**
* Command subdissector routine for the Association response command.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields.
* @param tree pointer to protocol tree.
* @param packet IEEE 802.15.4 packet information.
*/
static void
dissect_ieee802154_assoc_rsp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet)
{
proto_tree *subtree;
proto_item *ti;
guint16 short_addr;
guint8 status;
guint offset = 0;
/* Create a subtree for this command frame. */
subtree = proto_tree_add_subtree(tree, tvb, offset, 3, ett_ieee802154_cmd, NULL,
val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command"));
/* Get and display the short address. */
short_addr = tvb_get_letohs(tvb, offset);
proto_tree_add_uint(subtree, hf_ieee802154_assoc_addr, tvb, offset, 2, short_addr);
offset += 2;
/* Get and display the status. */
status = tvb_get_guint8(tvb, offset);
if (tree) {
ti = proto_tree_add_uint(subtree, hf_ieee802154_assoc_status, tvb, offset, 1, status);
if (status == IEEE802154_CMD_ASRSP_AS_SUCCESS) proto_item_append_text(ti, " (Association Successful)");
else if (status == IEEE802154_CMD_ASRSP_PAN_FULL) proto_item_append_text(ti, " (PAN Full)");
else if (status == IEEE802154_CMD_ASRSP_PAN_DENIED) proto_item_append_text(ti, " (Association Denied)");
else proto_item_append_text(ti, " (Reserved)");
}
offset += 1;
/* Update the info column. */
if (status == IEEE802154_CMD_ASRSP_AS_SUCCESS) {
/* Association was successful. */
if (packet->src_addr_mode != IEEE802154_FCF_ADDR_SHORT) {
col_append_fstr(pinfo->cinfo, COL_INFO, ", PAN: 0x%04x", packet->dst_pan);
}
if (short_addr != IEEE802154_NO_ADDR16) {
col_append_fstr(pinfo->cinfo, COL_INFO, " Addr: 0x%04x", short_addr);
}
}
else {
/* Association was unsuccessful. */
col_append_str(pinfo->cinfo, COL_INFO, ", Unsuccessful");
}
/* Update the address table. */
if ((status == IEEE802154_CMD_ASRSP_AS_SUCCESS) && (short_addr != IEEE802154_NO_ADDR16)) {
ieee802154_addr_update(&ieee802154_map, short_addr, packet->dst_pan, packet->dst64,
pinfo->current_proto, pinfo->num);
}
/* Call the data dissector for any leftover bytes. */
if (tvb_captured_length(tvb) > offset) {
call_data_dissector(tvb_new_subset_remaining(tvb, offset), pinfo, tree);
}
} /* dissect_ieee802154_assoc_rsp */
/**
* Command subdissector routine for the Disassociate command.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields.
* @param tree pointer to protocol tree.
* @param packet IEEE 802.15.4 packet information.
*/
static void
dissect_ieee802154_disassoc(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet)
{
proto_tree *subtree;
proto_item *ti;
guint8 reason;
/* Create a subtree for this command frame. */
subtree = proto_tree_add_subtree(tree, tvb, 0, 1, ett_ieee802154_cmd, NULL,
val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command"));
/* Get and display the disassociation reason. */
reason = tvb_get_guint8(tvb, 0);
if (tree) {
ti = proto_tree_add_uint(subtree, hf_ieee802154_disassoc_reason, tvb, 0, 1, reason);
switch (reason) {
case 0x01:
proto_item_append_text(ti, " (Coordinator requests device to leave)");
break;
case 0x02:
proto_item_append_text(ti, " (Device wishes to leave)");
break;
default:
proto_item_append_text(ti, " (Reserved)");
break;
} /* switch */
}
if (!PINFO_FD_VISITED(pinfo)) {
/* Update the address tables */
if ( packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT ) {
ieee802154_long_addr_invalidate(packet->dst64, pinfo->num);
} else if ( packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT ) {
ieee802154_short_addr_invalidate(packet->dst16, packet->dst_pan, pinfo->num);
}
}
/* Call the data dissector for any leftover bytes. */
if (tvb_captured_length(tvb) > 1) {
call_data_dissector(tvb_new_subset_remaining(tvb, 1), pinfo, tree);
}
} /* dissect_ieee802154_disassoc */
/**
* Command subdissector routine for the Coordinator Realignment command.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields.
* @param tree pointer to protocol tree.
* @param packet IEEE 802.15.4 packet information.
*/
static void
dissect_ieee802154_realign(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet)
{
proto_tree *subtree;
proto_item *subitem;
guint16 pan_id;
guint16 coord_addr;
guint8 channel;
guint16 short_addr;
guint offset = 0;
/* Create a subtree for this command frame. */
subtree = proto_tree_add_subtree(tree, tvb, offset, 0, ett_ieee802154_cmd, &subitem,
val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command"));
/* Get and display the command PAN ID. */
pan_id = tvb_get_letohs(tvb, offset);
proto_tree_add_uint(subtree, hf_ieee802154_realign_pan, tvb, offset, 2, pan_id);
col_append_fstr(pinfo->cinfo, COL_INFO, ", PAN: 0x%04x", pan_id);
offset += 2;
/* Get and display the coordinator address. */
coord_addr = tvb_get_letohs(tvb, offset);
proto_tree_add_uint(subtree, hf_ieee802154_realign_caddr, tvb, offset, 2, coord_addr);
col_append_fstr(pinfo->cinfo, COL_INFO, ", Coordinator: 0x%04x", coord_addr);
offset += 2;
/* Get and display the channel. */
channel = tvb_get_guint8(tvb, offset);
proto_tree_add_uint(subtree, hf_ieee802154_realign_channel, tvb, offset, 1, channel);
col_append_fstr(pinfo->cinfo, COL_INFO, ", Channel: %u", channel);
offset += 1;
/* Get and display the short address. */
short_addr = tvb_get_letohs(tvb, offset);
if (tree) proto_tree_add_uint(subtree, hf_ieee802154_realign_addr, tvb, offset, 2, short_addr);
if ((packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)
&& (short_addr != IEEE802154_NO_ADDR16)) {
col_append_fstr(pinfo->cinfo, COL_INFO, ", Addr: 0x%04x", short_addr);
}
offset += 2;
/* Update the address table. */
if ((short_addr != IEEE802154_NO_ADDR16) && (packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT)) {
ieee802154_addr_update(&ieee802154_map, short_addr, packet->dst_pan, packet->dst64,
pinfo->current_proto, pinfo->num);
}
/* Get and display the channel page, if it exists. Added in IEEE802.15.4-2006 */
if (tvb_bytes_exist(tvb, offset, 1)) {
guint8 channel_page = tvb_get_guint8(tvb, offset);
if (tree) proto_tree_add_uint(subtree, hf_ieee802154_realign_channel_page, tvb, offset, 1, channel_page);
offset += 1;
}
/* Fix the length of the command subtree. */
if (tree) {
proto_item_set_len(subitem, offset);
}
/* Call the data dissector for any leftover bytes. */
if (tvb_captured_length(tvb) > offset) {
call_data_dissector(tvb_new_subset_remaining(tvb, offset), pinfo, tree);
}
} /* dissect_ieee802154_realign */
static const true_false_string tfs_gtsreq_dir = { "Receive", "Transmit" };
static const true_false_string tfs_gtsreq_type= { "Allocate GTS", "Deallocate GTS" };
/**
* Command subdissector routine for the GTS request command.
*
* Assumes that COL_INFO will be set to the command name,
* command name will already be appended to the command subtree
* and protocol root. In addition, assumes that the command ID
* has already been parsed.
*
* @param tvb pointer to buffer containing raw packet.
* @param pinfo pointer to packet information fields (unused).
* @param tree pointer to protocol tree.
* @param packet IEEE 802.15.4 packet information (unused).
*/
static void
dissect_ieee802154_gtsreq(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet)
{
proto_tree *subtree;
static int * const characteristics[] = {
&hf_ieee802154_gtsreq_len,
&hf_ieee802154_gtsreq_dir,
&hf_ieee802154_gtsreq_type,
NULL
};
/* Create a subtree for this command frame. */
subtree = proto_tree_add_subtree(tree, tvb, 0, 1, ett_ieee802154_cmd, NULL,
val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command"));
proto_tree_add_bitmask_list(subtree, tvb, 0, 1, characteristics, ENC_NA);
/* Call the data dissector for any leftover bytes. */
if (tvb_reported_length(tvb) > 1) {
call_data_dissector(tvb_new_subset_remaining(tvb, 1), pinfo, tree);
}
} /* dissect_ieee802154_gtsreq */
/**
* Subdissector routine for IEEE 802.15.4 commands
*
* @param tvb pointer to buffer containing the command payload
* @param pinfo pointer to packet information fields
* @param tree pointer to the protocol tree
* @param packet IEEE 802.15.4 packet information
*/
static void
dissect_ieee802154_command(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, ieee802154_packet *packet)
{
if ((packet->version == IEEE802154_VERSION_2015) && (packet->frame_type == IEEE802154_FCF_CMD)) {
/* In 802.15.4e and later the Command Id follows the Payload IEs. */
packet->command_id = tvb_get_guint8(tvb, 0);
proto_tree_add_uint(tree, hf_ieee802154_cmd_id, tvb, 0, 1, packet->command_id);
tvb = tvb_new_subset_remaining(tvb, 1);
/* Display the command identifier in the info column. */
if ((packet->version == IEEE802154_VERSION_2015) && (packet->command_id == IEEE802154_CMD_BEACON_REQ)) {
col_set_str(pinfo->cinfo, COL_INFO, "Enhanced Beacon Request");
}
else {
col_set_str(pinfo->cinfo, COL_INFO, val_to_str_const(packet->command_id, ieee802154_cmd_names, "Unknown Command"));
}
}
switch (packet->command_id) {
case IEEE802154_CMD_ASSOC_REQ:
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id,
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) &&
(packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE));
dissect_ieee802154_assoc_req(tvb, pinfo, tree, packet);
break;
case IEEE802154_CMD_ASSOC_RSP:
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id,
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) &&
(packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT));
dissect_ieee802154_assoc_rsp(tvb, pinfo, tree, packet);
break;
case IEEE802154_CMD_DISASSOC_NOTIFY:
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id,
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) &&
(packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT));
dissect_ieee802154_disassoc(tvb, pinfo, tree, packet);
break;
case IEEE802154_CMD_DATA_RQ:
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, packet->src_addr_mode != IEEE802154_FCF_ADDR_NONE);
/* No payload expected. */
break;
case IEEE802154_CMD_PANID_CONFLICT:
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id,
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) &&
(packet->dst_addr_mode == IEEE802154_FCF_ADDR_EXT));
/* No payload expected. */
break;
case IEEE802154_CMD_ORPHAN_NOTIFY:
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id,
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) &&
(packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) &&
(packet->dst16 == IEEE802154_BCAST_ADDR) &&
(packet->src_pan == IEEE802154_BCAST_PAN) &&
(packet->dst_pan == IEEE802154_BCAST_PAN));
/* No payload expected. */
break;
case IEEE802154_CMD_BEACON_REQ:
if ((packet->version == IEEE802154_VERSION_2003) || (packet->version == IEEE802154_VERSION_2006)) {
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id,
(packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) &&
(packet->src_addr_mode == IEEE802154_FCF_ADDR_NONE) &&
(packet->dst16 == IEEE802154_BCAST_ADDR) &&
(packet->dst_pan == IEEE802154_BCAST_PAN));
}
/* No payload expected. */
break;
case IEEE802154_CMD_COORD_REALIGN:
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id,
(packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) &&
(packet->dst_pan == IEEE802154_BCAST_PAN) &&
(packet->dst_addr_mode != IEEE802154_FCF_ADDR_NONE));
if (packet->dst_addr_mode == IEEE802154_FCF_ADDR_SHORT) {
/* If directed to a 16-bit address, check that it is being broadcast. */
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id, packet->dst16 == IEEE802154_BCAST_ADDR);
}
dissect_ieee802154_realign(tvb, pinfo, tree, packet);
break;
case IEEE802154_CMD_GTS_REQ:
/* Check that the addressing is correct for this command type. */
IEEE802154_CMD_ADDR_CHECK(pinfo, tree, packet->command_id,
(packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT) &&
(packet->dst_addr_mode == IEEE802154_FCF_ADDR_NONE) &&
(packet->src16 != IEEE802154_BCAST_ADDR) &&
(packet->src16 != IEEE802154_NO_ADDR16));
dissect_ieee802154_gtsreq(tvb, pinfo, tree, packet);
break;
case IEEE802154_CMD_VENDOR_SPECIFIC:
{
guint32 oui = tvb_get_ntoh24(tvb, 0);
if (!dissector_try_uint_new(cmd_vendor_dissector_table, oui, tvb, pinfo, tree, FALSE, packet)) {
proto_tree_add_item(tree, hf_ieee802154_cmd_vendor_oui, tvb, 0, 3, ENC_BIG_ENDIAN);
call_data_dissector(tvb_new_subset_remaining(tvb, 3), pinfo, tree);
}
break;
}
case IEEE802154_CMD_TRLE_MGMT_REQ:
case IEEE802154_CMD_TRLE_MGMT_RSP:
case IEEE802154_CMD_DSME_ASSOC_REQ:
case IEEE802154_CMD_DSME_ASSOC_RSP:
case IEEE802154_CMD_DSME_GTS_REQ:
case IEEE802154_CMD_DSME_GTS_RSP:
case IEEE802154_CMD_DSME_GTS_NOTIFY:
case IEEE802154_CMD_DSME_INFO_REQ:
case IEEE802154_CMD_DSME_INFO_RSP:
case IEEE802154_CMD_DSME_BEACON_ALLOC_NOTIFY:
case IEEE802154_CMD_DSME_BEACON_COLL_NOTIFY:
case IEEE802154_CMD_DSME_LINK_REPORT:
case IEEE802154_CMD_RIT_DATA_REQ:
case IEEE802154_CMD_DBS_REQ:
case IEEE802154_CMD_DBS_RSP:
case IEEE802154_CMD_RIT_DATA_RSP:
/* TODO add support for these commands, for now if anything remains, dump it */
expert_add_info(pinfo, tree, &ei_ieee802154_unsupported_cmd);
if (tvb_captured_length_remaining(tvb, 0) > 0) {
call_data_dissector(tvb, pinfo, tree);
}
break;
default:
expert_add_info(pinfo, tree, &ei_ieee802154_unknown_cmd);
if (tvb_captured_length_remaining(tvb, 0) > 0) {
call_data_dissector(tvb, pinfo, tree);
}
} /* switch */
} /* dissect_ieee802154_command */
/**
* IEEE 802.15.4 decryption algorithm
* @param tvb IEEE 802.15.4 packet, not including the FCS or metadata trailer.
* @param pinfo Packet info structure.
* @param offset Offset where the ciphertext 'c' starts.
* @param packet IEEE 802.15.4 packet information.
* @return decrypted payload.
