wireshark/epan/emem.c

1526 lines
38 KiB
C

/* emem.c
* Wireshark memory management and garbage collection functions
* Ronnie Sahlberg 2005
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include <time.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#include <glib.h>
#include "app_mem_usage.h"
#include "proto.h"
#include "exceptions.h"
#include "emem.h"
#include "wmem/wmem.h"
#ifdef _WIN32
#include <windows.h> /* VirtualAlloc, VirtualProtect */
#include <process.h> /* getpid */
#endif
/* Print out statistics about our memory allocations? */
/*#define SHOW_EMEM_STATS*/
/* Do we want to use guardpages? if available */
#define WANT_GUARD_PAGES 1
#ifdef WANT_GUARD_PAGES
/* Add guard pages at each end of our allocated memory */
#if defined(HAVE_SYSCONF) && defined(HAVE_MMAP) && defined(HAVE_MPROTECT) && defined(HAVE_STDINT_H)
#include <stdint.h>
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>
#endif /* HAVE_SYS_TYPES_H */
#include <sys/mman.h>
#if defined(MAP_ANONYMOUS)
#define ANON_PAGE_MODE (MAP_ANONYMOUS|MAP_PRIVATE)
#elif defined(MAP_ANON)
#define ANON_PAGE_MODE (MAP_ANON|MAP_PRIVATE)
#else
#define ANON_PAGE_MODE (MAP_PRIVATE) /* have to map /dev/zero */
#define NEED_DEV_ZERO
#endif /* defined(MAP_ANONYMOUS) */
#ifdef NEED_DEV_ZERO
#include <fcntl.h>
static int dev_zero_fd;
#define ANON_FD dev_zero_fd
#else
#define ANON_FD -1
#endif /* NEED_DEV_ZERO */
#define USE_GUARD_PAGES 1
#endif /* defined(HAVE_SYSCONF) && defined(HAVE_MMAP) && defined(HAVE_MPROTECT) && defined(HAVE_STDINT_H) */
#endif /* WANT_GUARD_PAGES */
/* When required, allocate more memory from the OS in this size chunks */
#define EMEM_PACKET_CHUNK_SIZE (10 * 1024 * 1024)
/* The canary between allocations is at least 8 bytes and up to 16 bytes to
* allow future allocations to be 4- or 8-byte aligned.
* All but the last byte of the canary are randomly generated; the last byte is
* NULL to separate the canary and the pointer to the next canary.
*
* For example, if the allocation is a multiple of 8 bytes, the canary and
* pointer would look like:
* |0|1|2|3|4|5|6|7||0|1|2|3|4|5|6|7|
* |c|c|c|c|c|c|c|0||p|p|p|p|p|p|p|p| (64-bit), or:
* |c|c|c|c|c|c|c|0||p|p|p|p| (32-bit)
*
* If the allocation was, for example, 12 bytes, the canary would look like:
* |0|1|2|3|4|5|6|7||0|1|2|3|4|5|6|7|
* [...]|a|a|a|a|c|c|c|c||c|c|c|c|c|c|c|0| (followed by the pointer)
*/
#define EMEM_CANARY_SIZE 8
#define EMEM_CANARY_DATA_SIZE (EMEM_CANARY_SIZE * 2 - 1)
typedef struct _emem_chunk_t {
struct _emem_chunk_t *next;
char *buf;
size_t size;
unsigned int amount_free_init;
unsigned int amount_free;
unsigned int free_offset_init;
unsigned int free_offset;
void *canary_last;
} emem_chunk_t;
typedef struct _emem_pool_t {
emem_chunk_t *free_list;
emem_chunk_t *used_list;
guint8 canary[EMEM_CANARY_DATA_SIZE];
void *(*memory_alloc)(size_t size, struct _emem_pool_t *);
/*
* Tools like Valgrind and ElectricFence don't work well with memchunks.
* Export the following environment variables to make {ep|se}_alloc() allocate each
* object individually.
*
* WIRESHARK_DEBUG_EP_NO_CHUNKS
* WIRESHARK_DEBUG_SE_NO_CHUNKS
*/
gboolean debug_use_chunks;
/* Do we want to use canaries?
