wireshark/epan/dissectors/packet-amr.c

880 lines
34 KiB
C

/* packet-amr.c
* Routines for AMR dissection
* Copyright 2005-2008, Anders Broman <anders.broman[at]ericsson.com>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* References:
* RFC 3267 http://www.ietf.org/rfc/rfc3267.txt?number=3267
* RFC 4867 http://www.rfc-editor.org/rfc/rfc4867.txt
* 3GPP TS 26.101 for AMR-NB, 3GPP TS 26.201 for AMR-WB
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/expert.h>
#include <epan/oids.h>
#include <epan/asn1.h>
void proto_register_amr(void);
void proto_reg_handoff_amr(void);
#define AMR_NB_SID 8
#define AMR_WB_SID 9
#define AMR_NO_TRANS 15
#define AMR_NB 0
#define AMR_WB 1
static dissector_handle_t amr_handle;
static dissector_handle_t amr_wb_handle;
/* Initialize the protocol and registered fields */
static int proto_amr = -1;
static int hf_amr_nb_cmr = -1;
static int hf_amr_wb_cmr = -1;
static int hf_amr_payload_decoded_as = -1;
static int hf_amr_reserved = -1;
static int hf_amr_toc_f = -1;
static int hf_amr_nb_toc_ft = -1;
static int hf_amr_wb_toc_ft = -1;
static int hf_amr_toc_q = -1;
static int hf_amr_speech_data = -1;
static int hf_amr_frame_data = -1;
static int hf_amr_nb_if1_ft = -1;
static int hf_amr_wb_if1_ft = -1;
static int hf_amr_if1_fqi = -1;
static int hf_amr_nb_if1_mode_req = -1;
static int hf_amr_wb_if1_mode_req = -1;
static int hf_amr_if1_sti = -1;
static int hf_amr_nb_if1_mode_ind = -1;
static int hf_amr_wb_if1_mode_ind = -1;
static int hf_amr_nb_if1_sti_mode_ind = -1;
static int hf_amr_wb_if1_sti_mode_ind = -1;
static int hf_amr_if2_sti = -1;
static int hf_amr_nb_if2_sti_mode_ind = -1;
static int hf_amr_wb_if2_sti_mode_ind = -1;
static int hf_amr_nb_if2_ft = -1;
static int hf_amr_wb_if2_ft = -1;
/* Initialize the subtree pointers */
static int ett_amr = -1;
static int ett_amr_toc = -1;
static expert_field ei_amr_spare_bit_not0 = EI_INIT;
static expert_field ei_amr_not_enough_data_for_frames = EI_INIT;
static expert_field ei_amr_superfluous_data = EI_INIT;
static expert_field ei_amr_padding_bits_not0 = EI_INIT;
static expert_field ei_amr_padding_bits_correct = EI_INIT;
static expert_field ei_amr_reserved = EI_INIT;
/* The dynamic payload type which will be dissected as AMR */
static guint temp_dynamic_payload_type = 0;
static gint amr_encoding_type = 0;
static gint pref_amr_mode = AMR_NB;
/* Currently only octet aligned works */
/* static gboolean octet_aligned = TRUE; */
static const value_string amr_encoding_type_value[] = {
{0, "RFC 3267"},
{1, "RFC 3267 bandwidth-efficient mode"},
{2, "AMR IF 1"},
{3, "AMR IF 2"},
{ 0, NULL }
};
/* Table 1a of 3GPP TS 26.201*/
static const value_string amr_nb_codec_mode_vals[] = {
{0, "AMR 4,75 kbit/s"},
{1, "AMR 5,15 kbit/s"},
{2, "AMR 5,90 kbit/s"},
{3, "AMR 6,70 kbit/s (PDC-EFR)"},
{4, "AMR 7,40 kbit/s (TDMA-EFR)"},
{5, "AMR 7,95 kbit/s"},
{6, "AMR 10,2 kbit/s"},
{7, "AMR 12,2 kbit/s (GSM-EFR)"},
{AMR_NB_SID, "AMR SID (Comfort Noise Frame)"},
{9, "GSM-EFR SID"},
{10, "TDMA-EFR SID "},
{11, "PDC-EFR SID"},
{12, "Illegal Frametype - for future use"},
{13, "Illegal Frametype - for future use"},
{14, "Illegal Frametype - for future use"},
{AMR_NO_TRANS, "No Data (No transmission/No reception)"},
{ 0, NULL }
};