*/
static tvbuff_t *
dissect_ieee802154_decrypt(tvbuff_t *tvb,
guint offset,
packet_info *pinfo,
ieee802154_packet *packet,
ieee802154_decrypt_info_t* decrypt_info)
{
tvbuff_t *ptext_tvb;
gboolean have_mic = FALSE;
guint64 srcAddr = 0;
unsigned char tmp[IEEE802154_CIPHER_SIZE];
guint M;
gint captured_len;
gint reported_len;
ieee802154_hints_t *ieee_hints;
gchar *generic_nonce_ptr = NULL;
gchar generic_nonce[13];
ieee_hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_ieee802154, 0);
/* Get the captured and on-the-air length of the payload. */
M = IEEE802154_MIC_LENGTH(packet->security_level);
*decrypt_info->rx_mic_length = M;
/* Is the MIC larger than the total amount of data? */
reported_len = tvb_reported_length_remaining(tvb, offset) - M;
if (reported_len < 0) {
/* Yes. Give up. */
*decrypt_info->status = DECRYPT_PACKET_TOO_SMALL;
return NULL;
}
/* Check whether the payload is truncated by a snapshot length. */
if (tvb_bytes_exist(tvb, offset, reported_len)) {
/* It's not, so we have all of the payload. */
captured_len = reported_len;
}
else {
/*
* It is, so we don't have all of the payload - and we don't
* have the MIC, either, as that comes after the payload.
* As the MIC isn't part of the captured data - the captured
* data was cut short before the first byte of the MIC - we
* don't subtract the length of the MIC from the amount of
* captured data.
*/
captured_len = tvb_captured_length_remaining(tvb, offset);
}
/* Check if the MIC is present in the captured data. */
have_mic = tvb_bytes_exist(tvb, offset + reported_len, M);
if (have_mic) {
/* It is - save a copy of it. */
tvb_memcpy(tvb, decrypt_info->rx_mic, offset + reported_len, M);
}
/* We need the extended source address. */
if ((packet->key_index == IEEE802154_THR_WELL_KNOWN_KEY_INDEX) &&
(packet->key_source.addr32 == IEEE802154_THR_WELL_KNOWN_KEY_SRC))
{
/* Use the well-known extended address */
srcAddr = IEEE802154_THR_WELL_KNOWN_EXT_ADDR;
} else {
if (packet->src_addr_mode == IEEE802154_FCF_ADDR_EXT) {
/* The source EUI-64 is included in the headers. */
srcAddr = packet->src64;
}
else if (packet->src_addr_mode == IEEE802154_FCF_ADDR_SHORT && packet->frame_counter_suppression) {
/* In TSCH mode, the source address is a combination of 802.15 CID, PAN ID and Short Address */
srcAddr = IEEE80215_CID << 40;
srcAddr |= ((guint64)packet->src_pan & 0xffff) << 16;
srcAddr |= packet->src16;
}
else if (ieee_hints && ieee_hints->map_rec && ieee_hints->map_rec->addr64) {
/* Use the hint */
srcAddr = ieee_hints->map_rec->addr64;
}
else {
/* Lookup failed. */
*decrypt_info->status = DECRYPT_PACKET_NO_EXT_SRC_ADDR;
return NULL;
}
}
/*
* CCM* - CTR mode payload encryption
*
*/
/* 802.15.4-2015 TSCH mode */
if (packet->frame_counter_suppression) {
tsch_ccm_init_nonce(srcAddr, packet->asn, generic_nonce);
generic_nonce_ptr = generic_nonce;
}
/* Create the CCM* initial block for decryption (Adata=0, M=0, counter=0). */
if (packet->version == IEEE802154_VERSION_2003)
ccm_init_block(tmp, FALSE, 0, srcAddr, packet->frame_counter, packet->key_sequence_counter, 0, NULL);
else
ccm_init_block(tmp, FALSE, 0, srcAddr, packet->frame_counter, packet->security_level, 0, generic_nonce_ptr);
/*
* If the payload is encrypted, so that it's the ciphertext, and we
* have at least one byte of it in the captured data, decrypt the
* ciphertext, and place the plaintext in a new tvb.
*/
if (IEEE802154_IS_ENCRYPTED(packet->security_level) && captured_len) {
guint8 *text;
/*
* Make a copy of the ciphertext in heap memory.
*
* We will decrypt the message in-place and then use the buffer as the
* real data for the new tvb.
*/
text = (guint8 *)tvb_memdup(pinfo->pool, tvb, offset, captured_len);
/* Perform CTR-mode transformation. */
if (!ccm_ctr_encrypt(decrypt_info->key, tmp, decrypt_info->rx_mic, text, captured_len)) {
wmem_free(pinfo->pool, text);
*decrypt_info->status = DECRYPT_PACKET_DECRYPT_FAILED;
return NULL;
}
/* Create a tvbuff for the plaintext. */
ptext_tvb = tvb_new_child_real_data(tvb, text, captured_len, reported_len);
add_new_data_source(pinfo, ptext_tvb, "Decrypted IEEE 802.15.4 payload");
*decrypt_info->status = DECRYPT_PACKET_SUCCEEDED;
}
else {
/*
* Either the payload isn't encrypted or we don't have any of it
* in the captured data.
*/
/* Decrypt the MIC (if present). */
if ((have_mic) && (!ccm_ctr_encrypt(decrypt_info->key, tmp, decrypt_info->rx_mic, NULL, 0))) {
*decrypt_info->status = DECRYPT_PACKET_DECRYPT_FAILED;
return NULL;
}
/* Create a tvbuff for the plaintext. This might result in a zero-length tvbuff. */
ptext_tvb = tvb_new_subset_length_caplen(tvb, offset, captured_len, reported_len);
*decrypt_info->status = DECRYPT_PACKET_SUCCEEDED;
}
/*
* CCM* - CBC-mode message authentication
*
*/
/* We can only verify the message if the MIC wasn't truncated. */
if (have_mic) {
unsigned char dec_mic[16];
guint l_m = captured_len;
guint l_a = offset;
/* Adjust the lengths of the plaintext and additional data if unencrypted. */
if (!IEEE802154_IS_ENCRYPTED(packet->security_level)) {
l_a += l_m;
l_m = 0;
}
else if ((packet->version == IEEE802154_VERSION_2003) && !ieee802154_extend_auth)
l_a -= 5; /* Exclude Frame Counter (4 bytes) and Key Sequence Counter (1 byte) from authentication data */
/* Create the CCM* initial block for authentication (Adata!=0, M!=0, counter=l(m)). */
if (packet->version == IEEE802154_VERSION_2003)
ccm_init_block(tmp, TRUE, M, srcAddr, packet->frame_counter, packet->key_sequence_counter, l_m, NULL);
else
ccm_init_block(tmp, TRUE, M, srcAddr, packet->frame_counter, packet->security_level, l_m, generic_nonce_ptr);
/* Compute CBC-MAC authentication tag. */
/*
* And yes, despite the warning in tvbuff.h, I think tvb_get_ptr is the
* right function here since either A) the payload wasn't encrypted, in
* which case l_m is zero, or B) the payload was encrypted, and the tvb
* already points to contiguous memory, since we just allocated it in
* decryption phase.
*/
memset(dec_mic, 0, sizeof(dec_mic));
if (!ccm_cbc_mac(decrypt_info->key, tmp, (const gchar *)tvb_memdup(pinfo->pool, tvb, 0, l_a), l_a, tvb_get_ptr(ptext_tvb, 0, l_m), l_m, dec_mic)) {
*decrypt_info->status = DECRYPT_PACKET_MIC_CHECK_FAILED;
}
/* Compare the received MIC with the one we generated. */
else if (memcmp(decrypt_info->rx_mic, dec_mic, M) != 0) {
*decrypt_info->status = DECRYPT_PACKET_MIC_CHECK_FAILED;
}
}
/* Done! */
return ptext_tvb;
} /* dissect_ieee802154_decrypt */
/**
* Creates the CCM* initial block value for IEEE 802.15.4.
*
* @param block Output pointer for the initial block.
* @param adata TRUE if additional auth data is present
* @param M CCM* parameter M.
* @param addr Source extended address.
* @param frame_counter Packet frame counter
* @param level Security level or key_sequence_counter for 802.15.4-2003
* @param ctr_val Value in the last L bytes of the block.
* @param generic_nonce 13-byte nonce to be set by non 802.15.4 calls. If set addr, frame_counter and level are ignored.
*/
void
ccm_init_block(gchar *block, gboolean adata, gint M, guint64 addr, guint32 frame_counter, guint8 level, gint ctr_val, const gchar *generic_nonce)
{
gint i = 0;
/* Flags: Reserved(0) || Adata || (M-2)/2 || (L-1) */
block[i] = (0x2 - 1); /* (L-1) */
if (M > 0) block[i] |= (((M-2)/2) << 3); /* (M-2)/2 */
if (adata) block[i] |= (1 << 6); /* Adata */
i++;
if (generic_nonce == NULL) {
/* 2003 CCM Nonce: Source Address || Frame Counter || Key Sequence Counter */
/* 2006 CCM* Nonce: Source Address || Frame Counter || Security Level */
block[i++] = (guint8)((addr >> 56) & 0xff);
block[i++] = (guint8)((addr >> 48) & 0xff);
block[i++] = (guint8)((addr >> 40) & 0xff);
block[i++] = (guint8)((addr >> 32) & 0xff);
block[i++] = (guint8)((addr >> 24) & 0xff);
block[i++] = (guint8)((addr >> 16) & 0xff);
block[i++] = (guint8)((addr >> 8) & 0xff);
block[i++] = (guint8)((addr >> 0) & 0xff);
block[i++] = (guint8)((frame_counter >> 24) & 0xff);
block[i++] = (guint8)((frame_counter >> 16) & 0xff);
block[i++] = (guint8)((frame_counter >> 8) & 0xff);
block[i++] = (guint8)((frame_counter >> 0) & 0xff);
block[i++] = level;
} else {
memcpy(&block[i], generic_nonce, 13);
i += 13;
}
/* Plaintext length. */
block[i++] = (guint8)((ctr_val >> 8) & 0xff);
block[i] = (guint8)((ctr_val >> 0) & 0xff);
} /* ccm_init_block */
/**
* Creates the IEEE 802.15.4 TSCH nonce.
*
* @param addr Source extended address.
* @param asn TSCH Absolute Slot Number
* @param generic_nonce 13-byte nonce to returned by this function.
*/
static void
tsch_ccm_init_nonce(guint64 addr, guint64 asn, gchar* generic_nonce)
{
gint i = 0;
/* 2015 CCM* Nonce: Source Address || ASN */
generic_nonce[i++] = (guint8)((addr >> 56) & 0xff);
generic_nonce[i++] = (guint8)((addr >> 48) & 0xff);
generic_nonce[i++] = (guint8)((addr >> 40) & 0xff);
generic_nonce[i++] = (guint8)((addr >> 32) & 0xff);
generic_nonce[i++] = (guint8)((addr >> 24) & 0xff);
generic_nonce[i++] = (guint8)((addr >> 16) & 0xff);
generic_nonce[i++] = (guint8)((addr >> 8) & 0xff);
generic_nonce[i++] = (guint8)((addr >> 0) & 0xff);
generic_nonce[i++] = (guint8)((asn >> 32) & 0xff);
generic_nonce[i++] = (guint8)((asn >> 24) & 0xff);
generic_nonce[i++] = (guint8)((asn >> 16) & 0xff);
generic_nonce[i++] = (guint8)((asn >> 8) & 0xff);
generic_nonce[i++] = (guint8)((asn >> 0) & 0xff);
} /* tsch_ccm_init_nonce */
/**
* Perform an in-place CTR-mode encryption/decryption.
*
* @param key Encryption Key.
* @param iv Counter initial value.
* @param mic MIC to encrypt/decrypt.
* @param data Buffer to encrypt/decrypt.
* @param length Length of the buffer.
* @return TRUE on SUCCESS, FALSE on error.
*/
gboolean
ccm_ctr_encrypt(const gchar *key, const gchar *iv, gchar *mic, gchar *data, gint length)
{
gcry_cipher_hd_t cipher_hd;
/* Open the cipher. */
if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CTR, 0)) {
return FALSE;
}
/* Set the key and initial value. */
if (gcry_cipher_setkey(cipher_hd, key, 16)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
if (gcry_cipher_setctr(cipher_hd, iv, 16)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Decrypt the MIC. */
if (gcry_cipher_encrypt(cipher_hd, mic, 16, NULL, 0)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Decrypt the payload. */
if (gcry_cipher_encrypt(cipher_hd, data, length, NULL, 0)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Done with the cipher. */
gcry_cipher_close(cipher_hd);
return TRUE;
} /* ccm_ctr_encrypt */
/**
* Generate a CBC-MAC of the decrypted payload and additional authentication headers.
* @param key Encryption Key.
* @param iv Counter initial value.
* @param a Additional auth headers.
* @param a_len Length of the additional headers.
* @param m Plaintext message.
* @param m_len Length of plaintext message.
* @param mic Output for CBC-MAC.
* @return TRUE on SUCCESS, FALSE on error.
