wireshark/epan/dissectors/packet-enip.c

5177 lines
195 KiB
C

/* packet-enip.c
* Routines for EtherNet/IP (Industrial Protocol) dissection
* EtherNet/IP Home: www.odva.org
*
* This dissector includes items from:
* CIP Volume 1: Common Industrial Protocol, Edition 3.24
* CIP Volume 2: EtherNet/IP Adaptation of CIP, Edition 1.30
* CIP Volume 8: CIP Security, Edition 1.13
*
* Copyright 2003-2004
* Magnus Hansson <mah@hms.se>
* Joakim Wiberg <jow@hms.se>
*
* Conversation data support for CIP
* Jan Bartels, Siempelkamp Maschinen- und Anlagenbau GmbH & Co. KG
* Copyright 2007
*
* Ethernet/IP object support
* Michael Mann
* Copyright 2011
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/conversation_filter.h>
#include <epan/prefs.h>
#include <epan/etypes.h>
#include <epan/expert.h>
#include <epan/decode_as.h>
#include <epan/proto_data.h>
#include <ipproto.h>
#include "packet-tcp.h"
#include "packet-cip.h"
#include "packet-enip.h"
#include "packet-cipsafety.h"
#include "packet-dtls.h"
#include "packet-tls.h"
#include "packet-tls-utils.h"
void proto_register_enip(void);
void proto_reg_handoff_enip(void);
/* Communication Ports */
#define ENIP_ENCAP_PORT 44818 /* EtherNet/IP located on port 44818 */
#define ENIP_SECURE_PORT 2221 /* EtherNet/IP TLS/DTLS port */
#define ENIP_IO_PORT 2222 /* EtherNet/IP IO located on port 2222 */
/* EtherNet/IP function codes */
#define NOP 0x0000
#define LIST_SERVICES 0x0004
#define LIST_IDENTITY 0x0063
#define LIST_INTERFACES 0x0064
#define REGISTER_SESSION 0x0065
#define UNREGISTER_SESSION 0x0066
#define SEND_RR_DATA 0x006F
#define SEND_UNIT_DATA 0x0070
#define START_DTLS 0x00C8
/* EtherNet/IP status codes */
#define SUCCESS 0x0000
#define INVALID_CMD 0x0001
#define NO_RESOURCES 0x0002
#define INCORRECT_DATA 0x0003
#define INVALID_SESSION 0x0064
#define INVALID_LENGTH 0x0065
#define UNSUPPORTED_PROT_REV 0x0069
#define ENCAP_HEADER_ERROR 0x006A
/* EtherNet/IP Common Packet Format Type IDs */
#define CPF_ITEM_NULL 0x0000
#define CPF_ITEM_CIP_IDENTITY 0x000C
#define CPF_ITEM_CIP_SECURITY 0x0086
#define CPF_ITEM_ENIP_CAPABILITY 0x0087
#define CPF_ITEM_ENIP_USAGE 0x0088
#define CPF_ITEM_CONNECTED_ADDRESS 0x00A1
#define CPF_ITEM_CONNECTED_DATA 0x00B1
#define CPF_ITEM_UNCONNECTED_DATA 0x00B2
#define CPF_ITEM_LIST_SERVICES_RESP 0x0100
#define CPF_ITEM_SOCK_ADR_INFO_OT 0x8000
#define CPF_ITEM_SOCK_ADR_INFO_TO 0x8001
#define CPF_ITEM_SEQUENCED_ADDRESS 0x8002
#define CPF_ITEM_UNCONNECTED_MSG_DTLS 0x8003
/* Initialize the protocol and registered fields */
static int proto_enip = -1;
static int proto_cipio = -1;
static int proto_cip_class1 = -1;
static int hf_enip_command = -1;
static int hf_enip_length = -1;
static int hf_enip_options = -1;
static int hf_enip_sendercontex = -1;
static int hf_enip_listid_delay = -1;
static int hf_enip_status = -1;
static int hf_enip_session = -1;
static int hf_enip_encapver = -1;
static int hf_enip_sinfamily = -1;
static int hf_enip_sinport = -1;
static int hf_enip_sinaddr = -1;
static int hf_enip_sinzero = -1;
static int hf_enip_timeout = -1;
static int hf_enip_encap_data = -1;
static int hf_enip_lir_vendor = -1;
static int hf_enip_lir_devtype = -1;
static int hf_enip_lir_prodcode = -1;
static int hf_enip_lir_revision = -1;
static int hf_enip_lir_status = -1;
static int hf_enip_lir_serial = -1;
static int hf_enip_lir_namelen = -1;
static int hf_enip_lir_name = -1;
static int hf_enip_lir_state = -1;
static int hf_enip_lsr_capaflags = -1;
static int hf_enip_lsr_tcp = -1;
static int hf_enip_lsr_udp = -1;
static int hf_enip_lsr_servicename = -1;
static int hf_enip_rs_version = -1;
static int hf_enip_rs_optionflags = -1;
static int hf_enip_security_profiles = -1;
static int hf_enip_security_profiles_eip_integrity = -1;
static int hf_enip_security_profiles_eip_confidentiality = -1;
static int hf_enip_security_profiles_cip_authorization = -1;
static int hf_enip_security_profiles_cip_user_authentication = -1;
static int hf_enip_security_profiles_resource_constrained = -1;
static int hf_enip_security_profiles_reserved = -1;
static int hf_enip_cip_security_state = -1;
static int hf_enip_eip_security_state = -1;
static int hf_enip_iana_port_state_flags = -1;
static int hf_enip_iana_port_state_flags_tcp_44818 = -1;
static int hf_enip_iana_port_state_flags_udp_44818 = -1;
static int hf_enip_iana_port_state_flags_udp_2222 = -1;
static int hf_enip_iana_port_state_flags_tcp_2221 = -1;
static int hf_enip_iana_port_state_flags_udp_2221 = -1;
static int hf_enip_iana_port_state_flags_reserved = -1;
static int hf_enip_srrd_ifacehnd = -1;
static int hf_enip_sud_ifacehnd = -1;
static int hf_enip_cpf_itemcount = -1;
static int hf_enip_cpf_typeid = -1;
static int hf_enip_cpf_length = -1;
static int hf_cip_sequence_count = -1;
static int hf_cip_cm_ot_api = -1;
static int hf_cip_cm_to_api = -1;
static int hf_enip_cpf_cai_connid = -1;
static int hf_enip_cpf_sai_connid = -1;
static int hf_cip_connid = -1;
static int hf_enip_cpf_sai_seqnum = -1;
static int hf_enip_cpf_ucmm_request = -1;
static int hf_enip_cpf_ucmm_msg_type = -1;
static int hf_enip_cpf_ucmm_trans_id = -1;
static int hf_enip_cpf_ucmm_status = -1;
static int hf_enip_cpf_data = -1;
static int hf_enip_response_in = -1;
static int hf_enip_response_to = -1;
static int hf_enip_time = -1;
static int hf_enip_fwd_open_in = -1;
static int hf_cip_connection = -1;
static int hf_cip_io_data = -1;
/* Parsed Attributes */
static int hf_tcpip_status = -1;
static int hf_tcpip_status_interface_config = -1;
static int hf_tcpip_status_mcast_pending = -1;
static int hf_tcpip_status_interface_config_pending = -1;
static int hf_tcpip_status_acd = -1;
static int hf_tcpip_acd_fault = -1;
static int hf_tcpip_status_iana_port_admin_change = -1;
static int hf_tcpip_status_iana_protocol_admin_change = -1;
static int hf_tcpip_status_reserved = -1;
static int hf_tcpip_config_cap = -1;
static int hf_tcpip_config_cap_bootp = -1;
static int hf_tcpip_config_cap_dns = -1;
static int hf_tcpip_config_cap_dhcp = -1;
static int hf_tcpip_config_cap_dhcp_dns_update = -1;
static int hf_tcpip_config_cap_config_settable = -1;
static int hf_tcpip_config_cap_hardware_config = -1;
static int hf_tcpip_config_cap_interface_reset = -1;
static int hf_tcpip_config_cap_acd = -1;
static int hf_tcpip_config_cap_reserved = -1;
static int hf_tcpip_config_control = -1;
static int hf_tcpip_config_control_config = -1;
static int hf_tcpip_config_control_dns = -1;
static int hf_tcpip_config_control_reserved = -1;
static int hf_tcpip_ic_ip_addr = -1;
static int hf_tcpip_ic_subnet_mask = -1;
static int hf_tcpip_ic_gateway = -1;
static int hf_tcpip_ic_name_server = -1;
static int hf_tcpip_ic_name_server2 = -1;
static int hf_tcpip_ic_domain_name = -1;
static int hf_tcpip_hostname = -1;
static int hf_tcpip_snn_timestamp = -1;
static int hf_tcpip_snn_date = -1;
static int hf_tcpip_snn_time = -1;
static int hf_tcpip_ttl_value = -1;
static int hf_tcpip_mcast_alloc = -1;
static int hf_tcpip_mcast_reserved = -1;
static int hf_tcpip_mcast_num_mcast = -1;
static int hf_tcpip_mcast_addr_start = -1;
static int hf_tcpip_lcd_acd_activity = -1;
static int hf_tcpip_lcd_remote_mac = -1;
static int hf_tcpip_lcd_arp_pdu = -1;
static int hf_tcpip_select_acd = -1;
static int hf_tcpip_quick_connect = -1;
static int hf_tcpip_encap_inactivity = -1;
static int hf_tcpip_port_count = -1;
static int hf_tcpip_port_name = -1;
static int hf_tcpip_port_number = -1;
static int hf_tcpip_port_protocol = -1;
static int hf_tcpip_port_admin_state = -1;
static int hf_tcpip_port_admin_capability = -1;
static int hf_tcpip_admin_capability_configurable = -1;
static int hf_tcpip_admin_capability_reset_required = -1;
static int hf_tcpip_admin_capability_reserved = -1;
static int hf_elink_interface_flags = -1;
static int hf_elink_iflags_link_status = -1;
static int hf_elink_iflags_duplex = -1;
static int hf_elink_iflags_neg_status = -1;
static int hf_elink_iflags_manual_reset = -1;
static int hf_elink_iflags_local_hw_fault = -1;
static int hf_elink_iflags_reserved = -1;
static int hf_elink_interface_speed = -1;
static int hf_elink_physical_address = -1;
static int hf_elink_icount_in_octets = -1;
static int hf_elink_icount_in_ucast = -1;
static int hf_elink_icount_in_nucast = -1;
static int hf_elink_icount_in_discards = -1;
static int hf_elink_icount_in_errors = -1;
static int hf_elink_icount_in_unknown_protos = -1;
static int hf_elink_icount_out_octets = -1;
static int hf_elink_icount_out_ucast = -1;
static int hf_elink_icount_out_nucast = -1;
static int hf_elink_icount_out_discards = -1;
static int hf_elink_icount_out_errors = -1;
static int hf_elink_mcount_alignment_errors = -1;
static int hf_elink_mcount_fcs_errors = -1;
static int hf_elink_mcount_single_collisions = -1;
static int hf_elink_mcount_multiple_collisions = -1;
static int hf_elink_mcount_sqe_test_errors = -1;
static int hf_elink_mcount_deferred_transmission = -1;
static int hf_elink_mcount_late_collisions = -1;
static int hf_elink_mcount_excessive_collisions = -1;
static int hf_elink_mcount_mac_transmit_errors = -1;
static int hf_elink_mcount_carrier_sense_errors = -1;
static int hf_elink_mcount_frame_too_long = -1;
static int hf_elink_mcount_mac_receive_errors = -1;
static int hf_elink_icontrol_control_bits = -1;
static int hf_elink_icontrol_control_bits_auto_neg = -1;
static int hf_elink_icontrol_control_bits_forced_duplex = -1;
static int hf_elink_icontrol_control_bits_reserved = -1;
static int hf_elink_icontrol_forced_speed = -1;
static int hf_elink_icapability_capability_bits = -1;
static int hf_elink_icapability_capability_bits_manual = -1;
static int hf_elink_icapability_capability_bits_auto_neg = -1;
static int hf_elink_icapability_capability_bits_auto_mdix = -1;
static int hf_elink_icapability_capability_bits_manual_speed = -1;
static int hf_elink_icapability_capability_speed_duplex_array_count = -1;
static int hf_elink_icapability_capability_speed = -1;
static int hf_elink_icapability_capability_duplex = -1;
static int hf_elink_interface_type = -1;
static int hf_elink_interface_state = -1;
static int hf_elink_admin_state = -1;
static int hf_elink_interface_label = -1;
static int hf_elink_hc_icount_in_octets = -1;
static int hf_elink_hc_icount_in_ucast = -1;
static int hf_elink_hc_icount_in_mcast = -1;
static int hf_elink_hc_icount_in_broadcast = -1;
static int hf_elink_hc_icount_out_octets = -1;
static int hf_elink_hc_icount_out_ucast = -1;
static int hf_elink_hc_icount_out_mcast = -1;
static int hf_elink_hc_icount_out_broadcast = -1;
static int hf_elink_hc_mcount_stats_align_errors = -1;
static int hf_elink_hc_mcount_stats_fcs_errors = -1;
static int hf_elink_hc_mcount_stats_internal_mac_transmit_errors = -1;
static int hf_elink_hc_mcount_stats_frame_too_long = -1;
static int hf_elink_hc_mcount_stats_internal_mac_receive_errors = -1;
static int hf_elink_hc_mcount_stats_symbol_errors = -1;
static int hf_qos_8021q_enable = -1;
static int hf_qos_dscp_ptp_event = -1;
static int hf_qos_dscp_ptp_general = -1;
static int hf_qos_dscp_urgent = -1;
static int hf_qos_dscp_scheduled = -1;
static int hf_qos_dscp_high = -1;
static int hf_qos_dscp_low = -1;
static int hf_qos_dscp_explicit = -1;
static int hf_dlr_network_topology = -1;
static int hf_dlr_network_status = -1;
static int hf_dlr_ring_supervisor_status = -1;
static int hf_dlr_rsc_ring_supervisor_enable = -1;
static int hf_dlr_rsc_ring_supervisor_precedence = -1;
static int hf_dlr_rsc_beacon_interval = -1;
static int hf_dlr_rsc_beacon_timeout = -1;
static int hf_dlr_rsc_dlr_vlan_id = -1;
static int hf_dlr_ring_faults_count = -1;
static int hf_dlr_lanp1_dev_ip_addr = -1;
static int hf_dlr_lanp1_dev_physical_address = -1;
static int hf_dlr_lanp2_dev_ip_addr = -1;
static int hf_dlr_lanp2_dev_physical_address = -1;
static int hf_dlr_ring_protocol_participants_count = -1;
static int hf_dlr_rppl_dev_ip_addr = -1;
static int hf_dlr_rppl_dev_physical_address = -1;
static int hf_dlr_asa_supervisor_ip_addr = -1;
static int hf_dlr_asa_supervisor_physical_address = -1;
static int hf_dlr_active_supervisor_precedence = -1;
static int hf_dlr_capability_flags = -1;
static int hf_dlr_capflags_announce_base_node = -1;
static int hf_dlr_capflags_beacon_base_node = -1;
static int hf_dlr_capflags_reserved1 = -1;
static int hf_dlr_capflags_supervisor_capable = -1;
static int hf_dlr_capflags_reserved2 = -1;
static int hf_dlr_capflags_redundant_gateway_capable = -1;
static int hf_dlr_capflags_flush_frame_capable = -1;
static int hf_dlr_rgc_red_gateway_enable = -1;
static int hf_dlr_rgc_gateway_precedence = -1;
static int hf_dlr_rgc_advertise_interval = -1;
static int hf_dlr_rgc_advertise_timeout = -1;
static int hf_dlr_rgc_learning_update_enable = -1;
static int hf_dlr_redundant_gateway_status = -1;
static int hf_dlr_aga_ip_addr = -1;
static int hf_dlr_aga_physical_address = -1;
static int hf_dlr_active_gateway_precedence = -1;
static int hf_cip_security_state = -1;
static int hf_eip_security_state = -1;
static int hf_eip_security_verify_client_cert = -1;
static int hf_eip_security_send_cert_chain = -1;
static int hf_eip_security_check_expiration = -1;
static int hf_eip_security_capability_flags = -1;
static int hf_eip_security_capflags_secure_renegotiation = -1;
static int hf_eip_security_capflags_reserved = -1;
static int hf_eip_security_num_avail_cipher_suites = -1;
static int hf_eip_security_avail_cipher_suite = -1;
static int hf_eip_security_num_allow_cipher_suites = -1;
static int hf_eip_security_allow_cipher_suite = -1;
static int hf_eip_security_num_psk = -1;
static int hf_eip_security_psk_identity_size = -1;
static int hf_eip_security_psk_identity = -1;
static int hf_eip_security_psk_size = -1;
static int hf_eip_security_psk = -1;
static int hf_eip_security_num_active_certs = -1;
static int hf_eip_security_num_trusted_auths = -1;
static int hf_eip_cert_name = -1;
static int hf_eip_cert_state = -1;
static int hf_eip_cert_encoding = -1;
static int hf_eip_cert_device_cert_status = -1;
static int hf_eip_cert_ca_cert_status = -1;
static int hf_eip_cert_capflags_push = -1;
static int hf_eip_cert_capflags_reserved = -1;
static int hf_eip_cert_capability_flags = -1;
static int hf_eip_cert_num_certs = -1;
static int hf_eip_cert_cert_name = -1;
static int hf_eip_cert_verify_certificate = -1;
static int hf_lldp_subtype = -1;
static int hf_lldp_mac_address = -1;
/* Initialize the subtree pointers */
static gint ett_enip = -1;
static gint ett_cip_io_generic = -1;
static gint ett_path = -1;
static gint ett_count_tree = -1;
static gint ett_type_tree = -1;
static gint ett_command_tree = -1;
static gint ett_sockadd = -1;
static gint ett_lsrcf = -1;
static gint ett_tcpip_status = -1;
static gint ett_tcpip_admin_capability = -1;
static gint ett_tcpip_config_cap = -1;
static gint ett_tcpip_config_control = -1;
static gint ett_elink_interface_flags = -1;
static gint ett_elink_icontrol_bits = -1;
static gint ett_elink_icapability_bits = -1;
static gint ett_dlr_capability_flags = -1;
static gint ett_dlr_lnknbrstatus_flags = -1;
static gint ett_eip_security_capability_flags = -1;
static gint ett_eip_security_psk = -1;
static gint ett_eip_security_active_certs = -1;
static gint ett_eip_security_trusted_auths = -1;
static gint ett_eip_cert_capability_flags = -1;
static gint ett_eip_cert_num_certs = -1;
static gint ett_security_profiles = -1;
static gint ett_iana_port_state_flags = -1;
static gint ett_connection_info = -1;
static gint ett_connection_path_info = -1;
static gint ett_cmd_data = -1;
static expert_field ei_mal_tcpip_status = EI_INIT;
static expert_field ei_mal_tcpip_config_cap = EI_INIT;
static expert_field ei_mal_tcpip_config_control = EI_INIT;
static expert_field ei_mal_tcpip_interface_config = EI_INIT;
static expert_field ei_mal_tcpip_mcast_config = EI_INIT;
static expert_field ei_mal_tcpip_last_conflict = EI_INIT;
static expert_field ei_mal_tcpip_snn = EI_INIT;
static expert_field ei_mal_elink_interface_flags = EI_INIT;
static expert_field ei_mal_elink_physical_address = EI_INIT;
static expert_field ei_mal_elink_interface_counters = EI_INIT;
static expert_field ei_mal_elink_media_counters = EI_INIT;
static expert_field ei_mal_elink_interface_control = EI_INIT;
static expert_field ei_mal_dlr_ring_supervisor_config = EI_INIT;
static expert_field ei_mal_dlr_last_active_node_on_port_1 = EI_INIT;
static expert_field ei_mal_dlr_last_active_node_on_port_2 = EI_INIT;
static expert_field ei_mal_dlr_ring_protocol_participants_list = EI_INIT;
static expert_field ei_mal_dlr_active_supervisor_address = EI_INIT;
static expert_field ei_mal_dlr_capability_flags = EI_INIT;
static expert_field ei_mal_dlr_redundant_gateway_config = EI_INIT;
static expert_field ei_mal_dlr_active_gateway_address = EI_INIT;
static expert_field ei_mal_eip_security_capability_flags = EI_INIT;
static expert_field ei_mal_eip_security_avail_cipher_suites = EI_INIT;
static expert_field ei_mal_eip_security_allow_cipher_suites = EI_INIT;
static expert_field ei_mal_eip_security_preshared_keys = EI_INIT;
static expert_field ei_mal_eip_security_active_certs = EI_INIT;
static expert_field ei_mal_eip_security_trusted_auths = EI_INIT;
static expert_field ei_mal_eip_cert_capability_flags = EI_INIT;
static expert_field ei_mal_cpf_item_length_mismatch = EI_INIT;
static expert_field ei_mal_cpf_item_minimum_size = EI_INIT;
static dissector_table_t subdissector_srrd_table;
static dissector_table_t subdissector_io_table;
static dissector_table_t subdissector_decode_as_io_table;
static dissector_table_t subdissector_class_table;
static dissector_table_t subdissector_cip_connection_table;
static dissector_handle_t arp_handle;
static dissector_handle_t cipsafety_handle;
static dissector_handle_t cip_io_generic_handle;
static dissector_handle_t cip_implicit_handle;
static dissector_handle_t cip_handle;
static dissector_handle_t enip_tcp_handle;
static dissector_handle_t enip_udp_handle;
static dissector_handle_t cipio_handle;
static dissector_handle_t cip_class1_handle;
static dissector_handle_t dtls_handle;
static gboolean enip_desegment = TRUE;
static gboolean enip_OTrun_idle = TRUE;
static gboolean enip_TOrun_idle = FALSE;
static int proto_dlr = -1;
static int hf_dlr_ringsubtype = -1;
static int hf_dlr_ringprotoversion = -1;
static int hf_dlr_frametype = -1;
static int hf_dlr_sourceport = -1;
static int hf_dlr_sourceip = -1;
static int hf_dlr_sequenceid = -1;
static int hf_dlr_ringstate = -1;
static int hf_dlr_supervisorprecedence = -1;
static int hf_dlr_beaconinterval = -1;
static int hf_dlr_beacontimeout = -1;
static int hf_dlr_beaconreserved = -1;
static int hf_dlr_nreqreserved = -1;
static int hf_dlr_nressourceport = -1;
static int hf_dlr_nresreserved = -1;
static int hf_dlr_lnknbrstatus = -1;
static int hf_dlr_lnknbrstatus_port1 = -1;
static int hf_dlr_lnknbrstatus_port2 = -1;
static int hf_dlr_lnknbrstatus_reserved = -1;
static int hf_dlr_lnknbrstatus_frame_type = -1;
static int hf_dlr_lnknbrreserved = -1;
static int hf_dlr_lfreserved = -1;
static int hf_dlr_anreserved = -1;
static int hf_dlr_sonumnodes = -1;
static int hf_dlr_somac = -1;
static int hf_dlr_soip = -1;
static int hf_dlr_soreserved = -1;
static int hf_dlr_advgatewaystate = -1;
static int hf_dlr_advgatewayprecedence = -1;
static int hf_dlr_advadvertiseinterval = -1;
static int hf_dlr_advadvertisetimeout = -1;
static int hf_dlr_advlearningupdateenable = -1;
static int hf_dlr_advreserved = -1;
static int hf_dlr_flushlearningupdateenable = -1;
static int hf_dlr_flushreserved = -1;
static int hf_dlr_learnreserved = -1;
static gint ett_dlr = -1;
/* Translate function to string - Encapsulation commands */
static const value_string encap_cmd_vals[] = {
{ NOP, "NOP" },
{ LIST_SERVICES, "List Services" },
{ LIST_IDENTITY, "List Identity" },
{ LIST_INTERFACES, "List Interfaces" },
{ REGISTER_SESSION, "Register Session" },
{ UNREGISTER_SESSION,"Unregister Session" },
{ SEND_RR_DATA, "Send RR Data" },
{ SEND_UNIT_DATA, "Send Unit Data" },
{ START_DTLS, "StartDTLS" },
{ 0, NULL }
};
/* Translate function to string - Encapsulation status */
static const value_string encap_status_vals[] = {
{ SUCCESS, "Success" },
{ INVALID_CMD, "Invalid Command" },
{ NO_RESOURCES, "No Memory Resources" },
{ INCORRECT_DATA, "Incorrect Data" },
{ INVALID_SESSION, "Invalid Session Handle" },
{ INVALID_LENGTH, "Invalid Length" },
{ UNSUPPORTED_PROT_REV, "Unsupported Protocol Revision" },
{ ENCAP_HEADER_ERROR, "Encapsulated CIP service not allowed on this port" },
{ 0, NULL }
};
/* Translate function to Common packet format values */
static const value_string cpf_type_vals[] = {
{ CPF_ITEM_NULL, "Null Address Item" },
{ CPF_ITEM_CIP_IDENTITY, "CIP Identity" },
{ CPF_ITEM_CIP_SECURITY, "CIP Security Information" },
{ CPF_ITEM_ENIP_CAPABILITY, "EtherNet/IP Capability" },
{ CPF_ITEM_ENIP_USAGE, "EtherNet/IP Usage" },
{ CPF_ITEM_CONNECTED_ADDRESS, "Connected Address Item" },
{ CPF_ITEM_CONNECTED_DATA, "Connected Data Item" },
{ CPF_ITEM_UNCONNECTED_DATA, "Unconnected Data Item" },
{ CPF_ITEM_LIST_SERVICES_RESP, "List Services Response" },
{ CPF_ITEM_SOCK_ADR_INFO_OT, "Socket Address Info O->T" },