static value_string_ext amr_nb_codec_mode_vals_ext = VALUE_STRING_EXT_INIT(amr_nb_codec_mode_vals);
static const value_string amr_wb_codec_mode_vals[] = {
{0, "AMR-WB 6.60 kbit/s"},
{1, "AMR-WB 8.85 kbit/s"},
{2, "AMR-WB 12.65 kbit/s"},
{3, "AMR-WB 14.25 kbit/s"},
{4, "AMR-WB 15.85 kbit/s"},
{5, "AMR-WB 18.25 kbit/s"},
{6, "AMR-WB 19.85 kbit/s"},
{7, "AMR-WB 23.05 kbit/s"},
{8, "AMR-WB 23.85 kbit/s"},
{AMR_WB_SID, "AMR-WB SID (Comfort Noise Frame)"},
{10, "Illegal Frametype"},
{11, "Illegal Frametype"},
{12, "Illegal Frametype"},
{13, "Illegal Frametype"},
{14, "Speech lost"},
{AMR_NO_TRANS, "No Data (No transmission/No reception)"},
{ 0, NULL }
};
static value_string_ext amr_wb_codec_mode_vals_ext = VALUE_STRING_EXT_INIT(amr_wb_codec_mode_vals);
/* Ref 3GPP TS 26.101 table 1a for AMR-NB*/
/* From RFC3267 chapter 4.3.1
CMR (4 bits): Indicates a codec mode request sent to the speech
encoder at the site of the receiver of this payload. The value of
the CMR field is set to the frame type index of the corresponding
speech mode being requested. The frame type index may be 0-7 for
AMR, as defined in Table 1a in [2], or 0-8 for AMR-WB, as defined
in Table 1a in [3GPP TS 26.201]. CMR value 15 indicates that no
mode request is present, and other values are for future use.
*/
static const value_string amr_nb_codec_mode_request_vals[] = {
{0, "AMR 4,75 kbit/s"},
{1, "AMR 5,15 kbit/s"},
{2, "AMR 5,90 kbit/s"},
{3, "AMR 6,70 kbit/s (PDC-EFR)"},
{4, "AMR 7,40 kbit/s (TDMA-EFR)"},
{5, "AMR 7,95 kbit/s"},
{6, "AMR 10,2 kbit/s"},
{7, "AMR 12,2 kbit/s (GSM-EFR)"},
{8, "Illegal Frametype - For future use"},
{9, "Illegal Frametype - For future use"},
{10, "Illegal Frametype - For future use"},
{11, "Illegal Frametype - For future use"},
{12, "Illegal Frametype - For future use"},
{13, "Illegal Frametype - For future use"},
{14, "Illegal Frametype - For future use"},
{15, "No mode request"},
{ 0, NULL }
};
static value_string_ext amr_nb_codec_mode_request_vals_ext = VALUE_STRING_EXT_INIT(amr_nb_codec_mode_request_vals);
/* Ref 3GPP TS 26.201 table 1a for AMR-WB*/
static const value_string amr_wb_codec_mode_request_vals[] = {
{0, "AMR-WB 6.60 kbit/s"},
{1, "AMR-WB 8.85 kbit/s"},
{2, "AMR-WB 12.65 kbit/s"},
{3, "AMR-WB 14.25 kbit/s"},
{4, "AMR-WB 15.85 kbit/s"},
{5, "AMR-WB 18.25 kbit/s"},
{6, "AMR-WB 19.85 kbit/s"},
{7, "AMR-WB 23.05 kbit/s"},
{8, "AMR-WB 23.85 kbit/s"},
{9, "Illegal Frametype - For future use"},
{10, "Illegal Frametype - For future use"},
{11, "Illegal Frametype - For future use"},
{12, "Illegal Frametype - For future use"},
{13, "Illegal Frametype - For future use"},
{14, "Illegal Frametype - For future use"},
{15, "No mode request"},
{ 0, NULL }
};
static value_string_ext amr_wb_codec_mode_request_vals_ext = VALUE_STRING_EXT_INIT(amr_wb_codec_mode_request_vals);
static const true_false_string toc_f_bit_vals = {
"Followed by another speech frame",
"Last frame in this payload"
};
static const true_false_string toc_q_bit_vals = {
"Ok",
"Severely damaged frame"
};
static const true_false_string amr_sti_vals = {
"SID_UPDATE",
"SID_FIRST"
};
/* See 3GPP TS 26.101 chapter 4 for AMR-NB IF1 */
static int
dissect_amr_nb_if1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) {