*/
gboolean
ccm_cbc_mac(const gchar *key, const gchar *iv, const gchar *a, gint a_len, const gchar *m, gint m_len, gchar *mic)
{
gcry_cipher_hd_t cipher_hd;
guint i = 0;
unsigned char block[IEEE802154_CIPHER_SIZE];
/* Open the cipher. */
if (gcry_cipher_open(&cipher_hd, GCRY_CIPHER_AES128, GCRY_CIPHER_MODE_CBC, GCRY_CIPHER_CBC_MAC)) return FALSE;
/* Set the key. */
if (gcry_cipher_setkey(cipher_hd, key, IEEE802154_CIPHER_SIZE)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Process the initial value. */
if (gcry_cipher_encrypt(cipher_hd, mic, 16, iv, 16)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Encode L(a) */
i = 0;
/* XXX: GINT_MAX is not defined so #if ... will always be false */
#if (GINT_MAX >= (1LL << 32))
if (a_len >= (1LL << 32)) {
block[i++] = 0xff;
block[i++] = 0xff;
block[i++] = (a_len >> 56) & 0xff;
block[i++] = (a_len >> 48) & 0xff;
block[i++] = (a_len >> 40) & 0xff;
block[i++] = (a_len >> 32) & 0xff;
block[i++] = (a_len >> 24) & 0xff;
block[i++] = (a_len >> 16) & 0xff;
block[i++] = (a_len >> 8) & 0xff;
block[i++] = (a_len >> 0) & 0xff;
}
else
#endif
if (a_len >= ((1 << 16) - (1 << 8))) {
block[i++] = 0xff;
block[i++] = 0xfe;
block[i++] = (a_len >> 24) & 0xff;
block[i++] = (a_len >> 16) & 0xff;
block[i++] = (a_len >> 8) & 0xff;
block[i++] = (a_len >> 0) & 0xff;
}
else {
block[i++] = (a_len >> 8) & 0xff;
block[i++] = (a_len >> 0) & 0xff;
}
/* Append a to get the first block of input (pad if we encounter the end of a). */
while ((i < sizeof(block)) && (a_len > 0)) {
block[i++] = *a++;
a_len--;
}
while (i < sizeof(block)) {
block[i++] = 0;
}
/* Process the first block of AuthData. */
if (gcry_cipher_encrypt(cipher_hd, mic, 16, block, 16)) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
/* Transform and process the remainder of a. */
while (a_len > 0) {
/* Copy and pad. */
if ((guint)a_len >= sizeof(block)) {
memcpy(block, a, sizeof(block));
}
else {
memcpy(block, a, a_len);
memset(block+a_len, 0, sizeof(block)-a_len);
}
/* Adjust pointers. */
a += sizeof(block);
a_len -= (int)sizeof(block);
/* Execute the CBC-MAC algorithm. */
if (gcry_cipher_encrypt(cipher_hd, mic, 16, block, sizeof(block))) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
} /* while */
/* Process the message, m. */
while (m_len > 0) {
/* Copy and pad. */
if ((guint)m_len >= sizeof(block)) {
memcpy(block, m, sizeof(block));
}
else {
memcpy(block, m, m_len);
memset(block+m_len, 0, sizeof(block)-m_len);
}
/* Adjust pointers. */
m += sizeof(block);
m_len -= (int)sizeof(block);
/* Execute the CBC-MAC algorithm. */
if (gcry_cipher_encrypt(cipher_hd, mic, 16, block, sizeof(block))) {
gcry_cipher_close(cipher_hd);
return FALSE;
}
}
/* Done with the cipher. */
gcry_cipher_close(cipher_hd);
return TRUE;
} /* ccm_cbc_mac */
/* Key hash function. */
guint ieee802154_short_addr_hash(gconstpointer key)
{
return (((const ieee802154_short_addr *)key)->addr) | (((const ieee802154_short_addr *)key)->pan << 16);
}
/* Key equal function. */
gboolean ieee802154_short_addr_equal(gconstpointer a, gconstpointer b)
{
return (((const ieee802154_short_addr *)a)->pan == ((const ieee802154_short_addr *)b)->pan) &&
(((const ieee802154_short_addr *)a)->addr == ((const ieee802154_short_addr *)b)->addr);
}
/* Key hash function. */
guint ieee802154_long_addr_hash(gconstpointer key)
{
return (guint)(((const ieee802154_long_addr *)key)->addr) & 0xFFFFFFFF;
}
/* Key equal function. */
gboolean ieee802154_long_addr_equal(gconstpointer a, gconstpointer b)
{
return (((const ieee802154_long_addr *)a)->addr == ((const ieee802154_long_addr *)b)->addr);
}
/* Set MAC key function. */
static guint ieee802154_set_mac_key(ieee802154_packet *packet, unsigned char *key, unsigned char *alt_key, ieee802154_key_t *uat_key)
{
ieee802154_set_key_func func = (ieee802154_set_key_func)wmem_tree_lookup32(mac_key_hash_handlers, uat_key->hash_type);
if (func != NULL)
return func(packet, key, alt_key, uat_key);
/* Right now, KEY_HASH_NONE and KEY_HASH_ZIP are not registered because they
work with this "default" behavior */
if (packet->key_index == uat_key->key_index)
{
memcpy(key, uat_key->key, IEEE802154_CIPHER_SIZE);
return 1;
}
return 0;
}
/**
* Creates a record that maps the given short address and pan to a long (extended) address.
* @param short_addr 16-bit short address
* @param pan 16-bit PAN id
* @param long_addr 64-bit long (extended) address
* @param proto pointer to name of current protocol
* @param fnum Frame number this mapping became valid
* @return TRUE Record was updated, FALSE Couldn't find it
*/
ieee802154_map_rec *ieee802154_addr_update(ieee802154_map_tab_t *au_ieee802154_map,
guint16 short_addr, guint16 pan, guint64 long_addr, const char *proto, guint fnum)
{
ieee802154_short_addr addr16;
ieee802154_map_rec *p_map_rec;
gpointer old_key;
/* Look up short address hash */
addr16.pan = pan;
addr16.addr = short_addr;
p_map_rec = (ieee802154_map_rec *)g_hash_table_lookup(au_ieee802154_map->short_table, &addr16);
/* Update mapping record */
if (p_map_rec) {
/* record already exists */
if ( p_map_rec->addr64 == long_addr ) {
/* no change */
return p_map_rec;
}
else {
/* mark current mapping record invalid */
p_map_rec->end_fnum = fnum;
}
}
/* create a new mapping record */
p_map_rec = wmem_new(wmem_file_scope(), ieee802154_map_rec);
p_map_rec->proto = proto;
p_map_rec->start_fnum = fnum;
p_map_rec->end_fnum = 0;
p_map_rec->addr64 = long_addr;
/* link new mapping record to addr hash tables */
if ( g_hash_table_lookup_extended(au_ieee802154_map->short_table, &addr16, &old_key, NULL) ) {
/* update short addr hash table, reusing pointer to old key */
g_hash_table_insert(au_ieee802154_map->short_table, old_key, p_map_rec);
} else {
/* create new hash entry */
g_hash_table_insert(au_ieee802154_map->short_table, wmem_memdup(wmem_file_scope(), &addr16, sizeof(addr16)), p_map_rec);
}
if ( g_hash_table_lookup_extended(au_ieee802154_map->long_table, &long_addr, &old_key, NULL) ) {
/* update long addr hash table, reusing pointer to old key */
g_hash_table_insert(au_ieee802154_map->long_table, old_key, p_map_rec);
} else {
/* create new hash entry */
g_hash_table_insert(au_ieee802154_map->long_table, wmem_memdup(wmem_file_scope(), &long_addr, sizeof(long_addr)), p_map_rec);
}
return p_map_rec;
} /* ieee802154_addr_update */
/**
* Marks a mapping record associated with device with short_addr
* as invalid at a certain frame number, typically when a
* disassociation occurs.
*
* @param short_addr 16-bit short address
* @param pan 16-bit PAN id
* @param fnum Frame number when mapping became invalid
* @return TRUE Record was updated, FALSE Couldn't find it
*/
gboolean ieee802154_short_addr_invalidate(guint16 short_addr, guint16 pan, guint fnum)
{
ieee802154_short_addr addr16;
ieee802154_map_rec *map_rec;
addr16.pan = pan;
addr16.addr = short_addr;
map_rec = (ieee802154_map_rec *)g_hash_table_lookup(ieee802154_map.short_table, &addr16);
if ( map_rec ) {
/* indicates this mapping is invalid at frame fnum */
map_rec->end_fnum = fnum;
return TRUE;
}
return FALSE;
} /* ieee802154_short_addr_invalidate */
/**
* Mark a mapping record associated with device with long_addr
* as invalid at a certain frame number, typically when a
* disassociation occurs.
*
* @param long_addr 16-bit short address
* @param fnum Frame number when mapping became invalid
* @return TRUE If record was updated, FALSE otherwise
*/
gboolean ieee802154_long_addr_invalidate(guint64 long_addr, guint fnum)
{
ieee802154_map_rec *map_rec;
map_rec = (ieee802154_map_rec *)g_hash_table_lookup(ieee802154_map.long_table, &long_addr);
if ( map_rec ) {
/* indicates this mapping is invalid at frame fnum */
map_rec->end_fnum = fnum;
return TRUE;
}
return FALSE;
} /* ieee802154_long_addr_invalidate */
/**
* Init routine for the IEEE 802.15.4 dissector. Creates hash
* tables for mapping between 16-bit to 64-bit addresses and
* populates them with static address pairs from a UAT
* preference table.
*/
static void
proto_init_ieee802154(void)
{
guint i;
ieee802154_map.short_table = g_hash_table_new(ieee802154_short_addr_hash, ieee802154_short_addr_equal);
ieee802154_map.long_table = g_hash_table_new(ieee802154_long_addr_hash, ieee802154_long_addr_equal);
/* Reload the hash table from the static address UAT. */
for (i=0; (i<num_static_addrs) && (static_addrs); i++) {
ieee802154_addr_update(&ieee802154_map,(guint16)static_addrs[i].addr16, (guint16)static_addrs[i].pan,
pntoh64(static_addrs[i].eui64), ieee802154_user, IEEE802154_USER_MAPPING);
} /* for */
} /* proto_init_ieee802154 */
/**
* Cleanup for the IEEE 802.15.4 dissector.
*/
static void
proto_cleanup_ieee802154(void)
{
g_hash_table_destroy(ieee802154_map.short_table);
g_hash_table_destroy(ieee802154_map.long_table);
}
/* Returns the prompt string for the Decode-As dialog. */
static void ieee802154_da_prompt(packet_info *pinfo _U_, gchar* result)
{
ieee802154_hints_t *hints;
hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_ieee802154, 0);
if (hints)
snprintf(result, MAX_DECODE_AS_PROMPT_LEN, "IEEE 802.15.4 PAN 0x%04x as", hints->src_pan);
else
snprintf(result, MAX_DECODE_AS_PROMPT_LEN, "IEEE 802.15.4 PAN Unknown");
} /* iee802154_da_prompt */
/* Returns the value to index the panid decode table with (source PAN)*/
static gpointer ieee802154_da_value(packet_info *pinfo _U_)
{
ieee802154_hints_t *hints;
hints = (ieee802154_hints_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_ieee802154, 0);
if (hints)
return GUINT_TO_POINTER((guint)(hints->src_pan));
else
return NULL;
} /* iee802154_da_value */
static const char* ieee802154_conv_get_filter_type(conv_item_t* conv, conv_filter_type_e filter)
{
if (filter == CONV_FT_SRC_ADDRESS) {
if (conv->src_address.type == ieee802_15_4_short_address_type)
return "wpan.src16";
else if (conv->src_address.type == AT_EUI64)
return "wpan.src64";
}
if (filter == CONV_FT_DST_ADDRESS) {
if (conv->dst_address.type == ieee802_15_4_short_address_type)
return "wpan.dst16";
else if (conv->dst_address.type == AT_EUI64)
return "wpan.dst64";
}
if (filter == CONV_FT_ANY_ADDRESS) {
if (conv->src_address.type == ieee802_15_4_short_address_type)
return "wpan.addr16";
else if (conv->src_address.type == AT_EUI64)
return "wpan.addr64";
}
return CONV_FILTER_INVALID;
}
static ct_dissector_info_t ieee802154_ct_dissector_info = {&ieee802154_conv_get_filter_type };
static tap_packet_status ieee802154_conversation_packet(void *pct, packet_info *pinfo, epan_dissect_t *edt _U_, const void *vip _U_, tap_flags_t flags)
{
conv_hash_t *hash = (conv_hash_t*)pct;
hash->flags = flags;
add_conversation_table_data(hash, &pinfo->dl_src, &pinfo->dl_dst, 0, 0, 1,
pinfo->fd->pkt_len, &pinfo->rel_ts, &pinfo->abs_ts,
&ieee802154_ct_dissector_info, CONVERSATION_NONE);
return TAP_PACKET_REDRAW;
}
static const char* ieee802154_endpoint_get_filter_type(endpoint_item_t* endpoint, conv_filter_type_e filter)
{
if (filter == CONV_FT_ANY_ADDRESS) {
if (endpoint->myaddress.type == ieee802_15_4_short_address_type)
return "wpan.addr16";
else if (endpoint->myaddress.type == AT_EUI64)
return "wpan.addr64";
}
return CONV_FILTER_INVALID;
}
static et_dissector_info_t ieee802154_endpoint_dissector_info = {&ieee802154_endpoint_get_filter_type };
static tap_packet_status ieee802154_endpoint_packet(void *pit, packet_info *pinfo, epan_dissect_t *edt _U_, const void *vip _U_, tap_flags_t flags)
{
conv_hash_t *hash = (conv_hash_t*)pit;
hash->flags = flags;
/* Take two "add" passes per packet, adding for each direction, ensures that all
packets are counted properly (even if address is sending to itself)
XXX - this could probably be done more efficiently inside endpoint_table */
add_endpoint_table_data(hash, &pinfo->dl_src, 0, TRUE, 1,
pinfo->fd->pkt_len, &ieee802154_endpoint_dissector_info, ENDPOINT_NONE);
add_endpoint_table_data(hash, &pinfo->dl_dst, 0, FALSE, 1,
pinfo->fd->pkt_len, &ieee802154_endpoint_dissector_info, ENDPOINT_NONE);
return TAP_PACKET_REDRAW;
}
static gboolean ieee802154_filter_valid(packet_info *pinfo)
{
return proto_is_frame_protocol(pinfo->layers, "wpan")
&& ((pinfo->dl_src.type == ieee802_15_4_short_address_type) || (pinfo->dl_src.type == AT_EUI64))
&& ((pinfo->dl_dst.type == ieee802_15_4_short_address_type) || (pinfo->dl_dst.type == AT_EUI64));
}
static gchar* ieee802154_build_filter(packet_info *pinfo)
{
return ws_strdup_printf("wpan.%s eq %s and wpan.%s eq %s",
(pinfo->dl_src.type == ieee802_15_4_short_address_type) ? "addr16" : "addr64",
address_to_str(pinfo->pool, &pinfo->dl_src),
(pinfo->dl_dst.type == ieee802_15_4_short_address_type) ? "addr16" : "addr64",
address_to_str(pinfo->pool, &pinfo->dl_dst));
}
/**
* IEEE 802.15.4 protocol registration routine.