{ CPF_ITEM_SOCK_ADR_INFO_TO, "Socket Address Info T->O" },
{ CPF_ITEM_SEQUENCED_ADDRESS, "Sequenced Address Item" },
{ CPF_ITEM_UNCONNECTED_MSG_DTLS, "Unconnected Message over UDP" },
{ 0, NULL }
};
static const value_string unconn_msg_type_vals[] = {
{ 0, "Reserved" },
{ 1, "UCMM_NOACK" },
{ 0, NULL }
};
static const value_string enip_tcpip_status_interface_config_vals[] = {
{ 0, "Not configured" },
{ 1, "BOOTP/DHCP/NVS" },
{ 2, "Hardware settings" },
{ 0, NULL }
};
static const value_string enip_tcpip_status_acd_vals[] = {
{ 0, "No Address Conflict Detected" },
{ 1, "Address Conflict Detected" },
{ 0, NULL }
};
static const value_string enip_tcpip_config_control_config_vals[] = {
{ 0, "Static IP" },
{ 1, "BOOTP" },
{ 2, "DHCP" },
{ 0, NULL }
};
static const value_string enip_tcpip_mcast_alloc_vals[] = {
{ 0, "Use default multicast algorithm" },
{ 1, "Use Num Mcast and Mcast Start Addr" },
{ 0, NULL }
};
static const value_string enip_tcpip_acd_activity_vals[] = {
{ 0, "No Conflict Detected" },
{ 1, "Probe IPv4 Address" },
{ 2, "Ongoing Detection" },
{ 3, "Semi Active Probe" },
{ 0, NULL }
};
static const value_string enip_elink_duplex_vals[] = {
{ 0, "Half Duplex" },
{ 1, "Full Duplex" },
{ 0, NULL }
};
static const value_string enip_elink_iflags_neg_status_vals[] = {
{ 0, "Auto-negotiation in progress" },
{ 1, "Auto-negotiation and speed detection failed" },
{ 2, "Auto-negotiation failed but detected speed" },
{ 3, "Successfully negotiated speed and duplex" },
{ 4, "Auto-negotiation not attempted. Forced speed and duplex" },
{ 0, NULL }
};
static const value_string enip_elink_iflags_reset_vals[] = {
{ 0, "Activate change automatically" },
{ 1, "Device requires Reset service for change" },
{ 0, NULL }
};
static const value_string enip_elink_iflags_hw_fault_vals[] = {
{ 0, "No local hardware fault" },
{ 1, "Local hardware fault detected" },
{ 0, NULL }
};
static const value_string enip_elink_interface_type_vals[] = {
{ 0, "Unknown type" },
{ 1, "Internal" },
{ 2, "Twisted-pair" },
{ 3, "Optical fiber" },
{ 0, NULL }
};
static const value_string enip_elink_interface_state_vals[] = {
{ 0, "Unknown state" },
{ 1, "Enabled" },
{ 2, "Disabled" },
{ 3, "Testing" },
{ 0, NULL }
};
static const value_string enip_elink_admin_state_vals[] = {
{ 1, "Enabled" },
{ 2, "Disabled" },
{ 0, NULL }
};
static const value_string enip_dlr_network_topology_vals[] = {
{ 0, "Linear" },
{ 1, "Ring" },
{ 0, NULL }
};
static const value_string enip_dlr_network_status_vals[] = {
{ 0, "Normal" },
{ 1, "Ring Fault" },
{ 2, "Unexpected Loop Detected" },
{ 3, "Partial Network Failure" },
{ 4, "Rapid Fault/Restore Cycle" },
{ 0, NULL }
};
static const value_string enip_dlr_ring_supervisor_status_vals[] = {
{ 0, "Backup Ring Supervisor" },
{ 1, "Active Ring Supervisor" },
{ 2, "Ring Node" },
{ 3, "Non-DLR Topology" },
{ 4, "Cannot Support Parameters" },
{ 0, NULL }
};
static const value_string enip_dlr_redundant_gateway_status_vals[] = {
{ 0, "Non-Gateway DLR node" },
{ 1, "Backup Gateway" },
{ 2, "Active Gateway" },
{ 3, "Gateway Fault" },
{ 4, "Cannot Support Parameters" },
{ 5, "Partial Network Fault" },
{ 0, NULL }
};
static const value_string cip_security_state_vals[] = {
{ 0, "Factory Default Configuration" },
{ 1, "Configuration In Progress" },
{ 2, "Configured" },
{ 3, "Incomplete Configuration" },
{ 0, NULL }
};
static const value_string eip_security_state_vals[] = {
{ 0, "Factory Default Configuration" },
{ 1, "Configuration In Progress" },
{ 2, "Configured" },
{ 3, "Pull Model In Progress" },
{ 4, "Pull Model Completed" },
{ 5, "Pull Model Disabled" },
{ 0, NULL }
};
static const value_string eip_cert_state_vals[] = {
{ 0, "Non-Existent" },
{ 1, "Created" },
{ 2, "Configuring" },
{ 3, "Verified" },
{ 4, "Invalid" },
{ 0, NULL }
};
static const value_string eip_cert_status_vals[] = {
{ 0, "Not Verified" },
{ 1, "Verified" },
{ 2, "Invalid" },
{ 0, NULL }
};
/* Translate interface handle to string */
static const value_string enip_interface_handle_vals[] = {
{ 0, "CIP" },
{ 0, NULL }
};
/* Translate function to DLR Frame Type values */
static const value_string dlr_frame_type_vals[] = {
{ DLR_FT_BEACON, "Beacon" },
{ DLR_FT_NEIGHBOR_REQ, "Neighbor_Check_Request" },
{ DLR_FT_NEIGHBOR_RES, "Neighbor_Check_Response" },
{ DLR_FT_LINK_STAT, "Link_Status / Neighbor_Status" },
{ DLR_FT_LOCATE_FLT, "Locate_Fault" },
{ DLR_FT_ANNOUNCE, "Announce" },
{ DLR_FT_SIGN_ON, "Sign_On" },
{ DLR_FT_ADVERTISE, "Advertise" },
{ DLR_FT_FLUSH_TABLES, "Flush_Tables" },
{ DLR_FT_LEARNING_UPDATE, "Learning_Update" },
{ 0, NULL }
};
/* Translate function to DLR Source Port values */
static const value_string dlr_source_port_vals[] = {
{ 0, "Port 1 or Port 2" },
{ 1, "Port 1" },
{ 2, "Port 2" },
{ 0, NULL }
};
/* Translate function to DLR Ring State values */
static const value_string dlr_ring_state_vals[] = {
{ 1, "RING_NORMAL_STATE" },
{ 2, "RING_FAULT_STATE" },
{ 0, NULL }
};
/* Translate function to DLR Advertise State values */
static const value_string dlr_adv_state_vals[] = {
{ 0x01, "ACTIVE_LISTEN_STATE" },
{ 0x02, "ACTIVE_NORMAL_STATE" },
{ 0x03, "FAULT_STATE" },
{ 0, NULL }
};
/* Translate function to DLR Learning Update values */
static const value_string dlr_adv_learning_update_vals[] = {
{ 0, "Disabled" },
{ 1, "Enabled" },
{ 0, NULL }
};
/* Translate function to DLR Flush Learning Update values */
static const value_string dlr_flush_learning_update_vals[] = {
{ 0, "Disabled" },
{ 1, "Enabled" },
{ 0, NULL }
};
static const true_false_string dlr_lnknbrstatus_frame_type_vals = {
"Neighbor_Status Frame",
"Link_Status Frame"
};
static void enip_prompt(packet_info *pinfo _U_, gchar* result)
{
snprintf(result, MAX_DECODE_AS_PROMPT_LEN, "Dissect unidentified I/O traffic as");
}
static wmem_map_t *enip_request_hashtable = NULL;
/* Return codes of function classifying packets as query/response */
enum enip_packet_type {ENIP_REQUEST_PACKET, ENIP_RESPONSE_PACKET, ENIP_CANNOT_CLASSIFY};
enum enip_packet_data_type { EPDT_UNKNOWN, EPDT_CONNECTED_TRANSPORT, EPDT_UNCONNECTED };
typedef struct enip_request_key {
guint32 session_handle;
enum enip_packet_type requesttype;
enum enip_packet_data_type type;
guint64 sender_context;
guint32 conversation;
union {
struct {
guint32 connid;
guint16 sequence;
} connected_transport;
} data;
} enip_request_key_t;
typedef struct enip_request_val {
wmem_tree_t *frames;
} enip_request_val_t;
/*
* Hash Functions
*/
static gboolean
enip_request_equal(gconstpointer v, gconstpointer w)
{
const enip_request_key_t *v1 = (const enip_request_key_t *)v;
const enip_request_key_t *v2 = (const enip_request_key_t *)w;
if ( v1->conversation == v2->conversation
&& v1->session_handle == v2->session_handle
&& v1->type == v2->type
&& ( ( v1->sender_context == v2->sender_context /* heuristic approach */
&& v1->type == EPDT_UNCONNECTED
)
||
( v1->data.connected_transport.connid == v2->data.connected_transport.connid
&& v1->data.connected_transport.sequence == v2->data.connected_transport.sequence
&& v1->type == EPDT_CONNECTED_TRANSPORT
)
)
)
return TRUE;
return FALSE;
}
static void
enip_fmt_lir_revision( gchar *result, guint32 revision )
{
snprintf( result, ITEM_LABEL_LENGTH, "%d.%02d", (guint8)(( revision & 0xFF00 ) >> 8), (guint8)(revision & 0xFF) );
}
static guint
enip_request_hash (gconstpointer v)
{
const enip_request_key_t *key = (const enip_request_key_t *)v;
guint val;
val = (guint)(key->conversation * 37 + key->session_handle * 93 + key->type * 765);
if (key->type == EPDT_UNCONNECTED)
{
val += ((guint)(key->sender_context * 23));
}
else if (key->type == EPDT_CONNECTED_TRANSPORT)
{
val += ((guint)(key->data.connected_transport.connid * 87 + key->data.connected_transport.sequence * 834));
}
return val;
}
static enip_request_info_t *
enip_match_request( packet_info *pinfo, proto_tree *tree, enip_request_key_t *prequest_key )
{
enip_request_key_t *new_request_key;
enip_request_val_t *request_val;
enip_request_info_t *request_info;
request_info = NULL;
request_val = (enip_request_val_t *)wmem_map_lookup( enip_request_hashtable, prequest_key );
if (!pinfo->fd->visited)
{
if ( prequest_key && prequest_key->requesttype == ENIP_REQUEST_PACKET )
{
if ( request_val == NULL )
{
new_request_key = (enip_request_key_t *)wmem_memdup(wmem_file_scope(), prequest_key, sizeof(enip_request_key_t));
request_val = wmem_new(wmem_file_scope(), enip_request_val_t);
request_val->frames = wmem_tree_new(wmem_file_scope());
wmem_map_insert(enip_request_hashtable, new_request_key, request_val );
}
request_info = wmem_new(wmem_file_scope(), enip_request_info_t);
request_info->req_num = pinfo->num;
request_info->rep_num = 0;
request_info->req_time = pinfo->abs_ts;
request_info->cip_info = NULL;
wmem_tree_insert32(request_val->frames, pinfo->num, (void *)request_info);
}
if ( request_val && prequest_key && prequest_key->requesttype == ENIP_RESPONSE_PACKET )
{
request_info = (enip_request_info_t*)wmem_tree_lookup32_le( request_val->frames, pinfo->num );
if ( request_info )
{
request_info->rep_num = pinfo->num;
}
}
}
else
{
if ( request_val )
request_info = (enip_request_info_t *)wmem_tree_lookup32_le( request_val->frames, pinfo->num );
}
if ( tree && request_info )
{
/* print state tracking in the tree */
if ( prequest_key && prequest_key->requesttype == ENIP_REQUEST_PACKET )
{
/* This is a request */
if (request_info->rep_num)
{
proto_item *it;
it = proto_tree_add_uint(tree, hf_enip_response_in,
NULL, 0, 0, request_info->rep_num);
proto_item_set_generated(it);
}
}
else
{
if ( prequest_key && prequest_key->requesttype == ENIP_RESPONSE_PACKET )
{
/* This is a reply */
if (request_info->req_num)
{
proto_item *it;
nstime_t ns;
it = proto_tree_add_uint(tree, hf_enip_response_to,
NULL, 0, 0, request_info->req_num);
proto_item_set_generated(it);
nstime_delta(&ns, &pinfo->abs_ts, &request_info->req_time);
it = proto_tree_add_time(tree, hf_enip_time, NULL, 0, 0, &ns);
proto_item_set_generated(it);
}
}
}
}
return request_info;
}
typedef struct enip_conn_key {
cip_connection_triad_t triad;
guint32 O2TConnID;
guint32 T2OConnID;
} enip_conn_key_t;
// This is a per list of CIP connection IDs per conversation_t.
typedef struct _enip_conv_info_t {
// Connection ID --> cip_conn_info_t
wmem_tree_t *O2TConnIDs;
// Connection ID --> cip_conn_info_t
wmem_tree_t *T2OConnIDs;
} enip_conv_info_t;
/*
* Conversation filter
*/
static gboolean
enip_io_conv_valid(packet_info *pinfo)
{
cip_conn_info_t* conn = (cip_conn_info_t*)p_get_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_CONNECTION_INFO);
if (conn == NULL)
return FALSE;
return (((conn->TransportClass_trigger & CI_TRANSPORT_CLASS_MASK) == 0) ||
((conn->TransportClass_trigger & CI_TRANSPORT_CLASS_MASK) == 1));
}
static gchar *
enip_io_conv_filter(packet_info *pinfo)
{
char *buf;
cip_conn_info_t* conn = (cip_conn_info_t*)p_get_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_CONNECTION_INFO);
if (conn == NULL)
return NULL;
if (conn->close_frame > 0)
{
buf = ws_strdup_printf(
"((frame.number == %u) || ((frame.number >= %u) && (frame.number <= %u))) && " /* Frames between ForwardOpen and ForwardClose reply */
"((enip.cpf.sai.connid == 0x%08x || enip.cpf.sai.connid == 0x%08x) || " /* O->T and T->O Connection IDs */
"((cip.cm.conn_serial_num == 0x%04x) && (cip.cm.vendor == 0x%04x) && (cip.cm.orig_serial_num == 0x%08x)))", /* Connection Triad */
conn->open_req_frame, conn->open_reply_frame, conn->close_frame,
conn->O2T.connID, conn->T2O.connID,
conn->triad.ConnSerialNumber, conn->triad.VendorID, conn->triad.DeviceSerialNumber);
}
else
{
/* If Forward Close isn't found, don't limit the (end) frame range */
buf = ws_strdup_printf(
"((frame.number == %u) || (frame.number >= %u)) && " /* Frames starting with ForwardOpen */
"((enip.cpf.sai.connid == 0x%08x || enip.cpf.sai.connid == 0x%08x) || " /* O->T and T->O Connection IDs */
"((cip.cm.conn_serial_num == 0x%04x) && (cip.cm.vendor == 0x%04x) && (cip.cm.orig_serial_num == 0x%08x)))", /* Connection Triad */
conn->open_req_frame, conn->open_reply_frame,
conn->O2T.connID, conn->T2O.connID,
conn->triad.ConnSerialNumber, conn->triad.VendorID, conn->triad.DeviceSerialNumber);
}
return buf;
}
static gboolean
enip_exp_conv_valid(packet_info *pinfo)
{
cip_conn_info_t* conn = (cip_conn_info_t*)p_get_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_CONNECTION_INFO);
if (conn == NULL)
return FALSE;
return (((conn->TransportClass_trigger & CI_TRANSPORT_CLASS_MASK) == 2) ||
((conn->TransportClass_trigger & CI_TRANSPORT_CLASS_MASK) == 3));
}
static gchar *
enip_exp_conv_filter(packet_info *pinfo)
{
char *buf;
cip_conn_info_t* conn = (cip_conn_info_t*)p_get_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_CONNECTION_INFO);
if (conn == NULL)
return NULL;
if (conn->close_frame > 0)
{
buf = ws_strdup_printf(
"((frame.number == %u) || ((frame.number >= %u) && (frame.number <= %u))) && " /* Frames between ForwardOpen and ForwardClose reply */
"((enip.cpf.cai.connid == 0x%08x || enip.cpf.cai.connid == 0x%08x) || " /* O->T and T->O Connection IDs */
"((cip.cm.conn_serial_num == 0x%04x) && (cip.cm.vendor == 0x%04x) && (cip.cm.orig_serial_num == 0x%08x)))", /* Connection Triad */
conn->open_req_frame, conn->open_reply_frame, conn->close_frame,
conn->O2T.connID, conn->T2O.connID,
conn->triad.ConnSerialNumber, conn->triad.VendorID, conn->triad.DeviceSerialNumber);
}
else
{
/* If Forward Close isn't found, don't limit the (end) frame range */
buf = ws_strdup_printf(
"((frame.number == %u) || (frame.number >= %u)) && " /* Frames between ForwardOpen and ForwardClose */
"((enip.cpf.cai.connid == 0x%08x || enip.cpf.cai.connid == 0x%08x) || " /* O->T and T->O Connection IDs */
"((cip.cm.conn_serial_num == 0x%04x) && (cip.cm.vendor == 0x%04x) && (cip.cm.orig_serial_num == 0x%08x)))", /* Connection Triad */
conn->open_req_frame, conn->open_reply_frame,
conn->O2T.connID, conn->T2O.connID,
conn->triad.ConnSerialNumber, conn->triad.VendorID, conn->triad.DeviceSerialNumber);
}
return buf;
}
static gboolean cip_connection_conv_valid(packet_info *pinfo)
{
return enip_io_conv_valid(pinfo) || enip_exp_conv_valid(pinfo);
}
static gchar* cip_connection_conv_filter(packet_info *pinfo)
{
char* buf = NULL;
if (enip_io_conv_valid(pinfo))
{
buf = enip_io_conv_filter(pinfo);
}
else if (enip_exp_conv_valid(pinfo))
{
buf = enip_exp_conv_filter(pinfo);
}
return buf;
}
/*
* Connection management
*/
// Key: (triad, connection IDs), Value: cip_conn_info_t
static wmem_map_t *enip_conn_hashtable = NULL;
static guint32 enip_unique_connid;
static gboolean
enip_conn_equal(gconstpointer v, gconstpointer w)
{
const enip_conn_key_t *v1 = (const enip_conn_key_t *)v;
const enip_conn_key_t *v2 = (const enip_conn_key_t *)w;
if (cip_connection_triad_match(&v1->triad, &v2->triad) &&
((v1->O2TConnID == 0) || (v2->O2TConnID == 0) || (v1->O2TConnID == v2->O2TConnID)) &&
((v1->T2OConnID == 0) || (v2->T2OConnID == 0) || (v1->T2OConnID == v2->T2OConnID)))
return TRUE;
return FALSE;
}
static guint
enip_conn_hash (gconstpointer v)
{
const enip_conn_key_t *key = (const enip_conn_key_t *)v;
guint val;
val = (guint)( key->triad.ConnSerialNumber + key->triad.VendorID + key->triad.DeviceSerialNumber );
return val;
}
// Create a list of connection IDs and attach it to the conversation.
static enip_conv_info_t* create_connection_id_list(conversation_t* conversation)
{
enip_conv_info_t* enip_info = wmem_new(wmem_file_scope(), enip_conv_info_t);
enip_info->O2TConnIDs = wmem_tree_new(wmem_file_scope());
enip_info->T2OConnIDs = wmem_tree_new(wmem_file_scope());
conversation_add_proto_data(conversation, proto_enip, enip_info);
return enip_info;
}
static
enip_conv_info_t* get_conversation_info_one_direction(packet_info* pinfo, address* src_address, address* dst_address, cip_connID_info_t* connid_info)
{
/* default some information if not included */
if ((connid_info->port == 0) || (connid_info->type == CONN_TYPE_MULTICAST))
{
connid_info->port = ENIP_IO_PORT;
}
ws_in6_addr ipv6_zero = {0};
if ((connid_info->ipaddress.type == AT_NONE) ||
((connid_info->ipaddress.type == AT_IPv4) && ((*(const guint32*)connid_info->ipaddress.data)) == 0) ||
((connid_info->ipaddress.type == AT_IPv6) && (memcmp(connid_info->ipaddress.data, &ipv6_zero, sizeof(ipv6_zero)) == 0)) ||
(connid_info->type != CONN_TYPE_MULTICAST))
{
copy_address_wmem(wmem_file_scope(), &connid_info->ipaddress, dst_address);
}
address dest_address = ADDRESS_INIT_NONE;
if (connid_info->ipaddress.type == AT_IPv6)
{
dest_address.type = AT_IPv6;
dest_address.len = 16;
}
else
{
dest_address.type = AT_IPv4;
dest_address.len = 4;
}
dest_address.data = connid_info->ipaddress.data;
// Similar logic to find_or_create_conversation(), but since I/O traffic
// is on UDP, the pinfo parameter doesn't have the correct information.
conversation_t* conversation = find_conversation(pinfo->num, src_address, &dest_address,
CONVERSATION_UDP, connid_info->port, 0, NO_PORT_B);
if (conversation == NULL)
{
conversation = conversation_new(pinfo->num, src_address, &dest_address,
CONVERSATION_UDP, connid_info->port, 0, NO_PORT2);
}
enip_conv_info_t* enip_info = (enip_conv_info_t*)conversation_get_proto_data(conversation, proto_enip);
if (enip_info == NULL)
{
enip_info = create_connection_id_list(conversation);
}
return enip_info;
}
// connInfo - Connection Information that is known so far (from the Forward Open Request).
static void enip_open_cip_connection( packet_info *pinfo, cip_conn_info_t* connInfo)
{
if (pinfo->fd->visited)
return;
// Don't create connections for Null Forward Opens.
if (connInfo->T2O.type == CONN_TYPE_NULL && connInfo->O2T.type == CONN_TYPE_NULL)
{
return;
}
enip_conn_key_t* conn_key = wmem_new(wmem_file_scope(), enip_conn_key_t);
conn_key->triad = connInfo->triad;
conn_key->O2TConnID = connInfo->O2T.connID;
conn_key->T2OConnID = connInfo->T2O.connID;
cip_conn_info_t* conn_val = (cip_conn_info_t*)wmem_map_lookup( enip_conn_hashtable, conn_key );
if ( conn_val == NULL )
{
conn_val = wmem_new0(wmem_file_scope(), cip_conn_info_t);
// Copy initial connection data from the Forward Open Request.
*conn_val = *connInfo;
// These values are not copies from the Forward Open Request. Initialize these separately.
conn_val->open_reply_frame = pinfo->num;
conn_val->connid = enip_unique_connid++;
wmem_map_insert(enip_conn_hashtable, conn_key, conn_val );
/* I/O connection */
if (((connInfo->TransportClass_trigger & CI_TRANSPORT_CLASS_MASK) == 0) ||
((connInfo->TransportClass_trigger & CI_TRANSPORT_CLASS_MASK) == 1))
{
/* check for O->T conversation */
enip_conv_info_t* enip_info = get_conversation_info_one_direction(pinfo, &pinfo->dst, &pinfo->src, &(connInfo->O2T));
wmem_tree_insert32(enip_info->O2TConnIDs, connInfo->O2T.connID, (void*)conn_val);
/* Check if separate T->O conversation is necessary. If either side is multicast
or ports aren't equal, a separate conversation must be generated */
enip_info = get_conversation_info_one_direction(pinfo, &pinfo->src, &pinfo->dst, &(connInfo->T2O));
wmem_tree_insert32(enip_info->T2OConnIDs, connInfo->T2O.connID, (void *)conn_val);
}
else
{
/* explicit message connection */
conversation_t* conversation = find_or_create_conversation(pinfo);
enip_conv_info_t* enip_info = (enip_conv_info_t *)conversation_get_proto_data(conversation, proto_enip);
if (!enip_info)
{
enip_info = create_connection_id_list(conversation);
}
wmem_tree_insert32(enip_info->O2TConnIDs, connInfo->O2T.connID, (void *)conn_val);
wmem_tree_insert32(enip_info->T2OConnIDs, connInfo->T2O.connID, (void *)conn_val);
}
}
/* Save the connection info for the conversation filter */
p_add_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_CONNECTION_INFO, conn_val);
}
void
enip_close_cip_connection(packet_info *pinfo, const cip_connection_triad_t* triad)
{
if (pinfo->fd->visited)
return;
enip_conn_key_t conn_key;
conn_key.triad = *triad;
conn_key.O2TConnID = 0;
conn_key.T2OConnID = 0;
cip_conn_info_t* conn_val = (cip_conn_info_t*)wmem_map_lookup( enip_conn_hashtable, &conn_key );
if ( conn_val )
{
conn_val->close_frame = pinfo->num;
/* Save the connection info for the conversation filter */
p_add_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_CONNECTION_INFO, conn_val);
}
}
/* Save the connection info for the conversation filter */
void enip_mark_connection_triad(packet_info *pinfo, const cip_connection_triad_t* triad)
{
enip_conn_key_t conn_key;
conn_key.triad = *triad;
conn_key.O2TConnID = 0;
conn_key.T2OConnID = 0;
cip_conn_info_t* conn_val = (cip_conn_info_t*)wmem_map_lookup( enip_conn_hashtable, &conn_key );
if ( conn_val )
{
p_add_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_CONNECTION_INFO, conn_val);
}
}
static cip_conn_info_t*
enip_get_explicit_connid(packet_info *pinfo, enip_request_key_t *prequest_key, guint32 connid)
{
conversation_t *conversation;
enip_conv_info_t *enip_info;
enum enip_packet_type requesttype = ENIP_REQUEST_PACKET;
if (prequest_key != NULL)
{
/* Sanity check */
if ((prequest_key->requesttype != ENIP_REQUEST_PACKET) && (prequest_key->requesttype != ENIP_RESPONSE_PACKET ))
return NULL;
requesttype = prequest_key->requesttype;
}
/*
* Do we have a conversation for this connection?