int offset = 0;
guint8 octet;
proto_item *ti;
proto_tree_add_item(tree, hf_amr_nb_if1_ft, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_amr_if1_fqi, tvb, offset, 1, ENC_BIG_ENDIAN);
octet = (tvb_get_guint8(tvb,offset) & 0xf0) >> 4;
if (octet == AMR_NB_SID) {
ti = proto_tree_add_item(tree, hf_amr_nb_if1_mode_req, tvb, offset+1, 1, ENC_BIG_ENDIAN);
if (tvb_get_guint8(tvb,offset+1) & 0x1f)
expert_add_info(pinfo, ti, &ei_amr_spare_bit_not0);
proto_tree_add_item(tree, hf_amr_speech_data, tvb, offset+2, 5, ENC_NA);
proto_tree_add_item(tree, hf_amr_if1_sti, tvb, offset+7, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_amr_nb_if1_sti_mode_ind, tvb, offset+7, 1, ENC_BIG_ENDIAN);
return offset+8;
}
proto_tree_add_item(tree, hf_amr_nb_if1_mode_ind, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
ti = proto_tree_add_item(tree, hf_amr_nb_if1_mode_req, tvb, offset, 1, ENC_BIG_ENDIAN);
if (tvb_get_guint8(tvb,offset) & 0x1f)
expert_add_info(pinfo, ti, &ei_amr_spare_bit_not0);
offset += 1;
proto_tree_add_item(tree, hf_amr_speech_data, tvb, offset, -1, ENC_NA);
return tvb_captured_length(tvb);
}
/* See 3GPP TS 26.201 for AMR-WB */
static int
dissect_amr_wb_if1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) {
int offset = 0;
guint8 octet;
proto_item *ti;
proto_tree_add_item(tree, hf_amr_wb_if1_ft, tvb, offset, 1, ENC_BIG_ENDIAN);
ti = proto_tree_add_item(tree, hf_amr_if1_fqi, tvb, offset, 1, ENC_BIG_ENDIAN);
if (tvb_get_guint8(tvb,offset) & 0x03)
expert_add_info(pinfo, ti, &ei_amr_spare_bit_not0);
octet = (tvb_get_guint8(tvb,offset) & 0xf0) >> 4;
if (octet == AMR_WB_SID) {
proto_tree_add_item(tree, hf_amr_wb_if1_mode_req, tvb, offset+1, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_amr_speech_data, tvb, offset+2, 4, ENC_NA);
proto_tree_add_item(tree, hf_amr_if1_sti, tvb, offset+7, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_amr_wb_if1_sti_mode_ind, tvb, offset+7, 1, ENC_BIG_ENDIAN);
return offset+8;
}
offset += 1;
proto_tree_add_item(tree, hf_amr_wb_if1_mode_ind, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_amr_wb_if1_mode_req, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
proto_tree_add_item(tree, hf_amr_speech_data, tvb, offset, -1, ENC_NA);
return tvb_captured_length(tvb);
}
static int
dissect_amr_nb_if2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) {
int offset = 0;
guint8 octet;
proto_tree_add_item(tree, hf_amr_nb_if2_ft, tvb, offset, 1, ENC_BIG_ENDIAN);
octet = tvb_get_guint8(tvb,offset) & 0x0f;
if (octet == AMR_NB_SID) {
proto_tree_add_item(tree, hf_amr_speech_data, tvb, offset+1, 3, ENC_NA);
proto_tree_add_item(tree, hf_amr_if2_sti, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_amr_nb_if2_sti_mode_ind, tvb, offset+5, 1, ENC_BIG_ENDIAN);
return offset+6;
}
if (octet == AMR_NO_TRANS)
return 1;
proto_tree_add_item(tree, hf_amr_speech_data, tvb, offset+1, -1, ENC_NA);
col_append_fstr(pinfo->cinfo, COL_INFO, "%s ",
val_to_str_ext(octet, &amr_nb_codec_mode_request_vals_ext, "Unknown (%d)" ));
return tvb_captured_length(tvb);
}
static int
dissect_amr_wb_if2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_) {
int offset = 0;
guint8 octet;
proto_tree_add_item(tree, hf_amr_wb_if2_ft, tvb, offset, 1, ENC_BIG_ENDIAN);