*/
void proto_register_ieee802154(void)
{
/* Protocol fields */
static hf_register_info hf_phy[] = {
/* PHY level */
{ &hf_ieee802154_nonask_phy_preamble,
{ "Preamble", "wpan-nonask-phy.preamble", FT_UINT32, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_nonask_phy_sfd,
{ "Start of Frame Delimiter", "wpan-nonask-phy.sfd", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_nonask_phy_length,
{ "Frame Length", "wpan-nonask-phy.frame_length", FT_UINT8, BASE_HEX, NULL,
IEEE802154_PHY_LENGTH_MASK, NULL, HFILL }},
{ &hf_ieee802154_nonask_phr,
{ "PHR", "wpan-nonask-phy.phr", FT_UINT8, BASE_HEX, NULL,
0x0, NULL, HFILL }},
};
static hf_register_info hf[] = {
{ &hf_ieee802154_frame_length,
{ "Frame Length", "wpan.frame_length", FT_UINT8, BASE_DEC, NULL, 0x0,
"Frame Length as reported from lower layer", HFILL }},
{ &hf_ieee802154_fcf,
{ "Frame Control Field", "wpan.fcf", FT_UINT16, BASE_HEX, NULL,
0x0, NULL, HFILL }},
{ &hf_ieee802154_frame_type,
{ "Frame Type", "wpan.frame_type", FT_UINT16, BASE_HEX, VALS(ieee802154_frame_types),
IEEE802154_FCF_TYPE_MASK, NULL, HFILL }},
{ &hf_ieee802154_security,
{ "Security Enabled", "wpan.security", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_SEC_EN,
"Whether security operations are performed at the MAC layer or not.", HFILL }},
{ &hf_ieee802154_pending,
{ "Frame Pending", "wpan.pending", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_FRAME_PND,
"Indication of additional packets waiting to be transferred from the source device.", HFILL }},
{ &hf_ieee802154_ack_request,
{ "Acknowledge Request", "wpan.ack_request", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_ACK_REQ,
"Whether the sender of this packet requests acknowledgment or not.", HFILL }},
{ &hf_ieee802154_pan_id_compression,
{ "PAN ID Compression", "wpan.pan_id_compression", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_PAN_ID_COMPRESSION,
"Whether this packet contains the PAN ID or not.", HFILL }},
{ &hf_ieee802154_fcf_reserved,
{ "Reserved", "wpan.fcf.reserved", FT_BOOLEAN, 16, NULL, 0x0080,
NULL, HFILL }},
{ &hf_ieee802154_seqno_suppression,
{ "Sequence Number Suppression", "wpan.seqno_suppression", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_SEQNO_SUPPRESSION,
"Whether this packet contains the Sequence Number or not.", HFILL }},
{ &hf_ieee802154_ie_present,
{ "Information Elements Present", "wpan.ie_present", FT_BOOLEAN, 16, NULL, IEEE802154_FCF_IE_PRESENT,
"Whether this packet contains the Information Elements or not.", HFILL }},
{ &hf_ieee802154_dst_addr_mode,
{ "Destination Addressing Mode", "wpan.dst_addr_mode", FT_UINT16, BASE_HEX, VALS(ieee802154_addr_modes),
IEEE802154_FCF_DADDR_MASK, NULL, HFILL }},
{ &hf_ieee802154_version,
{ "Frame Version", "wpan.version", FT_UINT16, BASE_DEC, VALS(ieee802154_frame_versions),
IEEE802154_FCF_VERSION, NULL, HFILL }},
{ &hf_ieee802154_src_addr_mode,
{ "Source Addressing Mode", "wpan.src_addr_mode", FT_UINT16, BASE_HEX, VALS(ieee802154_addr_modes),
IEEE802154_FCF_SADDR_MASK, NULL, HFILL }},
/* 802.15.4-2015 Multipurpose frame control fields */
{ &hf_ieee802154_mpf_long_frame_control,
{ "Long Frame Control", "wpan.long_frame_control", FT_BOOLEAN, 16, NULL, IEEE802154_MPF_FCF_LONG_FC,
"Whether this frame control field uses one or two octets.", HFILL }},
{ &hf_ieee802154_mpf_dst_addr_mode,
{ "Destination Addressing Mode", "wpan.dst_addr_mode", FT_UINT16, BASE_HEX, VALS(ieee802154_addr_modes),
IEEE802154_MPF_FCF_DADDR_MASK, NULL, HFILL }},
{ &hf_ieee802154_mpf_src_addr_mode,
{ "Source Addressing Mode", "wpan.src_addr_mode", FT_UINT16, BASE_HEX, VALS(ieee802154_addr_modes),
IEEE802154_MPF_FCF_SADDR_MASK, NULL, HFILL }},
{ &hf_ieee802154_mpf_pan_id_present,
{ "PAN ID Present", "wpan.pan_id_present", FT_BOOLEAN, 16, NULL, IEEE802154_MPF_FCF_PAN_ID_PRESENT,
"Whether this packet contains the destination PAN ID or not", HFILL }},
{ &hf_ieee802154_mpf_security,
{ "Security Enabled", "wpan.security", FT_BOOLEAN, 16, NULL, IEEE802154_MPF_FCF_SEC_EN,
"Whether security operations are performed at the MAC layer or not.", HFILL }},
{ &hf_ieee802154_mpf_seqno_suppression,
{ "Sequence Number Suppression", "wpan.seqno_suppression", FT_BOOLEAN, 16, NULL, IEEE802154_MPF_FCF_SEQNO_SUPPRESSION,
"Whether this packet contains the Sequence Number or not.", HFILL }},
{ &hf_ieee802154_mpf_pending,
{ "Frame Pending", "wpan.pending", FT_BOOLEAN, 16, NULL, IEEE802154_MPF_FCF_FRAME_PND,
"Indication of additional packets waiting to be transferred from the source device.", HFILL }},
{ &hf_ieee802154_mpf_version,
{ "Multipurpose Frame Version", "wpan.mpf_version", FT_UINT16, BASE_DEC, NULL,
IEEE802154_MPF_FCF_VERSION, NULL, HFILL }},
{ &hf_ieee802154_mpf_ack_request,
{ "Acknowledge Request", "wpan.ack_request", FT_BOOLEAN, 16, NULL, IEEE802154_MPF_FCF_ACK_REQ,
"Whether the sender of this packet requests acknowledgment or not.", HFILL }},
{ &hf_ieee802154_mpf_ie_present,
{ "Information Elements Present", "wpan.ie_present", FT_BOOLEAN, 16, NULL, IEEE802154_MPF_FCF_IE_PRESENT,
"Whether this packet contains the Information Elements or not.", HFILL }},
{ &hf_ieee802154_seqno,
{ "Sequence Number", "wpan.seq_no", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_dst_panID,
{ "Destination PAN", "wpan.dst_pan", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_dst16,
{ "Destination", "wpan.dst16", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_dst64,
{ "Destination", "wpan.dst64", FT_EUI64, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_src_panID,
{ "Source PAN", "wpan.src_pan", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_src16,
{ "Source", "wpan.src16", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_src64,
{ "Extended Source", "wpan.src64", FT_EUI64, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_addr16,
{ "Address", "wpan.addr16", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_addr64,
{ "Extended Address", "wpan.addr64", FT_EUI64, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_src64_origin,
{ "Origin", "wpan.src64.origin", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_fcs,
{ "FCS", "wpan.fcs", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_fcs32,
{ "FCS", "wpan.fcs32", FT_UINT32, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_rssi,
{ "RSSI", "wpan.rssi", FT_INT8, BASE_DEC|BASE_UNIT_STRING, &units_decibels, 0x0,
"Received Signal Strength", HFILL }},
{ &hf_ieee802154_fcs_ok,
{ "FCS Valid", "wpan.fcs_ok", FT_BOOLEAN, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_correlation,
{ "LQI Correlation Value", "wpan.correlation", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
/* Information Elements */
{ &hf_ieee802154_ie_unknown_content,
{ "Unknown Content", "wpan.ie.unknown_content", FT_BYTES, SEP_SPACE, NULL, 0x0,
NULL, HFILL }},
/* Header IE */
{ &hf_ieee802154_header_ies,
{ "Header IEs", "wpan.header_ie", FT_NONE, BASE_NONE, NULL,
0x0, NULL, HFILL }},
{ &hf_ieee802154_header_ie_tlv,
{ "IE Header", "wpan.header_ie_tlv", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL}},
{ &hf_ieee802154_header_ie_type,
{ "Type", "wpan.header_ie.type", FT_UINT16, BASE_DEC, VALS(ieee802154_ie_types),
IEEE802154_HEADER_IE_TYPE_MASK, NULL, HFILL }},
{ &hf_ieee802154_header_ie_id,
{ "Id", "wpan.header_ie.id", FT_UINT16, BASE_HEX, VALS(ieee802154_header_ie_names),
IEEE802154_HEADER_IE_ID_MASK, NULL, HFILL }},
{ &hf_ieee802154_header_ie_length,
{ "Length", "wpan.header_ie.length", FT_UINT16, BASE_DEC, NULL,
IEEE802154_HEADER_IE_LENGTH_MASK, NULL, HFILL }},
/* Individual Header IEs */
{ &hf_ieee802154_hie_unsupported,
{ "Unsupported Header IE", "wpan.header_ie.unsupported", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_hie_ht1,
{ "Header Termination 1 IE (Payload IEs follow)", "wpan.header_ie.ht1", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_hie_ht2,
{ "Header Termination 2 IE (Payload follows)", "wpan.header_ie.ht2", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
/* Time correction IE */
{ &hf_ieee802154_hie_time_correction,
{ "Time Correction IE", "wpan.header_ie.time_correction", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_hie_time_correction_time_sync_info,
{ "Time Sync Info", "wpan.header_ie.time_correction.time_sync_info", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_nack,
{ "Nack", "wpan.nack", FT_BOOLEAN, 16, TFS(&hf_ieee802154_nack_tfs), 0x8000,
NULL, HFILL }},
{ &hf_ieee802154_hie_time_correction_value,
{ "Time Correction", "wpan.header_ie.time_correction.value", FT_INT16, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0x0FFF,
"Time correction in microseconds", HFILL }},
/* CSL IE */
{ &hf_ieee802154_hie_csl,
{ "CSL IE", "wpan.header_ie.csl", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_hie_csl_phase,
{ "Phase", "wpan.header_ie.csl.phase", FT_INT16, BASE_DEC, NULL, 0x0,
"CSL Phase in units of 10 symbols", HFILL }},
{ &hf_ieee802154_hie_csl_period,
{ "Period", "wpan.header_ie.csl.period", FT_INT16, BASE_DEC, NULL, 0x0,
"CSL Period in units of 10 symbols", HFILL }},
{ &hf_ieee802154_hie_csl_rendezvous_time,
{ "Rendezvous Time", "wpan.header_ie.csl.rendezvous_time", FT_INT16, BASE_DEC, NULL, 0x0,
"CSL Rendezvous Time in units of 10 symbols", HFILL }},
/* RendezVous Time IE */
{ &hf_ieee802154_hie_rdv,
{ "Rendezvous Time IE", "wpan.header_ie.rdv", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_hie_rdv_wakeup_interval,
{ "Wake-up Interval", "wpan.header_ie.csl.wakeup_interval", FT_INT16, BASE_DEC, NULL, 0x0,
"Interval between two successive Wake-Up frames, in units of 10 symbols", HFILL }},
/* Global Time IE */
{ &hf_ieee802154_hie_global_time,
{ "Global Time IE", "wpan.header_ie.global_time", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_hie_global_time_value,
{ "Global Time", "wpan.header_ie.global_time.value", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC, NULL, 0x0,
NULL, HFILL }},
/* Vendor Specific IE */
{ &hf_ieee802154_hie_vendor_specific,
{ "Vendor Specific IE", "wpan.header_ie.vendor_specific", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_hie_vendor_specific_vendor_oui,
{ "Vendor OUI", "wpan.header_ie.vendor_specific.vendor_oui", FT_UINT24, BASE_OUI, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_hie_vendor_specific_content,
{ "Vendor Content", "wpan.header_ie.vendor_specific.content", FT_BYTES, SEP_SPACE, NULL, 0x0,
NULL, HFILL }},
/* Payload IEs */
{ &hf_ieee802154_payload_ies,
{ "Payload IEs", "wpan.payload_ie", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ieee802154_payload_ie_tlv,
{ "IE Header", "wpan.payload_ie_tlv", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ieee802154_payload_ie_type,
{ "Type", "wpan.payload_ie.type", FT_UINT16, BASE_DEC, VALS(ieee802154_ie_types),
IEEE802154_PAYLOAD_IE_TYPE_MASK, NULL, HFILL }},
{ &hf_ieee802154_payload_ie_id,
{ "Id", "wpan.payload_ie.id", FT_UINT16, BASE_HEX, VALS(ieee802154_payload_ie_names),
IEEE802154_PAYLOAD_IE_ID_MASK, NULL, HFILL }},
{ &hf_ieee802154_payload_ie_length,
{ "Length", "wpan.payload_ie.length", FT_UINT16, BASE_DEC, NULL,
IEEE802154_PAYLOAD_IE_LENGTH_MASK, NULL, HFILL }},
/* Individual Payload IEs */
{ &hf_ieee802154_pie_unsupported,
{ "Unknown Payload IE", "wpan.payload_ie.unknown", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_pie_termination,
{ "Payload Termination IE", "wpan.payload_ie.termination", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_pie_vendor,
{ "Vendor Specific IE", "wpan.payload_ie.vendor", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_pie_vendor_oui,
{ "Vendor OUI", "wpan.payload_ie.vendor.oui", FT_UINT24, BASE_OUI, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_mlme,
{ "MLME IE", "wpan.mlme", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ieee802154_psie_type,
{ "Type", "wpan.mlme.ie.type", FT_UINT16, BASE_DEC, VALS(ieee802154_psie_types),
IEEE802154_PSIE_TYPE_MASK, NULL, HFILL }},
{ &hf_ieee802154_psie,
{ "MLME Sub IE", "wpan.mlme.ie", FT_UINT16, BASE_HEX, NULL,
0x0, NULL, HFILL }},
{ &hf_ieee802154_psie_id_short,
{ "Sub ID", "wpan.mlme.ie.id", FT_UINT16, BASE_HEX, VALS(ieee802154_psie_names),
IEEE802154_PSIE_ID_MASK_SHORT, NULL, HFILL }},
{ &hf_ieee802154_psie_length_short,
{ "Length", "wpan.mlme.ie.length", FT_UINT16, BASE_DEC, NULL,
IEEE802154_PSIE_LENGTH_MASK_SHORT, NULL, HFILL }},