*/
conversation = find_conversation_pinfo(pinfo, 0);
if (conversation == NULL)
return NULL;
/*
* Do we already have a state structure for this conv
*/
enip_info = (enip_conv_info_t *)conversation_get_proto_data(conversation, proto_enip);
if (!enip_info)
return NULL;
cip_conn_info_t* conn_val = NULL;
switch (requesttype )
{
case ENIP_REQUEST_PACKET:
conn_val = (cip_conn_info_t*)wmem_tree_lookup32( enip_info->O2TConnIDs, connid );
if ( conn_val == NULL )
conn_val = (cip_conn_info_t*)wmem_tree_lookup32( enip_info->T2OConnIDs, connid );
break;
case ENIP_RESPONSE_PACKET:
conn_val = (cip_conn_info_t*)wmem_tree_lookup32( enip_info->T2OConnIDs, connid );
if ( conn_val == NULL )
conn_val = (cip_conn_info_t*)wmem_tree_lookup32( enip_info->O2TConnIDs, connid );
break;
case ENIP_CANNOT_CLASSIFY:
/* ignore */
break;
}
if ((conn_val == NULL ) || (conn_val->open_reply_frame > pinfo->num))
return NULL;
return conn_val;
}
static cip_conn_info_t*
enip_get_io_connid(packet_info *pinfo, guint32 connid, enum enip_connid_type* pconnid_type)
{
conversation_t *conversation;
enip_conv_info_t *enip_info;
cip_conn_info_t *conn_val = NULL;
*pconnid_type = ECIDT_UNKNOWN;
/*
* Do we have a conversation for this connection?
*/
conversation = find_conversation(pinfo->num,
&pinfo->src, &pinfo->dst,
conversation_pt_to_conversation_type(pinfo->ptype),
pinfo->destport, 0, NO_PORT_B);
if (conversation == NULL)
return NULL;
/*
* Do we already have a state structure for this conv
*/
if ((enip_info = (enip_conv_info_t *)conversation_get_proto_data(conversation, proto_enip)) == NULL)
return NULL;
if (enip_info->O2TConnIDs != NULL)
{
conn_val = (cip_conn_info_t*)wmem_tree_lookup32(enip_info->O2TConnIDs, connid);
if (conn_val)
{
*pconnid_type = ECIDT_O2T;
}
}
if ( conn_val == NULL )
{
if (enip_info->T2OConnIDs != NULL)
{
if ((conn_val = (cip_conn_info_t*)wmem_tree_lookup32( enip_info->T2OConnIDs, connid)) != NULL)
*pconnid_type = ECIDT_T2O;
}
}
if ((conn_val == NULL) || ( conn_val->open_reply_frame > pinfo->num ))
return NULL;
return conn_val;
}
static int
dissect_tcpip_status(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
static int * const status[] = {
&hf_tcpip_status_interface_config,
&hf_tcpip_status_mcast_pending,
&hf_tcpip_status_interface_config_pending,
&hf_tcpip_status_acd,
&hf_tcpip_acd_fault,
&hf_tcpip_status_iana_port_admin_change,
&hf_tcpip_status_iana_protocol_admin_change,
&hf_tcpip_status_reserved,
NULL
};
if (total_len < 4)
{
expert_add_info(pinfo, item, &ei_mal_tcpip_status);
return total_len;
}
proto_tree_add_bitmask(tree, tvb, offset, hf_tcpip_status, ett_tcpip_status, status, ENC_LITTLE_ENDIAN);
return 4;
}
static int
dissect_tcpip_config_cap(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
static int * const capabilities[] = {
&hf_tcpip_config_cap_bootp,
&hf_tcpip_config_cap_dns,
&hf_tcpip_config_cap_dhcp,
&hf_tcpip_config_cap_dhcp_dns_update,
&hf_tcpip_config_cap_config_settable,
&hf_tcpip_config_cap_hardware_config,
&hf_tcpip_config_cap_interface_reset,
&hf_tcpip_config_cap_acd,
&hf_tcpip_config_cap_reserved,
NULL
};
if (total_len < 4)
{
expert_add_info(pinfo, item, &ei_mal_tcpip_config_cap);
return total_len;
}
proto_tree_add_bitmask(tree, tvb, offset, hf_tcpip_config_cap, ett_tcpip_config_cap, capabilities, ENC_LITTLE_ENDIAN);
return 4;
}
static int
dissect_tcpip_config_control(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
static int * const control_bits[] = {
&hf_tcpip_config_control_config,
&hf_tcpip_config_control_dns,
&hf_tcpip_config_control_reserved,
NULL
};
if (total_len < 4)
{
expert_add_info(pinfo, item, &ei_mal_tcpip_config_control);
return total_len;
}
proto_tree_add_bitmask(tree, tvb, offset, hf_tcpip_config_control, ett_tcpip_config_control, control_bits, ENC_LITTLE_ENDIAN);
return 4;
}
static int
dissect_tcpip_physical_link(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
return dissect_padded_epath_len_uint(pinfo, tree, item, tvb, offset, total_len);
}
static int
dissect_tcpip_interface_config(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
guint16 domain_length;
if (total_len < 22)
{
expert_add_info(pinfo, item, &ei_mal_tcpip_interface_config);
return total_len;
}
proto_tree_add_item(tree, hf_tcpip_ic_ip_addr, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_tcpip_ic_subnet_mask, tvb, offset+4, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_tcpip_ic_gateway, tvb, offset+8, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_tcpip_ic_name_server, tvb, offset+12, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_tcpip_ic_name_server2, tvb, offset+16, 4, ENC_LITTLE_ENDIAN);
domain_length = tvb_get_letohs( tvb, offset+20);
proto_tree_add_item(tree, hf_tcpip_ic_domain_name, tvb, offset+22, domain_length, ENC_ASCII);
/* Add padding. */
domain_length += domain_length % 2;
return (22+domain_length);
}
static int dissect_tcpip_hostname(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len _U_)
{
int parsed_len;
parsed_len = dissect_cip_string_type(pinfo, tree, item, tvb, offset, hf_tcpip_hostname, CIP_STRING_TYPE);
/* Add padding. */
parsed_len += parsed_len % 2;
return parsed_len;
}
static int dissect_tcpip_snn(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 6)
{
expert_add_info(pinfo, item, &ei_mal_tcpip_snn);
return total_len;
}
dissect_cipsafety_snn(tree, tvb, pinfo, offset, hf_tcpip_snn_timestamp, hf_tcpip_snn_date, hf_tcpip_snn_time);
return 6;
}
static int
dissect_tcpip_mcast_config(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 8)
{
expert_add_info(pinfo, item, &ei_mal_tcpip_mcast_config);
return total_len;
}
proto_tree_add_item(tree, hf_tcpip_mcast_alloc, tvb, offset, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_tcpip_mcast_reserved, tvb, offset+1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_tcpip_mcast_num_mcast, tvb, offset+2, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_tcpip_mcast_addr_start, tvb, offset+4, 4, ENC_LITTLE_ENDIAN);
return 8;
}
static int
dissect_tcpip_last_conflict(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
tvbuff_t *next_tvb;
gboolean save_info;
if (total_len < 35)
{
expert_add_info(pinfo, item, &ei_mal_tcpip_last_conflict);
return total_len;
}
proto_tree_add_item(tree, hf_tcpip_lcd_acd_activity, tvb, offset, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_tcpip_lcd_remote_mac, tvb, offset+1, 6, ENC_NA);
if ( tvb_get_guint8(tvb, offset) == 0 )
proto_tree_add_item(tree, hf_tcpip_lcd_arp_pdu, tvb, offset+7, 28, ENC_NA);
else
{
/* Dissect ARP PDU, but don't have it change column info */
save_info = col_get_writable(pinfo->cinfo, -1);
col_set_writable(pinfo->cinfo, -1, FALSE);
next_tvb = tvb_new_subset_length(tvb, offset+7, 28);
call_dissector(arp_handle, next_tvb, pinfo, tree);
col_set_writable(pinfo->cinfo, -1, save_info);
}
return 35;
}
static int
dissect_elink_interface_flags(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
static int * const flags[] = {
&hf_elink_iflags_link_status,
&hf_elink_iflags_duplex,
&hf_elink_iflags_neg_status,
&hf_elink_iflags_manual_reset,
&hf_elink_iflags_local_hw_fault,
&hf_elink_iflags_reserved,
NULL
};
if (total_len < 4)
{
expert_add_info(pinfo, item, &ei_mal_elink_interface_flags);
return total_len;
}
proto_tree_add_bitmask(tree, tvb, offset, hf_elink_interface_flags, ett_elink_interface_flags, flags, ENC_LITTLE_ENDIAN);
return 4;
}
static int
dissect_elink_physical_address(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 6)
{
expert_add_info(pinfo, item, &ei_mal_elink_physical_address);
return total_len;
}
proto_tree_add_item(tree, hf_elink_physical_address, tvb, offset, 6, ENC_NA);
return 6;
}
static int
dissect_elink_interface_counters(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 44)
{
expert_add_info(pinfo, item, &ei_mal_elink_interface_counters);
return total_len;
}
proto_tree_add_item(tree, hf_elink_icount_in_octets, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_in_ucast, tvb, offset+4, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_in_nucast, tvb, offset+8, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_in_discards, tvb, offset+12, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_in_errors, tvb, offset+16, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_in_unknown_protos, tvb, offset+20, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_out_octets, tvb, offset+24, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_out_ucast, tvb, offset+28, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_out_nucast, tvb, offset+32, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_out_discards, tvb, offset+36, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icount_out_errors, tvb, offset+40, 4, ENC_LITTLE_ENDIAN);
return 44;
}
static int
dissect_elink_media_counters(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 48)
{
expert_add_info(pinfo, item, &ei_mal_elink_media_counters);
return total_len;
}
proto_tree_add_item(tree, hf_elink_mcount_alignment_errors, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_fcs_errors, tvb, offset+4, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_single_collisions, tvb, offset+8, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_multiple_collisions, tvb, offset+12, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_sqe_test_errors, tvb, offset+16, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_deferred_transmission, tvb, offset+20, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_late_collisions, tvb, offset+24, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_excessive_collisions, tvb, offset+28, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_mac_transmit_errors, tvb, offset+32, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_carrier_sense_errors, tvb, offset+36, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_frame_too_long, tvb, offset+40, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_mcount_mac_receive_errors, tvb, offset+44, 4, ENC_LITTLE_ENDIAN);
return 48;
}
static int
dissect_elink_interface_capability(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
int offset, int total_len _U_)
{
static int * const bits[] = {
&hf_elink_icapability_capability_bits_manual,
&hf_elink_icapability_capability_bits_auto_neg,
&hf_elink_icapability_capability_bits_auto_mdix,
&hf_elink_icapability_capability_bits_manual_speed,
NULL
};
proto_tree_add_bitmask(tree, tvb, offset, hf_elink_icapability_capability_bits, ett_elink_icapability_bits, bits, ENC_LITTLE_ENDIAN);
offset += 4;
guint32 array_count;
proto_tree_add_item_ret_uint(tree, hf_elink_icapability_capability_speed_duplex_array_count, tvb, offset, 1, ENC_NA, &array_count);
offset++;
for (guint32 i = 0; i < array_count; i++)
{
proto_tree_add_item(tree, hf_elink_icapability_capability_speed, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
proto_tree_add_item(tree, hf_elink_icapability_capability_duplex, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
}
return 4 + 1 + array_count * 3;
}
static int
dissect_elink_hc_interface_counters(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
int offset, int total_len _U_)
{
proto_tree_add_item(tree, hf_elink_hc_icount_in_octets, tvb, offset, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_icount_in_ucast, tvb, offset + 8, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_icount_in_mcast, tvb, offset + 16, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_icount_in_broadcast, tvb, offset + 24, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_icount_out_octets, tvb, offset + 32, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_icount_out_ucast, tvb, offset + 40, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_icount_out_mcast, tvb, offset + 48, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_icount_out_broadcast, tvb, offset + 56, 8, ENC_LITTLE_ENDIAN);
return 8 * 8;
}
static int
dissect_elink_hc_media_counters(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
int offset, int total_len _U_)
{
proto_tree_add_item(tree, hf_elink_hc_mcount_stats_align_errors, tvb, offset, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_mcount_stats_fcs_errors, tvb, offset + 8, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_mcount_stats_internal_mac_transmit_errors, tvb, offset + 16, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_mcount_stats_frame_too_long, tvb, offset + 24, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_mcount_stats_internal_mac_receive_errors, tvb, offset + 32, 8, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_hc_mcount_stats_symbol_errors, tvb, offset + 40, 8, ENC_LITTLE_ENDIAN);
return 8 * 6;
}
static int
dissect_elink_interface_control(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
static int * const control_bits[] = {
&hf_elink_icontrol_control_bits_auto_neg,
&hf_elink_icontrol_control_bits_forced_duplex,
&hf_elink_icontrol_control_bits_reserved,
NULL
};
if (total_len < 4)
{
expert_add_info(pinfo, item, &ei_mal_elink_interface_control);
return total_len;
}
proto_tree_add_bitmask(tree, tvb, offset, hf_elink_icontrol_control_bits, ett_elink_icontrol_bits, control_bits, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_elink_icontrol_forced_speed, tvb, offset+2, 2, ENC_LITTLE_ENDIAN);
return 4;
}
static int
dissect_dlr_ring_supervisor_config(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 12)
{
expert_add_info(pinfo, item, &ei_mal_dlr_ring_supervisor_config);
return total_len;
}
proto_tree_add_item(tree, hf_dlr_rsc_ring_supervisor_enable, tvb, offset, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rsc_ring_supervisor_precedence, tvb, offset+1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rsc_beacon_interval, tvb, offset+2, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rsc_beacon_timeout, tvb, offset+6, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rsc_dlr_vlan_id, tvb, offset+10, 2, ENC_LITTLE_ENDIAN);
return 12;
}
static int
dissect_dlr_last_active_node_on_port_1(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 10)
{
expert_add_info(pinfo, item, &ei_mal_dlr_last_active_node_on_port_1);
return total_len;
}
proto_tree_add_item(tree, hf_dlr_lanp1_dev_ip_addr, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_lanp1_dev_physical_address, tvb, offset+4, 6, ENC_NA);
return 10;
}
static int
dissect_dlr_last_active_node_on_port_2(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 10)
{
expert_add_info(pinfo, item, &ei_mal_dlr_last_active_node_on_port_2);
return total_len;
}
proto_tree_add_item(tree, hf_dlr_lanp2_dev_ip_addr, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_lanp2_dev_physical_address, tvb, offset+4, 6, ENC_NA);
return 10;
}
static int
dissect_dlr_ring_protocol_participants_list(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
int pos;
if (total_len % 10)
{
expert_add_info(pinfo, item, &ei_mal_dlr_ring_protocol_participants_list);
return total_len;
}
pos = 0;
while ( pos < total_len)
{
proto_tree_add_item(tree, hf_dlr_rppl_dev_ip_addr, tvb, offset+pos, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rppl_dev_physical_address, tvb, offset+pos+4, 6, ENC_NA);
pos+=10;
}
return total_len;
}
static int
dissect_dlr_active_supervisor_address(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 10)
{
expert_add_info(pinfo, item, &ei_mal_dlr_active_supervisor_address);
return total_len;
}
proto_tree_add_item(tree, hf_dlr_asa_supervisor_ip_addr, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_asa_supervisor_physical_address, tvb, offset+4, 6, ENC_NA);
return 10;
}
static int
dissect_dlr_capability_flags(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
static int * const capabilities[] = {
&hf_dlr_capflags_announce_base_node,
&hf_dlr_capflags_beacon_base_node,
&hf_dlr_capflags_reserved1,
&hf_dlr_capflags_supervisor_capable,
&hf_dlr_capflags_redundant_gateway_capable,
&hf_dlr_capflags_flush_frame_capable,
&hf_dlr_capflags_reserved2,
NULL
};
if (total_len < 4)
{
expert_add_info(pinfo, item, &ei_mal_dlr_capability_flags);
return total_len;
}
proto_tree_add_bitmask(tree, tvb, offset, hf_dlr_capability_flags, ett_dlr_capability_flags, capabilities, ENC_LITTLE_ENDIAN);
return 4;
}
static int
dissect_dlr_redundant_gateway_config(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 11)
{
expert_add_info(pinfo, item, &ei_mal_dlr_redundant_gateway_config);
return total_len;
}
proto_tree_add_item(tree, hf_dlr_rgc_red_gateway_enable, tvb, offset, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rgc_gateway_precedence, tvb, offset+1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rgc_advertise_interval, tvb, offset+2, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rgc_advertise_timeout, tvb, offset+6, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_rgc_learning_update_enable, tvb, offset+10, 1, ENC_LITTLE_ENDIAN);
return 11;
}
static int
dissect_dlr_active_gateway_address(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
if (total_len < 10)
{
expert_add_info(pinfo, item, &ei_mal_dlr_active_gateway_address);
return total_len;
}
proto_tree_add_item(tree, hf_dlr_aga_ip_addr, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_dlr_aga_physical_address, tvb, offset+4, 6, ENC_NA);
return 10;
}
static int dissect_cip_security_profiles(packet_info* pinfo _U_, proto_tree* tree, proto_item* item _U_, tvbuff_t* tvb,
int offset, int total_len _U_)
{
static int* const security_profiles[] = {
&hf_enip_security_profiles_eip_integrity,
&hf_enip_security_profiles_eip_confidentiality,
&hf_enip_security_profiles_cip_authorization,
&hf_enip_security_profiles_cip_user_authentication,
&hf_enip_security_profiles_resource_constrained,
&hf_enip_security_profiles_reserved,
NULL
};
proto_tree_add_bitmask(tree, tvb, offset, hf_enip_security_profiles, ett_security_profiles, security_profiles, ENC_LITTLE_ENDIAN);
return 2;
}
static int
dissect_eip_security_cap(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
static int * const capabilities[] = {
&hf_eip_security_capflags_secure_renegotiation,
&hf_eip_security_capflags_reserved,
NULL
};
if (total_len < 4)
{
expert_add_info(pinfo, item, &ei_mal_eip_security_capability_flags);
return total_len;
}
proto_tree_add_bitmask(tree, tvb, offset, hf_eip_security_capability_flags, ett_eip_security_capability_flags, capabilities, ENC_LITTLE_ENDIAN);
return 4;
}
static int
dissect_eip_security_avail_cipher_suites(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
guint32 i, num_suites;
if (total_len < 1)
{
expert_add_info(pinfo, item, &ei_mal_eip_security_avail_cipher_suites);
return total_len;
}
proto_tree_add_item_ret_uint(tree, hf_eip_security_num_avail_cipher_suites, tvb, offset, 1, ENC_NA, &num_suites);
offset++;
for (i = 0; i < num_suites; i++)
{
proto_tree_add_item(tree, hf_eip_security_avail_cipher_suite, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
return ((num_suites*2)+1);
}
static int
dissect_eip_security_allow_cipher_suites(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
guint32 i, num_suites;
if (total_len < 1)
{
expert_add_info(pinfo, item, &ei_mal_eip_security_allow_cipher_suites);
return total_len;
}
proto_tree_add_item_ret_uint(tree, hf_eip_security_num_allow_cipher_suites, tvb, offset, 1, ENC_NA, &num_suites);
offset++;
for (i = 0; i < num_suites; i++)
{
proto_tree_add_item(tree, hf_eip_security_allow_cipher_suite, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
return ((num_suites*2)+1);
}
static int
dissect_eip_security_preshared_keys(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
guint32 i, num, id_size, psk_size;
proto_item* ti;
proto_tree* psk_tree;
int start_offset = offset;
if (total_len < 1)
{
expert_add_info(pinfo, item, &ei_mal_eip_security_preshared_keys);
return total_len;
}
ti = proto_tree_add_item_ret_uint(tree, hf_eip_security_num_psk, tvb, offset, 1, ENC_NA, &num);
psk_tree = proto_item_add_subtree(ti, ett_eip_security_psk);
offset++;
for (i = 0; i < num; i++)
{
proto_tree_add_item_ret_uint(psk_tree, hf_eip_security_psk_identity_size, tvb, offset, 1, ENC_NA, &id_size);
if (total_len < (int)(id_size+2))
{
expert_add_info(pinfo, item, &ei_mal_eip_security_preshared_keys);
return total_len;
}
offset++;
proto_tree_add_item(psk_tree, hf_eip_security_psk_identity, tvb, offset, id_size, ENC_NA);
offset += id_size;
proto_tree_add_item_ret_uint(psk_tree, hf_eip_security_psk_size, tvb, offset, 1, ENC_NA, &psk_size);
offset++;
if (total_len < (int)(id_size+psk_size+2))
{
expert_add_info(pinfo, item, &ei_mal_eip_security_preshared_keys);
return total_len;
}
proto_tree_add_item(psk_tree, hf_eip_security_psk, tvb, offset, psk_size, ENC_NA);
offset += psk_size;
}
proto_item_set_len(ti, offset-start_offset);
return offset-start_offset;
}
static int
dissect_eip_security_active_certs(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
guint32 i, num, path_size;
proto_item *ti;
proto_tree* cert_tree;
int start_offset = offset;
if (total_len < 1)
{
expert_add_info(pinfo, item, &ei_mal_eip_security_active_certs);
return total_len;
}
ti = proto_tree_add_item_ret_uint(tree, hf_eip_security_num_active_certs, tvb, offset, 1, ENC_NA, &num);
cert_tree = proto_item_add_subtree(ti, ett_eip_security_active_certs);
offset++;
for (i = 0; i < num; i++)
{
path_size = dissect_padded_epath_len_usint(pinfo, cert_tree, ti, tvb, offset, total_len);
offset += path_size;
}
proto_item_set_len(ti, offset-start_offset);
return offset-start_offset;
}
static int
dissect_eip_security_trusted_auths(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
guint32 i, num, path_size;
proto_item *ti;
proto_tree* cert_tree;
int start_offset = offset;