octet = (tvb_get_guint8(tvb,offset) & 0xf0) >> 4;
if (octet == AMR_WB_SID) {
proto_tree_add_item(tree, hf_amr_speech_data, tvb, offset+1, 4, ENC_NA);
proto_tree_add_item(tree, hf_amr_if2_sti, tvb, offset+5, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(tree, hf_amr_wb_if2_sti_mode_ind, tvb, offset+5, 1, ENC_BIG_ENDIAN);
return offset+6;
}
if (octet == AMR_NO_TRANS)
return 1;
proto_tree_add_item(tree, hf_amr_speech_data, tvb, offset+1, -1, ENC_NA);
col_append_fstr(pinfo->cinfo, COL_INFO, "%s ",
val_to_str_ext(octet, &amr_wb_codec_mode_request_vals_ext, "Unknown (%d)" ));
return tvb_captured_length(tvb);
}
static void
dissect_amr_be(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, gint amr_mode) {
proto_item *item;
int ft;
int bit_offset = 0;
int bitcount; /*bitcounter, MSB = bit 0, over bytes*/
int bits_used_for_frames = 0;
int bytes_needed_for_frames;
guint8 f_bit, q_bit;
/* Number of bits per frame for AMR-NB, see Table 1 RFC3267*/
/* Values taken for GSM-EFR SID, TDMA-EFR SID and PDC-EFR SID from 3GPP 26.101 Table A.1b */
/* Frame type 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
unsigned char Framebits_NB[] = {95,103,118,134,148,159,204,244,39,43,38,37, 0, 0, 0, 0};
/* Number of bits per frame for AMR-WB, see 3GPP TS 26.201 Table 2*/
/* Frame type 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
unsigned int Framebits_WB[] = {132,177,253,285,317,365,397,461,477, 40, 0, 0, 0, 0, 0, 0,};
/* Chapter 4.3 */
bitcount = 3;
if (amr_mode == AMR_NB)
proto_tree_add_bits_item(tree, hf_amr_nb_cmr, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
else
proto_tree_add_bits_item(tree, hf_amr_wb_cmr, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
bit_offset += 4;
/* In bandwidth-efficient mode, a ToC entry takes the following format:
*
* 0 1 2 3 4 5
* +-+-+-+-+-+-+
* |F| FT |Q|
* +-+-+-+-+-+-+
*
* F (1 bit): If set to 1, indicates that this frame is followed by
* another speech frame in this payload; if set to 0, indicates that
* this frame is the last frame in this payload.
*
* FT (4 bits): Frame type index, indicating either the AMR or AMR-WB
* speech coding mode or comfort noise (SID) mode of the
* corresponding frame carried in this payload.
*/
do {
/* Check F bit */
bitcount += 1;
f_bit = tvb_get_bits8(tvb, bit_offset, 1);
proto_tree_add_bits_item(tree, hf_amr_toc_f, tvb, bit_offset, 1, ENC_BIG_ENDIAN);
bit_offset += 1;
ft = tvb_get_bits8(tvb, bit_offset, 4);
if (amr_mode == AMR_NB)
item = proto_tree_add_bits_item(tree, hf_amr_nb_toc_ft, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
else
item = proto_tree_add_bits_item(tree, hf_amr_wb_toc_ft, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
bit_offset += 4;
bitcount += 4;
if (amr_mode == AMR_NB)
bits_used_for_frames += Framebits_NB[ft];
else
bits_used_for_frames += Framebits_WB[ft];
/* Check Q bit */
q_bit = tvb_get_bits8(tvb, bit_offset, 1);
proto_tree_add_bits_item(tree, hf_amr_toc_q, tvb, bit_offset, 1, ENC_BIG_ENDIAN);
bit_offset += 1;
bitcount += 1;
if (q_bit == 1)
proto_item_append_text(item, " / Frame OK");
else
proto_item_append_text(item, " / Frame damaged");
} while ((f_bit == 1) && (tvb_reported_length_remaining(tvb, bitcount/8) > 2));
if (bits_used_for_frames > 0)