* Export the following environment variables to disable/enable canaries
*
* WIRESHARK_DEBUG_EP_NO_CANARY
* For SE memory use of canary is default off as the memory overhead
* is considerable.
* WIRESHARK_DEBUG_SE_USE_CANARY
*/
gboolean debug_use_canary;
/* Do we want to verify no one is using a pointer to an ep_ or se_
* allocated thing where they shouldn't be?
*
* Export WIRESHARK_EP_VERIFY_POINTERS or WIRESHARK_SE_VERIFY_POINTERS
* to turn this on.
*/
gboolean debug_verify_pointers;
} emem_pool_t;
static emem_pool_t ep_packet_mem;
static emem_pool_t se_packet_mem;
/*
* Memory scrubbing is expensive but can be useful to ensure we don't:
* - use memory before initializing it
* - use memory after freeing it
* Export WIRESHARK_DEBUG_SCRUB_MEMORY to turn it on.
*/
static gboolean debug_use_memory_scrubber = FALSE;
#if defined (_WIN32)
static SYSTEM_INFO sysinfo;
static gboolean iswindowsplatform;
static int pagesize;
#elif defined(USE_GUARD_PAGES)
static intptr_t pagesize;
#endif /* _WIN32 / USE_GUARD_PAGES */
static void *emem_alloc_chunk(size_t size, emem_pool_t *mem);
static void *emem_alloc_glib(size_t size, emem_pool_t *mem);
/*
* Set a canary value to be placed between memchunks.
*/
static void
emem_canary_init(guint8 *canary)
{
int i;
static GRand *rand_state = NULL;
if (rand_state == NULL) {
rand_state = g_rand_new();
}
for (i = 0; i < EMEM_CANARY_DATA_SIZE; i ++) {
canary[i] = (guint8) g_rand_int_range(rand_state, 1, 0x100);
}
return;
}
static void *
emem_canary_next(guint8 *mem_canary, guint8 *canary, int *len)
{
void *ptr;
int i;
for (i = 0; i < EMEM_CANARY_SIZE-1; i++)
if (mem_canary[i] != canary[i])
return (void *) -1;
for (; i < EMEM_CANARY_DATA_SIZE; i++) {
if (canary[i] == '\0') {
memcpy(&ptr, &canary[i+1], sizeof(void *));
if (len)
*len = i + 1 + (int)sizeof(void *);
return ptr;
}
if (mem_canary[i] != canary[i])
return (void *) -1;
}
return (void *) -1;
}
/*
* Given an allocation size, return the amount of room needed for the canary
* (with a minimum of 8 bytes) while using the canary to pad to an 8-byte
* boundary.
*/
static guint8
emem_canary_pad (size_t allocation)
{
guint8 pad;
pad = EMEM_CANARY_SIZE - (allocation % EMEM_CANARY_SIZE);
if (pad < EMEM_CANARY_SIZE)
pad += EMEM_CANARY_SIZE;
return pad;
}
/* used for debugging canaries, will block */
#ifdef DEBUG_INTENSE_CANARY_CHECKS
gboolean intense_canary_checking = FALSE;
/* used to intensivelly check ep canaries
*/
void
ep_check_canary_integrity(const char* fmt, ...)