{ &hf_ieee802154_psie_id_long,
{ "Sub ID", "wpan.mlme.ie.id", FT_UINT16, BASE_HEX, VALS(ieee802154_psie_names),
IEEE802154_PSIE_ID_MASK_LONG, NULL, HFILL }},
{ &hf_ieee802154_psie_length_long,
{ "Length", "wpan.mlme.ie.length", FT_UINT16, BASE_DEC, NULL,
IEEE802154_PSIE_LENGTH_MASK_LONG, NULL, HFILL }},
{ &hf_ieee802154_mlme_ie_unsupported,
{ "Unsupported Sub IE", "wpan.mlme.unsupported", FT_NONE, BASE_NONE, NULL,
0, NULL, HFILL }},
{ &hf_ieee802154_mlme_ie_data,
{ "Data", "wpan.mlme.data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ieee802154_psie_eb_filter,
{ "Enhanced Beacon Filter", "wpan.eb_filter", FT_UINT8, BASE_HEX, NULL,
0, NULL, HFILL }},
{ &hf_ieee802154_psie_eb_filter_pjoin,
{ "Permit Join Filter", "wpan.eb_filter.pjoin", FT_BOOLEAN, 8, TFS(&tfs_enabled_disabled),
IEEE802154_MLME_PSIE_EB_FLT_PJOIN, NULL, HFILL }},
{ &hf_ieee802154_psie_eb_filter_lqi,
{ "LQI Filter", "wpan.eb_filter.lqi", FT_BOOLEAN, 8, TFS(&tfs_enabled_disabled),
IEEE802154_MLME_PSIE_EB_FLT_LQI, NULL, HFILL }},
{ &hf_ieee802154_psie_eb_filter_lqi_min,
{ "Minimum LQI", "wpan.eb_filter.lqi_minimum", FT_UINT8, BASE_DEC, NULL,
0x0, NULL, HFILL }},
{ &hf_ieee802154_psie_eb_filter_percent,
{ "Probability to Respond", "wpan.eb_filter.contains_prob", FT_BOOLEAN, 8, TFS(&tfs_enabled_disabled),
IEEE802154_MLME_PSIE_EB_FLT_PERCENT, NULL, HFILL }},
{ &hf_ieee802154_psie_eb_filter_percent_prob,
{ "Response Probability Percentage", "wpan.eb_filter.prob", FT_UINT8, BASE_DEC, NULL,
0x0, NULL, HFILL }},
{ &hf_ieee802154_psie_eb_filter_attr_id,
{ "Requested Attribute Length", "wpan.eb_filter.attr_id", FT_UINT8, BASE_DEC, NULL,
IEEE802154_MLME_PSIE_EB_FLT_ATTR_LEN, NULL, HFILL }},
{ &hf_ieee802154_psie_eb_filter_attr_id_bitmap,
{ "Attribute ID Bitmap", "wpan.eb_filter.attr_id_bits", FT_UINT24, BASE_HEX, NULL,
0x0, NULL, HFILL }},
{ &hf_ieee802154_tsch_sync,
{ "TSCH Synchronization IE", "wpan.tsch.time_sync", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_asn,
{ "Absolute Slot Number", "wpan.tsch.asn", FT_UINT40, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_join_metric,
{ "Join Metric", "wpan.tsch.join_metric", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_timeslot,
{ "TSCH Timeslot IE", "wpan.tsch.timeslot", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_timeslot_id,
{ "Timeslot ID", "wpan.tsch.timeslot.id", FT_UINT8, BASE_HEX, NULL, 0x0,
"Identifier of the Timeslot Template", HFILL }},
{ &hf_ieee802154_tsch_timeslot_cca_offset,
{ "CCA Offset", "wpan.tsch.timeslot.cca_offset", FT_UINT16, BASE_DEC, NULL, 0x0,
"Time between the beginning of the timeslot and the start of CCA", HFILL }},
{ &hf_ieee802154_tsch_timeslot_cca,
{ "CCA", "wpan.tsch.timeslot.cca", FT_UINT16, BASE_DEC, NULL, 0x0,
"Duration of CCA", HFILL }},
{ &hf_ieee802154_tsch_timeslot_tx_offset,
{ "TX Offset", "wpan.tsch.timeslot.tx_offset", FT_UINT16, BASE_DEC, NULL, 0x0,
"Time between the beginning of the timeslot and the start of frame transmission", HFILL }},
{ &hf_ieee802154_tsch_timeslot_rx_offset,
{ "RX Offset", "wpan.tsch.timeslot.rx_offset", FT_UINT16, BASE_DEC, NULL, 0x0,
"Time between the beginning of the timeslot to when the receiver shall be listening", HFILL }},
{ &hf_ieee802154_tsch_timeslot_rx_ack_delay,
{ "RX Ack Delay", "wpan.tsch.timeslot.rx_ack_delay", FT_UINT16, BASE_DEC, NULL, 0x0,
"Time between the end of frame to when the transmitter shall listen for acknowledgment", HFILL }},
{ &hf_ieee802154_tsch_timeslot_tx_ack_delay,
{ "TX Ack Delay", "wpan.tsch.timeslot.tx_ack_delay", FT_UINT16, BASE_DEC, NULL, 0x0,
"Time between the end of frame to start of acknowledgment", HFILL }},
{ &hf_ieee802154_tsch_timeslot_rx_wait,
{ "RX Wait", "wpan.tsch.timeslot.rx_wait", FT_UINT16, BASE_DEC, NULL, 0x0,
"Time to wait for the start of frame", HFILL }},
{ &hf_ieee802154_tsch_timeslot_ack_wait,
{ "Ack Wait", "wpan.tsch.timeslot.ack_wait", FT_UINT16, BASE_DEC, NULL, 0x0,
"Minimum time to wait for the start of an acknowledgment", HFILL }},
{ &hf_ieee802154_tsch_timeslot_turnaround,
{ "Turn Around", "wpan.tsch.timeslot.turnaround", FT_UINT16, BASE_DEC, NULL, 0x0,
"Transmit to receive turnaround time", HFILL }},
{ &hf_ieee802154_tsch_timeslot_max_ack,
{ "Max Ack", "wpan.tsch.timeslot.max_ack", FT_UINT16, BASE_DEC, NULL, 0x0,
"Transmission time to send an acknowledgment", HFILL }},
{ &hf_ieee802154_tsch_timeslot_max_tx,
{ "Max TX", "wpan.tsch.timeslot.max_tx", FT_UINT24, BASE_DEC, NULL, 0x0,
"Transmission time to send the maximum length frame", HFILL }},
{ &hf_ieee802154_tsch_timeslot_length,
{ "Timeslot Length", "wpan.tsch.timeslot.length", FT_UINT24, BASE_DEC, NULL, 0x0,
"Total length of the timeslot, including any unused time after frame transmission", HFILL }},
{ &hf_ieee802154_tsch_channel_hopping,
{ "Channel Hopping IE", "wpan.channel_hopping", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotframe,
{ "Slotframe IE", "wpan.tsch.slotframe", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ieee802154_tsch_link_info,
{ "Link Information", "wpan.tsch.link_info", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_nb_slotf,
{ "Number of Slotframes", "wpan.tsch.slotframe_num", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_slotf_handle,
{ "Slotframe handle", "wpan.tsch.slotframe_handle", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_size,
{ "Slotframe size", "wpan.tsch.slotframe_size", FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_nb_links,
{ "Number of Links", "wpan.tsch.nb_links", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_timeslot,
{ "Timeslot", "wpan.tsch.link_timeslot", FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_channel_offset,
{ "Channel Offset", "wpan.tsch.channel_offset", FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_options,
{ "Link Options", "wpan.tsch.link_options", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_options_tx,
{ "TX Link", "wpan.tsch.link_options.tx", FT_BOOLEAN, 8, NULL, (1 << 0),
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_options_rx,
{ "RX Link", "wpan.tsch.link_options.rx", FT_BOOLEAN, 8, NULL, (1 << 1),
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_options_shared,
{ "Shared Link", "wpan.tsch.link_options.shared", FT_BOOLEAN, 8, NULL, (1 << 2),
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_options_timkeeping,
{ "Timekeeping", "wpan.tsch.link_options.timekeeping", FT_BOOLEAN, 8, NULL, (1 << 3),
NULL, HFILL }},
{ &hf_ieee802154_tsch_slotf_link_options_priority,
{ "Priority", "wpan.tsch.link_options.priority", FT_BOOLEAN, 8, NULL, (1 << 4),
NULL, HFILL }},
{ &hf_ieee802154_tsch_hopping_sequence_id,
{ "Hopping Sequence ID", "wpan.tsch.hopping_sequence_id", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
/* IETF IE */
{ &hf_ieee802154_pie_ietf,
{ "IETF Payload IE", "wpan.payload_ie.ietf", FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ieee802154_p_ie_ietf_sub_id,
{ "Sub-ID", "wpan.ietf_ie.sub_id", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL }},
/* IETF IE - 6top IE */
{ &hf_ieee802154_6top,
{ "6top IE", "wpan.6top", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_version,
{ "6P Version", "wpan.6top_version", FT_UINT8, BASE_DEC, NULL, IETF_6TOP_VERSION,
NULL, HFILL }},
{ &hf_ieee802154_6top_type,
{ "Type", "wpan.6top_type", FT_UINT8, BASE_HEX, VALS(ietf_6top_types), IETF_6TOP_TYPE,
NULL, HFILL }},
{ &hf_ieee802154_6top_flags_reserved,
{ "Reserved", "wpan.6top_flags_reserved", FT_UINT8, BASE_HEX, NULL, IETF_6TOP_FLAGS_RESERVED,
NULL, HFILL }},
{ &hf_ieee802154_6top_code,
{ "Code", "wpan.6top_code", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_sfid,
{ "SFID (6top Scheduling Function ID)", "wpan.6top_sfid", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_seqnum,
{ "SeqNum", "wpan.6top_seqnum", FT_UINT8, BASE_DEC, NULL, IETF_6TOP_SEQNUM,
NULL, HFILL }},
{ &hf_ieee802154_6top_metadata,
{ "Metadata", "wpan.6top_metadata", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_cell_options,
{ "Cell Options", "wpan.6top_cell_options", FT_UINT8, BASE_HEX, VALS(ietf_6top_cell_options), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_cell_option_tx,
{ "Transmit (TX) Cell", "wpan.6top_cell_option_tx", FT_UINT8, BASE_HEX, NULL, IETF_6TOP_CELL_OPTION_TX,
NULL, HFILL }},
{ &hf_ieee802154_6top_cell_option_rx,
{ "Receive (RX) Cell", "wpan.6top_cell_option_rx", FT_UINT8, BASE_HEX, NULL, IETF_6TOP_CELL_OPTION_RX,
NULL, HFILL }},
{ &hf_ieee802154_6top_cell_option_shared,
{ "SHARED Cell", "wpan.6top_cell_option_shared", FT_UINT8, BASE_HEX, NULL, IETF_6TOP_CELL_OPTION_SHARED,
NULL, HFILL }},
{ &hf_ieee802154_6top_cell_option_reserved,
{ "Reserved", "wpan.6top_cell_option_reserved", FT_UINT8, BASE_HEX, NULL, IETF_6TOP_CELL_OPTION_RESERVED,
NULL, HFILL }},
{ &hf_ieee802154_6top_num_cells,
{ "Number of Cells", "wpan.6top_num_cells", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_cell_list,
{ "CellList", "wpan.6top_cell_list", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_rel_cell_list,
{ "Rel. CellList", "wpan.6top_rel_cell_list", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_cand_cell_list,
{ "Cand. CellList", "wpan.6top_cand_cell_list", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_cell,
{ "Cell", "wpan.6top_cell", FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_reserved,
{ "Reserved", "wpan.6top_reserved", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_offset,
{ "Offset", "wpan.6top_offset", FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_max_num_cells,
{ "Maximum Number of Requested Cells", "wpan.6top_max_num_cells", FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_slot_offset,
{ "Slot Offset", "wpan.6top_cell_slot_offset", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_channel_offset,
{ "Channel Offset", "wpan.6top_channel_offset", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_total_num_cells,
{ "Total Number of Cells", "wpan.6top_total_num_cells", FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_6top_payload,
{ "Payload", "wpan.6top_payload", FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
/* MPX IE (IEEE 802.15.9) */
{ &hf_ieee802159_mpx,
{ "MPX IE", "wpan.mpx", FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_transaction_control,
{ "Transaction Control", "wpan.mpx.transaction_control", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_transfer_type,
{ "Transfer Type", "wpan.mpx.transfer_type", FT_UINT8, BASE_HEX, VALS(mpx_transfer_type_vals), IEEE802159_MPX_TRANSFER_TYPE_MASK,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_transaction_id,
{ "Transaction ID", "wpan.mpx.transaction_id", FT_UINT8, BASE_HEX, NULL, IEEE802159_MPX_TRANSACTION_ID_MASK,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_transaction_id_as_multiplex_id,
{ "Multiplex ID", "wpan.mpx.multiplex_id", FT_UINT8, BASE_HEX, VALS(mpx_multiplex_id_vals), IEEE802159_MPX_TRANSACTION_ID_MASK,
"Transaction ID used as Multiplex ID", HFILL }
},
{ &hf_ieee802159_mpx_fragment_number,
{ "Fragment Number", "wpan.mpx.fragment_number", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_total_frame_size,
{ "Total Frame Size", "wpan.mpx.total_frame_size", FT_UINT16, BASE_DEC, NULL, 0x0,
"Total Upper-Layer Frame Size", HFILL }
},
{ &hf_ieee802159_mpx_multiplex_id,
{ "Multiplex ID", "wpan.mpx.multiplex_id", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_kmp_id,
{ "KMP ID", "wpan.mpx.kmp.id", FT_UINT8, BASE_DEC, VALS(ieee802154_mpx_kmp_id_vals), 0x0,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_kmp_vendor_oui,
{ "Vendor OUI", "wpan.mpx.kmp.vendor_oui", FT_UINT24, BASE_OUI, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_fragment,
{ "Upper-Layer Frame Fragment", "wpan.mpx.fragment", FT_BYTES, SEP_SPACE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ieee802159_mpx_wisun_subid,
{ "Wi-SUN Multiplex Sub ID", "wpan.mpx.wisun", FT_UINT8, BASE_HEX, VALS(mpx_wisun_subid_vals), 0x0,
NULL, HFILL }
},
/* Command Frame Specific Fields */
{ &hf_ieee802154_cmd_id,
{ "Command Identifier", "wpan.cmd", FT_UINT8, BASE_HEX, VALS(ieee802154_cmd_names), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_cmd_vendor_oui,
{ "Vendor OUI", "wpan.cmd.vendor_oui", FT_UINT24, BASE_OUI, NULL, 0x0,
NULL, HFILL }},
/* Capability Information Fields */
{ &hf_ieee802154_cinfo_alt_coord,