bytes_needed_for_frames = 1 + (bitcount+bits_used_for_frames)/8-bitcount/8;
else
bytes_needed_for_frames = 0;
/* Check if we have enough data available for our frames */
if (tvb_reported_length_remaining(tvb, bitcount/8) < bytes_needed_for_frames) {
proto_tree_add_expert_format(tree, pinfo, &ei_amr_not_enough_data_for_frames,
tvb, bitcount/8, bytes_needed_for_frames,
"Error: %d Bytes available, %d would be needed!",
tvb_reported_length_remaining(tvb, bitcount/8),
bytes_needed_for_frames);
}
else {
proto_tree_add_item(tree, hf_amr_frame_data, tvb, bitcount/8, bytes_needed_for_frames, ENC_NA);
}
bitcount += bits_used_for_frames;
if (tvb_reported_length_remaining(tvb, (bitcount+8)/8) > 0) {
proto_tree_add_expert_format(tree, pinfo, &ei_amr_superfluous_data, tvb, bitcount/8, tvb_reported_length_remaining(tvb, bitcount/8),
"Error: %d Bytes remaining - should be 0!",tvb_reported_length_remaining(tvb, (bitcount+8)/8));
/* Now check the paddings */
if (bitcount%8 != 0) {
if ( (1 << (8 -(bitcount%8)-1)) & tvb_get_guint8(tvb,bitcount/8) )
proto_tree_add_expert(tree, pinfo, &ei_amr_padding_bits_correct, tvb, bitcount/8, 1);
else {
proto_tree_add_expert(tree, pinfo, &ei_amr_padding_bits_not0, tvb,
bitcount/8, 1);
}
}
}
}
/* Code to actually dissect the packets */
static void
dissect_amr_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, gint amr_mode)
{
int offset = 0;
int bit_offset = 0;
guint8 octet;
proto_item *item;
gboolean first_time;
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *ti;
proto_tree *amr_tree, *toc_tree;
ti = proto_tree_add_item(tree, proto_amr, tvb, 0, -1, ENC_NA);
amr_tree = proto_item_add_subtree(ti, ett_amr);
item = proto_tree_add_uint(amr_tree, hf_amr_payload_decoded_as, tvb, offset, 4, amr_encoding_type);
proto_item_set_len(item, tvb_reported_length(tvb));
PROTO_ITEM_SET_GENERATED(item);
switch (amr_encoding_type) {
case 0: /* RFC 3267 Byte aligned */
break;
case 1: /* RFC 3267 Bandwidth-efficient */
dissect_amr_be(tvb, pinfo, amr_tree, amr_mode);
return;
case 2: /* AMR IF1 */
if (amr_mode == AMR_NB)
dissect_amr_nb_if1(tvb, pinfo, amr_tree, NULL);
else
dissect_amr_wb_if1(tvb, pinfo, amr_tree, NULL);
return;
case 3: /* AMR IF2 */
if (amr_mode == AMR_NB)
dissect_amr_nb_if2(tvb, pinfo, amr_tree, NULL);
else
dissect_amr_wb_if2(tvb, pinfo, amr_tree, NULL);
return;
default:
break;
}
if (amr_mode == AMR_NB)
proto_tree_add_bits_item(amr_tree, hf_amr_nb_cmr, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
else
proto_tree_add_bits_item(amr_tree, hf_amr_wb_cmr, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
bit_offset += 4;
octet = tvb_get_guint8(tvb,offset) & 0x0f;
item = proto_tree_add_item(amr_tree, hf_amr_reserved, tvb, offset, 1, ENC_BIG_ENDIAN);
if ( octet != 0 ) {
expert_add_info(pinfo, item, &ei_amr_reserved);
PROTO_ITEM_SET_GENERATED(item);
return;
}
offset += 1;
bit_offset += 4;
/*
* A ToC entry takes the following format in octet-aligned mode:
*
* 0 1 2 3 4 5 6 7
* +-+-+-+-+-+-+-+-+
* |F| FT |Q|P|P|
* +-+-+-+-+-+-+-+-+
*
* F (1 bit): see definition in Section 4.3.2.
*
* FT (4 bits unsigned integer): see definition in Section 4.3.2.
*
* Q (1 bit): see definition in Section 4.3.2.
*
* P bits: padding bits, MUST be set to zero.