if (total_len < 1)
{
expert_add_info(pinfo, item, &ei_mal_eip_security_trusted_auths);
return total_len;
}
ti = proto_tree_add_item_ret_uint(tree, hf_eip_security_num_trusted_auths, tvb, offset, 1, ENC_NA, &num);
cert_tree = proto_item_add_subtree(ti, ett_eip_security_trusted_auths);
offset++;
for (i = 0; i < num; i++)
{
path_size = dissect_padded_epath_len_usint(pinfo, cert_tree, ti, tvb, offset, total_len);
offset += path_size;
}
proto_item_set_len(ti, offset-start_offset);
return offset-start_offset;
}
static int
dissect_eip_security_cert_revocation_list(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
return dissect_padded_epath_len_usint(pinfo, tree, item, tvb, offset, total_len);
}
static int
dissect_eip_cert_cap_flags(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
static int * const capabilities[] = {
&hf_eip_cert_capflags_push,
&hf_eip_cert_capflags_reserved,
NULL
};
if (total_len < 4)
{
expert_add_info(pinfo, item, &ei_mal_eip_cert_capability_flags);
return total_len;
}
proto_tree_add_bitmask(tree, tvb, offset, hf_eip_cert_capability_flags, ett_eip_cert_capability_flags, capabilities, ENC_LITTLE_ENDIAN);
return 4;
}
static int
dissect_eip_cert_cert_list(packet_info *pinfo, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb,
int offset, int total_len)
{
guint32 i, num, path_size;
proto_item *ti;
proto_tree* cert_tree;
int start_offset = offset;
ti = proto_tree_add_item_ret_uint(tree, hf_eip_cert_num_certs, tvb, offset, 1, ENC_NA, &num);
cert_tree = proto_item_add_subtree(ti, ett_eip_cert_num_certs);
offset++;
for (i = 0; i < num; i++)
{
path_size = tvb_get_guint8( tvb, offset );
proto_tree_add_item(tree, hf_eip_cert_cert_name, tvb, offset+1, path_size, ENC_ASCII);
offset += (1+path_size);
path_size = dissect_padded_epath_len_usint(pinfo, cert_tree, ti, tvb, offset, total_len);
offset += path_size;
}
proto_item_set_len(ti, offset-start_offset);
return offset-start_offset;
}
static int
dissect_eip_cert_device_cert(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
guint32 path_size;
proto_tree_add_item(tree, hf_eip_cert_device_cert_status, tvb, offset, 1, ENC_NA);
offset++;
path_size = dissect_padded_epath_len_usint(pinfo, tree, item, tvb, offset, total_len);
return path_size + 1;
}
static int
dissect_eip_cert_ca_cert(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len)
{
guint32 path_size;
proto_tree_add_item(tree, hf_eip_cert_ca_cert_status, tvb, offset, 1, ENC_NA);
offset++;
path_size = dissect_padded_epath_len_usint(pinfo, tree, item, tvb, offset, total_len);
return path_size + 1;
}
static int dissect_certificate_management_object_verify_certificate(packet_info *pinfo _U_, proto_tree *tree, proto_item *item _U_, tvbuff_t *tvb, int offset, gboolean request)
{
if (request)
{
proto_tree_add_item(tree, hf_eip_cert_verify_certificate, tvb, offset, 2, ENC_LITTLE_ENDIAN);
return 2;
}
else
{
return 0;
}
}
static int dissect_tcpip_port_information(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset)
{
int start_offset = offset;
guint32 port_count;
proto_tree_add_item_ret_uint(tree, hf_tcpip_port_count, tvb, offset, 1, ENC_LITTLE_ENDIAN, &port_count);
offset++;
for (guint32 i = 0; i < port_count; ++i)
{
proto_item *port_item;
proto_tree *port_tree = proto_tree_add_subtree(tree, tvb, offset, 0, ett_cmd_data, &port_item, "Port: ");
offset += dissect_cip_string_type(pinfo, port_tree, item, tvb, offset, hf_tcpip_port_name, CIP_SHORT_STRING_TYPE);
guint32 port_number;
proto_tree_add_item_ret_uint(port_tree, hf_tcpip_port_number, tvb, offset, 2, ENC_LITTLE_ENDIAN, &port_number);
offset += 2;
proto_item_append_text(port_item, "Number: %d", port_number);
proto_tree_add_item(port_tree, hf_tcpip_port_protocol, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
proto_tree_add_item(port_tree, hf_tcpip_port_admin_state, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
static int* const capability[] = {
&hf_tcpip_admin_capability_configurable,
&hf_tcpip_admin_capability_reset_required,
&hf_tcpip_admin_capability_reserved,
NULL
};
proto_tree_add_bitmask(port_tree, tvb, offset, hf_tcpip_port_admin_capability, ett_tcpip_admin_capability, capability, ENC_LITTLE_ENDIAN);
offset++;
}
return offset - start_offset;
}
static int dissect_tcpip_port_admin(packet_info *pinfo, proto_tree *tree, proto_item *item, tvbuff_t *tvb,
int offset, int total_len _U_)
{
return dissect_tcpip_port_information(pinfo, tree, item, tvb, offset);
}
attribute_info_t enip_attribute_vals[] = {
/* TCP/IP Object (class attributes) */
{0xF5, TRUE, 1, 0, CLASS_ATTRIBUTE_1_NAME, cip_uint, &hf_attr_class_revision, NULL },
{0xF5, TRUE, 2, 1, CLASS_ATTRIBUTE_2_NAME, cip_uint, &hf_attr_class_max_instance, NULL },
{0xF5, TRUE, 3, 2, CLASS_ATTRIBUTE_3_NAME, cip_uint, &hf_attr_class_num_instance, NULL },
{0xF5, TRUE, 4, 3, CLASS_ATTRIBUTE_4_NAME, cip_dissector_func, NULL, dissect_optional_attr_list },
{0xF5, TRUE, 5, 4, CLASS_ATTRIBUTE_5_NAME, cip_dissector_func, NULL, dissect_optional_service_list },
{0xF5, TRUE, 6, 5, CLASS_ATTRIBUTE_6_NAME, cip_uint, &hf_attr_class_num_class_attr, NULL },
{0xF5, TRUE, 7, 6, CLASS_ATTRIBUTE_7_NAME, cip_uint, &hf_attr_class_num_inst_attr, NULL },
/* TCP/IP object (instance attributes) */
{0xF5, FALSE, 1, 0, "Status", cip_dissector_func, NULL, dissect_tcpip_status},
{0xF5, FALSE, 2, 1, "Configuration Capability", cip_dissector_func, NULL, dissect_tcpip_config_cap},
{0xF5, FALSE, 3, 2, "Configuration Control", cip_dissector_func, NULL, dissect_tcpip_config_control},
{0xF5, FALSE, 4, 3, "Physical Link Object", cip_dissector_func, NULL, dissect_tcpip_physical_link},
{0xF5, FALSE, 5, 4, "Interface Configuration", cip_dissector_func, NULL, dissect_tcpip_interface_config},
{0xF5, FALSE, 6, 5, "Host Name", cip_dissector_func, NULL, dissect_tcpip_hostname},
{0xF5, FALSE, 7, 6, "Safety Network Number", cip_dissector_func, NULL, dissect_tcpip_snn},
{0xF5, FALSE, 8, 7, "TTL Value", cip_usint, &hf_tcpip_ttl_value, NULL},
{0xF5, FALSE, 9, 8, "Multicast Configuration", cip_dissector_func, NULL, dissect_tcpip_mcast_config},
{0xF5, FALSE, 10, 9, "Select ACD", cip_bool, &hf_tcpip_select_acd, NULL},
{0xF5, FALSE, 11, 10, "Last Conflict Detected", cip_dissector_func, NULL, dissect_tcpip_last_conflict},
{0xF5, FALSE, 12, 11, "EtherNet/IP Quick Connect", cip_bool, &hf_tcpip_quick_connect, NULL},
{0xF5, FALSE, 13, 12, "Encapsulation Inactivity Timeout", cip_uint, &hf_tcpip_encap_inactivity, NULL},
{0xF5, FALSE, 14, -1, "IANA Port Admin", cip_dissector_func, NULL, dissect_tcpip_port_admin },
/* Ethernet Link Object (class attributes) */
{0xF6, TRUE, 1, 0, CLASS_ATTRIBUTE_1_NAME, cip_uint, &hf_attr_class_revision, NULL },
{0xF6, TRUE, 2, 1, CLASS_ATTRIBUTE_2_NAME, cip_uint, &hf_attr_class_max_instance, NULL },
{0xF6, TRUE, 3, 2, CLASS_ATTRIBUTE_3_NAME, cip_uint, &hf_attr_class_num_instance, NULL },
{0xF6, TRUE, 4, 3, CLASS_ATTRIBUTE_4_NAME, cip_dissector_func, NULL, dissect_optional_attr_list },
{0xF6, TRUE, 5, 4, CLASS_ATTRIBUTE_5_NAME, cip_dissector_func, NULL, dissect_optional_service_list },
{0xF6, TRUE, 6, 5, CLASS_ATTRIBUTE_6_NAME, cip_uint, &hf_attr_class_num_class_attr, NULL },
{0xF6, TRUE, 7, 6, CLASS_ATTRIBUTE_7_NAME, cip_uint, &hf_attr_class_num_inst_attr, NULL },
/* Ethernet Link object (instance attributes) */
{0xF6, FALSE, 1, 0, "Interface Speed", cip_dword, &hf_elink_interface_speed, NULL},
{0xF6, FALSE, 2, 1, "Interface Flags", cip_dissector_func, NULL, dissect_elink_interface_flags},
{0xF6, FALSE, 3, 2, "Physical Address", cip_dissector_func, NULL, dissect_elink_physical_address },
{0xF6, FALSE, 4, 3, "Interface Counters", cip_dissector_func, NULL, dissect_elink_interface_counters},
{0xF6, FALSE, 5, 4, "Media Counters", cip_dissector_func, NULL, dissect_elink_media_counters},
{0xF6, FALSE, 6, 5, "Interface Control", cip_dissector_func, NULL, dissect_elink_interface_control},
{0xF6, FALSE, 7, 6, "Interface Type", cip_usint, &hf_elink_interface_type, NULL},
{0xF6, FALSE, 8, 7, "Interface State", cip_usint, &hf_elink_interface_state, NULL},
{0xF6, FALSE, 9, 8, "Admin State", cip_usint, &hf_elink_admin_state, NULL},
{0xF6, FALSE, 10, 9, "Interface Label", cip_short_string, &hf_elink_interface_label, NULL},
{0xF6, FALSE, 11, 10, "Interface Capability", cip_dissector_func, NULL, dissect_elink_interface_capability},
{0xF6, FALSE, 12, 11, "HC Interface Counters", cip_dissector_func, NULL, dissect_elink_hc_interface_counters},
{0xF6, FALSE, 13, 12, "HC Media Counters", cip_dissector_func, NULL, dissect_elink_hc_media_counters},
/* QoS Object (class attributes) */
{0x48, TRUE, 1, 0, CLASS_ATTRIBUTE_1_NAME, cip_uint, &hf_attr_class_revision, NULL },
{0x48, TRUE, 2, 1, CLASS_ATTRIBUTE_2_NAME, cip_uint, &hf_attr_class_max_instance, NULL },
{0x48, TRUE, 3, 2, CLASS_ATTRIBUTE_3_NAME, cip_uint, &hf_attr_class_num_instance, NULL },
{0x48, TRUE, 4, 3, CLASS_ATTRIBUTE_4_NAME, cip_dissector_func, NULL, dissect_optional_attr_list },
{0x48, TRUE, 5, 4, CLASS_ATTRIBUTE_5_NAME, cip_dissector_func, NULL, dissect_optional_service_list },
{0x48, TRUE, 6, 5, CLASS_ATTRIBUTE_6_NAME, cip_uint, &hf_attr_class_num_class_attr, NULL },
{0x48, TRUE, 7, 6, CLASS_ATTRIBUTE_7_NAME, cip_uint, &hf_attr_class_num_inst_attr, NULL },
/* QoS object (instance attributes) */
{0x48, FALSE, 1, -1, "802.1Q Tag Enable", cip_bool, &hf_qos_8021q_enable, NULL},
{0x48, FALSE, 2, -1, "DSCP PTP Event", cip_usint, &hf_qos_dscp_ptp_event, NULL},
{0x48, FALSE, 3, -1, "DSCP PTP General", cip_usint, &hf_qos_dscp_ptp_general, NULL},
{0x48, FALSE, 4, -1, "DSCP Urgent", cip_usint, &hf_qos_dscp_urgent, NULL},
{0x48, FALSE, 5, -1, "DSCP Scheduled", cip_usint, &hf_qos_dscp_scheduled, NULL},
{0x48, FALSE, 6, -1, "DSCP High", cip_usint, &hf_qos_dscp_high, NULL},
{0x48, FALSE, 7, -1, "DSCP Low", cip_usint, &hf_qos_dscp_low, NULL},
{0x48, FALSE, 8, -1, "DSCP Explicit", cip_usint, &hf_qos_dscp_explicit, NULL},
/* DLR Object (class attributes) */
{0x47, TRUE, 1, 0, CLASS_ATTRIBUTE_1_NAME, cip_uint, &hf_attr_class_revision, NULL },
{0x47, TRUE, 2, 1, CLASS_ATTRIBUTE_2_NAME, cip_uint, &hf_attr_class_max_instance, NULL },
{0x47, TRUE, 3, 2, CLASS_ATTRIBUTE_3_NAME, cip_uint, &hf_attr_class_num_instance, NULL },
{0x47, TRUE, 4, 3, CLASS_ATTRIBUTE_4_NAME, cip_dissector_func, NULL, dissect_optional_attr_list },
{0x47, TRUE, 5, 4, CLASS_ATTRIBUTE_5_NAME, cip_dissector_func, NULL, dissect_optional_service_list },
{0x47, TRUE, 6, 5, CLASS_ATTRIBUTE_6_NAME, cip_uint, &hf_attr_class_num_class_attr, NULL },
{0x47, TRUE, 7, 6, CLASS_ATTRIBUTE_7_NAME, cip_uint, &hf_attr_class_num_inst_attr, NULL },
/* DLR object (instance attributes) */
/* Get Attributes All is not fully parsed here because there are multiple formats. */
{0x47, FALSE, 1, 0, "Network Topology", cip_usint, &hf_dlr_network_topology, NULL},
{0x47, FALSE, 2, 1, "Network Status", cip_usint, &hf_dlr_network_status, NULL},
{0x47, FALSE, 3, -1, "Ring Supervisor Status", cip_usint, &hf_dlr_ring_supervisor_status, NULL},
{0x47, FALSE, 4, -1, "Ring Supervisor Config", cip_dissector_func, NULL, dissect_dlr_ring_supervisor_config},
{0x47, FALSE, 5, -1, "Ring Faults Count", cip_uint, &hf_dlr_ring_faults_count, NULL},
{0x47, FALSE, 6, -1, "Last Active Node on Port 1", cip_dissector_func, NULL, dissect_dlr_last_active_node_on_port_1},
{0x47, FALSE, 7, -1, "Last Active Node on Port 2", cip_dissector_func, NULL, dissect_dlr_last_active_node_on_port_2},
{0x47, FALSE, 8, -1, "Ring Protocol Participants Count", cip_uint, &hf_dlr_ring_protocol_participants_count, NULL},
{0x47, FALSE, 9, -1, "Ring Protocol Participants List", cip_dissector_func, NULL, dissect_dlr_ring_protocol_participants_list},
{0x47, FALSE, 10, -1, "Active Supervisor Address", cip_dissector_func, NULL, dissect_dlr_active_supervisor_address},
{0x47, FALSE, 11, -1, "Active Supervisor Precedence", cip_usint, &hf_dlr_active_supervisor_precedence, NULL},
{0x47, FALSE, 12, -1, "Capability Flags", cip_dissector_func, NULL, dissect_dlr_capability_flags},
{0x47, FALSE, 13, -1, "Redundant Gateway Config", cip_dissector_func, NULL, dissect_dlr_redundant_gateway_config},
{0x47, FALSE, 14, -1, "Redundant Gateway Status", cip_usint, &hf_dlr_redundant_gateway_status, NULL},
{0x47, FALSE, 15, -1, "Active Gateway Address", cip_dissector_func, NULL, dissect_dlr_active_gateway_address},
{0x47, FALSE, 16, -1, "Active Gateway Precedence", cip_usint, &hf_dlr_active_gateway_precedence, NULL},
/* CIP Security Object (instance attributes) */
{0x5D, CIP_ATTR_INSTANCE, 1, 0, "State", cip_usint, &hf_cip_security_state, NULL},
{0x5D, CIP_ATTR_INSTANCE, 2, 1, "Security Profiles", cip_dissector_func, NULL, dissect_cip_security_profiles },
/* EtherNet/IP Security object (instance attributes) */
{0x5E, FALSE, 1, 0, "State", cip_usint, &hf_eip_security_state, NULL},
{0x5E, FALSE, 2, 1, "Capability Flags", cip_dissector_func, NULL, dissect_eip_security_cap},
{0x5E, FALSE, 3, 2, "Available Cipher Suites", cip_dissector_func, NULL, dissect_eip_security_avail_cipher_suites},
{0x5E, FALSE, 4, 3, "Allowed Cipher Suites", cip_dissector_func, NULL, dissect_eip_security_allow_cipher_suites},
{0x5E, FALSE, 5, 4, "Pre-Shared Keys", cip_dissector_func, NULL, dissect_eip_security_preshared_keys},
{0x5E, FALSE, 6, 5, "Active Device Certificates", cip_dissector_func, NULL, dissect_eip_security_active_certs},
{0x5E, FALSE, 7, 6, "Trusted Authorities", cip_dissector_func, NULL, dissect_eip_security_trusted_auths},
{0x5E, FALSE, 8, 7, "Certificate Revocation List", cip_dissector_func, NULL, dissect_eip_security_cert_revocation_list},
{0x5E, FALSE, 9, 8, "Verify Client Certificate", cip_bool, &hf_eip_security_verify_client_cert, NULL},
{0x5E, FALSE, 10, 9, "Send Certificate Chain", cip_bool, &hf_eip_security_send_cert_chain, NULL},
{0x5E, FALSE, 11, 10, "Check Expiration", cip_bool, &hf_eip_security_check_expiration, NULL},
/* Certificate Management Object (class attributes) */
{0x5F, TRUE, 1, 0, CLASS_ATTRIBUTE_1_NAME, cip_uint, &hf_attr_class_revision, NULL },
{0x5F, TRUE, 2, 1, CLASS_ATTRIBUTE_2_NAME, cip_uint, &hf_attr_class_max_instance, NULL },
{0x5F, TRUE, 3, -1, CLASS_ATTRIBUTE_3_NAME, cip_uint, &hf_attr_class_num_instance, NULL },
{0x5F, TRUE, 4, -1, CLASS_ATTRIBUTE_4_NAME, cip_dissector_func, NULL, dissect_optional_attr_list },
{0x5F, TRUE, 5, -1, CLASS_ATTRIBUTE_5_NAME, cip_dissector_func, NULL, dissect_optional_service_list },
{0x5F, TRUE, 6, 2, CLASS_ATTRIBUTE_6_NAME, cip_uint, &hf_attr_class_num_class_attr, NULL },
{0x5F, TRUE, 7, 3, CLASS_ATTRIBUTE_7_NAME, cip_uint, &hf_attr_class_num_inst_attr, NULL },
{0x5F, TRUE, 8, 4, "Capability Flags", cip_dissector_func, NULL, dissect_eip_cert_cap_flags },
{0x5F, TRUE, 9, 5, "Certificate List", cip_dissector_func, NULL, dissect_eip_cert_cert_list },
/* Certificate Management Object (instance attributes) */
{0x5F, FALSE, 1, 0, "Name", cip_short_string, &hf_eip_cert_name, NULL},
{0x5F, FALSE, 2, 1, "State", cip_usint, &hf_eip_cert_state, NULL},
{0x5F, FALSE, 3, 2, "Device Certificate", cip_dissector_func, NULL, dissect_eip_cert_device_cert},
{0x5F, FALSE, 4, 3, "CA Certificate", cip_dissector_func, NULL, dissect_eip_cert_ca_cert},
{0x5F, FALSE, 5, 4, "Certificate Encoding", cip_usint, &hf_eip_cert_encoding, NULL },
};
// Table of CIP services defined by this dissector.
static cip_service_info_t enip_obj_spec_service_table[] = {
// Certificate Management
{ 0x5F, 0x4C, "Verify_Certificate", dissect_certificate_management_object_verify_certificate },
};
// Look up a given CIP service from this dissector.
cip_service_info_t* cip_get_service_enip(guint32 class_id, guint8 service_id)
{
return cip_get_service_one_table(&enip_obj_spec_service_table[0],
sizeof(enip_obj_spec_service_table) / sizeof(cip_service_info_t),
class_id,
service_id);
}
static void enip_init_protocol(void)
{
enip_unique_connid = 0;
}
// offset - Starts at the "Encapsulation Protocol Version" field.
static void dissect_item_list_identity(packet_info* pinfo, tvbuff_t* tvb, int offset, proto_tree* item_tree)
{
/* Encapsulation version */
proto_tree_add_item(item_tree, hf_enip_encapver, tvb, offset, 2, ENC_LITTLE_ENDIAN);
/* Socket Address */
proto_tree* sockaddr_tree = proto_tree_add_subtree(item_tree, tvb, offset + 2, 16, ett_sockadd, NULL, "Socket Address");
/* Socket address struct - sin_family */
proto_tree_add_item(sockaddr_tree, hf_enip_sinfamily, tvb, offset + 2, 2, ENC_BIG_ENDIAN);
/* Socket address struct - sin_port */
proto_tree_add_item(sockaddr_tree, hf_enip_sinport, tvb, offset + 4, 2, ENC_BIG_ENDIAN);
/* Socket address struct - sin_address */
proto_tree_add_item(sockaddr_tree, hf_enip_sinaddr, tvb, offset + 6, 4, ENC_BIG_ENDIAN);
/* Socket address struct - sin_zero */
proto_tree_add_item(sockaddr_tree, hf_enip_sinzero, tvb, offset + 10, 8, ENC_NA);
/* Vendor ID */
proto_tree_add_item(item_tree, hf_enip_lir_vendor, tvb, offset + 18, 2, ENC_LITTLE_ENDIAN);
/* Device Type */
proto_tree_add_item(item_tree, hf_enip_lir_devtype, tvb, offset + 20, 2, ENC_LITTLE_ENDIAN);
/* Product Code */
proto_tree_add_item(item_tree, hf_enip_lir_prodcode, tvb, offset + 22, 2, ENC_LITTLE_ENDIAN);
/* Revision */
proto_tree_add_item(item_tree, hf_enip_lir_revision, tvb, offset + 24, 2, ENC_BIG_ENDIAN);
/* Status */
proto_tree_add_item(item_tree, hf_enip_lir_status, tvb, offset + 26, 2, ENC_LITTLE_ENDIAN);
/* Serial Number */
proto_tree_add_item(item_tree, hf_enip_lir_serial, tvb, offset + 28, 4, ENC_LITTLE_ENDIAN);
/* Product Name Length */
guint32 name_length;
proto_tree_add_item_ret_uint(item_tree, hf_enip_lir_namelen, tvb, offset + 32, 1, ENC_LITTLE_ENDIAN, &name_length);
/* Product Name */
proto_tree_add_item(item_tree, hf_enip_lir_name, tvb, offset + 33, name_length, ENC_ASCII | ENC_NA);
/* Append product name to info column */
col_append_fstr(pinfo->cinfo, COL_INFO, ", %s", tvb_format_text(pinfo->pool, tvb, offset + 33, name_length));
/* State */
proto_tree_add_item(item_tree, hf_enip_lir_state, tvb, offset + name_length + 33, 1, ENC_LITTLE_ENDIAN);
}
// offset - Starts at the "Security Profiles" field.
static void dissect_item_cip_security_information(tvbuff_t* tvb, int offset, proto_tree* item_tree)
{
static int * const iana_flags[] = {
&hf_enip_iana_port_state_flags_tcp_44818,
&hf_enip_iana_port_state_flags_udp_44818,
&hf_enip_iana_port_state_flags_udp_2222,
&hf_enip_iana_port_state_flags_tcp_2221,
&hf_enip_iana_port_state_flags_udp_2221,
&hf_enip_iana_port_state_flags_reserved,
NULL
};
dissect_cip_security_profiles(NULL, item_tree, NULL, tvb, offset, tvb_reported_length_remaining(tvb, offset));
/* CIP Security object state */
proto_tree_add_item(item_tree, hf_enip_cip_security_state, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
/* ENIP Security object state */
proto_tree_add_item(item_tree, hf_enip_eip_security_state, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
/* IANA Port State flags */
proto_tree_add_bitmask(item_tree, tvb, offset + 4, hf_enip_iana_port_state_flags, ett_iana_port_state_flags, iana_flags, ENC_LITTLE_ENDIAN);
}
// offset - Starts at the "Encapsulation Protocol Version" field.
static void dissect_item_list_services_response(packet_info* pinfo, tvbuff_t* tvb, int offset, proto_tree* item_tree)
{
/* Encapsulation version */
proto_tree_add_item(item_tree, hf_enip_encapver, tvb, offset, 2, ENC_LITTLE_ENDIAN);
/* Capability flags */
static int* const capability_bits[] = {
&hf_enip_lsr_tcp,
&hf_enip_lsr_udp,
NULL
};
proto_tree_add_bitmask(item_tree, tvb, offset + 2, hf_enip_lsr_capaflags, ett_lsrcf, capability_bits, ENC_LITTLE_ENDIAN);
/* Name of service */
proto_tree_add_item(item_tree, hf_enip_lsr_servicename, tvb, offset + 4, 16, ENC_ASCII | ENC_NA);
/* Append service name to info column */
col_append_fstr(pinfo->cinfo, COL_INFO, ", %s",
tvb_format_stringzpad(pinfo->pool, tvb, offset + 4, 16));
}
void display_fwd_open_connection_path(cip_conn_info_t* conn_info, proto_tree* tree, tvbuff_t* tvb, packet_info* pinfo)
{
if (!conn_info->pFwdOpenPathData)
{
return;
}
tvbuff_t* tvbIOI = tvb_new_real_data((const guint8*)conn_info->pFwdOpenPathData, conn_info->FwdOpenPathLenBytes, conn_info->FwdOpenPathLenBytes);
if (tvbIOI)
{
proto_item* pi = NULL;
proto_tree* epath_tree = proto_tree_add_subtree(tree, tvb, 0, 0, ett_connection_path_info, &pi, "Forward Open Connection Path: ");
proto_item_set_generated(pi);
dissect_epath(tvbIOI, pinfo, epath_tree, pi, 0, conn_info->FwdOpenPathLenBytes, TRUE, FALSE, NULL, NULL, NO_DISPLAY, NULL, FALSE);
tvb_free(tvbIOI);
}
}
static void display_connection_information(packet_info* pinfo, tvbuff_t* tvb, proto_tree* tree, cip_conn_info_t* conn_info, enum enip_connid_type connid_type)
{
proto_item* conn_info_item = NULL;
proto_tree* conn_info_tree = proto_tree_add_subtree(tree, tvb, 0, 0, ett_connection_info, &conn_info_item, "Connection Information");
proto_item_set_generated(conn_info_item);
if (connid_type == ECIDT_O2T)
{
proto_item_append_text(conn_info_item, ": O->T");
}
else if (connid_type == ECIDT_T2O)
{
proto_item_append_text(conn_info_item, ": T->O");
}
display_fwd_open_connection_path(conn_info, conn_info_tree, tvb, pinfo);
proto_item* pi = proto_tree_add_uint(conn_info_tree, hf_cip_cm_ot_api, tvb, 0, 0, conn_info->O2T.api);
proto_item_set_generated(pi);
pi = proto_tree_add_uint(conn_info_tree, hf_cip_cm_to_api, tvb, 0, 0, conn_info->T2O.api);
proto_item_set_generated(pi);
pi = proto_tree_add_uint(conn_info_tree, hf_cip_connection, tvb, 0, 0, conn_info->connid);
proto_item_set_generated(pi);
pi = proto_tree_add_uint(conn_info_tree, hf_enip_fwd_open_in, tvb, 0, 0, conn_info->open_req_frame);
proto_item_set_generated(pi);
}
// This dissects Class 0 or Class 1 I/O.