{
va_list ap;
static gchar there[128] = {
'L','a','u','n','c','h',0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
gchar here[128];
emem_chunk_t* npc = NULL;
if (! intense_canary_checking ) return;
va_start(ap,fmt);
g_vsnprintf(here, sizeof(here), fmt, ap);
va_end(ap);
for (npc = ep_packet_mem.free_list; npc != NULL; npc = npc->next) {
void *canary_next = npc->canary_last;
while (canary_next != NULL) {
canary_next = emem_canary_next(ep_packet_mem.canary, canary_next, NULL);
/* XXX, check if canary_next is inside allocated memory? */
if (canary_next == (void *) -1)
g_error("Per-packet memory corrupted\nbetween: %s\nand: %s", there, here);
}
}
g_strlcpy(there, here, sizeof(there));
}
#endif
static void
emem_init_chunk(emem_pool_t *mem)
{
if (mem->debug_use_canary)
emem_canary_init(mem->canary);
if (mem->debug_use_chunks)
mem->memory_alloc = emem_alloc_chunk;
else
mem->memory_alloc = emem_alloc_glib;
}
static gsize
emem_memory_usage(const emem_pool_t *pool)
{
gsize total_used = 0;
emem_chunk_t *chunk;
for (chunk = pool->used_list; chunk; chunk = chunk->next)
total_used += (chunk->amount_free_init - chunk->amount_free);
for (chunk = pool->free_list; chunk; chunk = chunk->next)
total_used += (chunk->amount_free_init - chunk->amount_free);
return total_used;
}
static gsize
ep_memory_usage(void)
{
return emem_memory_usage(&ep_packet_mem);
}
/* Initialize the packet-lifetime memory allocation pool.
* This function should be called only once when Wireshark or TShark starts
* up.
*/
static void
ep_init_chunk(void)
{
static const ws_mem_usage_t ep_stats = { "EP", ep_memory_usage, NULL };
ep_packet_mem.free_list=NULL;
ep_packet_mem.used_list=NULL;
ep_packet_mem.debug_use_chunks = (getenv("WIRESHARK_DEBUG_EP_NO_CHUNKS") == NULL);
ep_packet_mem.debug_use_canary = ep_packet_mem.debug_use_chunks && (getenv("WIRESHARK_DEBUG_EP_NO_CANARY") == NULL);
ep_packet_mem.debug_verify_pointers = (getenv("WIRESHARK_EP_VERIFY_POINTERS") != NULL);
#ifdef DEBUG_INTENSE_CANARY_CHECKS
intense_canary_checking = (getenv("WIRESHARK_DEBUG_EP_INTENSE_CANARY") != NULL);
#endif
emem_init_chunk(&ep_packet_mem);
memory_usage_component_register(&ep_stats);
}
static gsize
se_memory_usage(void)
{
return emem_memory_usage(&se_packet_mem);
}
/* Initialize the capture-lifetime memory allocation pool.
* This function should be called only once when Wireshark or TShark starts
* up.
*/
static void
se_init_chunk(void)
{
static const ws_mem_usage_t se_stats = { "SE", se_memory_usage, NULL };
se_packet_mem.free_list = NULL;
se_packet_mem.used_list = NULL;
se_packet_mem.debug_use_chunks = (getenv("WIRESHARK_DEBUG_SE_NO_CHUNKS") == NULL);
se_packet_mem.debug_use_canary = se_packet_mem.debug_use_chunks && (getenv("WIRESHARK_DEBUG_SE_USE_CANARY") != NULL);
se_packet_mem.debug_verify_pointers = (getenv("WIRESHARK_SE_VERIFY_POINTERS") != NULL);
emem_init_chunk(&se_packet_mem);
memory_usage_component_register(&se_stats);
}
/* Initialize all the allocators here.
* This function should be called only once when Wireshark or TShark starts
* up.
*/
void
emem_init(void)
{
ep_init_chunk();
se_init_chunk();
if (getenv("WIRESHARK_DEBUG_SCRUB_MEMORY"))
debug_use_memory_scrubber = TRUE;
#if defined (_WIN32)
/* Set up our guard page info for Win32 */
GetSystemInfo(&sysinfo);
pagesize = sysinfo.dwPageSize;
#if (_MSC_VER >= 1800)
/*
* On VS2103, GetVersionEx is deprecated. Microsoft recommend to
* use VerifyVersionInfo instead
*/
{
OSVERSIONINFOEX osvi;
DWORDLONG dwlConditionMask = 0;
int op = VER_EQUAL;
SecureZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
osvi.dwPlatformId = VER_PLATFORM_WIN32_WINDOWS;
VER_SET_CONDITION(dwlConditionMask, VER_PLATFORMID, op);
iswindowsplatform = VerifyVersionInfo(&osvi, VER_PLATFORMID, dwlConditionMask);
}
#else
/* calling GetVersionEx using the OSVERSIONINFO structure.