*/
octet = tvb_get_guint8(tvb,offset);
toc_tree = proto_tree_add_subtree(amr_tree, tvb, offset, -1, ett_amr_toc, NULL, "Payload Table of Contents");
first_time = TRUE;
while ((( octet& 0x80 ) == 0x80) || (first_time == TRUE)) {
first_time = FALSE;
octet = tvb_get_guint8(tvb,offset);
proto_tree_add_bits_item(toc_tree, hf_amr_toc_f, tvb, bit_offset, 1, ENC_BIG_ENDIAN);
bit_offset += 1;
if (amr_mode == AMR_NB)
proto_tree_add_bits_item(toc_tree, hf_amr_nb_toc_ft, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
else
proto_tree_add_bits_item(toc_tree, hf_amr_wb_toc_ft, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
bit_offset += 4;
proto_tree_add_bits_item(toc_tree, hf_amr_toc_q, tvb, bit_offset, 1, ENC_BIG_ENDIAN);
bit_offset += 1;
/* 2 padding bits */
bit_offset += 2;
offset += 1;
}
}
/* Code to actually dissect the packets */
static int
dissect_amr(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
/* Make entries in Protocol column and Info column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "AMR");
dissect_amr_common(tvb, pinfo, tree, pref_amr_mode);
return tvb_captured_length(tvb);
}
static int
dissect_amr_wb(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
/* Make entries in Protocol column and Info column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "AMR-WB");
dissect_amr_common(tvb, pinfo, tree, AMR_WB);
return tvb_captured_length(tvb);
}
typedef struct _amr_capability_t {
const gchar *id;
const gchar *name;
new_dissector_t content_pdu;
} amr_capability_t;
static amr_capability_t amr_capability_tab[] = {
/* ITU-T H.241 (05/2006), 8.3 H.264 capabilities */
{ "GenericCapability/0.0.8.245.1.1.1", "H.245 - GSM AMR Capability Identifier", NULL },
{ "GenericCapability/0.0.8.245.1.1.1/collapsing/0", "maxAl-sduAudioFrames", NULL },
{ "GenericCapability/0.0.8.245.1.1.1/collapsing/1", "bitRate", NULL },
{ "GenericCapability/0.0.8.245.1.1.1/collapsing/2", "gsmAmrComfortNoise", NULL },
{ "GenericCapability/0.0.8.245.1.1.1/collapsing/3", "gsmEfrComfortNoise", NULL },
{ "GenericCapability/0.0.8.245.1.1.1/collapsing/4", "is-641ComfortNoise", NULL },
{ "GenericCapability/0.0.8.245.1.1.1/collapsing/5", "pdcEFRComfortNoise", NULL },
/* ITU-T Rec. G.722.2/Annex F (11/2002) */
{ "GenericCapability/0.0.7.7222.1.0/collapsing/0", "maxAl-sduFrames", NULL },
{ "GenericCapability/0.0.7.7222.1.0/collapsing/1", "bitRate", NULL },
{ "GenericCapability/0.0.7.7222.1.0/collapsing/2", "octetAlign", NULL },
{ "GenericCapability/0.0.7.7222.1.0/collapsing/3", "modeSet", NULL },
{ "GenericCapability/0.0.7.7222.1.0/collapsing/4", "modeChangePeriod", NULL },
{ "GenericCapability/0.0.7.7222.1.0/collapsing/5", "modeChangeNeighbour", NULL },
{ "GenericCapability/0.0.7.7222.1.0/collapsing/6", "crc", NULL },
{ "GenericCapability/0.0.7.7222.1.0/collapsing/7", "robustSorting", NULL },
{ "GenericCapability/0.0.7.7222.1.0/collapsing/8", "interleaving", NULL },
{ NULL, NULL, NULL },
};
static amr_capability_t *find_cap(const gchar *id) {
amr_capability_t *ftr = NULL;
amr_capability_t *f;
for (f=amr_capability_tab; f->id; f++) {
if (!strcmp(id, f->id)) {
ftr = f;
break;
}
}
return ftr;
}
static int
dissect_amr_name(tvbuff_t *tvb _U_, packet_info *pinfo, proto_tree *tree, void* data)
{
asn1_ctx_t *actx;
/* Reject the packet if data is NULL */
if (data == NULL)
return 0;
actx = get_asn1_ctx(data);
DISSECTOR_ASSERT(actx != NULL);
if (tree && (actx != NULL)) {
amr_capability_t *ftr;
ftr = find_cap(pinfo->match_string);
if (ftr) {
proto_item_append_text(actx->created_item, " - %s", ftr->name);
proto_item_append_text(proto_item_get_parent(proto_tree_get_parent(tree)), ": %s", ftr->name);
} else {
proto_item_append_text(actx->created_item, " - unknown(%s)", pinfo->match_string);
}
}
return tvb_reported_length(tvb);
}
void
proto_register_amr(void)
{
module_t *amr_module;
expert_module_t* expert_amr;
static hf_register_info hf[] = {
{ &hf_amr_nb_cmr,