// offset - Starts at the field after the Item Length field.
static int dissect_cip_io_generic(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, void* data)
{
cip_io_data_input* io_data_input = (cip_io_data_input*)data;
int offset = 0;
proto_item* ti = proto_tree_add_item(tree, proto_cipio, tvb, 0, -1, ENC_NA);
proto_tree* io_tree = proto_item_add_subtree(ti, ett_cip_io_generic);
if (io_data_input != NULL)
{
if ((io_data_input->conn_info->TransportClass_trigger & CI_TRANSPORT_CLASS_MASK) == 1)
{
proto_tree_add_item(io_tree, hf_cip_sequence_count, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
}
if ((tvb_reported_length_remaining(tvb, offset) >= 4) &&
(((io_data_input->connid_type == ECIDT_O2T) && enip_OTrun_idle) ||
((io_data_input->connid_type == ECIDT_T2O) && enip_TOrun_idle)))
{
dissect_cip_run_idle(tvb, offset, io_tree);
offset += 4;
}
}
proto_tree_add_item(io_tree, hf_cip_io_data, tvb, offset, tvb_reported_length_remaining(tvb, offset), ENC_NA);
return tvb_captured_length(tvb);
}
// Dissect the various kinds of CIP Class 0/1 I/O formats. This will determine the appropriate format and
// call the appropriate related dissector.
// offset - Starts at the field after the Item Length field.
static void dissect_cip_class01_io(packet_info* pinfo, tvbuff_t* tvb, int offset,
int item_length, cip_conn_info_t* conn_info, enum enip_connid_type connid_type,
proto_tree* dissector_tree)
{
if (tvb_reported_length_remaining(tvb, offset) <= 0)
{
return;
}
/* Display data */
tvbuff_t* next_tvb = tvb_new_subset_length(tvb, offset, item_length);
if (conn_info != NULL)
{
cip_io_data_input io_data_input;
io_data_input.conn_info = conn_info;
io_data_input.connid_type = connid_type;
if (conn_info->safety.safety_seg == TRUE)
{
/* Add any possible safety related data */
cip_safety_info_t cip_safety;
cip_safety.conn_type = connid_type;
cip_safety.eip_conn_info = conn_info;
cip_safety.compute_crc = TRUE;
call_dissector_with_data(cipsafety_handle, next_tvb, pinfo, dissector_tree, &cip_safety);
}
else
{
dissector_handle_t dissector = dissector_get_uint_handle(subdissector_io_table, conn_info->connection_path.iClass);
if (dissector)
{
call_dissector_with_data(dissector, next_tvb, pinfo, dissector_tree, &io_data_input);
}
else
{
call_dissector_with_data(cip_io_generic_handle, next_tvb, pinfo, dissector_tree, &io_data_input);
}
}
}
else
{
// This handles the Decode As options
if (!dissector_try_payload(subdissector_decode_as_io_table, next_tvb, pinfo, dissector_tree))
{
call_dissector_with_data(cip_io_generic_handle, next_tvb, pinfo, dissector_tree, NULL);
}
}
}
// Dissect CIP Class 2/3 data. This will determine the appropriate format and call the appropriate related dissector.
// offset - Starts at the field after the Item Length field.
static void dissect_cip_class23_data(packet_info* pinfo, tvbuff_t* tvb, int offset,
proto_tree* tree, proto_tree* item_tree, guint32 item_length,
enip_request_key_t* request_key, cip_conn_info_t* conn_info, proto_tree* dissector_tree)
{
enip_request_info_t* request_info = NULL;
if (request_key)
{
request_key->type = EPDT_CONNECTED_TRANSPORT;
request_key->data.connected_transport.sequence = tvb_get_letohs(tvb, offset);
request_info = enip_match_request(pinfo, tree, request_key);
}
/* Add sequence count ( Transport Class 2,3 ) */
proto_tree_add_item(item_tree, hf_cip_sequence_count, tvb, offset, 2, ENC_LITTLE_ENDIAN);
/* Call dissector for interface */
tvbuff_t* next_tvb = tvb_new_subset_length(tvb, offset + 2, item_length - 2);
p_add_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_REQUEST_INFO, request_info);
if (conn_info != NULL)
{
dissector_handle_t dissector = dissector_get_uint_handle(subdissector_cip_connection_table, conn_info->connection_path.iClass);
if (dissector)
{
call_dissector_with_data(dissector, next_tvb, pinfo, dissector_tree, GUINT_TO_POINTER(conn_info->connection_path.iClass));
}
else
{
call_dissector_with_data(cip_implicit_handle, next_tvb, pinfo, dissector_tree, GUINT_TO_POINTER(conn_info->connection_path.iClass));
}
}
else
{
// Default to Message Router format, since this is the most common. Since we don't have the connection
// info, at least ensure that the data can at least meet the minimum explicit message size.
if (tvb_reported_length(next_tvb) >= 2)
{
call_dissector(cip_handle, next_tvb, pinfo, dissector_tree);
}
}
p_remove_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_REQUEST_INFO);
}
// offset - Starts at the sin_family field.
static void dissect_item_sockaddr_info(packet_info *pinfo, tvbuff_t* tvb, int offset, proto_tree* item_tree,
guint32 item_type_id, gboolean is_fwd_open)
{
/* Socket address struct - sin_family */
proto_tree_add_item(item_tree, hf_enip_sinfamily, tvb, offset, 2, ENC_BIG_ENDIAN);
/* Socket address struct - sin_port */
proto_tree_add_item(item_tree, hf_enip_sinport, tvb, offset + 2, 2, ENC_BIG_ENDIAN);
/* Socket address struct - sin_address */
proto_tree_add_item(item_tree, hf_enip_sinaddr, tvb, offset + 4, 4, ENC_BIG_ENDIAN);
/* Socket address struct - sin_zero */
proto_tree_add_item(item_tree, hf_enip_sinzero, tvb, offset + 8, 8, ENC_NA);
if (is_fwd_open)
{
enip_request_info_t* request_info = (enip_request_info_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_REQUEST_INFO);
if (request_info != NULL)
{
if (item_type_id == CPF_ITEM_SOCK_ADR_INFO_OT)
{
request_info->cip_info->connInfo->O2T.port = tvb_get_ntohs(tvb, offset + 2);
alloc_address_tvb(wmem_file_scope(), &request_info->cip_info->connInfo->O2T.ipaddress,
AT_IPv4, sizeof(guint32), tvb, offset + 4);
}
else
{
request_info->cip_info->connInfo->T2O.port = tvb_get_ntohs(tvb, offset + 2);
alloc_address_tvb(wmem_file_scope(), &request_info->cip_info->connInfo->T2O.ipaddress,
AT_IPv4, sizeof(guint32), tvb, offset + 4);
}
}
}
}
// offset - Starts at the Connection ID
// Returns: connid_type, conn_info
static void dissect_item_sequenced_address(packet_info* pinfo, tvbuff_t* tvb, int offset,
proto_tree* tree, enum enip_connid_type* connid_type, cip_conn_info_t** conn_info)
{
guint32 connection_id;
proto_tree_add_item_ret_uint(tree, hf_enip_cpf_sai_connid, tvb, offset, 4, ENC_LITTLE_ENDIAN, &connection_id);
proto_item* pi = proto_tree_add_item(tree, hf_cip_connid, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_item_set_hidden(pi);
guint32 sequence_num;
proto_tree_add_item_ret_uint(tree, hf_enip_cpf_sai_seqnum, tvb, offset + 4, 4, ENC_LITTLE_ENDIAN, &sequence_num);
*conn_info = enip_get_io_connid(pinfo, connection_id, connid_type);
col_add_fstr(pinfo->cinfo, COL_INFO, "Connection: ID=0x%08X, SEQ=%010u", connection_id, sequence_num);
if (*connid_type == ECIDT_O2T)
{
col_append_str(pinfo->cinfo, COL_INFO, ", O->T");
}
else if (*connid_type == ECIDT_T2O)
{
col_append_str(pinfo->cinfo, COL_INFO, ", T->O");
}
}
// offset - Starts at the Connection ID
// Returns: conn_info
static void dissect_item_connected_address(packet_info* pinfo, tvbuff_t* tvb, int offset,
proto_tree* item_tree, proto_item* enip_item,
enip_request_key_t* request_key, cip_conn_info_t** conn_info)
{
guint32 connection_id;
proto_tree_add_item_ret_uint(item_tree, hf_enip_cpf_cai_connid, tvb, offset, 4, ENC_LITTLE_ENDIAN, &connection_id);
proto_item* pi = proto_tree_add_item(item_tree, hf_cip_connid, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_item_set_hidden(pi);
*conn_info = enip_get_explicit_connid(pinfo, request_key, connection_id);
if (request_key)
{
request_key->type = EPDT_CONNECTED_TRANSPORT;
request_key->data.connected_transport.connid = (*conn_info != NULL) ? (*conn_info)->connid : 0;
}
/* Add Connection ID to Info col and tree */
col_append_fstr(pinfo->cinfo, COL_INFO, ", Connection: ID=0x%08X", connection_id);
if (enip_item)
{
proto_item_append_text(enip_item, ", Connection ID: 0x%08X", connection_id);
}
}
// offset - Starts at Unconn Msg Type
// returns - input_request_key
// Dissects the following parts of the Unconnected Message over UDP item: Unconn Msg Type, Transaction Number, Status.
// The Unconnected Messge field is handled outside of this function.
static void dissect_item_unconnected_message_over_udp(packet_info* pinfo, tvbuff_t* tvb, int offset, proto_tree* item_tree, enip_request_key_t** input_request_key)
{
guint32 ucmm_request;
proto_tree_add_item_ret_uint(item_tree, hf_enip_cpf_ucmm_request, tvb, offset, 2, ENC_LITTLE_ENDIAN, &ucmm_request);
proto_tree_add_item(item_tree, hf_enip_cpf_ucmm_msg_type, tvb, offset, 2, ENC_LITTLE_ENDIAN);
guint32 trans_id;
proto_tree_add_item_ret_uint(item_tree, hf_enip_cpf_ucmm_trans_id, tvb, offset + 2, 4, ENC_LITTLE_ENDIAN, &trans_id);
proto_tree_add_item(item_tree, hf_enip_cpf_ucmm_status, tvb, offset + 6, 4, ENC_LITTLE_ENDIAN);
if (*input_request_key == NULL)
{
/*
* Under normal circumstances request_key should always be NULL here
* Duplicating setting up a request (like is done with explicit messaging)
*/
conversation_t* conversation = find_or_create_conversation(pinfo);
/*
* Attach that information to the conversation, and add
* it to the list of information structures later before dissection.
*/
enip_request_key_t* request_key = wmem_new0(pinfo->pool, enip_request_key_t);
request_key->requesttype = ucmm_request ? ENIP_RESPONSE_PACKET : ENIP_REQUEST_PACKET;
request_key->type = EPDT_UNKNOWN;
/* UCMM over UDP doesn't have a session handle, so use conversation
* pointer as "unique-ish ID"
*/
request_key->session_handle = GPOINTER_TO_UINT(conversation);
request_key->sender_context = trans_id;
request_key->conversation = conversation->conv_index;
// Return the new request key.
*input_request_key = request_key;
}
}
static gboolean is_forward_open(guint8 cip_service)
{
return (cip_service == SC_CM_FWD_OPEN
|| cip_service == SC_CM_LARGE_FWD_OPEN);
}
/* Dissect Common Packet Format */
static void
dissect_cpf(enip_request_key_t *request_key, int command, tvbuff_t *tvb,
packet_info *pinfo, proto_tree *tree, proto_tree *dissector_tree, proto_tree *enip_layer_tree,
proto_item *enip_item, int offset, guint32 ifacehndl)
{
proto_item *count_item;
proto_tree *count_tree;
int item_count;
// The following variables are set in one pass of the loop, and read in a second pass.
cip_conn_info_t* conn_info = NULL;
gboolean FwdOpenRequest = FALSE;
gboolean FwdOpenReply = FALSE;
enum enip_connid_type connid_type = ECIDT_UNKNOWN;
// Normal "Common Packet Format" configurations. See CIP Volume 2, Section 2-6.4.
// SendRRData (Unconnected):
// Item 1: CPF_ITEM_NULL
// Item 2: CPF_ITEM_UNCONNECTED_DATA
// SendUnitData (Connected, Class 3):
// Item 1: CPF_ITEM_CONNECTED_ADDRESS
// Item 2: CPF_ITEM_CONNECTED_DATA
// Item 3 (Optional): CPF_ITEM_SOCK_ADR_INFO_OT/CPF_ITEM_SOCK_ADR_INFO_TO
// Class 0/1 packet:
// Item 1: CPF_ITEM_SEQUENCED_ADDRESS
// Item 2: CPF_ITEM_CONNECTED_DATA
// Unconnected Message over UDP:
// Item 1: CPF_ITEM_UNCONNECTED_MSG_DTLS
/* Create item count tree */
item_count = tvb_get_letohs( tvb, offset );
count_item = proto_tree_add_item( tree, hf_enip_cpf_itemcount, tvb, offset, 2, ENC_LITTLE_ENDIAN );
count_tree = proto_item_add_subtree( count_item, ett_count_tree );
offset += 2;
while ( item_count-- )
{
// Verify that we have the minimum CPF Item size.
if (tvb_reported_length_remaining(tvb, offset) < 4)
{
expert_add_info_format(pinfo, count_item, &ei_mal_cpf_item_minimum_size,
"%s, but Remaining Data Length is %d",
expert_get_summary(&ei_mal_cpf_item_minimum_size), tvb_reported_length_remaining(tvb, offset));
break;
}
/* Add item type tree to item count tree*/
guint32 item_type_id;
proto_item* type_item = proto_tree_add_item_ret_uint( count_tree, hf_enip_cpf_typeid, tvb, offset, 2, ENC_LITTLE_ENDIAN, &item_type_id );
proto_tree* item_tree = proto_item_add_subtree( type_item, ett_type_tree );
offset += 2;
/* Add length field to item type tree */
guint32 item_length;
proto_tree_add_item_ret_uint( item_tree, hf_enip_cpf_length, tvb, offset, 2, ENC_LITTLE_ENDIAN, &item_length);
offset += 2;
// Check if the declared item length is more bytes than we have available. But, don't exit early
// so maybe it will be more obvious where the problem is.
if ((int)item_length > tvb_reported_length_remaining(tvb, offset))
{
expert_add_info_format(pinfo, type_item, &ei_mal_cpf_item_length_mismatch,
"%s: Item Length %d, Remaining Data Length: %d",
expert_get_summary(&ei_mal_cpf_item_length_mismatch), item_length, tvb_reported_length_remaining(tvb, offset));
}
// offset now starts at the data field after the Item Length field. The name of this
// field varies depending on the item type.
if ( item_length )
{
/* Add item data field */
switch ( item_type_id )
{
case CPF_ITEM_CONNECTED_ADDRESS: // 1st Item for: Class 3 Connected Messages
conn_info = NULL;
dissect_item_connected_address(pinfo, tvb, offset, item_tree, enip_item, request_key, &conn_info);
break;
case CPF_ITEM_UNCONNECTED_MSG_DTLS: // Only item for: Unconnected messages over DTLS
{
ifacehndl = ENIP_CIP_INTERFACE;
dissect_item_unconnected_message_over_udp(pinfo, tvb, offset, item_tree, &request_key);
// Skip over the fields already parsed before falling through.
offset += 10;
item_length -= 10;
}
/* Intentionally fall through */
case CPF_ITEM_UNCONNECTED_DATA: // 2nd Item for: Unconnected Messages
{
enip_request_info_t* request_info = NULL;
if ( request_key )
{
request_key->type = EPDT_UNCONNECTED;
request_info = enip_match_request( pinfo, tree, request_key );
}
/* Call dissector for interface */
tvbuff_t* next_tvb = tvb_new_subset_length( tvb, offset, item_length);
p_add_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_REQUEST_INFO, request_info);
if ( tvb_reported_length_remaining(next_tvb, 0) <= 0 || !dissector_try_uint(subdissector_srrd_table, ifacehndl, next_tvb, pinfo, dissector_tree) )
{
/* Show the undissected payload */
if ( tvb_reported_length_remaining(tvb, offset) > 0 )
call_data_dissector(next_tvb, pinfo, dissector_tree);
}
/* Check if this is a ForwardOpen packet, because special handling is needed
to handle connection conversations */
if ((request_info != NULL) && (request_info->cip_info != NULL) &&
(request_info->cip_info->connInfo != NULL) &&
(request_key != NULL) &&
is_forward_open(request_info->cip_info->bService & CIP_SC_MASK) &&
(request_info->cip_info->dissector == dissector_get_uint_handle(subdissector_class_table, CI_CLS_CM)))
{
if (request_key->requesttype == ENIP_REQUEST_PACKET)
{
FwdOpenRequest = TRUE;
}
else
{
FwdOpenReply = TRUE;
}
}
else
{
p_remove_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_REQUEST_INFO);
}
break;
}
case CPF_ITEM_CONNECTED_DATA: // 2nd item for: Connected messages (both Class 0/1 and Class 3)
// Save the connection info for the conversation filter
if (!pinfo->fd->visited && conn_info)
{
p_add_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_CONNECTION_INFO, conn_info);
}
if (command == SEND_UNIT_DATA) // Class 2/3 over TCP.
{
dissect_cip_class23_data(pinfo, tvb, offset, tree, item_tree, item_length, request_key, conn_info, dissector_tree);
}
else // No command. Send as CPF items only over UDP.
{
dissect_cip_class01_io(pinfo, tvb, offset, item_length, conn_info, connid_type, dissector_tree);
}
if (conn_info)
{
display_connection_information(pinfo, tvb, enip_layer_tree, conn_info, connid_type);
}
break;
case CPF_ITEM_CIP_IDENTITY:
dissect_item_list_identity(pinfo, tvb, offset, item_tree);
break;
case CPF_ITEM_CIP_SECURITY:
dissect_item_cip_security_information(tvb, offset, item_tree);
break;
case CPF_ITEM_SOCK_ADR_INFO_OT: // Optional 3rd item for: Unconnected Messages
case CPF_ITEM_SOCK_ADR_INFO_TO:
{
gboolean is_fwd_open = (FwdOpenRequest == TRUE) || (FwdOpenReply == TRUE);
dissect_item_sockaddr_info(pinfo, tvb, offset, item_tree, item_type_id, is_fwd_open);
break;
}
case CPF_ITEM_SEQUENCED_ADDRESS: // 1st item for: Class 0/1 connected data
conn_info = NULL;
dissect_item_sequenced_address(pinfo, tvb, offset, item_tree, &connid_type, &conn_info);
break;
case CPF_ITEM_LIST_SERVICES_RESP:
dissect_item_list_services_response(pinfo, tvb, offset, item_tree);
break;
default:
proto_tree_add_item(item_tree, hf_enip_cpf_data, tvb, offset, item_length, ENC_NA);
break;
} /* end of switch ( item type ) */
} /* end of if ( item length ) */
offset += item_length;
} /* end of while ( item count ) */
/* See if there is a CIP connection to establish */
if (FwdOpenReply == TRUE)
{
enip_request_info_t* request_info = (enip_request_info_t *)p_get_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_REQUEST_INFO);
if (request_info != NULL)
{
enip_open_cip_connection(pinfo, request_info->cip_info->connInfo);
}
p_remove_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_REQUEST_INFO);
}
else if (FwdOpenRequest == TRUE)
{
p_remove_proto_data(wmem_file_scope(), pinfo, proto_enip, ENIP_REQUEST_INFO);
}
} /* end of dissect_cpf() */
static enum enip_packet_type
classify_packet(packet_info *pinfo)
{
/* see if nature of packets can be derived from src/dst ports */
/* if so, return as found */
if (((ENIP_ENCAP_PORT == pinfo->srcport && ENIP_ENCAP_PORT != pinfo->destport)) ||
((ENIP_SECURE_PORT == pinfo->srcport && ENIP_SECURE_PORT != pinfo->destport)))
{
return ENIP_RESPONSE_PACKET;
}
else if (((ENIP_ENCAP_PORT != pinfo->srcport && ENIP_ENCAP_PORT == pinfo->destport)) ||
((ENIP_SECURE_PORT != pinfo->srcport && ENIP_SECURE_PORT == pinfo->destport)))
{
return ENIP_REQUEST_PACKET;
}
else
{
return ENIP_CANNOT_CLASSIFY;
}
}
static guint
get_enip_pdu_len(packet_info *pinfo _U_, tvbuff_t *tvb, int offset, void *data _U_)
{
guint16 plen;
/*
* Get the length of the data from the encapsulation header.
*/
plen = tvb_get_letohs(tvb, offset + 2);
/*
* That length doesn't include the encapsulation header itself;
* add that in.
*/
return plen + 24;
}
/* Code to actually dissect the packets */
static int
dissect_enip_pdu(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
enum enip_packet_type packet_type;
guint16 encap_cmd, encap_data_length;
const char *pkt_type_str = "";
guint32 ifacehndl;
conversation_t *conversation;
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *ti = NULL;
proto_tree *enip_tree, *header_tree = NULL, *csftree;
/* Make entries in Protocol column and Info column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "ENIP");
col_clear(pinfo->cinfo, COL_INFO);
encap_cmd = tvb_get_letohs( tvb, 0 );
packet_type = classify_packet(pinfo);
switch ( packet_type )
{
case ENIP_REQUEST_PACKET:
pkt_type_str = "Req";
break;
case ENIP_RESPONSE_PACKET:
pkt_type_str = "Rsp";
break;
case ENIP_CANNOT_CLASSIFY:
default:
pkt_type_str = "?";
}
/* Add encapsulation command to info column */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, " | ", "%s (%s)",
val_to_str(encap_cmd, encap_cmd_vals, "Unknown Command (0x%04x)"),
pkt_type_str );
/*
* We need to track some state for this protocol on a per conversation
* basis so we can do neat things like request/response tracking
*/
conversation = find_or_create_conversation(pinfo);
/*
* Attach that information to the conversation, and add
* it to the list of information structures later before dissection.
*/
enip_request_key_t request_key = {0};
request_key.requesttype = packet_type;
request_key.type = EPDT_UNKNOWN;
request_key.session_handle = tvb_get_letohl( tvb, 4 );
request_key.sender_context = tvb_get_letoh64( tvb, 12 );
request_key.conversation = conversation->conv_index;
/* create display subtree for the protocol */
ti = proto_tree_add_item(tree, proto_enip, tvb, 0, -1, ENC_NA );
enip_tree = proto_item_add_subtree(ti, ett_enip);
/* Add encapsulation header tree */
header_tree = proto_tree_add_subtree( enip_tree, tvb, 0, 24, ett_enip, NULL, "Encapsulation Header");
/* Add EtherNet/IP encapsulation header */
proto_tree_add_item( header_tree, hf_enip_command, tvb, 0, 2, ENC_LITTLE_ENDIAN );
encap_data_length = tvb_get_letohs( tvb, 2 );
proto_tree_add_item( header_tree, hf_enip_length, tvb, 2, 2, ENC_LITTLE_ENDIAN );
proto_tree_add_item( header_tree, hf_enip_session, tvb, 4, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( header_tree, hf_enip_status, tvb, 8, 4, ENC_LITTLE_ENDIAN );
if ((encap_cmd == LIST_IDENTITY) &&
/* Length of 0 probably indicates a request */
((encap_data_length == 0) || (packet_type == ENIP_REQUEST_PACKET)))
{
proto_tree_add_item( header_tree, hf_enip_listid_delay, tvb, 12, 2, ENC_LITTLE_ENDIAN );
proto_tree_add_item( header_tree, hf_enip_sendercontex, tvb, 14, 6, ENC_NA );
}
else
{
proto_tree_add_item( header_tree, hf_enip_sendercontex, tvb, 12, 8, ENC_NA );
}
proto_tree_add_item( header_tree, hf_enip_options, tvb, 20, 4, ENC_LITTLE_ENDIAN );
/* Append session and command to the protocol tree */
proto_item_append_text( ti, ", Session: 0x%08X, %s", tvb_get_letohl( tvb, 4 ),
val_to_str( encap_cmd, encap_cmd_vals, "Unknown Command (0x%04x)" ) );
/*
** For some commands we want to add some info to the info column
*/
switch ( encap_cmd )
{
case REGISTER_SESSION:
case UNREGISTER_SESSION:
col_append_fstr( pinfo->cinfo, COL_INFO, ", Session: 0x%08X",
tvb_get_letohl( tvb, 4 ) );
break;
}
/* The packet may have some command specific data, build a sub tree for it */
csftree = proto_tree_add_subtree( enip_tree, tvb, 24, encap_data_length,
ett_command_tree, NULL, "Command Specific Data");
switch ( encap_cmd )
{
case NOP:
break;
case LIST_SERVICES:
case LIST_IDENTITY:
case LIST_INTERFACES:
if (packet_type == ENIP_RESPONSE_PACKET)
{
dissect_cpf( &request_key, encap_cmd, tvb, pinfo, csftree, tree, enip_tree, NULL, 24, 0 );
}
break;
case REGISTER_SESSION:
proto_tree_add_item( csftree, hf_enip_rs_version, tvb, 24, 2, ENC_LITTLE_ENDIAN );
proto_tree_add_item( csftree, hf_enip_rs_optionflags, tvb, 26, 2, ENC_LITTLE_ENDIAN );
break;
case UNREGISTER_SESSION:
break;
case SEND_RR_DATA:
proto_tree_add_item( csftree, hf_enip_srrd_ifacehnd, tvb, 24, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( csftree, hf_enip_timeout, tvb, 28, 2, ENC_LITTLE_ENDIAN );
ifacehndl = tvb_get_letohl( tvb, 24 );
dissect_cpf( &request_key, encap_cmd, tvb, pinfo, csftree, tree, enip_tree, NULL, 30, ifacehndl );
break;
case SEND_UNIT_DATA:
proto_tree_add_item(csftree, hf_enip_sud_ifacehnd, tvb, 24, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item( csftree, hf_enip_timeout, tvb, 28, 2, ENC_LITTLE_ENDIAN );
ifacehndl = tvb_get_letohl( tvb, 24 );
dissect_cpf( &request_key, encap_cmd, tvb, pinfo, csftree, tree, enip_tree, ti, 30, ifacehndl );
break;
case START_DTLS:
if (packet_type == ENIP_RESPONSE_PACKET)
{
ssl_starttls_ack(dtls_handle, pinfo, enip_udp_handle);
}
break;
default:
/* Can not decode - Just show the data */
proto_tree_add_item(header_tree, hf_enip_encap_data, tvb, 24, encap_data_length, ENC_NA);
break;
} /* end of switch () */
col_set_fence(pinfo->cinfo, COL_INFO);
return tvb_captured_length(tvb);
} /* end of dissect_enip_pdu() */
static int
dissect_enip_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
/* An ENIP packet is at least 4 bytes long. */
if (tvb_captured_length(tvb) < 4)
return 0;
return dissect_enip_pdu(tvb, pinfo, tree, data);
}
static int
dissect_enip_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
// TCP connections for EtherNet/IP are typically open for extended periods of time.