* OSVERSIONINFOEX requires Win NT4 with SP6 or newer NT Versions.
* OSVERSIONINFOEX will fail on Win9x and older NT Versions.
* See also:
* http://msdn.microsoft.com/library/en-us/sysinfo/base/getversionex.asp
* http://msdn.microsoft.com/library/en-us/sysinfo/base/osversioninfo_str.asp
* http://msdn.microsoft.com/library/en-us/sysinfo/base/osversioninfoex_str.asp
*/
{
OSVERSIONINFO versinfo;
SecureZeroMemory(&versinfo, sizeof(OSVERSIONINFO));
versinfo.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
GetVersionEx(&versinfo);
iswindowsplatform = (versinfo.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS);
}
#endif
#elif defined(USE_GUARD_PAGES)
pagesize = sysconf(_SC_PAGESIZE);
if (pagesize == -1)
fprintf(stderr, "Warning: call to sysconf() for _SC_PAGESIZE has failed...\n");
#ifdef NEED_DEV_ZERO
dev_zero_fd = ws_open("/dev/zero", O_RDWR);
g_assert(dev_zero_fd != -1);
#endif
#endif /* _WIN32 / USE_GUARD_PAGES */
}
#ifdef SHOW_EMEM_STATS
#define NUM_ALLOC_DIST 10
static guint allocations[NUM_ALLOC_DIST] = { 0 };
static guint total_no_chunks = 0;
static void
print_alloc_stats(void)
{
guint num_chunks = 0;
guint num_allocs = 0;
guint total_used = 0;
guint total_allocation = 0;
guint used_for_canaries = 0;
guint total_headers;
guint i;
emem_chunk_t *chunk;
guint total_space_allocated_from_os, total_space_wasted;
gboolean ep_stat=TRUE;
fprintf(stderr, "\n-------- EP allocator statistics --------\n");
fprintf(stderr, "%s chunks, %s canaries, %s memory scrubber\n",
ep_packet_mem.debug_use_chunks ? "Using" : "Not using",
ep_packet_mem.debug_use_canary ? "using" : "not using",
debug_use_memory_scrubber ? "using" : "not using");
if (! (ep_packet_mem.free_list || !ep_packet_mem.used_list)) {
fprintf(stderr, "No memory allocated\n");
ep_stat = FALSE;
}
if (ep_packet_mem.debug_use_chunks && ep_stat) {
/* Nothing interesting without chunks */
/* Only look at the used_list since those chunks are fully
* used. Looking at the free list would skew our view of what
* we have wasted.
*/
for (chunk = ep_packet_mem.used_list; chunk; chunk = chunk->next) {
num_chunks++;
total_used += (chunk->amount_free_init - chunk->amount_free);
total_allocation += chunk->amount_free_init;
}
if (num_chunks > 0) {
fprintf (stderr, "\n");
fprintf (stderr, "\n---- Buffer space ----\n");
fprintf (stderr, "\tChunk allocation size: %10u\n", EMEM_PACKET_CHUNK_SIZE);
fprintf (stderr, "\t* Number of chunks: %10u\n", num_chunks);
fprintf (stderr, "\t-------------------------------------------\n");
fprintf (stderr, "\t= %u (%u including guard pages) total space used for buffers\n",
total_allocation, EMEM_PACKET_CHUNK_SIZE * num_chunks);
fprintf (stderr, "\t-------------------------------------------\n");
total_space_allocated_from_os = total_allocation
+ sizeof(emem_chunk_t) * num_chunks;
fprintf (stderr, "Total allocated from OS: %u\n\n",
total_space_allocated_from_os);
}else{
fprintf (stderr, "No fully used chunks, nothing to do\n");
}
/* Reset stats */
num_chunks = 0;
num_allocs = 0;
total_used = 0;
total_allocation = 0;
used_for_canaries = 0;
}
fprintf(stderr, "\n-------- SE allocator statistics --------\n");
fprintf(stderr, "Total number of chunk allocations %u\n",
total_no_chunks);
fprintf(stderr, "%s chunks, %s canaries\n",
se_packet_mem.debug_use_chunks ? "Using" : "Not using",
se_packet_mem.debug_use_canary ? "using" : "not using");
if (! (se_packet_mem.free_list || !se_packet_mem.used_list)) {
fprintf(stderr, "No memory allocated\n");
return;
}
if (!se_packet_mem.debug_use_chunks )
return; /* Nothing interesting without chunks?? */
/* Only look at the used_list since those chunks are fully used.