{ "CMR", "amr.nb.cmr",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_nb_codec_mode_request_vals_ext, 0x0,
"codec mode request", HFILL }
},
{ &hf_amr_wb_cmr,
{ "CMR", "amr.wb.cmr",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_wb_codec_mode_request_vals_ext, 0x0,
"codec mode request", HFILL }
},
{ &hf_amr_reserved,
{ "Reserved", "amr.reserved",
FT_UINT8, BASE_DEC, NULL, 0x0f,
"Reserved bits", HFILL }
},
{ &hf_amr_payload_decoded_as,
{ "Payload decoded as", "amr.payload_decoded_as",
FT_UINT32, BASE_DEC, VALS(amr_encoding_type_value), 0x0,
"Value of decoding preference", HFILL }
},
{ &hf_amr_toc_f,
{ "F bit", "amr.toc.f",
FT_BOOLEAN, BASE_NONE, TFS(&toc_f_bit_vals), 0x0,
NULL, HFILL }
},
{ &hf_amr_nb_toc_ft,
{ "FT bits", "amr.nb.toc.ft",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_nb_codec_mode_vals_ext, 0x0,
"Frame type index", HFILL }
},
{ &hf_amr_wb_toc_ft,
{ "FT bits", "amr.wb.toc.ft",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_wb_codec_mode_vals_ext, 0x0,
"Frame type index", HFILL }
},
{ &hf_amr_toc_q,
{ "Q bit", "amr.toc.q",
FT_BOOLEAN, BASE_NONE, TFS(&toc_q_bit_vals), 0x0,
"Frame quality indicator bit", HFILL }
},
{ &hf_amr_speech_data,
{ "Speech data", "amr.speech_data",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_amr_frame_data,
{ "Frame Data", "amr.frame_data",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_amr_nb_if1_ft,
{ "Frame Type", "amr.nb.if1.ft",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_nb_codec_mode_vals_ext, 0xf0,
NULL, HFILL }
},
{ &hf_amr_wb_if1_ft,
{ "Frame Type", "amr.wb.if1.ft",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_wb_codec_mode_vals_ext, 0xf0,
NULL, HFILL }
},
{ &hf_amr_nb_if1_mode_req,
{ "Mode Type request", "amr.nb.if1.modereq",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_nb_codec_mode_request_vals_ext, 0xe0,
NULL, HFILL }
},
{ &hf_amr_wb_if1_mode_req,
{ "Mode Type request", "amr.wb.if1.modereq",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_wb_codec_mode_request_vals_ext, 0x0f,
NULL, HFILL }
},
{ &hf_amr_if1_sti,
{ "SID Type Indicator", "amr.if1.sti",
FT_BOOLEAN, 8, TFS(&amr_sti_vals), 0x10,
NULL, HFILL }
},
{ &hf_amr_nb_if1_sti_mode_ind,
{ "Mode Type indication", "amr.nb.if1.stimodeind",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_nb_codec_mode_vals_ext, 0x0e,
NULL, HFILL }
},
{ &hf_amr_wb_if1_sti_mode_ind,
{ "Mode Type indication", "amr.wb.if1.stimodeind",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_wb_codec_mode_vals_ext, 0x0f,
NULL, HFILL }
},
{ &hf_amr_nb_if1_mode_ind,
{ "Mode Type indication", "amr.nb.if1.modeind",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_nb_codec_mode_vals_ext, 0x07,
NULL, HFILL }
},
{ &hf_amr_wb_if1_mode_ind,
{ "Mode Type indication", "amr.wb.if1.modeind",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_wb_codec_mode_vals_ext, 0xf0,
NULL, HFILL }
},
{ &hf_amr_nb_if2_ft,
{ "Frame Type", "amr.nb.if2.ft",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_nb_codec_mode_vals_ext, 0x0f,
NULL, HFILL }
},
{ &hf_amr_wb_if2_ft,
{ "Frame Type", "amr.wb.if2.ft",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_wb_codec_mode_vals_ext, 0xf0,
NULL, HFILL }
},
{ &hf_amr_if2_sti,
{ "SID Type Indicator", "amr.if2.sti",
FT_BOOLEAN, 8, TFS(&amr_sti_vals), 0x80,
NULL, HFILL }
},
{ &hf_amr_nb_if2_sti_mode_ind,
{ "Mode Type indication", "amr.nb.if2.stimodeind",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_nb_codec_mode_vals_ext, 0x07,
NULL, HFILL }
},
{ &hf_amr_wb_if2_sti_mode_ind,
{ "Mode Type indication", "amr.wb.if2.stimodeind",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &amr_wb_codec_mode_vals_ext, 0x78,
NULL, HFILL }
},
{ &hf_amr_if1_fqi,
{ "FQI", "amr.fqi",
FT_BOOLEAN, 8, TFS(&toc_q_bit_vals), 0x08,
"Frame quality indicator bit", HFILL }
},
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_amr,
&ett_amr_toc,
};
static ei_register_info ei[] = {