{ "Alternate PAN Coordinator", "wpan.cinfo.alt_coord", FT_BOOLEAN, 8, NULL, IEEE802154_CMD_CINFO_ALT_PAN_COORD,
"Whether this device can act as a PAN coordinator or not.", HFILL }},
{ &hf_ieee802154_cinfo_device_type,
{ "Device Type", "wpan.cinfo.device_type", FT_BOOLEAN, 8, TFS(&tfs_cinfo_device_type), IEEE802154_CMD_CINFO_DEVICE_TYPE,
"Whether this device is RFD (reduced-function device) or FFD (full-function device).", HFILL }},
{ &hf_ieee802154_cinfo_power_src,
{ "Power Source", "wpan.cinfo.power_src", FT_BOOLEAN, 8, TFS(&tfs_cinfo_power_src), IEEE802154_CMD_CINFO_POWER_SRC,
"Whether this device is operating on AC/mains or battery power.", HFILL }},
{ &hf_ieee802154_cinfo_idle_rx,
{ "Receive On When Idle", "wpan.cinfo.idle_rx", FT_BOOLEAN, 8, NULL, IEEE802154_CMD_CINFO_IDLE_RX,
"Whether this device can receive packets while idle or not.", HFILL }},
{ &hf_ieee802154_cinfo_sec_capable,
{ "Security Capability", "wpan.cinfo.sec_capable", FT_BOOLEAN, 8, NULL, IEEE802154_CMD_CINFO_SEC_CAPABLE,
"Whether this device is capable of receiving encrypted packets.", HFILL }},
{ &hf_ieee802154_cinfo_alloc_addr,
{ "Allocate Address", "wpan.cinfo.alloc_addr", FT_BOOLEAN, 8, NULL, IEEE802154_CMD_CINFO_ALLOC_ADDR,
"Whether this device wishes to use a 16-bit short address instead of its IEEE 802.15.4 64-bit long address.", HFILL }},
/* Association response fields */
{ &hf_ieee802154_assoc_addr,
{ "Short Address", "wpan.asoc.addr", FT_UINT16, BASE_HEX, NULL, 0x0,
"The short address that the device should assume. An address of 0xfffe indicates that the device should use its IEEE 64-bit long address.", HFILL }},
{ &hf_ieee802154_assoc_status,
{ "Association Status", "wpan.assoc.status", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_disassoc_reason,
{ "Disassociation Reason", "wpan.disassoc.reason", FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
/* Coordinator Realignment fields */
{ &hf_ieee802154_realign_pan,
{ "PAN ID", "wpan.realign.pan", FT_UINT16, BASE_HEX, NULL, 0x0,
"The PAN identifier the coordinator wishes to use for future communication.", HFILL }},
{ &hf_ieee802154_realign_caddr,
{ "Coordinator Short Address", "wpan.realign.addr", FT_UINT16, BASE_HEX, NULL, 0x0,
"The 16-bit address the coordinator wishes to use for future communication.", HFILL }},
{ &hf_ieee802154_realign_channel,
{ "Logical Channel", "wpan.realign.channel", FT_UINT8, BASE_DEC, NULL, 0x0,
"The logical channel the coordinator wishes to use for future communication.", HFILL }},
{ &hf_ieee802154_realign_addr,
{ "Short Address", "wpan.realign.addr", FT_UINT16, BASE_HEX, NULL, 0x0,
"A short-address that the orphaned device shall assume if applicable.", HFILL }},
{ &hf_ieee802154_realign_channel_page,
{ "Channel Page", "wpan.realign.channel_page", FT_UINT8, BASE_DEC, NULL, 0x0,
"The logical channel page the coordinator wishes to use for future communication.", HFILL }},
{ &hf_ieee802154_gtsreq_len,
{ "GTS Length", "wpan.gtsreq.length", FT_UINT8, BASE_DEC, NULL, IEEE802154_CMD_GTS_REQ_LEN,
"Number of superframe slots the device is requesting.", HFILL }},
{ &hf_ieee802154_gtsreq_dir,
{ "GTS Direction", "wpan.gtsreq.direction", FT_BOOLEAN, 8, TFS(&tfs_gtsreq_dir), IEEE802154_CMD_GTS_REQ_DIR,
"The direction of traffic in the guaranteed timeslot.", HFILL }},
{ &hf_ieee802154_gtsreq_type,
{ "Characteristic Type", "wpan.gtsreq.type", FT_BOOLEAN, 8, TFS(&tfs_gtsreq_type), IEEE802154_CMD_GTS_REQ_TYPE,
"Whether this request is to allocate or deallocate a timeslot.", HFILL }},
/* Beacon Frame Specific Fields */
{ &hf_ieee802154_beacon_order,
{ "Beacon Interval", "wpan.beacon_order", FT_UINT16, BASE_DEC, NULL, IEEE802154_BEACON_ORDER_MASK,
"Specifies the transmission interval of the beacons.", HFILL }},
{ &hf_ieee802154_superframe_order,
{ "Superframe Interval", "wpan.superframe_order", FT_UINT16, BASE_DEC, NULL,
IEEE802154_SUPERFRAME_ORDER_MASK,
"Specifies the length of time the coordinator will interact with the PAN.", HFILL }},
{ &hf_ieee802154_cap,
{ "Final CAP Slot", "wpan.cap", FT_UINT16, BASE_DEC, NULL, IEEE802154_SUPERFRAME_CAP_MASK,
"Specifies the final superframe slot used by the CAP.", HFILL }},
{ &hf_ieee802154_superframe_battery_ext,
{ "Battery Extension", "wpan.battery_ext", FT_BOOLEAN, 16, NULL, IEEE802154_BATT_EXTENSION_MASK,
"Whether transmissions may not extend past the length of the beacon frame.", HFILL }},
{ &hf_ieee802154_superframe_coord,
{ "PAN Coordinator", "wpan.bcn_coord", FT_BOOLEAN, 16, NULL, IEEE802154_SUPERFRAME_COORD_MASK,
"Whether this beacon frame is being transmitted by the PAN coordinator or not.", HFILL }},
{ &hf_ieee802154_assoc_permit,
{ "Association Permit", "wpan.assoc_permit", FT_BOOLEAN, 16, NULL, IEEE802154_ASSOC_PERMIT_MASK,
"Whether this PAN is accepting association requests or not.", HFILL }},
{ &hf_ieee802154_gts_count,
{ "GTS Descriptor Count", "wpan.gts.count", FT_UINT8, BASE_DEC, NULL, 0x0,
"The number of GTS descriptors present in this beacon frame.", HFILL }},
{ &hf_ieee802154_gts_permit,
{ "GTS Permit", "wpan.gts.permit", FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Whether the PAN coordinator is accepting GTS requests or not.", HFILL }},
{ &hf_ieee802154_gts_direction,
{ "Direction", "wpan.gts.direction", FT_BOOLEAN, BASE_NONE, TFS(&ieee802154_gts_direction_tfs), 0x0,
"A flag defining the direction of the GTS Slot.", HFILL }},
{ &hf_ieee802154_gts_address,
{ "Address", "wpan.gts.address", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_pending16,
{ "Address", "wpan.pending16", FT_UINT16, BASE_HEX, NULL, 0x0,
"Device with pending data to receive.", HFILL }},
{ &hf_ieee802154_pending64,
{ "Address", "wpan.pending64", FT_EUI64, BASE_NONE, NULL, 0x0,
"Device with pending data to receive.", HFILL }},
/* Auxiliary Security Header Fields */
{ &hf_ieee802154_aux_security_header,
{ "Auxiliary Security Header", "wpan.aux_sec.hdr", FT_NONE, BASE_NONE, NULL,
0x0, "The Auxiliary Security Header of the frame", HFILL }},
{ &hf_ieee802154_aux_sec_security_level,
{ "Security Level", "wpan.aux_sec.sec_level", FT_UINT8, BASE_HEX, VALS(ieee802154_sec_level_names),
IEEE802154_AUX_SEC_LEVEL_MASK, "The Security Level of the frame", HFILL }},
{ &hf_ieee802154_aux_sec_security_control,
{ "Security Control Field", "wpan.aux_sec.security_control_field", FT_UINT8, BASE_HEX, NULL,
0x0, NULL, HFILL }},
{ &hf_ieee802154_aux_sec_key_id_mode,
{ "Key Identifier Mode", "wpan.aux_sec.key_id_mode", FT_UINT8, BASE_HEX, VALS(ieee802154_key_id_mode_names),
IEEE802154_AUX_KEY_ID_MODE_MASK,
"The scheme to use by the recipient to lookup the key in its key table", HFILL }},
{ &hf_ieee802154_aux_sec_frame_counter_suppression,
{ "Frame Counter Suppression", "wpan.aux_sec.frame_counter_suppression", FT_BOOLEAN, 8, NULL,
IEEE802154_AUX_FRAME_COUNTER_SUPPRESSION_MASK,
"Whether the frame counter is omitted from the Auxiliary Security Header", HFILL }},
{ &hf_ieee802154_aux_sec_asn_in_nonce,
{ "ASN in Nonce", "wpan.aux_sec.asn_in_nonce", FT_BOOLEAN, 8, NULL,
IEEE802154_AUX_ASN_IN_NONCE_MASK,
"Whether the ASN is used to generate the nonce instead of the frame counter", HFILL }},
{ &hf_ieee802154_aux_sec_reserved,
{ "Reserved", "wpan.aux_sec.reserved", FT_UINT8, BASE_HEX, NULL, IEEE802154_AUX_CTRL_RESERVED_MASK,
NULL, HFILL }},
{ &hf_ieee802154_aux_sec_frame_counter,
{ "Frame Counter", "wpan.aux_sec.frame_counter", FT_UINT32, BASE_DEC, NULL, 0x0,
"Frame counter of the originator of the protected frame", HFILL }},
{ &hf_ieee802154_aux_sec_key_source,
{ "Key Source", "wpan.aux_sec.key_source", FT_UINT64, BASE_HEX, NULL, 0x0,
"Key Source for processing of the protected frame", HFILL }},
{ &hf_ieee802154_aux_sec_key_source_bytes,
{ "Key Source", "wpan.aux_sec.key_source.bytes", FT_BYTES, BASE_NONE, NULL, 0x0,
"Key Source for processing of the protected frame", HFILL }},
{ &hf_ieee802154_aux_sec_key_index,
{ "Key Index", "wpan.aux_sec.key_index", FT_UINT8, BASE_HEX, NULL, 0x0,
"Key Index for processing of the protected frame", HFILL }},
{ &hf_ieee802154_mic,
{ "MIC", "wpan.mic", FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_key_number,
{ "Key Number", "wpan.key_number", FT_UINT8, BASE_DEC, NULL, 0x0,
"Key number used to decode", HFILL }},
/* IEEE 802.15.4-2003 Security Header Fields */
{ &hf_ieee802154_sec_frame_counter,
{ "Frame Counter", "wpan.sec_frame_counter", FT_UINT32, BASE_HEX, NULL, 0x0,
"Frame counter of the originator of the protected frame (802.15.4-2003)", HFILL }},
{ &hf_ieee802154_sec_key_sequence_counter,
{ "Key Sequence Counter", "wpan.sec_key_sequence_counter", FT_UINT8, BASE_HEX, NULL, 0x0,
"Key Sequence counter of the originator of the protected frame (802.15.4-2003)", HFILL }},
{ &hf_ieee802154_no_ack,
{ "No ack found", "wpan.no_ack", FT_NONE, BASE_NONE, NULL, 0x0,
"No corresponding ack frame was found", HFILL }},
{ &hf_ieee802154_no_ack_request,
{ "No request found", "wpan.no_ack_request", FT_NONE, BASE_NONE, NULL, 0x0,
"No corresponding request frame was found", HFILL }},
{ &hf_ieee802154_ack_in,
{ "Ack In", "wpan.ack_in", FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"The ack to this request is in this frame", HFILL }},
{ &hf_ieee802154_ack_to,
{ "Ack To", "wpan.ack_to", FT_FRAMENUM, BASE_NONE, FRAMENUM_TYPE(FT_FRAMENUM_ACK), 0x0,
"This is the ack to the request in this frame", HFILL }},
{ &hf_ieee802154_ack_time,
{ "Ack Time", "wpan.ack_time", FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0,
"The time between the request and the ack", HFILL }},
/* ZBOSS dump */
{ &hf_zboss_page,
{ "Page", "wpan-zboss.page", FT_UINT8, BASE_DEC_HEX, VALS(zboss_page_names), 0xFE,
"IEEE802.15.4 page number", HFILL } },
{ &hf_zboss_channel,
{ "Channel", "wpan-zboss.channel", FT_UINT8, BASE_DEC, NULL, 0x0,
"Channel number", HFILL }},
{ &hf_zboss_direction,
{ "ZBOSS Direction", "wpan-zboss.direction", FT_UINT8, BASE_HEX, VALS(zboss_direction_names), 0x01,
"ZBOSS Packet Direction", HFILL }},
{ &hf_zboss_trace_number,
{ "Trace number", "wpan-zboss.trace", FT_UINT32, BASE_DEC, NULL, 0x0,
"Trace item number", HFILL }},
/* TAP Packet Fields */
{ &hf_ieee802154_tap_version,
{ "Version", "wpan-tap.version", FT_UINT8, BASE_DEC, NULL, 0x0,
"TAP Packet Version", HFILL }},
{ &hf_ieee802154_tap_reserved,
{ "Reserved", "wpan-tap.reserved", FT_UINT8, BASE_DEC, NULL, 0x0,
"TAP Packet Reserved", HFILL }},
{ &hf_ieee802154_tap_length,
{ "Length", "wpan-tap.length", FT_UINT16, BASE_DEC, NULL, 0x0,
"TAP Packet Length", HFILL }},
{ &hf_ieee802154_tap_data_length,
{ "Data Length", "wpan-tap.data_length", FT_UINT16, BASE_DEC, NULL, 0x0,
"IEEE 802.15.4 Data Length", HFILL }},
{ &hf_ieee802154_tap_tlv_type,
{ "TLV Type", "wpan-tap.tlv.type", FT_UINT16, BASE_DEC, VALS(tap_tlv_types), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_tlv_length,
{ "TLV Length", "wpan-tap.tlv.length", FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_tlv_unknown,
{ "Unknown", "wpan-tap.tlv.unknown", FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_tlv_padding,
{ "Padding", "wpan-tap.tlv.padding", FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_fcs_type,
{ "FCS Type", "wpan-tap.fcs_type", FT_UINT8, BASE_DEC, VALS(tap_fcs_type_names), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_rss,
{ "RSS", "wpan-tap.rss", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, &units_dbm, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_ch_num,
{ "Channel", "wpan-tap.ch_num", FT_UINT16, BASE_DEC, NULL, 0x0,
"Channel number", HFILL }},
{ &hf_ieee802154_ch_page,
{ "Page", "wpan-tap.ch_page", FT_UINT8, BASE_DEC, VALS(channel_page_names), 0x0,
"Channel page", HFILL }},
{ &hf_ieee802154_bit_rate,
{ "Bit Rate", "wpan-tap.bit_rate", FT_UINT32, BASE_DEC|BASE_UNIT_STRING, &units_bit_sec, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_sun_band,
{ "Band", "wpan-tap.sun_band", FT_UINT8, BASE_DEC, VALS(sun_bands), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_sun_type,
{ "Type", "wpan-tap.sun_type", FT_UINT8, BASE_DEC, VALS(sun_types), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_sun_mode,
{ "Mode", "wpan-tap.sun_mode", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_mode_fsk_a,
{ "FSK-A mode", "wpan-tap.mode.fsk_a", FT_UINT8, BASE_DEC, VALS(fsk_a_modes), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_mode_fsk_b,