* Looking at the free list would skew our view of what we have wasted.
*/
for (chunk = se_packet_mem.used_list; chunk; chunk = chunk->next) {
num_chunks++;
total_used += (chunk->amount_free_init - chunk->amount_free);
total_allocation += chunk->amount_free_init;
if (se_packet_mem.debug_use_canary){
void *ptr = chunk->canary_last;
int len;
while (ptr != NULL) {
ptr = emem_canary_next(se_packet_mem.canary, (guint8*)ptr, &len);
if (ptr == (void *) -1)
g_error("Memory corrupted");
used_for_canaries += len;
}
}
}
if (num_chunks == 0) {
fprintf (stderr, "No fully used chunks, nothing to do\n");
return;
}
fprintf (stderr, "\n");
fprintf (stderr, "---------- Allocations from the OS ----------\n");
fprintf (stderr, "---- Headers ----\n");
fprintf (stderr, "\t( Chunk header size: %10lu\n",
sizeof(emem_chunk_t));
fprintf (stderr, "\t* Number of chunks: %10u\n", num_chunks);
fprintf (stderr, "\t-------------------------------------------\n");
total_headers = sizeof(emem_chunk_t) * num_chunks;
fprintf (stderr, "\t= %u bytes used for headers\n", total_headers);
fprintf (stderr, "\n---- Buffer space ----\n");
fprintf (stderr, "\tChunk allocation size: %10u\n",
EMEM_PACKET_CHUNK_SIZE);
fprintf (stderr, "\t* Number of chunks: %10u\n", num_chunks);
fprintf (stderr, "\t-------------------------------------------\n");
fprintf (stderr, "\t= %u (%u including guard pages) bytes used for buffers\n",
total_allocation, EMEM_PACKET_CHUNK_SIZE * num_chunks);
fprintf (stderr, "\t-------------------------------------------\n");
total_space_allocated_from_os = (EMEM_PACKET_CHUNK_SIZE * num_chunks)
+ total_headers;
fprintf (stderr, "Total bytes allocated from the OS: %u\n\n",
total_space_allocated_from_os);
for (i = 0; i < NUM_ALLOC_DIST; i++)
num_allocs += allocations[i];
fprintf (stderr, "---------- Allocations from the SE pool ----------\n");
fprintf (stderr, " Number of SE allocations: %10u\n",
num_allocs);
fprintf (stderr, " Bytes used (incl. canaries): %10u\n",
total_used);
fprintf (stderr, " Bytes used for canaries: %10u\n",
used_for_canaries);
fprintf (stderr, "Bytes unused (wasted, excl. guard pages): %10u\n",
total_allocation - total_used);
fprintf (stderr, "Bytes unused (wasted, incl. guard pages): %10u\n\n",
total_space_allocated_from_os - total_used);
fprintf (stderr, "---------- Statistics ----------\n");
fprintf (stderr, "Average SE allocation size (incl. canaries): %6.2f\n",
(float)total_used/(float)num_allocs);
fprintf (stderr, "Average SE allocation size (excl. canaries): %6.2f\n",
(float)(total_used - used_for_canaries)/(float)num_allocs);
fprintf (stderr, " Average wasted bytes per allocation: %6.2f\n",
(total_allocation - total_used)/(float)num_allocs);
total_space_wasted = (total_allocation - total_used)
+ (sizeof(emem_chunk_t));
fprintf (stderr, " Space used for headers + unused allocation: %8u\n",
total_space_wasted);
fprintf (stderr, "--> %% overhead/waste: %4.2f\n",
100 * (float)total_space_wasted/(float)total_space_allocated_from_os);
fprintf (stderr, "\nAllocation distribution (sizes include canaries):\n");