{ &ei_amr_spare_bit_not0, { "amr.spare_bit_not0", PI_PROTOCOL, PI_WARN, "Error:Spare bits not 0", EXPFILL }},
{ &ei_amr_not_enough_data_for_frames, { "amr.not_enough_data_for_frames", PI_MALFORMED, PI_ERROR, "Not enough data for the frames according to TOC", EXPFILL }},
{ &ei_amr_superfluous_data, { "amr.superfluous_data", PI_MALFORMED, PI_ERROR, "Superfluous data remaining", EXPFILL }},
{ &ei_amr_padding_bits_not0, { "amr.padding_bits_not0", PI_MALFORMED, PI_ERROR, "Padding bits error - MUST be 0", EXPFILL }},
{ &ei_amr_padding_bits_correct, { "amr.padding_bits_correct", PI_PROTOCOL, PI_NOTE, "Padding bits correct", EXPFILL }},
{ &ei_amr_reserved, { "amr.reserved.not_zero", PI_PROTOCOL, PI_WARN, "Reserved != 0, wrongly encoded or not octet aligned. Decoding as bandwidth-efficient mode", EXPFILL }},
};
static const enum_val_t encoding_types[] = {
{"RFC 3267 Byte aligned", "RFC 3267 octet aligned", 0},
{"RFC 3267 Bandwidth-efficient", "RFC 3267 BW-efficient", 1},
{"AMR IF1", "AMR IF1", 2},
{"AMR IF2", "AMR IF2", 3},
{NULL, NULL, -1}
};
static const enum_val_t modes[] = {
{"AMR-NB", "Narrowband AMR", AMR_NB},
{"AMR-WB", "Wideband AMR", AMR_WB},
{NULL, NULL, -1}
};
/* Register the protocol name and description */
proto_amr = proto_register_protocol("Adaptive Multi-Rate","AMR", "amr");
/* Required function calls to register the header fields and subtrees used */
proto_register_field_array(proto_amr, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_amr = expert_register_protocol(proto_amr);
expert_register_field_array(expert_amr, ei, array_length(ei));
/* Register a configuration option for port */
amr_module = prefs_register_protocol(proto_amr, proto_reg_handoff_amr);
prefs_register_uint_preference(amr_module, "dynamic.payload.type",
"AMR dynamic payload type",
"The dynamic payload type which will be interpreted as AMR"
"; The value must be greater than 95",
10,
&temp_dynamic_payload_type);
prefs_register_enum_preference(amr_module, "encoding.version",
"Type of AMR encoding of the payload",
"Type of AMR encoding of the payload",
&amr_encoding_type, encoding_types, FALSE);
prefs_register_enum_preference(amr_module, "mode",
"The AMR mode",
"The AMR mode",
&pref_amr_mode, modes, AMR_NB);
amr_handle = register_dissector("amr", dissect_amr, proto_amr);
amr_wb_handle = register_dissector("amr-wb", dissect_amr_wb, proto_amr);
register_dissector("amr_if1_nb", dissect_amr_nb_if1, proto_amr);
register_dissector("amr_if1_wb", dissect_amr_wb_if1, proto_amr);
register_dissector("amr_if2_nb", dissect_amr_nb_if2, proto_amr);
register_dissector("amr_if2_wb", dissect_amr_wb_if2, proto_amr);
oid_add_from_string("G.722.2 (AMR-WB) audio capability","0.0.7.7222.1.0");
}
/* Register the protocol with Wireshark */
void
proto_reg_handoff_amr(void)
{
static guint dynamic_payload_type;
static gboolean amr_prefs_initialized = FALSE;
if (!amr_prefs_initialized) {
dissector_handle_t amr_name_handle;
amr_capability_t *ftr;
dissector_add_string("rtp_dyn_payload_type","AMR", amr_handle);
dissector_add_string("rtp_dyn_payload_type","AMR-WB", amr_wb_handle);
/*
* Register H.245 Generic parameter name(s)
*/
amr_name_handle = create_dissector_handle(dissect_amr_name, proto_amr);
for (ftr=amr_capability_tab; ftr->id; ftr++) {
if (ftr->name)
dissector_add_string("h245.gef.name", ftr->id, amr_name_handle);
if (ftr->content_pdu)
dissector_add_string("h245.gef.content", ftr->id,
create_dissector_handle(ftr->content_pdu, proto_amr));
}
/* Activate the next line for testing with the randpkt tool
dissector_add_uint("udp.port", 55555, amr_handle);
*/
amr_prefs_initialized = TRUE;
} else {
if ( dynamic_payload_type > 95 )
dissector_delete_uint("rtp.pt", dynamic_payload_type, amr_handle);
}
dynamic_payload_type = temp_dynamic_payload_type;
if ( dynamic_payload_type > 95 ) {
dissector_add_uint("rtp.pt", dynamic_payload_type, amr_handle);
}
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/