// This means that mostly likely, for real world traffic, a capture initiated for
// EtherNet/IP traffic will start in the middle of a TCP connection. This check
// ignores one byte TCP payloads because it is far more likely that a one byte TCP
// payload is a TCP keep alive message, than a client actually sending real EtherNet/IP
// messages in one byte chunks.
if (tvb_captured_length(tvb) < 2)
return 0;
tcp_dissect_pdus(tvb, pinfo, tree, enip_desegment, 4, get_enip_pdu_len, dissect_enip_pdu, data);
return tvb_captured_length(tvb);
}
/* Code to actually dissect the io packets*/
static int
dissect_cipio(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *ti;
proto_tree *enip_tree;
/* Make entries in Protocol column and Info column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "CIP I/O");
/* create display subtree for the protocol */
ti = proto_tree_add_item(tree, proto_enip, tvb, 0, -1, ENC_NA );
enip_tree = proto_item_add_subtree(ti, ett_enip);
dissect_cpf( NULL, 0xFFFF, tvb, pinfo, enip_tree, tree, enip_tree, NULL, 0, 0 );
return tvb_captured_length(tvb);
}
static gboolean
dissect_dlr(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
proto_item *ti;
proto_tree *dlr_tree;
guint8 dlr_subtype;
guint8 dlr_protover;
guint8 dlr_frametype;
/* Make entries in Protocol column and Info column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "DLR");
col_clear(pinfo->cinfo, COL_INFO);
/* Create display subtree for the protocol */
ti = proto_tree_add_item(tree, proto_dlr, tvb, 0, -1, ENC_NA );
dlr_tree = proto_item_add_subtree( ti, ett_dlr );
/* Get values for the Common Frame Header Format */
dlr_subtype = tvb_get_guint8(tvb, DLR_CFH_SUB_TYPE);
dlr_protover = tvb_get_guint8(tvb, DLR_CFH_PROTO_VERSION);
/* Dissect the Common Frame Header Format */
proto_tree_add_uint( dlr_tree, hf_dlr_ringsubtype, tvb, DLR_CFH_SUB_TYPE, 1, dlr_subtype );
proto_tree_add_uint( dlr_tree, hf_dlr_ringprotoversion, tvb, DLR_CFH_PROTO_VERSION, 1, dlr_protover );
/* Get values for the DLR Message Payload Fields */
dlr_frametype = tvb_get_guint8(tvb, DLR_MPF_FRAME_TYPE);
/* Dissect the DLR Message Payload Fields */
proto_tree_add_item( dlr_tree, hf_dlr_frametype, tvb, DLR_MPF_FRAME_TYPE, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_sourceport, tvb, DLR_MPF_SOURCE_PORT, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_sourceip, tvb, DLR_MPF_SOURCE_IP, 4, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_sequenceid, tvb, DLR_MPF_SEQUENCE_ID, 4, ENC_BIG_ENDIAN );
/* Add frame type to col info */
col_add_fstr(pinfo->cinfo, COL_INFO, "%s",
val_to_str(dlr_frametype, dlr_frame_type_vals, "Unknown (0x%04x)") );
if ( dlr_frametype == DLR_FT_BEACON )
{
/* Beacon */
proto_tree_add_item( dlr_tree, hf_dlr_ringstate, tvb, DLR_BE_RING_STATE, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_supervisorprecedence, tvb, DLR_BE_SUPERVISOR_PRECEDENCE, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_beaconinterval, tvb, DLR_BE_BEACON_INTERVAL, 4, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_beacontimeout, tvb, DLR_BE_BEACON_TIMEOUT, 4, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_beaconreserved, tvb, DLR_BE_RESERVED, 20, ENC_NA );
}
else if ( dlr_frametype == DLR_FT_NEIGHBOR_REQ )
{
/* Neighbor_Check_Request */
proto_tree_add_item( dlr_tree, hf_dlr_nreqreserved, tvb, DLR_NREQ_RESERVED, 30, ENC_NA );
}
else if ( dlr_frametype == DLR_FT_NEIGHBOR_RES )
{
/* Neighbor_Check_Response */
proto_tree_add_item( dlr_tree, hf_dlr_nressourceport, tvb, DLR_NRES_SOURCE_PORT, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_nresreserved, tvb, DLR_NRES_RESERVED, 29, ENC_NA );
}
else if ( dlr_frametype == DLR_FT_LINK_STAT )
{
/* Link_Status/Neighbor_Status */
static int* const bits[] = {
&hf_dlr_lnknbrstatus_port1,
&hf_dlr_lnknbrstatus_port2,
&hf_dlr_lnknbrstatus_reserved,
&hf_dlr_lnknbrstatus_frame_type,
NULL
};
proto_tree_add_bitmask(dlr_tree, tvb, DLR_LNS_SOURCE_PORT, hf_dlr_lnknbrstatus, ett_dlr_lnknbrstatus_flags, bits, ENC_LITTLE_ENDIAN);
proto_tree_add_item( dlr_tree, hf_dlr_lnknbrreserved, tvb, DLR_LNS_RESERVED, 29, ENC_NA );
}
else if ( dlr_frametype == DLR_FT_LOCATE_FLT )
{
/* Locate_Fault */
proto_tree_add_item( dlr_tree, hf_dlr_lfreserved, tvb, DLR_LF_RESERVED, 30, ENC_NA );
}
else if ( dlr_frametype == DLR_FT_ANNOUNCE )
{
/* Announce */
proto_tree_add_item( dlr_tree, hf_dlr_ringstate, tvb, DLR_AN_RING_STATE, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_anreserved, tvb, DLR_AN_RESERVED, 29, ENC_NA );
}
else if ( dlr_frametype == DLR_FT_SIGN_ON )
{
guint16 nCnt;
guint16 nNumNodes;
guint16 nOffset;
/* Sign_On */
nNumNodes = tvb_get_ntohs(tvb, DLR_SO_NUM_NODES);
proto_tree_add_uint( dlr_tree, hf_dlr_sonumnodes, tvb, DLR_SO_NUM_NODES, 2, nNumNodes );
/* Add each node in the list */
for( nCnt = 0, nOffset = DLR_SO_NODE_1_MAC; nCnt < nNumNodes; nCnt++ )
{
proto_tree_add_item( dlr_tree, hf_dlr_somac, tvb, nOffset, 6, ENC_NA );
nOffset += 6;
proto_tree_add_item( dlr_tree, hf_dlr_soip, tvb, nOffset, 4, ENC_BIG_ENDIAN );
nOffset += 4;
}
if ( nOffset < 42 )
{
proto_tree_add_item( dlr_tree, hf_dlr_soreserved, tvb, nOffset, 42 - nOffset, ENC_NA );
/* nOffset += (42 - nOffset); */
}
}
else if ( dlr_frametype == DLR_FT_ADVERTISE )
{
/* Advertise */
proto_tree_add_item( dlr_tree, hf_dlr_advgatewaystate, tvb, DLR_ADV_GATEWAY_STATE, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_advgatewayprecedence, tvb, DLR_ADV_GATEWAY_PRECEDENCE, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_advadvertiseinterval, tvb, DLR_ADV_ADVERTISE_INTERVAL, 4, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_advadvertisetimeout, tvb, DLR_ADV_ADVERTISE_TIMEOUT, 4, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_advlearningupdateenable, tvb, DLR_ADV_LEARNING_UPDATE_ENABLE, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_advreserved, tvb, DLR_ADV_RESERVED, 19, ENC_NA );
}
else if ( dlr_frametype == DLR_FT_FLUSH_TABLES )
{
proto_tree_add_item( dlr_tree, hf_dlr_flushlearningupdateenable, tvb, DLR_FLUSH_LEARNING_UPDATE_ENABLE, 1, ENC_BIG_ENDIAN );
proto_tree_add_item( dlr_tree, hf_dlr_flushreserved, tvb, DLR_FLUSH_RESERVED, 29, ENC_NA );
}
else if ( dlr_frametype == DLR_FT_LEARNING_UPDATE )
{
proto_tree_add_item( dlr_tree, hf_dlr_learnreserved, tvb, DLR_LEARN_RESERVED, 34, ENC_NA );
}
else
{
/* Unknown Frame type */
}
return tvb_captured_length(tvb);
} /* end of dissect_dlr() */
static int dissect_cip_class1(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree, void* data _U_)
{
cip_conn_info_t conn_info;
memset(&conn_info, 0, sizeof(conn_info));
conn_info.TransportClass_trigger = 1;
cip_io_data_input io_data_input;
io_data_input.conn_info = &conn_info;
io_data_input.connid_type = ECIDT_UNKNOWN;
return dissect_cip_io_generic(tvb, pinfo, tree, &io_data_input);
}
/* Register the protocol with Wireshark */
/* this format is require because a script is used to build the C function
that calls all the protocol registration.
*/
void
proto_register_enip(void)
{
/* Setup list of header fields */
static hf_register_info hf[] = {
{ &hf_enip_command,
{ "Command", "enip.command",
FT_UINT16, BASE_HEX, VALS(encap_cmd_vals), 0,
"Encapsulation command", HFILL }},
{ &hf_enip_length,
{ "Length", "enip.length",
FT_UINT16, BASE_DEC, NULL, 0,
"Encapsulation length", HFILL }},
{ &hf_enip_session,
{ "Session Handle", "enip.session",
FT_UINT32, BASE_HEX, NULL, 0,
"Session identification", HFILL }},
{ &hf_enip_status,
{ "Status", "enip.status",
FT_UINT32, BASE_HEX, VALS(encap_status_vals), 0,
"Status code", HFILL }},
{ &hf_enip_sendercontex,
{ "Sender Context", "enip.context",
FT_BYTES, BASE_NONE, NULL, 0,
"Information pertinent to the sender", HFILL }},
{ &hf_enip_listid_delay,
{ "Max Response Delay", "enip.listid_delay",
FT_UINT16, BASE_DEC|BASE_UNIT_STRING, &units_milliseconds, 0,
"Maximum random delay allowed by target", HFILL }},
{ &hf_enip_options,
{ "Options", "enip.options",
FT_UINT32, BASE_HEX, NULL, 0,
"Options flags", HFILL }},
{ &hf_enip_encapver,
{ "Encapsulation Protocol Version", "enip.encapver",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_enip_sinfamily,
{ "sin_family", "enip.sinfamily",
FT_UINT16, BASE_DEC, NULL, 0,
"Socket Address.Sin Family", HFILL }},
{ &hf_enip_sinport,
{ "sin_port", "enip.sinport",
FT_UINT16, BASE_DEC, NULL, 0,
"Socket Address.Sin Port", HFILL }},
{ &hf_enip_sinaddr,
{ "sin_addr", "enip.sinaddr",
FT_IPv4, BASE_NONE, NULL, 0,
"Socket Address.Sin Addr", HFILL }},
{ &hf_enip_sinzero,
{ "sin_zero", "enip.sinzero",
FT_BYTES, BASE_NONE, NULL, 0,
"Socket Address.Sin Zero", HFILL }},
{ &hf_enip_timeout,
{ "Timeout", "enip.timeout",
FT_UINT16, BASE_DEC, NULL, 0,
"Encapsulation Timeout", HFILL }},
{ &hf_enip_encap_data,
{ "Encap Data", "enip.encap_data",
FT_BYTES, BASE_NONE | BASE_ALLOW_ZERO, NULL, 0,
"Encapsulation Data", HFILL }},
/* List Services Reply */
{ &hf_enip_lsr_capaflags,
{ "Capability Flags", "enip.lsr.capaflags",
FT_UINT16, BASE_HEX, NULL, 0,
"ListServices Reply: Capability Flags", HFILL }},
{ &hf_enip_lsr_tcp,
{ "Supports CIP Encapsulation via TCP", "enip.lsr.capaflags.tcp",
FT_BOOLEAN, 16, TFS(&tfs_true_false), 0x0020,
"ListServices Reply: Supports CIP Encapsulation via TCP", HFILL }},
{ &hf_enip_lsr_udp,
{ "Supports CIP Class 0 or 1 via UDP", "enip.lsr.capaflags.udp",
FT_BOOLEAN, 16, TFS(&tfs_true_false), 0x0100,
"ListServices Reply: Supports CIP Class 0 or 1 via UDP", HFILL }},
{ &hf_enip_lsr_servicename,
{ "Name of Service", "enip.lsr.servicename",
FT_STRING, BASE_NONE, NULL, 0,
"ListServices Reply: Name of Service", HFILL }},
/* Register Session */
{ &hf_enip_rs_version,
{ "Protocol Version", "enip.rs.version",
FT_UINT16, BASE_DEC, NULL, 0,
"Register Session: Protocol Version", HFILL }},
{ &hf_enip_rs_optionflags,
{ "Option Flags", "enip.rs.flags",
FT_UINT16, BASE_HEX, NULL, 0,
"Register Session: Option Flags", HFILL }},
/* Send Request/Reply Data */
{ &hf_enip_srrd_ifacehnd,
{ "Interface Handle", "enip.srrd.iface",
FT_UINT32, BASE_HEX, VALS(enip_interface_handle_vals), 0,
"SendRRData: Interface handle", HFILL }},
/* Send Unit Data */
{ &hf_enip_sud_ifacehnd,
{ "Interface Handle", "enip.sud.iface",
FT_UINT32, BASE_HEX, VALS(enip_interface_handle_vals), 0,
"SendUnitData: Interface handle", HFILL }},
/* List identity reply */
{ &hf_enip_lir_vendor,
{ "Vendor ID", "enip.lir.vendor",
FT_UINT16, BASE_HEX|BASE_EXT_STRING, &cip_vendor_vals_ext, 0,
"ListIdentity Reply: Vendor ID", HFILL }},
{ &hf_enip_lir_devtype,
{ "Device Type", "enip.lir.devtype",
FT_UINT16, BASE_DEC|BASE_EXT_STRING, &cip_devtype_vals_ext, 0,
"ListIdentity Reply: Device Type", HFILL }},
{ &hf_enip_lir_prodcode,
{ "Product Code", "enip.lir.prodcode",
FT_UINT16, BASE_DEC, NULL, 0,
"ListIdentity Reply: Product Code", HFILL }},
{ &hf_enip_lir_revision,
{ "Revision", "enip.lir.revision",
FT_UINT16, BASE_CUSTOM, CF_FUNC(enip_fmt_lir_revision), 0,
"ListIdentity Reply: Revision", HFILL }},
{ &hf_enip_lir_status,
{ "Status", "enip.lir.status",
FT_UINT16, BASE_HEX, NULL, 0,
"ListIdentity Reply: Status", HFILL }},
{ &hf_enip_lir_serial,
{ "Serial Number", "enip.lir.serial",
FT_UINT32, BASE_HEX, NULL, 0,
"ListIdentity Reply: Serial Number", HFILL }},
{ &hf_enip_lir_namelen,
{ "Product Name Length", "enip.lir.namelen",
FT_UINT8, BASE_DEC, NULL, 0,
"ListIdentity Reply: Product Name Length", HFILL }},
{ &hf_enip_lir_name,
{ "Product Name", "enip.lir.name",
FT_STRING, BASE_NONE, NULL, 0,
"ListIdentity Reply: Product Name", HFILL }},
{ &hf_enip_lir_state,
{ "State", "enip.lir.state",
FT_UINT8, BASE_HEX, NULL, 0,
"ListIdentity Reply: State", HFILL }},
{ &hf_enip_security_profiles,
{ "Security Profiles", "enip.security_profiles",
FT_UINT16, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_enip_security_profiles_eip_integrity,
{ "EtherNet/IP Integrity Profile", "enip.security_profiles.eip_integrity",
FT_BOOLEAN, 16, TFS(&tfs_supported_not_supported), 0x0001,
NULL, HFILL }},
{ &hf_enip_security_profiles_eip_confidentiality,
{ "EtherNet/IP Confidentiality Profile", "enip.security_profiles.eip_confidentiality",
FT_BOOLEAN, 16, TFS(&tfs_supported_not_supported), 0x0002,
NULL, HFILL }},
{ &hf_enip_security_profiles_cip_authorization,
{ "CIP Authorization Profile", "enip.security_profiles.cip_authorization",
FT_BOOLEAN, 16, TFS(&tfs_supported_not_supported), 0x0004,
NULL, HFILL }},
{ &hf_enip_security_profiles_cip_user_authentication,
{ "CIP User Authentication Profile", "enip.security_profiles.cip_user_authentication",
FT_BOOLEAN, 16, TFS(&tfs_supported_not_supported), 0x0008,
NULL, HFILL }},
{ &hf_enip_security_profiles_resource_constrained,
{ "Resource-Constrained CIP Security Profile", "enip.security_profiles.resource_constrained",
FT_BOOLEAN, 16, TFS(&tfs_supported_not_supported), 0x0010,
NULL, HFILL } },
{ &hf_enip_security_profiles_reserved,
{ "Reserved", "enip.security_profiles.reserved",
FT_UINT16, BASE_HEX, NULL, 0xFFE0,
NULL, HFILL }},
{ &hf_enip_cip_security_state,
{ "CIP Security State", "enip.cip_security_state",
FT_UINT8, BASE_DEC, VALS(cip_security_state_vals), 0,
NULL, HFILL }},
{ &hf_enip_eip_security_state,
{ "EtherNet/IP Security State", "enip.eip_security_state",
FT_UINT8, BASE_DEC, VALS(eip_security_state_vals), 0,
NULL, HFILL }},
{ &hf_enip_iana_port_state_flags,
{ "IANA Port State", "enip.iana_port_state_flags",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_enip_iana_port_state_flags_tcp_44818,
{ "44818/tcp", "enip.security_profiles.iana_port_state_flags.tcp_44818",
FT_BOOLEAN, 8, TFS(&tfs_open_closed), 0x01,
NULL, HFILL }},
{ &hf_enip_iana_port_state_flags_udp_44818,
{ "44818/udp", "enip.security_profiles.iana_port_state_flags.udp_44818",
FT_BOOLEAN, 8, TFS(&tfs_open_closed), 0x02,
NULL, HFILL }},
{ &hf_enip_iana_port_state_flags_udp_2222,
{ "2222/udp", "enip.security_profiles.iana_port_state_flags.udp_2222",
FT_BOOLEAN, 8, TFS(&tfs_open_closed), 0x04,
NULL, HFILL }},
{ &hf_enip_iana_port_state_flags_tcp_2221,
{ "2221/tcp", "enip.security_profiles.iana_port_state_flags.tcp_2221",
FT_BOOLEAN, 8, TFS(&tfs_open_closed), 0x08,
NULL, HFILL }},
{ &hf_enip_iana_port_state_flags_udp_2221,
{ "2221/udp", "enip.security_profiles.iana_port_state_flags.udp_2221",
FT_BOOLEAN, 8, TFS(&tfs_open_closed), 0x10,
NULL, HFILL }},
{ &hf_enip_iana_port_state_flags_reserved,
{ "Reserved", "enip.iana_port_state_flags.reserved",
FT_UINT8, BASE_HEX, NULL, 0xE0,
NULL, HFILL }},
/* Common Packet Format */
{ &hf_enip_cpf_itemcount,
{ "Item Count", "enip.cpf.itemcount",
FT_UINT16, BASE_DEC, NULL, 0,
"Common Packet Format: Item Count", HFILL }},
{ &hf_enip_cpf_typeid,
{ "Type ID", "enip.cpf.typeid",
FT_UINT16, BASE_HEX, VALS(cpf_type_vals), 0,
"Common Packet Format: Type of encapsulated item", HFILL }},
{ &hf_enip_cpf_length,
{ "Length", "enip.cpf.length",
FT_UINT16, BASE_DEC, NULL, 0,
"Common Packet Format: Length", HFILL }},
/* Connected Data Item */
{ &hf_cip_sequence_count,
{ "CIP Sequence Count", "cip.seq",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL }},
/* Connection Address Item */
{ &hf_enip_cpf_cai_connid,
{ "Connection ID", "enip.cpf.cai.connid",
FT_UINT32, BASE_HEX, NULL, 0,
"Common Packet Format: Connection Address Item, Connection Identifier", HFILL }},
{ &hf_enip_cpf_ucmm_request,
{ "Request/Response", "enip.cpf.ucmm.request",
FT_UINT16, BASE_DEC, VALS(cip_sc_rr), 0x8000,
"Common Packet Format: UCMM Request/Response", HFILL }},
{ &hf_enip_cpf_ucmm_msg_type,
{ "Unconn Msg Type", "enip.cpf.ucmm.msg_type",
FT_UINT16, BASE_DEC, VALS(unconn_msg_type_vals), 0x7FFF,
"Common Packet Format: UCMM Transaction ID", HFILL }},
{ &hf_enip_cpf_ucmm_trans_id,
{ "Transaction ID", "enip.cpf.ucmm.trans_id",
FT_UINT32, BASE_HEX, NULL, 0,
"Common Packet Format: UCMM Transaction ID", HFILL }},
{ &hf_enip_cpf_ucmm_status,
{ "UCMM Status", "enip.cpf.ucmm.status",
FT_UINT32, BASE_HEX, VALS(encap_status_vals), 0,
"Common Packet Format: UCMM Status", HFILL }},
/* Sequenced Address Type */
{ &hf_enip_cpf_sai_connid,
{ "Connection ID", "enip.cpf.sai.connid",
FT_UINT32, BASE_HEX, NULL, 0,
"Common Packet Format: Sequenced Address Item, Connection Identifier", HFILL }},
{ &hf_cip_connid, { "Connection ID", "cip.connid", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_enip_cpf_sai_seqnum,
{ "Encapsulation Sequence Number", "enip.cpf.sai.seq",
FT_UINT32, BASE_DEC, NULL, 0,
"Common Packet Format: Sequenced Address Item, Sequence Number", HFILL }},
{ &hf_enip_cpf_data,
{ "Data", "enip.cpf.data",
FT_BYTES, BASE_NONE, NULL, 0,
"Common Packet Format: Unknown Data", HFILL }},
/* Request/Response Matching */
{ &hf_enip_response_in,
{ "Response In", "enip.response_in",
FT_FRAMENUM, BASE_NONE, FRAMENUM_TYPE(FT_FRAMENUM_RESPONSE), 0x0,
"The response to this ENIP request is in this frame", HFILL }},
{ &hf_enip_response_to,
{ "Request In", "enip.response_to",
FT_FRAMENUM, BASE_NONE, FRAMENUM_TYPE(FT_FRAMENUM_REQUEST), 0x0,
"This is a response to the ENIP request in this frame", HFILL }},
{ &hf_enip_time,
{ "Time", "enip.time",
FT_RELATIVE_TIME, BASE_NONE, NULL, 0x0,
"The time between the Call and the Reply", HFILL }},
{ &hf_enip_fwd_open_in,
{ "Forward Open Request In", "enip.fwd_open_in",
FT_FRAMENUM, BASE_NONE, NULL, 0, NULL, HFILL } },
// Generated API data.