{ "FSK-B mode", "wpan-tap.mode.fsk_b", FT_UINT8, BASE_DEC, VALS(fsk_b_modes), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_mode_oqpsk_a,
{ "O-QPSK-A mode", "wpan-tap.mode.oqpsk_a", FT_UINT8, BASE_DEC, VALS(oqpsk_a_modes), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_mode_oqpsk_b,
{ "O-QPSK-B mode", "wpan-tap.mode.oqpsk_b", FT_UINT8, BASE_DEC, VALS(oqpsk_b_modes), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_mode_oqpsk_c,
{ "O-QPSK-C mode", "wpan-tap.mode.oqpsk_c", FT_UINT8, BASE_DEC, VALS(oqpsk_c_modes), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_mode_ofdm,
{ "OFDM mode", "wpan-tap.mode.ofdm", FT_UINT8, BASE_DEC, VALS(ofdm_modes), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_sof_ts,
{ "Start of frame timestamp", "wpan-tap.sof_ts", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_nanoseconds, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_eof_ts,
{ "End of frame timestamp", "wpan-tap.eof_ts", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_nanoseconds, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_slot_start_ts,
{ "Start of slot timestamp", "wpan-tap.slot_start_ts", FT_UINT64, BASE_DEC|BASE_UNIT_STRING, &units_nanoseconds, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_timeslot_length,
{ "Timeslot length", "wpan-tap.timeslot_length", FT_UINT32, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_lqi,
{ "Link Quality Indicator", "wpan-tap.lqi", FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_chplan_start,
{ "Channel0 freq", "wpan-tap.chplan.start", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, &units_khz, 0x0,
"Channel 0 center frequency", HFILL }},
{ &hf_ieee802154_chplan_spacing,
{ "Spacing", "wpan-tap.chplan.spacing", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, &units_khz, 0x0,
"Channel spacing", HFILL }},
{ &hf_ieee802154_chplan_channels,
{ "Channels", "wpan-tap.chplan.channels", FT_UINT16, BASE_DEC, NULL, 0x0,
"Number of channels", HFILL }},
{ &hf_ieee802154_ch_freq,
{ "Frequency", "wpan-tap.ch_freq", FT_FLOAT, BASE_NONE|BASE_UNIT_STRING, &units_khz, 0x0,
"Channel center frequency", HFILL }},
{ &hf_ieee802154_frame_start_offset,
{ "Frame start offset", "wpan.tsch.frame_start_offset", FT_DOUBLE, BASE_NONE|BASE_UNIT_STRING, &units_microseconds, 0x0,
"Start of frame timestamp - start of slot timestamp", HFILL }},
{ &hf_ieee802154_frame_duration,
{ "Frame duration", "wpan.tsch.frame_duration", FT_DOUBLE, BASE_NONE|BASE_UNIT_STRING, &units_microseconds, 0x0,
"End of frame timestamp - start of frame timestamp", HFILL }},
{ &hf_ieee802154_frame_end_offset,
{ "Frame end offset", "wpan.tsch.frame_end_offset", FT_DOUBLE, BASE_NONE|BASE_UNIT_STRING, &units_microseconds, 0x0,
"End of frame timestamp - (start of slot timestamp + timeslot length)", HFILL }},
{ &hf_ieee802154_asn,
{ "ASN", "wpan-tap.asn", FT_UINT64, BASE_DEC, NULL, 0x0,
"Absolute Slot Number", HFILL }},
{ &hf_ieee802154_tap_phr_type,
{ "PHR Type", "wpan-tap.phr.type", FT_UINT16, BASE_DEC, VALS(ieee802154_phr_type_vals), 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_phr_bits,
{ "PHR Bits", "wpan-tap.phr.bits", FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_phr_data,
{ "PHR Data", "wpan-tap.phr.data", FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_phr_fsk,
{ "FSK PHR", "wpan-tap.phr.fsk", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_fsk_ms_phr,
{ "FSK Mode Switch PHR", "wpan-tap.phr.fsk_ms", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_wisun_ms_phr,
{ "Wi-SUN Mode Switch PHR", "wpan-tap.phr.wisun_ms", FT_UINT16, BASE_HEX, NULL, 0x0,
NULL, HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms,
{ "MS", "wpan-tap.phr.fsk.ms", FT_BOOLEAN, 16, TFS(&tfs_enabled_disabled), IEEE802154_TAP_PHR_FSK_MS,
"Mode Switch", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_fcs,
{ "FCS Type", "wpan-tap.phr.fsk.fcs", FT_BOOLEAN, 16, TFS(&tfs_fcs_type), IEEE802154_TAP_PHR_FSK_FCS,
NULL, HFILL }},
{ &hf_ieee802154_tap_phr_fsk_dw,
{ "DW", "wpan-tap.phr.fsk.dw", FT_BOOLEAN, 16, TFS(&tfs_enabled_disabled), IEEE802154_TAP_PHR_FSK_DW,
"Data Whitening", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_length,
{ "Frame Length", "wpan-tap.phr.fsk.length", FT_UINT16, BASE_HEX, NULL, IEEE802154_TAP_PHR_FSK_LENGTH,
NULL, HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms_param,
{ "Parameter", "wpan-tap.phr.fsk_ms.length", FT_UINT16, BASE_HEX, NULL, IEEE802154_TAP_PHR_FSK_MS_PARAM,
"Mode Switch Parameter", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms_fec,
{ "FEC", "wpan-tap.phr.fsk_ms.fec", FT_BOOLEAN, 16, TFS(&tfs_enabled_disabled), IEEE802154_TAP_PHR_FSK_MS_FEC,
"New Mode FEC", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms_checksum,
{ "Checksum", "wpan-tap.phr.fsk_ms.checksum", FT_UINT16, BASE_HEX, NULL, IEEE802154_TAP_PHR_FSK_MS_CHECKSUM,
"BCH(15,11) checksum", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms_parity,
{ "Parity", "wpan-tap.phr.fsk_ms.parity", FT_UINT16, BASE_HEX, NULL, IEEE802154_TAP_PHR_FSK_MS_PARITY,
"Parity Check bit", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms_mode_page,
{ "Page", "wpan-tap.phr.fsk_ms.page", FT_UINT16, BASE_HEX, VALS(vals_fsk_ms_page), IEEE802154_TAP_PHR_FSK_MS_MODE_PAGE,
"New Mode Page", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms_mode_scheme,
{ "Scheme", "wpan-tap.phr.fsk_ms.scheme", FT_UINT16, BASE_HEX, VALS(ieee802154_phr_fsk_ms_scheme), IEEE802154_TAP_PHR_FSK_MS_MODE_SCHEME,
"New Mode Modulation Scheme", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms_mode_mode,
{ "Mode", "wpan-tap.phr.fsk_ms.mode", FT_UINT16, BASE_HEX, VALS(ieee802154_phr_fsk_ms_mode), IEEE802154_TAP_PHR_FSK_MS_MODE_MODE,
"New Mode Mode", HFILL }},
{ &hf_ieee802154_tap_phr_fsk_ms_mode_addl_mode,
{ "Additional Mode", "wpan-tap.phr.fsk_ms.mode", FT_UINT16, BASE_HEX, VALS(ieee802154_phr_fsk_ms_additional_modes), IEEE802154_TAP_PHR_FSK_MS_MODE_MODE,
"New Mode Additional Mode", HFILL }},
{ &hf_ieee802154_tap_phr_wisun_fsk_ms_reserved,
{ "Reserved", "wpan-tap.phr.wisun_ms.reserved", FT_UINT16, BASE_HEX, NULL, IEEE802154_TAP_PHR_WISUN_FSK_MS_RESERVED,
NULL, HFILL }},
{ &hf_ieee802154_tap_phr_wisun_fsk_ms_phymodeid,
{ "PhyModeId", "wpan-tap.phr.wisun_ms.phymodeid", FT_UINT16, BASE_HEX, VALS(ieee802154_phr_wisun_phymodeid), IEEE802154_TAP_PHR_WISUN_FSK_MS_PHYMODEID,
"New Wi-SUN PhyModeId", HFILL }},
};
/* Subtrees */
static gint *ett[] = {
&ett_ieee802154_nonask_phy,
&ett_ieee802154_nonask_phy_phr,
&ett_ieee802154_tap,
&ett_ieee802154_tap_header,
&ett_ieee802154_tap_tlv,
&ett_ieee802154,
&ett_ieee802154_fcf,
&ett_ieee802154_auxiliary_security,
&ett_ieee802154_aux_sec_control,
&ett_ieee802154_aux_sec_key_id,
&ett_ieee802154_fcs,
&ett_ieee802154_cmd,
&ett_ieee802154_superframe,
&ett_ieee802154_gts,
&ett_ieee802154_gts_direction,
&ett_ieee802154_gts_descriptors,
&ett_ieee802154_pendaddr,
&ett_ieee802154_header_ies,
&ett_ieee802154_header_ie,
&ett_ieee802154_header_ie_tlv,
&ett_ieee802154_hie_unsupported,
&ett_ieee802154_hie_time_correction,
&ett_ieee802154_hie_ht,
&ett_ieee802154_hie_csl,
&ett_ieee802154_hie_rdv,
&ett_ieee802154_hie_global_time,
&ett_ieee802154_hie_vendor_specific,
&ett_ieee802154_payload_ie,
&ett_ieee802154_payload_ie_tlv,
&ett_ieee802154_pie_termination,
&ett_ieee802154_pie_vendor,
&ett_ieee802159_mpx,
&ett_ieee802159_mpx_transaction_control,
&ett_ieee802154_pie_ietf,
&ett_ieee802154_pie_unsupported,
&ett_ieee802154_tsch_slotframe,
&ett_ieee802154_tsch_slotframe_list,
&ett_ieee802154_tsch_slotframe_link,
&ett_ieee802154_tsch_slotframe_link_options,
&ett_ieee802154_tsch_timeslot,
&ett_ieee802154_tsch_synch,
&ett_ieee802154_channel_hopping,
&ett_ieee802154_mlme,
&ett_ieee802154_mlme_payload,
&ett_ieee802154_mlme_payload_data,
&ett_ieee802154_mlme_unsupported,
&ett_ieee802154_psie,
&ett_ieee802154_eb_filter,
&ett_ieee802154_eb_filter_bitmap,
&ett_ieee802154_zigbee,
&ett_ieee802154_zboss,
&ett_ieee802154_p_ie_6top,
&ett_ieee802154_p_ie_6top_cell_options,
&ett_ieee802154_p_ie_6top_cell_list,
&ett_ieee802154_p_ie_6top_rel_cell_list,
&ett_ieee802154_p_ie_6top_cand_cell_list,
&ett_ieee802154_p_ie_6top_cell,
&ett_ieee802154_tap_phr,
};
static ei_register_info ei[] = {
{ &ei_ieee802154_fcs_bitmask_len, { "wpan.bitmask_len_error", PI_UNDECODED, PI_WARN,
"Only least-significant bytes decoded", EXPFILL }},
{ &ei_ieee802154_invalid_addressing, { "wpan.invalid_addressing", PI_MALFORMED, PI_WARN,
"Invalid Addressing", EXPFILL }},
{ &ei_ieee802154_invalid_panid_compression, { "wpan.invalid_panid_compression", PI_MALFORMED, PI_ERROR,
"Invalid Setting for PAN ID Compression", EXPFILL }},
{ &ei_ieee802154_invalid_panid_compression2, { "wpan.invalid_panid_compression", PI_MALFORMED, PI_ERROR,
"Invalid Pan ID Compression and addressing combination for Frame Version 2", EXPFILL }},
{ &ei_ieee802154_dst, { "wpan.dst_invalid", PI_MALFORMED, PI_ERROR,
"Invalid Destination Address Mode", EXPFILL }},
{ &ei_ieee802154_src, { "wpan.src_invalid", PI_MALFORMED, PI_ERROR,
"Invalid Source Address Mode", EXPFILL }},
{ &ei_ieee802154_frame_ver, { "wpan.frame_version_unknown", PI_MALFORMED, PI_ERROR,
"Frame Version Unknown Cannot Dissect", EXPFILL }},
#if 0
{ &ei_ieee802154_frame_type, { "wpan.frame_type_unknown", PI_MALFORMED, PI_ERROR,
"Frame Type Unknown Cannot Dissect", EXPFILL }},
#endif
{ &ei_ieee802154_decrypt_error, { "wpan.decrypt_error", PI_UNDECODED, PI_WARN,
"Decryption error", EXPFILL }},
{ &ei_ieee802154_fcs, { "wpan.fcs.bad", PI_CHECKSUM, PI_WARN,
"Bad FCS", EXPFILL }},
{ &ei_ieee802154_ack_not_found, { "wpan.ack_not_found", PI_SEQUENCE, PI_NOTE,
"Ack not found", EXPFILL }},
{ &ei_ieee802154_ack_request_not_found, { "wpan.ack_request_not_found", PI_SEQUENCE, PI_NOTE,
"Request not found", EXPFILL }},
{ &ei_ieee802154_seqno_suppression, { "wpan.seqno_suppression_invalid", PI_MALFORMED, PI_WARN,
"Sequence Number Suppression invalid for 802.15.4-2003 and 2006", EXPFILL }},
{ &ei_ieee802154_6top_unsupported_type, { "wpan.6top_unsupported_type", PI_PROTOCOL, PI_WARN,
"Unsupported Type of Message", EXPFILL }},
{ &ei_ieee802154_6top_unsupported_command, { "wpan.6top_unsupported_command", PI_PROTOCOL, PI_WARN,
"Unsupported 6top command", EXPFILL }},
{ &ei_ieee802154_time_correction_error, { "wpan.time_correction.error", PI_PROTOCOL, PI_WARN,
"Incorrect value. Reference: IEEE-802.15.4-2015. Table 7-8: Values of the Time Sync Info field for ACK with timing information", EXPFILL}},
{ &ei_ieee802154_6top_unsupported_return_code, { "wpan.6top_unsupported_code", PI_PROTOCOL, PI_WARN,
"Unsupported 6top return code", EXPFILL }},
{ &ei_ieee802154_ie_unsupported_id, { "wpan.ie_unsupported_id", PI_PROTOCOL, PI_WARN,
"Unsupported IE ID", EXPFILL }},
{ &ei_ieee802154_ie_unknown_extra_content, { "wpan.ie_unknown_extra_content", PI_PROTOCOL, PI_WARN,
"Unexpected extra content for IE", EXPFILL }},
{ &ei_ieee802159_mpx_invalid_transfer_type, { "wpan.payload_ie.mpx.invalid_transfer_type", PI_PROTOCOL, PI_WARN,
"Invalid transfer type (cf. IEEE 802.15.9 Table 19)", EXPFILL }},
{ &ei_ieee802159_mpx_unsupported_kmp, { "wpan.mpx.unsupported_kmp", PI_PROTOCOL, PI_WARN,
"Unsupported KMP ID", EXPFILL }},
{ &ei_ieee802159_mpx_unknown_kmp, { "wpan.mpx.unknown_kmp", PI_PROTOCOL, PI_WARN,
"Unknown KMP ID (cf. IEEE 802.15.9 Table 21)", EXPFILL }},
{ &ei_ieee802154_missing_payload_ie, { "wpan.payload_ie.missing", PI_MALFORMED, PI_WARN,
"Payload IE indicated by Header Termination, but no Payload IE present", EXPFILL }},
{ &ei_ieee802154_payload_ie_in_header, { "wpan.payload_ie.in_header", PI_MALFORMED, PI_WARN,
"Payload IE in header", EXPFILL }},
{ &ei_ieee802154_unsupported_cmd, { "wpan.cmd.unsupported_cmd", PI_PROTOCOL, PI_WARN,
"Unsupported Command ID", EXPFILL }},
{ &ei_ieee802154_unknown_cmd, { "wpan.cmd.unknown_cmd", PI_PROTOCOL, PI_WARN,
"Unknown Command Id (cf. IEEE 802.15.4-2015 Table 7-49)", EXPFILL }},
{ &ei_ieee802154_tap_tlv_invalid_type, { "wpan-tap.tlv.invalid_type", PI_MALFORMED, PI_WARN,
"Invalid TLV type", EXPFILL }},
{ &ei_ieee802154_tap_tlv_invalid_length, { "wpan-tap.tlv.invalid_length", PI_MALFORMED, PI_WARN,
"Invalid TLV length", EXPFILL }},
{ &ei_ieee802154_tap_tlv_padding_not_zeros, { "wpan-tap.tlv.padding_not_zeros", PI_MALFORMED, PI_WARN,
"TLV padding not zero", EXPFILL }},