{ &hf_cip_cm_ot_api, { "O->T API", "cip.cm.otapi", FT_UINT32, BASE_CUSTOM, CF_FUNC(cip_rpi_api_fmt), 0, NULL, HFILL } },
{ &hf_cip_cm_to_api, { "T->O API", "cip.cm.toapi", FT_UINT32, BASE_CUSTOM, CF_FUNC(cip_rpi_api_fmt), 0, NULL, HFILL } },
{ &hf_cip_connection,
{ "CIP Connection Index", "cip.connection",
FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL } },
{ &hf_cip_io_data,
{ "Data", "cipio.data",
FT_BYTES, BASE_NONE|BASE_ALLOW_ZERO, NULL, 0x0,
NULL, HFILL }},
{ &hf_tcpip_status,
{ "Status", "cip.tcpip.status",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_status_interface_config,
{ "Interface Configuration Status", "cip.tcpip.status.interface_config",
FT_UINT32, BASE_DEC, VALS(enip_tcpip_status_interface_config_vals), 0x0000000F,
NULL, HFILL }},
{ &hf_tcpip_status_mcast_pending,
{ "MCast Pending", "cip.tcpip.status.mcast_pending",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000010,
NULL, HFILL }},
{ &hf_tcpip_status_interface_config_pending,
{ "Interface Configuration Pending", "cip.tcpip.status.interface_config_pending",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000020,
NULL, HFILL }},
{ &hf_tcpip_status_acd,
{ "ACD Status", "cip.tcpip.status.acd",
FT_UINT32, BASE_DEC, VALS(enip_tcpip_status_acd_vals), 0x00000040,
NULL, HFILL }},
{ &hf_tcpip_acd_fault,
{ "ACD Fault", "cip.tcpip.status.acd_fault",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000080,
NULL, HFILL }},
{ &hf_tcpip_status_iana_port_admin_change,
{ "IANA Port Admin Change Pending", "cip.tcpip.status.iana_port_admin",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100,
NULL, HFILL }},
{ &hf_tcpip_status_iana_protocol_admin_change,
{ "IANA Protocol Admin Change Pending", "cip.tcpip.status.iana_protocol_admin",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200,
NULL, HFILL }},
{ &hf_tcpip_status_reserved,
{ "Reserved", "cip.tcpip.status.reserved",
FT_UINT32, BASE_HEX, NULL, 0xFFFFFC00,
NULL, HFILL }},
{ &hf_tcpip_config_cap,
{ "Configuration Capability", "cip.tcpip.config_cap",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_config_cap_bootp,
{ "BOOTP Client", "cip.tcpip.config_cap.bootp",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001,
NULL, HFILL }},
{ &hf_tcpip_config_cap_dns,
{ "DNS Client", "cip.tcpip.config_cap.dns",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002,
NULL, HFILL }},
{ &hf_tcpip_config_cap_dhcp,
{ "DHCP Client", "cip.tcpip.config_cap.dhcp",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004,
NULL, HFILL }},
{ &hf_tcpip_config_cap_dhcp_dns_update,
{ "DHCP-DNS Update", "cip.tcpip.config_cap.dhcp_dns_update",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008,
NULL, HFILL }},
{ &hf_tcpip_config_cap_config_settable,
{ "Configuration Settable", "cip.tcpip.config_cap.config_settable",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000010,
NULL, HFILL }},
{ &hf_tcpip_config_cap_hardware_config,
{ "Hardware Configurable", "cip.tcpip.config_cap.hardware_config",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000020,
NULL, HFILL }},
{ &hf_tcpip_config_cap_interface_reset,
{ "Interface Configuration Change Requires Reset", "cip.tcpip.config_cap.interface_reset",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000040,
NULL, HFILL }},
{ &hf_tcpip_config_cap_acd,
{ "ACD Capable", "cip.tcpip.config_cap.acd",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000080,
NULL, HFILL }},
{ &hf_tcpip_config_cap_reserved,
{ "Reserved", "cip.tcpip.config_cap.reserved",
FT_UINT32, BASE_HEX, NULL, 0xFFFFFF00,
NULL, HFILL }},
{ &hf_tcpip_config_control,
{ "Configuration Control", "cip.tcpip.config_control",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_config_control_config,
{ "Configuration Method", "cip.tcpip.config_control.config",
FT_UINT32, BASE_DEC, VALS(enip_tcpip_config_control_config_vals), 0x0000000F,
NULL, HFILL }},
{ &hf_tcpip_config_control_dns,
{ "DNS Enable", "cip.tcpip.config_control.dns",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000010,
NULL, HFILL }},
{ &hf_tcpip_config_control_reserved,
{ "Reserved", "cip.tcpip.config_control.reserved",
FT_UINT32, BASE_HEX, NULL, 0xFFFFFFE0,
NULL, HFILL }},
{ &hf_tcpip_ic_ip_addr,
{ "IP Address", "cip.tcpip.ip_addr",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_ic_subnet_mask,
{ "Subnet Mask", "cip.tcpip.subnet_mask",
FT_IPv4, BASE_NETMASK, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_ic_gateway,
{ "Gateway", "cip.tcpip.gateway",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_ic_name_server,
{ "Name Server", "cip.tcpip.name_server",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_ic_name_server2,
{ "Name Server2", "cip.tcpip.name_server2",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_ic_domain_name,
{ "Domain Name", "cip.tcpip.domain_name",
FT_STRING, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_hostname,
{ "Hostname", "cip.tcpip.hostname",
FT_STRING, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_snn_timestamp,
{ "Safety Network Number (Timestamp)", "cip.tcpip.snn.timestamp",
FT_ABSOLUTE_TIME, ABSOLUTE_TIME_UTC, NULL, 0,
NULL, HFILL }
},
{ &hf_tcpip_snn_date,
{ "Safety Network Number (Manual) Date", "cip.tcpip.snn.date",
FT_UINT16, BASE_HEX, VALS(cipsafety_snn_date_vals), 0,
NULL, HFILL }
},
{ &hf_tcpip_snn_time,
{ "Safety Network Number (Manual) Time", "cip.tcpip.snn.time",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }
},
{ &hf_tcpip_ttl_value,
{ "TTL Value", "cip.tcpip.ttl_value",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_mcast_alloc,
{ "Alloc Control", "cip.tcpip.mcast.alloc",
FT_UINT8, BASE_DEC, VALS(enip_tcpip_mcast_alloc_vals), 0,
NULL, HFILL }},
{ &hf_tcpip_mcast_reserved,
{ "Reserved", "cip.tcpip.mcast.reserved",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_mcast_num_mcast,
{ "Num MCast", "cip.tcpip.mcast.num_mcast",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_mcast_addr_start,
{ "MCast Start Addr", "cip.tcpip.mcast.addr_start",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_select_acd,
{ "Select ACD", "cip.tcpip.select_acd",
FT_BOOLEAN, BASE_NONE, TFS(&tfs_enabled_disabled), 0,
NULL, HFILL }},
{ &hf_tcpip_lcd_acd_activity,
{ "ACD Activity", "cip.tcpip.last_conflict.acd_activity",
FT_UINT8, BASE_DEC, VALS(enip_tcpip_acd_activity_vals), 0,
NULL, HFILL }},
{ &hf_tcpip_lcd_remote_mac,
{ "RemoteMAC", "cip.tcpip.last_conflict.remote_mac",
FT_ETHER, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_lcd_arp_pdu,
{ "Arp PDU", "cip.tcpip.last_conflict.arp_pdu",
FT_BYTES, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_tcpip_quick_connect,
{ "Ethernet/IP Quick Connection", "cip.tcpip.quick_connect",
FT_BOOLEAN, 8, TFS(&tfs_enabled_disabled), 0x1,
NULL, HFILL }},
{ &hf_tcpip_encap_inactivity,
{ "Encapsulation Inactivity Timeout", "cip.tcpip.encap_inactivity",
FT_UINT16, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_tcpip_port_count, { "Port Count", "cip.tcpip.port_count", FT_UINT8, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_tcpip_port_name, { "Port Name", "cip.tcpip.port_name", FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL } },
{ &hf_tcpip_port_number, { "Port Number", "cip.tcpip.port_number", FT_UINT16, BASE_DEC, NULL, 0, NULL, HFILL } },
{ &hf_tcpip_port_protocol, { "Protocol", "cip.tcpip.protocol", FT_UINT8, BASE_DEC | BASE_EXT_STRING, &ipproto_val_ext, 0, NULL, HFILL } },
{ &hf_tcpip_port_admin_state, { "Admin State", "cip.tcpip.admin_state", FT_BOOLEAN, BASE_NONE, TFS(&tfs_open_closed), 0, NULL, HFILL } },
{ &hf_tcpip_port_admin_capability, { "Admin Capability", "cip.tcpip.admin_capability", FT_UINT8, BASE_HEX, NULL, 0, NULL, HFILL } },
{ &hf_tcpip_admin_capability_configurable, { "Configurable", "cip.tcpip.admin_capability.configurable", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x01, NULL, HFILL } },
{ &hf_tcpip_admin_capability_reset_required, { "Reset Required", "cip.tcpip.admin_capability.reset_required", FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x02, NULL, HFILL } },
{ &hf_tcpip_admin_capability_reserved, { "Reserved", "cip.tcpip.admin_capability", FT_UINT8, BASE_HEX, NULL, 0xFC, NULL, HFILL } },
{ &hf_elink_interface_speed,
{ "Interface Speed", "cip.elink.interface_speed",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_interface_flags,
{ "Interface Flags", "cip.elink.iflags",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_elink_iflags_link_status,
{ "Link Status", "cip.elink.iflags.link_status",
FT_BOOLEAN, 32, TFS(&tfs_active_inactive), 0x00000001,
NULL, HFILL }},
{ &hf_elink_iflags_duplex,
{ "Duplex", "cip.elink.iflags.duplex",
FT_UINT32, BASE_DEC, VALS(enip_elink_duplex_vals), 0x00000002,
NULL, HFILL }},
{ &hf_elink_iflags_neg_status,
{ "Negotiation Status", "cip.elink.iflags.neg_status",
FT_UINT32, BASE_DEC, VALS(enip_elink_iflags_neg_status_vals), 0x0000001C,
NULL, HFILL }},
{ &hf_elink_iflags_manual_reset,
{ "Manual Reset Required", "cip.elink.iflags.manual_reset",
FT_UINT32, BASE_DEC, VALS(enip_elink_iflags_reset_vals), 0x00000020,
NULL, HFILL }},
{ &hf_elink_iflags_local_hw_fault,
{ "Local Hardware Fault", "cip.elink.iflags.local_hw_fault",
FT_UINT32, BASE_DEC, VALS(enip_elink_iflags_hw_fault_vals), 0x00000040,
NULL, HFILL }},
{ &hf_elink_iflags_reserved,
{ "Reserved", "cip.elink.iflags.reserved",
FT_UINT32, BASE_HEX, NULL, 0xFFFFFF80,
NULL, HFILL }},
{ &hf_elink_physical_address,
{ "Physical Address", "cip.elink.physical_address",
FT_ETHER, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_in_octets,
{ "In Octets", "cip.elink.icount.in_octets",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_in_ucast,
{ "In Ucast Packets", "cip.elink.icount.in_ucast",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_in_nucast,
{ "In NUcast Packets", "cip.elink.icount.in_nucast",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_in_discards,
{ "In Discards", "cip.elink.icount.in_discards",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_in_errors,
{ "In Errors", "cip.elink.icount.in_errors",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_in_unknown_protos,
{ "In Unknown Protos", "cip.elink.icount.in_unknown_protos",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_out_octets,
{ "Out Octets", "cip.elink.icount.out_octets",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_out_ucast,
{ "Out Ucast Packets", "cip.elink.icount.out_ucast",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_out_nucast,
{ "Out NUcast Packets", "cip.elink.icount.out_nucast",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_out_discards,
{ "Out Discards", "cip.elink.icount.out_discards",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icount_out_errors,
{ "Out Errors", "cip.elink.icount.out_errors",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_alignment_errors,
{ "Alignment Errors", "cip.elink.mcount.alignment_errors",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_fcs_errors,
{ "FCS Errors", "cip.elink.mcount.fcs_errors",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_single_collisions,
{ "Single Collisions", "cip.elink.mcount.single_collisions",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_multiple_collisions,
{ "Multiple Collisions", "cip.elink.mcount.multiple_collisions",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_sqe_test_errors,
{ "SQE Test Errors", "cip.elink.mcount.sqe_test_errors",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_deferred_transmission,
{ "Deferred Transmission", "cip.elink.mcount.deferred_transmission",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_late_collisions,
{ "Late Collisions", "cip.elink.mcount.late_collisions",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_excessive_collisions,
{ "Excessive Collisions", "cip.elink.mcount.excessive_collisions",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_mac_transmit_errors,
{ "MAC Transmit Errors", "cip.elink.mcount.mac_transmit_errors",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_carrier_sense_errors,
{ "Carrier Sense Errors", "cip.elink.mcount.carrier_sense_errors",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_frame_too_long,
{ "Frame Too Long", "cip.elink.mcount.frame_too_long",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_mcount_mac_receive_errors,
{ "MAC Receive Errors", "cip.elink.mcount.mac_receive_errors",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icontrol_control_bits,
{ "Control Bits", "cip.elink.icontrol.control_bits",
FT_UINT16, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icontrol_control_bits_auto_neg,
{ "Auto-negotiate", "cip.elink.icontrol.control_bits.auto_neg",
FT_BOOLEAN, 16, TFS(&tfs_enabled_disabled), 0x0001,
NULL, HFILL }},
{ &hf_elink_icontrol_control_bits_forced_duplex,
{ "Forced Duplex Mode", "cip.elink.icontrol.control_bits.forced_duplex",
FT_UINT16, BASE_DEC, VALS(enip_elink_duplex_vals), 0x0002,
NULL, HFILL }},
{ &hf_elink_icontrol_control_bits_reserved,
{ "Reserved", "cip.elink.icontrol.control_bits.reserved",
FT_UINT16, BASE_HEX, NULL, 0xFFFC,
NULL, HFILL }},
{ &hf_elink_icontrol_forced_speed,
{ "Forced Interface Speed", "cip.elink.icontrol.forced_speed",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icapability_capability_bits,
{ "Capability Bits", "cip.elink.icapability.capability_bits",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_elink_icapability_capability_bits_manual,
{ "Manual Setting Requires Reset", "cip.elink.icapability.capability_bits.manual",
FT_BOOLEAN, 32, TFS(&tfs_enabled_disabled), 0x00000001,
NULL, HFILL }},
{ &hf_elink_icapability_capability_bits_auto_neg,
{ "Auto-negotiate", "cip.elink.icapability.capability_bits.auto_neg",
FT_BOOLEAN, 32, TFS(&tfs_enabled_disabled), 0x00000002,
NULL, HFILL }},
{ &hf_elink_icapability_capability_bits_auto_mdix,
{ "Auto-MDIX", "cip.elink.icapability.capability_bits.auto_mdix",
FT_BOOLEAN, 32, TFS(&tfs_enabled_disabled), 0x00000004,
NULL, HFILL } },
{ &hf_elink_icapability_capability_bits_manual_speed,
{ "Manual Speed/Duplex", "cip.elink.icapability.capability_bits.manual_speed",
FT_BOOLEAN, 32, TFS(&tfs_enabled_disabled), 0x00000008,
NULL, HFILL } },
{ &hf_elink_icapability_capability_speed_duplex_array_count,
{ "Speed/Duplex Array Count", "cip.elink.icapability.array_count",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_icapability_capability_speed,
{ "Interface Speed", "cip.elink.icapability.speed",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_icapability_capability_duplex,
{ "Interface Duplex Mode", "cip.elink.icapability.duplex",
FT_UINT8, BASE_DEC, VALS(enip_elink_duplex_vals), 0,
NULL, HFILL } },
{ &hf_elink_interface_type,
{ "Interface Type", "cip.elink.interface_type",
FT_UINT8, BASE_DEC, VALS(enip_elink_interface_type_vals), 0,
NULL, HFILL }},
{ &hf_elink_interface_state,
{ "Interface State", "cip.elink.interface_state",
FT_UINT8, BASE_DEC, VALS(enip_elink_interface_state_vals), 0,
NULL, HFILL }},
{ &hf_elink_admin_state,
{ "Admin State", "cip.elink.admin_state",
FT_UINT8, BASE_DEC, VALS(enip_elink_admin_state_vals), 0,
NULL, HFILL }},
{ &hf_elink_interface_label,
{ "Interface Label", "cip.elink.interface_label",
FT_STRING, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_elink_hc_icount_in_octets,
{ "In Octets", "cip.elink.hc_icount.in_octets",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_icount_in_ucast,
{ "In Ucast Packets", "cip.elink.hc_icount.in_ucast",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_icount_in_mcast,
{ "In Multicast Packets", "cip.elink.hc_icount.in_mcast",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_icount_in_broadcast,
{ "In Broadcast", "cip.elink.hc_icount.in_broadcast",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_icount_out_octets,
{ "Out Octets", "cip.elink.hc_icount.out_octets",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_icount_out_ucast,
{ "Out Ucast Packets", "cip.elink.hc_icount.out_ucast",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_icount_out_mcast,
{ "Out Multicast Packets", "cip.elink.hc_icount.out_mcast",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_icount_out_broadcast,
{ "Out Broadcast Packets", "cip.elink.hc_icount.out_broadcast",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_mcount_stats_align_errors,
{ "Stats Alignment Errors", "cip.elink.hc_mcount.stats_align_errors",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_mcount_stats_fcs_errors,
{ "Stats FCS Errors", "cip.elink.hc_mcount.stats_fcs_errors",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_mcount_stats_internal_mac_transmit_errors,
{ "Stats Internal MAC Transmit Errors", "cip.elink.hc_mcount.internal_mac_transmit_errors",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_mcount_stats_frame_too_long,
{ "Stats Frame Too Long", "cip.elink.hc_mcount.stats_frame_too_long",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_mcount_stats_internal_mac_receive_errors,
{ "Stats Internal MAC Receive Errors", "cip.elink.hc_mcount.internal_mac_receive_errors",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_elink_hc_mcount_stats_symbol_errors,
{ "Stats Symbol Errors", "cip.elink.hc_mcount.stats_symbol_errors",
FT_UINT64, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_qos_8021q_enable,
{ "802.1Q Tag Enable", "cip.qos.8021q_enable",
FT_BOOLEAN, 8, TFS(&tfs_enabled_disabled), 0x1,
NULL, HFILL }},
{ &hf_qos_dscp_ptp_event,
{ "DSCP PTP Event", "cip.qos.ptp_event",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_qos_dscp_ptp_general,
{ "DSCP PTP General", "cip.qos.ptp_general",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_qos_dscp_urgent,
{ "DSCP Urgent", "cip.qos.urgent",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_qos_dscp_scheduled,
{ "DSCP Scheduled", "cip.qos.scheduled",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_qos_dscp_high,
{ "DSCP High", "cip.qos.high",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_qos_dscp_low,
{ "DSCP Low", "cip.qos.low",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_qos_dscp_explicit,
{ "DSCP Explicit", "cip.qos.explicit",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_network_topology,
{ "Network Topology", "cip.dlr.network_topology",
FT_UINT8, BASE_DEC, VALS(enip_dlr_network_topology_vals), 0,
NULL, HFILL }},
{ &hf_dlr_network_status,
{ "Network Status", "cip.dlr.network_status",
FT_UINT8, BASE_DEC, VALS(enip_dlr_network_status_vals), 0,
NULL, HFILL }},
{ &hf_dlr_ring_supervisor_status,
{ "Ring Supervisor Status", "cip.dlr.ring_supervisor_status",
FT_UINT8, BASE_DEC, VALS(enip_dlr_ring_supervisor_status_vals), 0,
NULL, HFILL }},
{ &hf_dlr_rsc_ring_supervisor_enable,
{ "Ring Supervisor Enable", "cip.dlr.rscconfig.supervisor_enable",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0,
NULL, HFILL }},
{ &hf_dlr_rsc_ring_supervisor_precedence,
{ "Ring Supervisor Precedence", "cip.dlr.rscconfig.supervisor_precedence",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_rsc_beacon_interval,
{ "Beacon Interval", "cip.dlr.rscconfig.beacon_interval",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_rsc_beacon_timeout,
{ "Beacon Timeout", "cip.dlr.rscconfig.beacon_timeout",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_rsc_dlr_vlan_id,
{ "DLR VLAN ID", "cip.dlr.rscconfig.dlr_vlan_id",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_ring_faults_count,
{ "Ring Faults Count", "cip.dlr.ring_faults_count",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_lanp1_dev_ip_addr,
{ "Device IP Address", "cip.dlr.lanp1.ip_addr",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_lanp1_dev_physical_address,
{ "Device Physical Address", "cip.dlr.lanp1.physical_address",
FT_ETHER, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_lanp2_dev_ip_addr,
{ "Device IP Address", "cip.dlr.lanp2.ip_addr",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_lanp2_dev_physical_address,
{ "Device Physical Address", "cip.dlr.lanp2.physical_address",
FT_ETHER, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_ring_protocol_participants_count,
{ "Participants Count", "cip.dlr.participants_count",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_rppl_dev_ip_addr,
{ "Device IP Address", "cip.dlr.rppl.ip_addr",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_rppl_dev_physical_address,
{ "Device Physical Address", "cip.dlr.rppl.physical_address",
FT_ETHER, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_asa_supervisor_ip_addr,
{ "Supervisor IP Address", "cip.dlr.asa.ip_addr",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_asa_supervisor_physical_address,
{ "Supervisor Physical Address", "cip.dlr.asa.physical_address",
FT_ETHER, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_active_supervisor_precedence,
{ "Active Supervisor Precedence", "cip.dlr.supervisor_precedence",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_capability_flags,
{ "Capability Flags", "cip.dlr.capflags",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_capflags_announce_base_node,
{ "Announce-based Ring Node", "cip.dlr.capflags.announce_based",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001,
NULL, HFILL }},
{ &hf_dlr_capflags_beacon_base_node,
{ "Beacon-based Ring Node", "cip.dlr.capflags.beacon_based",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002,
NULL, HFILL }},
{ &hf_dlr_capflags_reserved1,
{ "Reserved", "cip.dlr.capflags.reserved1",
FT_BOOLEAN, 32, NULL, 0x0000001C,
NULL, HFILL }},
{ &hf_dlr_capflags_supervisor_capable,
{ "Supervisor Capable", "cip.dlr.capflags.supervisor_capable",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000020,
NULL, HFILL }},
{ &hf_dlr_capflags_redundant_gateway_capable,
{ "Redundant Gateway Capable", "cip.dlr.capflags.redundant_gateway_capable",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000040,
NULL, HFILL }},
{ &hf_dlr_capflags_flush_frame_capable,
{ "Flush_Table Frame Capable", "cip.dlr.capflags.flush_frame_capable",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000080,
NULL, HFILL }},
{ &hf_dlr_capflags_reserved2,
{ "Reserved", "cip.dlr.capflags.reserved2",
FT_BOOLEAN, 32, NULL, 0xFFFFFF00,
NULL, HFILL }},
{ &hf_dlr_rgc_red_gateway_enable,
{ "Redundant Gateway Enable", "cip.dlr.rgc.gateway_enable",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0,
NULL, HFILL }},
{ &hf_dlr_rgc_gateway_precedence,
{ "Gateway Precedence", "cip.dlr.rgc.gateway_precedence",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_rgc_advertise_interval,
{ "Advertise Interval", "cip.dlr.rgc.advertise_interval",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_rgc_advertise_timeout,
{ "Advertise Timeout", "cip.dlr.rgc.advertise_timeout",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_rgc_learning_update_enable,
{ "Learning Update Enable", "cip.dlr.rgc.learning_update_enable",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0,
NULL, HFILL }},