{ &ei_ieee802154_tap_tlv_invalid_fcs_type, { "wpan-tap.tlv.invalid_fcs_type", PI_MALFORMED, PI_ERROR,
"Invalid FCS type", EXPFILL }},
{ &ei_ieee802154_tap_tlv_reserved_not_zero, { "wpan-tap.tlv.reserved_not_zero", PI_PROTOCOL, PI_WARN,
"Reserved bits not zero", EXPFILL }},
{ &ei_ieee802154_tap_no_payload, { "wpan-tap.tlv.no_payload", PI_COMMENTS_GROUP, PI_COMMENT,
"No payload", EXPFILL }},
};
/* Preferences. */
module_t *ieee802154_module;
expert_module_t* expert_ieee802154;
static uat_field_t addr_uat_flds[] = {
UAT_FLD_HEX(addr_uat,addr16,"Short Address",
"16-bit short address in hexadecimal."),
UAT_FLD_HEX(addr_uat,pan,"PAN Identifier",
"16-bit PAN identifier in hexadecimal."),
UAT_FLD_BUFFER(addr_uat,eui64,"EUI-64",
"64-bit extended unique identifier."),
UAT_END_FIELDS
};
static uat_field_t key_uat_flds[] = {
UAT_FLD_CSTRING(key_uat,pref_key,"Decryption key",
"128-bit decryption key in hexadecimal format"),
UAT_FLD_DEC(key_uat,key_index,"Decryption key index",
"Key index in decimal format"),
UAT_FLD_VS(key_uat, hash_type, "Key hash", ieee802154_key_hash_vals, "Specifies which hash scheme is used to derived the key"),
UAT_END_FIELDS
};
static const enum_val_t fcs_type_vals[] = {
{"cc24xx", "TI CC24xx metadata", IEEE802154_CC24XX_METADATA},
{"16", "ITU-T CRC-16", IEEE802154_FCS_16_BIT},
{"32", "ITU-T CRC-32", IEEE802154_FCS_32_BIT},
{NULL, NULL, -1}
};
static build_valid_func ieee802154_da_build_value[1] = {ieee802154_da_value};
static decode_as_value_t ieee802154_da_values = {ieee802154_da_prompt, 1, ieee802154_da_build_value};
static decode_as_t ieee802154_da = {
IEEE802154_PROTOABBREV_WPAN, IEEE802154_PROTOABBREV_WPAN_PANID,
1, 0, &ieee802154_da_values, NULL, NULL,
decode_as_default_populate_list, decode_as_default_reset, decode_as_default_change, NULL
};
/* Register the init routine. */
register_init_routine(proto_init_ieee802154);
register_cleanup_routine(proto_cleanup_ieee802154);
/* Register Protocol name and description. */
proto_ieee802154 = proto_register_protocol("IEEE 802.15.4 Low-Rate Wireless PAN", "IEEE 802.15.4",
IEEE802154_PROTOABBREV_WPAN);
proto_ieee802154_nonask_phy = proto_register_protocol("IEEE 802.15.4 Low-Rate Wireless PAN non-ASK PHY",
"IEEE 802.15.4 non-ASK PHY", "wpan-nonask-phy");
proto_zboss = proto_register_protocol("ZBOSS IEEE 802.15.4 dump",
"ZBOSS dump", "wpan-zboss");
proto_ieee802154_tap = proto_register_protocol("IEEE 802.15.4 Low-Rate Wireless PAN TAP",
"IEEE 802.15.4 TAP", "wpan-tap");
/* Register header fields and subtrees. */
proto_register_field_array(proto_ieee802154, hf, array_length(hf));
proto_register_field_array(proto_ieee802154, hf_phy, array_length(hf_phy));
proto_register_subtree_array(ett, array_length(ett));
expert_ieee802154 = expert_register_protocol(proto_ieee802154);
expert_register_field_array(expert_ieee802154, ei, array_length(ei));
ieee802_15_4_short_address_type = address_type_dissector_register("AT_IEEE_802_15_4_SHORT", "IEEE 802.15.4 16-bit short address",
ieee802_15_4_short_address_to_str, ieee802_15_4_short_address_str_len, NULL, NULL, ieee802_15_4_short_address_len, NULL, NULL);
/* add a user preference to set the 802.15.4 ethertype */
ieee802154_module = prefs_register_protocol(proto_ieee802154,
proto_reg_handoff_ieee802154);
prefs_register_uint_preference(ieee802154_module, "802154_ethertype",
"802.15.4 Ethertype (in hex)",
"(Hexadecimal) Ethertype used to indicate IEEE 802.15.4 frame.",
16, &ieee802154_ethertype);
prefs_register_obsolete_preference(ieee802154_module, "802154_cc24xx");
prefs_register_enum_preference(ieee802154_module, "fcs_format",
"FCS format",
"The FCS format in the captured payload",
&ieee802154_fcs_type, fcs_type_vals, FALSE);
prefs_register_bool_preference(ieee802154_module, "802154_fcs_ok",
"Dissect only good FCS",
"Dissect payload only if FCS is valid.",
&ieee802154_fcs_ok);
prefs_register_bool_preference(ieee802154_module, "802154_ack_tracking",
"Enable ACK tracking",
"Match frames with ACK request to ACK packets",
&ieee802154_ack_tracking);
prefs_register_bool_preference(ieee802154_module, "802154e_compatibility",
"Assume 802.15.4e-2012 for compatibility",
"Parse assuming 802.15.4e quirks for compatibility",
&ieee802154e_compatibility);
/* Create a UAT for static address mappings. */
static_addr_uat = uat_new("Static Addresses",
sizeof(static_addr_t), /* record size */
"802154_addresses", /* filename */
TRUE, /* from_profile */
&static_addrs, /* data_ptr */
&num_static_addrs, /* numitems_ptr */
UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */
NULL, /* help */
addr_uat_copy_cb, /* copy callback */
addr_uat_update_cb, /* update callback */
addr_uat_free_cb, /* free callback */
NULL, /* post update callback */
NULL, /* reset callback */
addr_uat_flds); /* UAT field definitions */
prefs_register_uat_preference(ieee802154_module, "static_addr",
"Static Addresses",
"A table of static address mappings between 16-bit short addressing and EUI-64 addresses",
static_addr_uat);
/* Create a UAT for key management. */
ieee802154_key_uat = uat_new("Keys",
sizeof(ieee802154_key_t), /* record size */
"ieee802154_keys", /* filename */
TRUE, /* from_profile */
&ieee802154_keys, /* data_ptr */
&num_ieee802154_keys, /* numitems_ptr */
UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */
NULL, /* help */
ieee802154_key_copy_cb, /* copy callback */
ieee802154_key_update_cb, /* update callback */
ieee802154_key_free_cb, /* free callback */
ieee802154_key_post_update_cb, /* post update callback */
NULL, /* reset callback */
key_uat_flds); /* UAT field definitions */
prefs_register_uat_preference(ieee802154_module, "ieee802154_keys",
"Decryption Keys",
"Decryption key configuration data",
ieee802154_key_uat);
/* Register preferences for a decryption key */
prefs_register_obsolete_preference(ieee802154_module, "802154_key");
prefs_register_enum_preference(ieee802154_module, "802154_sec_suite",
"Security Suite (802.15.4-2003)",
"Specifies the security suite to use for 802.15.4-2003 secured frames"
" (only supported suites are listed). Option ignored for 802.15.4-2006"
" and unsecured frames.",
&ieee802154_sec_suite, ieee802154_2003_sec_suite_enums, FALSE);
prefs_register_bool_preference(ieee802154_module, "802154_extend_auth",
"Extend authentication data (802.15.4-2003)",
"Set if the manufacturer extends the authentication data with the"
" security header. Option ignored for 802.15.4-2006 and unsecured frames.",
&ieee802154_extend_auth);
/* Register the subdissector list */
panid_dissector_table = register_dissector_table(IEEE802154_PROTOABBREV_WPAN_PANID, "IEEE 802.15.4 PANID", proto_ieee802154, FT_UINT16, BASE_HEX);
ieee802154_heur_subdissector_list = register_heur_dissector_list(IEEE802154_PROTOABBREV_WPAN, proto_ieee802154);
ieee802154_beacon_subdissector_list = register_heur_dissector_list(IEEE802154_PROTOABBREV_WPAN_BEACON, proto_ieee802154);
/* Register dissector tables */
header_ie_dissector_table = register_dissector_table(IEEE802154_HEADER_IE_DTABLE, "IEEE 802.15.4 Header IEs", proto_ieee802154, FT_UINT8, BASE_HEX);
payload_ie_dissector_table = register_dissector_table(IEEE802154_PAYLOAD_IE_DTABLE, "IEEE 802.15.4 Payload IEs", proto_ieee802154, FT_UINT8, BASE_HEX);
mlme_ie_dissector_table = register_dissector_table(IEEE802154_MLME_IE_DTABLE, "IEEE 802.15.4 Nested IEs", proto_ieee802154, FT_UINT8, BASE_HEX);
cmd_vendor_dissector_table = register_dissector_table(IEEE802154_CMD_VENDOR_DTABLE, "IEEE 802.15.4 Vendor Specific Commands", proto_ieee802154, FT_UINT24, BASE_HEX );
/* Register dissectors with Wireshark */
ieee802154_handle = register_dissector(IEEE802154_PROTOABBREV_WPAN, dissect_ieee802154, proto_ieee802154);
ieee802154_nofcs_handle = register_dissector("wpan_nofcs", dissect_ieee802154_nofcs, proto_ieee802154);
register_dissector("wpan_cc24xx", dissect_ieee802154_cc24xx, proto_ieee802154);
ieee802154_nonask_phy_handle = register_dissector("wpan-nonask-phy", dissect_ieee802154_nonask_phy, proto_ieee802154_nonask_phy);
ieee802154_tap_handle = register_dissector("wpan-tap", dissect_ieee802154_tap, proto_ieee802154_tap);
/* Setup registration for other dissectors to provide mac key hash algorithms */
mac_key_hash_handlers = wmem_tree_new(wmem_epan_scope());
/* Register a Decode-As handler */
register_decode_as(&ieee802154_da);
/* Create trees for transactions */
transaction_unmatched_pdus = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
transaction_matched_pdus = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
ieee802154_tap = register_tap(IEEE802154_PROTOABBREV_WPAN);
register_conversation_table(proto_ieee802154, TRUE, ieee802154_conversation_packet, ieee802154_endpoint_packet);
register_conversation_filter(IEEE802154_PROTOABBREV_WPAN, "IEEE 802.15.4", ieee802154_filter_valid, ieee802154_build_filter);
} /* proto_register_ieee802154 */
/**
* Registers the IEEE 802.15.4 dissector with Wireshark.
* Will be called every time 'apply' is pressed in the preferences menu.
* as well as during Wireshark initialization
*/
void proto_reg_handoff_ieee802154(void)
{
static gboolean prefs_initialized = FALSE;
static unsigned int old_ieee802154_ethertype;
if (!prefs_initialized) {
/* Get the dissector handles. */
zigbee_ie_handle = find_dissector_add_dependency("zbee_ie", proto_ieee802154);
zigbee_nwk_handle = find_dissector("zbee_nwk");
dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE802_15_4, ieee802154_handle);
dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE802_15_4_NONASK_PHY, ieee802154_nonask_phy_handle);
dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE802_15_4_NOFCS, ieee802154_nofcs_handle);
dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE802_15_4_TAP, ieee802154_tap_handle);
dissector_add_uint("sll.ltype", LINUX_SLL_P_IEEE802154, ieee802154_handle);
/* Register internal IE handlers */
dissector_add_uint(IEEE802154_HEADER_IE_DTABLE, IEEE802154_HEADER_IE_TIME_CORR, create_dissector_handle(dissect_hie_time_correction, -1));
dissector_add_uint(IEEE802154_HEADER_IE_DTABLE, IEEE802154_HEADER_IE_CSL, create_dissector_handle(dissect_hie_csl, -1));
dissector_add_uint(IEEE802154_HEADER_IE_DTABLE, IEEE802154_HEADER_IE_RENDEZVOUS, create_dissector_handle(dissect_hie_rendezvous_time, -1));
dissector_add_uint(IEEE802154_HEADER_IE_DTABLE, IEEE802154_HEADER_IE_GLOBAL_TIME, create_dissector_handle(dissect_hie_global_time, -1));
dissector_add_uint(IEEE802154_HEADER_IE_DTABLE, IEEE802154_HEADER_IE_VENDOR_SPECIFIC, create_dissector_handle(dissect_hie_vendor_specific, -1));
dissector_add_uint(IEEE802154_PAYLOAD_IE_DTABLE, IEEE802154_PAYLOAD_IE_MLME, create_dissector_handle(dissect_pie_mlme, -1));
dissector_add_uint(IEEE802154_PAYLOAD_IE_DTABLE, IEEE802154_PAYLOAD_IE_VENDOR, create_dissector_handle(dissect_pie_vendor, -1));
dissector_add_uint(IEEE802154_PAYLOAD_IE_DTABLE, IEEE802154_PAYLOAD_IE_MPX, create_dissector_handle(dissect_mpx_ie, -1));
dissector_add_uint(IEEE802154_PAYLOAD_IE_DTABLE, IEEE802154_PAYLOAD_IE_IETF, create_dissector_handle(dissect_ietf_ie, -1));
dissector_add_uint(IEEE802154_MLME_IE_DTABLE, IEEE802154_MLME_SUBIE_CHANNEL_HOPPING, create_dissector_handle(dissect_802154_channel_hopping, -1));
dissector_add_uint(IEEE802154_MLME_IE_DTABLE, IEEE802154_MLME_SUBIE_TSCH_SYNCH, create_dissector_handle(dissect_802154_tsch_time_sync, -1));
dissector_add_uint(IEEE802154_MLME_IE_DTABLE, IEEE802154_MLME_SUBIE_TSCH_SLOTFR_LINK, create_dissector_handle(dissect_802154_tsch_slotframe_link, -1));
dissector_add_uint(IEEE802154_MLME_IE_DTABLE, IEEE802154_MLME_SUBIE_TSCH_TIMESLOT, create_dissector_handle(dissect_802154_tsch_timeslot, -1));
dissector_add_uint(IEEE802154_MLME_IE_DTABLE, IEEE802154_MLME_SUBIE_ENHANCED_BEACON_FILTER, create_dissector_handle(dissect_802154_eb_filter, -1));
/* For the MPX-IE */
ethertype_table = find_dissector_table("ethertype");
eapol_handle = find_dissector("eapol");
lowpan_handle = find_dissector("6lowpan");
wisun_sec_handle = find_dissector("wisun.sec");
prefs_initialized = TRUE;
} else {
dissector_delete_uint("ethertype", old_ieee802154_ethertype, ieee802154_handle);
}
old_ieee802154_ethertype = ieee802154_ethertype;
/* Register dissector handles. */
dissector_add_uint("ethertype", ieee802154_ethertype, ieee802154_handle);
} /* proto_reg_handoff_ieee802154 */
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/