{ &hf_dlr_redundant_gateway_status,
{ "Redundant Gateway Status", "cip.dlr.redundant_gateway_status",
FT_UINT8, BASE_DEC, VALS(enip_dlr_redundant_gateway_status_vals), 0,
NULL, HFILL }},
{ &hf_dlr_aga_ip_addr,
{ "Active Gateway IP Address", "cip.dlr.aga.ip_addr",
FT_IPv4, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_aga_physical_address,
{ "Active Gateway Physical Address", "cip.dlr.aga.physical_address",
FT_ETHER, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_dlr_active_gateway_precedence,
{ "Active Gateway Precedence", "cip.dlr.active_gateway_precedence",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_cip_security_state, { "State", "cip.security.state", FT_UINT8, BASE_DEC, VALS(cip_security_state_vals), 0, NULL, HFILL } },
{ &hf_eip_security_state,
{ "State", "cip.eip_security.state",
FT_UINT8, BASE_DEC, VALS(eip_security_state_vals), 0,
NULL, HFILL }},
{ &hf_eip_security_verify_client_cert,
{ "Verify Client Certificate", "cip.eip_security.verify_client_cert",
FT_BOOLEAN, 8, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_send_cert_chain,
{ "Send Certificate Chain", "cip.eip_security.send_cert_chain",
FT_BOOLEAN, 8, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_check_expiration,
{ "Check Expiration", "cip.eip_security.check_expiration",
FT_BOOLEAN, 8, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_capability_flags,
{ "Capability Flags", "cip.eip_security.capability_flags",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_capflags_secure_renegotiation,
{ "Secure Renegotiation", "cip.eip_security.capability_flags.secure_renegotiation",
FT_BOOLEAN, 32, TFS(&tfs_supported_not_supported), 0x00000001,
NULL, HFILL }},
{ &hf_eip_security_capflags_reserved,
{ "Reserved", "cip.eip_security.capability_flags.reserved",
FT_UINT32, BASE_HEX, NULL, 0xFFFFFFFE,
NULL, HFILL }},
{ &hf_eip_security_num_avail_cipher_suites,
{ "Number of Available Cipher Suites", "cip.eip_security.num_avail_cipher_suites",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_avail_cipher_suite,
{ "Available Cipher Suite", "cip.eip_security.avail_cipher_suite",
FT_UINT16, BASE_HEX|BASE_EXT_STRING, &ssl_31_ciphersuite_ext, 0,
NULL, HFILL }},
{ &hf_eip_security_num_allow_cipher_suites,
{ "Number of Allowed Cipher Suites", "cip.eip_security.num_allow_cipher_suites",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_allow_cipher_suite,
{ "Allowed Cipher Suite", "cip.eip_security.allow_cipher_suite",
FT_UINT16, BASE_HEX|BASE_EXT_STRING, &ssl_31_ciphersuite_ext, 0,
NULL, HFILL }},
{ &hf_eip_security_num_psk,
{ "Number of PSKs", "cip.eip_security.num_psk",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_psk_identity_size,
{ "PSK Identity Size", "cip.eip_security.psk_identity_size",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_psk_identity,
{ "PSK Identity", "cip.eip_security.psk_identity",
FT_BYTES, BASE_NONE|BASE_ALLOW_ZERO, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_psk_size,
{ "PSK Size", "cip.eip_security.psk_size",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_psk,
{ "PSK", "cip.eip_security.psk",
FT_BYTES, BASE_NONE|BASE_ALLOW_ZERO, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_num_active_certs,
{ "Number of Active Certificates", "cip.eip_security.num_active_certs",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_eip_security_num_trusted_auths,
{ "Number of Trusted Authorities", "cip.eip_security.num_trusted_auths",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_eip_cert_name,
{ "Name", "cip.eip_cert.name",
FT_STRING, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_eip_cert_state,
{ "State", "cip.eip_cert.state",
FT_UINT8, BASE_DEC, VALS(eip_cert_state_vals), 0,
NULL, HFILL }},
{ &hf_eip_cert_encoding,
{ "Certificate Encoding", "cip.eip_cert.encoding",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_eip_cert_device_cert_status,
{ "Certificate Status", "cip.eip_cert.device_cert.status",
FT_UINT8, BASE_DEC, VALS(eip_cert_status_vals), 0,
NULL, HFILL }},
{ &hf_eip_cert_ca_cert_status,
{ "Certificate Status", "cip.eip_cert.ca_cert.status",
FT_UINT8, BASE_DEC, VALS(eip_cert_status_vals), 0,
NULL, HFILL }},
{ &hf_eip_cert_capflags_push,
{ "Push", "cip.eip_cert.capflags.push",
FT_BOOLEAN, 32, NULL, 0x00000001,
NULL, HFILL }},
{ &hf_eip_cert_capflags_reserved,
{ "Reserved", "cip.eip_cert.capflags.reserved",
FT_BOOLEAN, 32, NULL, 0xFFFFFFFE,
NULL, HFILL }},
{ &hf_eip_cert_capability_flags,
{ "Capability flags", "cip.eip_cert.capflags",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }},
{ &hf_eip_cert_num_certs,
{ "Number of Certificates", "cip.eip_cert.num_certs",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }},
{ &hf_eip_cert_cert_name,
{ "Certificate name", "cip.eip_cert.cert_name",
FT_STRING, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_eip_cert_verify_certificate,
{ "Certificate", "cip.eip_cert.verify_certificate",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL } },
{ &hf_lldp_subtype,
{ "ODVA LLDP Subtype", "cip.lldp.subtype",
FT_UINT8, BASE_DEC, VALS(lldp_cip_subtypes), 0,
NULL, HFILL }
},
{ &hf_lldp_mac_address,
{ "MAC Address", "cip.lldp.mac_address",
FT_ETHER, BASE_NONE, NULL, 0,
NULL, HFILL }},
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_enip,
&ett_cip_io_generic,
&ett_path,
&ett_count_tree,
&ett_type_tree,
&ett_command_tree,
&ett_sockadd,
&ett_lsrcf,
&ett_tcpip_status,
&ett_tcpip_admin_capability,
&ett_tcpip_config_cap,
&ett_tcpip_config_control,
&ett_elink_interface_flags,
&ett_elink_icontrol_bits,
&ett_elink_icapability_bits,
&ett_dlr_capability_flags,
&ett_dlr_lnknbrstatus_flags,
&ett_eip_security_capability_flags,
&ett_eip_security_psk,
&ett_eip_security_active_certs,
&ett_eip_security_trusted_auths,
&ett_eip_cert_capability_flags,
&ett_eip_cert_num_certs,
&ett_security_profiles,
&ett_iana_port_state_flags,
&ett_connection_info,
&ett_connection_path_info,
&ett_cmd_data
};
static ei_register_info ei[] = {
{ &ei_mal_tcpip_status, { "cip.malformed.tcpip.status", PI_MALFORMED, PI_ERROR, "Malformed TCP/IP Status", EXPFILL }},
{ &ei_mal_tcpip_config_cap, { "cip.malformed.tcpip.config_cap", PI_MALFORMED, PI_ERROR, "Malformed TCP/IP Configuration Capability", EXPFILL }},
{ &ei_mal_tcpip_config_control, { "cip.malformed.tcpip.config_control", PI_MALFORMED, PI_ERROR, "Malformed TCP/IP Configuration Control", EXPFILL }},
{ &ei_mal_tcpip_interface_config, { "cip.malformed.tcpip.interface_config", PI_MALFORMED, PI_ERROR, "Malformed TCP/IP Interface Configuration", EXPFILL }},
{ &ei_mal_tcpip_snn, { "cip.malformed.tcpip.snn", PI_MALFORMED, PI_ERROR, "Malformed TCP/IP Object Safety Network Number", EXPFILL }},
{ &ei_mal_tcpip_mcast_config, { "cip.malformed.tcpip.mcast_config", PI_MALFORMED, PI_ERROR, "Malformed TCP/IP Multicast Config", EXPFILL }},
{ &ei_mal_tcpip_last_conflict, { "cip.malformed.tcpip.last_conflict", PI_MALFORMED, PI_ERROR, "Malformed TCP/IP Last Conflict Detected", EXPFILL }},
{ &ei_mal_elink_interface_flags, { "cip.malformed.elink.interface_flags", PI_MALFORMED, PI_ERROR, "Malformed Ethernet Link Interface Flags", EXPFILL }},
{ &ei_mal_elink_physical_address, { "cip.malformed.elink.physical_address", PI_MALFORMED, PI_ERROR, "Malformed Ethernet Link Physical Address", EXPFILL } },
{ &ei_mal_elink_interface_counters, { "cip.malformed.elink.interface_counters", PI_MALFORMED, PI_ERROR, "Malformed Ethernet Link Interface Counters", EXPFILL }},
{ &ei_mal_elink_media_counters, { "cip.malformed.elink.media_counters", PI_MALFORMED, PI_ERROR, "Malformed Ethernet Link Media Counters", EXPFILL }},
{ &ei_mal_elink_interface_control, { "cip.malformed.elink.interface_control", PI_MALFORMED, PI_ERROR, "Malformed Ethernet Link Interface Control", EXPFILL }},
{ &ei_mal_dlr_ring_supervisor_config, { "cip.malformed.dlr.ring_supervisor_config", PI_MALFORMED, PI_ERROR, "Malformed DLR Ring Supervisor Config", EXPFILL }},
{ &ei_mal_dlr_last_active_node_on_port_1, { "cip.malformed.dlr.last_active_node_on_port_1", PI_MALFORMED, PI_ERROR, "Malformed DLR Last Active Node on Port 1", EXPFILL }},
{ &ei_mal_dlr_last_active_node_on_port_2, { "cip.malformed.dlr.last_active_node_on_port_2", PI_MALFORMED, PI_ERROR, "Malformed DLR Last Active Node on Port 2", EXPFILL }},
{ &ei_mal_dlr_ring_protocol_participants_list, { "cip.malformed.dlr.ring_protocol_participants_list", PI_MALFORMED, PI_ERROR, "Malformed DLR Ring Protocol Participants List", EXPFILL }},
{ &ei_mal_dlr_active_supervisor_address, { "cip.malformed.dlr.active_supervisor_address", PI_MALFORMED, PI_ERROR, "Malformed DLR Active Supervisor Address", EXPFILL }},
{ &ei_mal_dlr_capability_flags, { "cip.malformed.dlr.capability_flags", PI_MALFORMED, PI_ERROR, "Malformed DLR Capability Flag", EXPFILL }},
{ &ei_mal_dlr_redundant_gateway_config, { "cip.malformed.dlr.redundant_gateway_config", PI_MALFORMED, PI_ERROR, "Malformed DLR Redundant Gateway Config", EXPFILL }},
{ &ei_mal_dlr_active_gateway_address, { "cip.malformed.dlr.active_gateway_address", PI_MALFORMED, PI_ERROR, "Malformed DLR Active Gateway Address", EXPFILL }},
{ &ei_mal_eip_security_capability_flags, { "cip.malformed.eip_security.capability_flags", PI_MALFORMED, PI_ERROR, "Malformed EIP Security Capability Flags", EXPFILL }},
{ &ei_mal_eip_security_avail_cipher_suites, { "cip.malformed.eip_security.avail_cipher_suites", PI_MALFORMED, PI_ERROR, "Malformed EIP Security Available Cipher Suites", EXPFILL }},
{ &ei_mal_eip_security_allow_cipher_suites, { "cip.malformed.eip_security.allow_cipher_suites", PI_MALFORMED, PI_ERROR, "Malformed EIP Security Allowed Cipher Suites", EXPFILL }},
{ &ei_mal_eip_security_preshared_keys, { "cip.malformed.eip_security.preshared_keys", PI_MALFORMED, PI_ERROR, "Malformed EIP Security Pre-Shared Keys", EXPFILL }},
{ &ei_mal_eip_security_active_certs, { "cip.malformed.eip_security.active_certs", PI_MALFORMED, PI_ERROR, "Malformed EIP Security Active Device Certificates", EXPFILL }},
{ &ei_mal_eip_security_trusted_auths, { "cip.malformed.eip_security.trusted_auths", PI_MALFORMED, PI_ERROR, "Malformed EIP Security Trusted Authorities", EXPFILL }},
{ &ei_mal_eip_cert_capability_flags, { "cip.malformed.eip_cert.capability_flags", PI_MALFORMED, PI_ERROR, "Malformed EIP Certificate Management Capability Flags", EXPFILL }},
{ &ei_mal_cpf_item_length_mismatch, { "enip.malformed.cpf_item_length_mismatch", PI_MALFORMED, PI_ERROR, "CPF Item Length Mismatch", EXPFILL } },
{ &ei_mal_cpf_item_minimum_size, { "enip.malformed.cpf_item_minimum_size", PI_MALFORMED, PI_ERROR, "CPF Item Minimum Size is 4", EXPFILL } },
};
/* Setup list of header fields for DLR See Section 1.6.1 for details*/
static hf_register_info hfdlr[] = {
/* Ring Sub-type */
{ &hf_dlr_ringsubtype,
{ "Ring Sub-Type", "enip.dlr.ringsubtype",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL }
},
/* Ring Protocol Version */
{ &hf_dlr_ringprotoversion,
{ "Ring Protocol Version", "enip.dlr.protversion",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }
},
/* Frame Type */
{ &hf_dlr_frametype,
{ "Frame Type", "enip.dlr.frametype",
FT_UINT8, BASE_HEX, VALS(dlr_frame_type_vals), 0,
NULL, HFILL }
},
/* Source Port */
{ &hf_dlr_sourceport,
{ "Source Port", "enip.dlr.sourceport",
FT_UINT8, BASE_HEX, VALS(dlr_source_port_vals), 0,
NULL, HFILL }
},
/* Source IP Address */
{ &hf_dlr_sourceip,
{ "Source IP", "enip.dlr.sourceip",
FT_IPv4, BASE_NONE, NULL, 0,
"Source IP Address", HFILL }
},
/* Sequence ID*/
{ &hf_dlr_sequenceid,
{ "Sequence Id", "enip.dlr.seqid",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL }
},
/* Ring State */
{ &hf_dlr_ringstate,
{ "Ring State", "enip.dlr.state",
FT_UINT8, BASE_HEX, VALS(dlr_ring_state_vals), 0,
NULL, HFILL }
},
/* Supervisor Precedence */
{ &hf_dlr_supervisorprecedence,
{ "Supervisor Precedence", "enip.dlr.supervisorprecedence",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }
},
/* Beacon Interval */
{ &hf_dlr_beaconinterval,
{ "Beacon Interval", "enip.dlr.beaconinterval",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }
},
/* Beacon Timeout */
{ &hf_dlr_beacontimeout,
{ "Beacon Timeout", "enip.dlr.beacontimeout",
FT_UINT32, BASE_DEC|BASE_UNIT_STRING, &units_microseconds, 0,
NULL, HFILL }
},
/* Beacon Reserved */
{ &hf_dlr_beaconreserved,
{ "Reserved", "enip.dlr.beaconreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Beacon Reserved", HFILL }
},
/* Neighbor_Check_Request Reserved */
{ &hf_dlr_nreqreserved,
{ "Reserved", "enip.dlr.nreqreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Neighbor_Check_Request Reserved", HFILL }
},
/* Neighbor_Check_Response Source Port */
{ &hf_dlr_nressourceport,
{ "Request Source Port", "enip.dlr.nressourceport",
FT_UINT8, BASE_HEX, VALS(dlr_source_port_vals), 0,
"Neighbor_Check_Response Source Port", HFILL }
},
/* Neighbor_Check_Response Reserved */
{ &hf_dlr_nresreserved,
{ "Reserved", "enip.dlr.nresreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Neighbor_Check_Response Reserved", HFILL }
},
/* Link_Status/Neighbor_Status Status */
{ &hf_dlr_lnknbrstatus,
{ "Link/Neighbor Status", "enip.dlr.lnknbrstatus.status",
FT_UINT8, BASE_HEX, NULL, 0,
"Link_Status/Neighbor_Status Status", HFILL }
},
{ &hf_dlr_lnknbrstatus_port1,
{ "Port 1 Active", "enip.dlr.lnknbrstatus.port1",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x01,
NULL, HFILL }
},
{ &hf_dlr_lnknbrstatus_port2,
{ "Port 2 Active", "enip.dlr.lnknbrstatus.port2",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x02,
NULL, HFILL }
},
{ &hf_dlr_lnknbrstatus_reserved,
{ "Reserved", "enip.dlr.lnknbrstatus.reserved",
FT_BOOLEAN, 8, NULL, 0x7C,
NULL, HFILL }
},
{ &hf_dlr_lnknbrstatus_frame_type,
{ "Link/Neighbor Status Frame Type", "enip.dlr.lnknbrstatus.frame_type",
FT_BOOLEAN, 8, TFS(&dlr_lnknbrstatus_frame_type_vals), 0x80,
NULL, HFILL }
},
/* Link_Status/Neighbor_Status Reserved */
{ &hf_dlr_lnknbrreserved,
{ "Reserved", "enip.dlr.lnknbrreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Link_Status/Neighbor_Status Reserved", HFILL }
},
/* Locate_Fault Reserved */
{ &hf_dlr_lfreserved,
{ "Reserved", "enip.dlr.lfreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Locate_Fault Reserved", HFILL }
},
/* Announce Reserved */
{ &hf_dlr_anreserved,
{ "Reserved", "enip.dlr.anreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Announce Reserved", HFILL }
},
/* Number of Nodes in List */
{ &hf_dlr_sonumnodes,
{ "Num nodes", "enip.dlr.sonumnodes",
FT_UINT16, BASE_DEC, NULL, 0,
"Number of Nodes in List", HFILL }
},
/* Sign_On Node # MAC Address */
{ &hf_dlr_somac,
{ "MAC Address", "enip.dlr.somac",
FT_ETHER, BASE_NONE, NULL, 0,
"Sign_On Node MAC Address", HFILL }
},
/* Node # IP Address */
{ &hf_dlr_soip,
{ "IP Address", "enip.dlr.soip",
FT_IPv4, BASE_NONE, NULL, 0,
"Sign_On Node IP Address", HFILL }
},
/* Sign_On Reserved */
{ &hf_dlr_soreserved,
{ "Reserved", "enip.dlr.soreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Sign_On Reserved", HFILL }
},
/* Gateway State */
{ &hf_dlr_advgatewaystate,
{ "Gateway Status", "enip.dlr.advgatewaystate",
FT_UINT8, BASE_HEX, VALS(dlr_adv_state_vals), 0,
"Gateway State", HFILL }
},
/* Gateway Precedence */
{ &hf_dlr_advgatewayprecedence,
{ "Gateway Precedence", "enip.dlr.advgatewayprecedence",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }
},
/* Advertise Interval */
{ &hf_dlr_advadvertiseinterval,
{ "Advertise Interval", "enip.dlr.advadvertiseinterval",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }
},
/* Advertise Timeout */
{ &hf_dlr_advadvertisetimeout,
{ "Advertise Interval", "enip.dlr.advadvertisetimeout",
FT_UINT32, BASE_DEC, NULL, 0,
NULL, HFILL }
},
/* Learning Update Enable */
{ &hf_dlr_advlearningupdateenable,
{ "Learning Update Enable", "enip.dlr.advlearningupdateenable",
FT_UINT8, BASE_HEX, VALS(dlr_adv_learning_update_vals), 0,
"Advertise Learning Update Enable", HFILL }
},
/* Advertise Reserved */
{ &hf_dlr_advreserved,
{ "Reserved", "enip.dlr.advreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Advertise Reserved", HFILL }
},
/* Flush_Tables Learning Update Enable */
{ &hf_dlr_flushlearningupdateenable,
{ "Learning Update Enable", "enip.dlr.flushlearningupdateenable",
FT_UINT8, BASE_HEX, VALS(dlr_flush_learning_update_vals), 0,
"Flush_Tables Learning Update Enable", HFILL }
},
/* Flush Reserved */
{ &hf_dlr_flushreserved,
{ "Reserved", "enip.dlr.flushreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Flush_Tables Reserved", HFILL }
},
/* Learning_Update Reserved */
{ &hf_dlr_learnreserved,
{ "Reserved", "enip.dlr.learnreserved",
FT_BYTES, BASE_NONE, NULL, 0,
"Learning_Update Reserved", HFILL }
}
};
/* Setup protocol subtree array for DLR */
static gint *ettdlr[] = {
&ett_dlr
};
module_t *enip_module;
expert_module_t* expert_enip;
/* Register the protocol name and description */
proto_enip = proto_register_protocol("EtherNet/IP (Industrial Protocol)", "ENIP", "enip");
proto_cipio = proto_register_protocol("Common Industrial Protocol, I/O", "CIP I/O", "cipio");
proto_cip_class1 = proto_register_protocol_in_name_only(
"Common Industrial Protocol, I/O Class 1",
"CIP Class 1",
"cipio1",
proto_cipio,
FT_PROTOCOL);
enip_tcp_handle = register_dissector("enip", dissect_enip_tcp, proto_enip);
cipio_handle = register_dissector("cipio", dissect_cipio, proto_cipio);
cip_class1_handle = register_dissector("cipio_class1", dissect_cip_class1, proto_cip_class1);
cip_io_generic_handle = register_dissector("cipgenericio", dissect_cip_io_generic, proto_cipio);
/* Required function calls to register the header fields and subtrees used */
proto_register_field_array(proto_enip, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_enip = expert_register_protocol(proto_enip);
expert_register_field_array(expert_enip, ei, array_length(ei));
enip_module = prefs_register_protocol(proto_enip, NULL);
prefs_register_bool_preference(enip_module, "desegment",
"Desegment all EtherNet/IP messages spanning multiple TCP segments",
"Whether the EtherNet/IP dissector should desegment all messages spanning multiple TCP segments",
&enip_desegment);
prefs_register_bool_preference(enip_module, "o2t_run_idle",
"Dissect 32-bit header in the O->T direction",
"Determines whether all I/O connections will assume a 32-bit header in the O->T direction",
&enip_OTrun_idle);
prefs_register_bool_preference(enip_module, "t2o_run_idle",
"Dissect 32-bit header in the T->O direction",
"Determines whether all I/O connections will assume a 32-bit header in the T->O direction",
&enip_TOrun_idle);
prefs_register_obsolete_preference(enip_module, "default_io_dissector");
subdissector_srrd_table = register_dissector_table("enip.srrd.iface",
"ENIP SendRequestReplyData.Interface Handle", proto_enip, FT_UINT32, BASE_HEX);
subdissector_io_table = register_dissector_table("cip.io.iface",
"CIP Class 0/1 Interface Handle", proto_cipio, FT_UINT32, BASE_HEX);
subdissector_cip_connection_table = register_dissector_table("cip.connection.class",
"CIP Class 2/3 Interface Handle", proto_enip, FT_UINT32, BASE_HEX);
enip_request_hashtable = wmem_map_new_autoreset(wmem_epan_scope(), wmem_file_scope(), enip_request_hash, enip_request_equal);
enip_conn_hashtable = wmem_map_new_autoreset(wmem_epan_scope(), wmem_file_scope(), enip_conn_hash, enip_conn_equal);
register_init_routine(&enip_init_protocol);
/* Register the protocol name and description */
proto_dlr = proto_register_protocol("Device Level Ring", "DLR", "dlr");
/* Required function calls to register the header fields and subtrees used */
proto_register_field_array(proto_dlr, hfdlr, array_length(hfdlr));
proto_register_subtree_array(ettdlr, array_length(ettdlr));
register_conversation_filter("enip", "CIP Connection", cip_connection_conv_valid, cip_connection_conv_filter);
subdissector_decode_as_io_table = register_decode_as_next_proto(proto_enip, "cip.io", "CIP I/O Payload", enip_prompt);
} /* end of proto_register_enip() */
const value_string lldp_cip_subtypes[] = {
{ 1, "Deprecated CIP Identification" },
{ 2, "CIP MAC Address" },
{ 3, "CIP Interface Label" },
{ 4, "Position ID" },
{ 5, "T1S PHY Data" },
{ 6, "Commission Request" },
{ 7, "Commission Response" },
{ 8, "Discover Topology Response" },
{ 9, "CIP Identification" },
{ 0, NULL }
};
int dissect_lldp_cip_tlv(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree)
{
int total_len = tvb_reported_length_remaining(tvb, 0);
int offset = 0;
guint32 subtype;
proto_tree_add_item_ret_uint(tree, hf_lldp_subtype, tvb, offset, 1, ENC_BIG_ENDIAN, &subtype);
offset++;
switch (subtype)
{
case 1:
{
dissect_electronic_key_format(tvb, offset, tree, FALSE, CI_E_SERIAL_NUMBER_KEY_FORMAT_VAL, ENC_LITTLE_ENDIAN);
break;
}
case 2:
proto_tree_add_item(tree, hf_lldp_mac_address, tvb, offset, 6, ENC_NA);
break;
case 3:
{
// The string is all the data, minus Subtype (1 byte).
int string_len = total_len - 1;
proto_tree_add_item(tree, hf_elink_interface_label, tvb, offset, string_len, ENC_ASCII | ENC_NA);
break;
}
case 9:
{
dissect_electronic_key_format(tvb, offset, tree, FALSE, CI_E_SERIAL_NUMBER_KEY_FORMAT_VAL, ENC_BIG_ENDIAN);
break;
}
default:
break;
}
return tvb_reported_length(tvb);
}
void
proto_reg_handoff_enip(void)
{
dissector_handle_t dlr_handle;
/* Register for EtherNet/IP, using TCP */
dissector_add_uint_with_preference("tcp.port", ENIP_ENCAP_PORT, enip_tcp_handle);
/* Register for EtherNet/IP, using UDP */
enip_udp_handle = create_dissector_handle(dissect_enip_udp, proto_enip);
dissector_add_uint_with_preference("udp.port", ENIP_ENCAP_PORT, enip_udp_handle);
/* Register for EtherNet/IP IO data (UDP) */
dissector_add_uint_with_preference("udp.port", ENIP_IO_PORT, cipio_handle);
/* Register for EtherNet/IP TLS */
ssl_dissector_add(ENIP_SECURE_PORT, enip_tcp_handle);
dtls_dissector_add(ENIP_SECURE_PORT, cipio_handle);
dtls_handle = find_dissector("dtls");
// Allow DecodeAs for DTLS --> ENIP. This supports "UDP-only EtherNet/IP transport profile" over
// port 44818 (for Class 3 and Unconnected Messages)
dissector_add_for_decode_as("dtls.port", enip_udp_handle);
/* Find ARP dissector for TCP/IP object */
arp_handle = find_dissector_add_dependency("arp", proto_enip);
/* I/O data dissectors */
cipsafety_handle = find_dissector("cipsafety");
/* Implicit data dissector */
cip_implicit_handle = find_dissector_add_dependency("cip_implicit", proto_enip);
cip_handle = find_dissector_add_dependency("cip", proto_enip);
/* Register for EtherNet/IP Device Level Ring protocol */
dlr_handle = create_dissector_handle(dissect_dlr, proto_dlr);
dissector_add_uint("ethertype", ETHERTYPE_DLR, dlr_handle);
subdissector_class_table = find_dissector_table("cip.class.iface");
dissector_add_for_decode_as("cip.io", cip_class1_handle);
} /* end of proto_reg_handoff_enip() */
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 3
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=3 tabstop=8 expandtab:
* :indentSize=3:tabSize=8:noTabs=true:
*/