for (i = 0; i < (NUM_ALLOC_DIST-1); i++)
fprintf (stderr, "size < %5d: %8u\n", 32<<i, allocations[i]);
fprintf (stderr, "size > %5d: %8u\n", 32<<i, allocations[i]);
}
#endif
static gboolean
emem_verify_pointer_list(const emem_chunk_t *chunk_list, const void *ptr)
{
const gchar *cptr = (const gchar *)ptr;
const emem_chunk_t *chunk;
for (chunk = chunk_list; chunk; chunk = chunk->next) {
if (cptr >= (chunk->buf + chunk->free_offset_init) && cptr < (chunk->buf + chunk->free_offset))
return TRUE;
}
return FALSE;
}
static gboolean
emem_verify_pointer(const emem_pool_t *hdr, const void *ptr)
{
return emem_verify_pointer_list(hdr->free_list, ptr) || emem_verify_pointer_list(hdr->used_list, ptr);
}
gboolean
ep_verify_pointer(const void *ptr)
{
if (ep_packet_mem.debug_verify_pointers)
return emem_verify_pointer(&ep_packet_mem, ptr);
else
return FALSE;
}
gboolean
se_verify_pointer(const void *ptr)
{
if (se_packet_mem.debug_verify_pointers)
return emem_verify_pointer(&se_packet_mem, ptr);
else
return FALSE;
}
static void
emem_scrub_memory(char *buf, size_t size, gboolean alloc)
{
guint scrubbed_value;
size_t offset;
if (!debug_use_memory_scrubber)
return;
if (alloc) /* this memory is being allocated */
scrubbed_value = 0xBADDCAFE;
else /* this memory is being freed */
scrubbed_value = 0xDEADBEEF;
/* We shouldn't need to check the alignment of the starting address
* since this is malloc'd memory (or 'pagesize' bytes into malloc'd
* memory).
*/
/* XXX - if the above is *NOT* true, we should use memcpy here,
* in order to avoid problems on alignment-sensitive platforms, e.g.
* http://stackoverflow.com/questions/108866/is-there-memset-that-accepts-integers-larger-than-char
*/
for (offset = 0; offset + sizeof(guint) <= size; offset += sizeof(guint))
*(guint*)(void*)(buf+offset) = scrubbed_value;
/* Initialize the last bytes, if any */
if (offset < size) {
*(guint8*)(buf+offset) = scrubbed_value >> 24;
offset++;
if (offset < size) {
*(guint8*)(buf+offset) = (scrubbed_value >> 16) & 0xFF;
offset++;
if (offset < size) {
*(guint8*)(buf+offset) = (scrubbed_value >> 8) & 0xFF;
}
}
}
}
static emem_chunk_t *
emem_create_chunk(size_t size)
{
emem_chunk_t *npc;
npc = g_new(emem_chunk_t, 1);
npc->next = NULL;
npc->canary_last = NULL;
#if defined (_WIN32)
/*
* MSDN documents VirtualAlloc/VirtualProtect at
* http://msdn.microsoft.com/library/en-us/memory/base/creating_guard_pages.asp
*/
/* XXX - is MEM_COMMIT|MEM_RESERVE correct? */
npc->buf = (char *)VirtualAlloc(NULL, size,
MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);
if (npc->buf == NULL) {
g_free(npc);
if (getenv("WIRESHARK_ABORT_ON_OUT_OF_MEMORY"))
abort();
else
THROW(OutOfMemoryError);
}
#elif defined(USE_GUARD_PAGES)
npc->buf = (char *)mmap(NULL, size,
PROT_READ|PROT_WRITE, ANON_PAGE_MODE, ANON_FD, 0);
if (npc->buf == MAP_FAILED) {
g_free(npc);
if (getenv("WIRESHARK_ABORT_ON_OUT_OF_MEMORY"))
abort();
else
THROW(OutOfMemoryError);
}
#else /* Is there a draft in here? */
npc->buf = g_malloc(size);
/* g_malloc() can't fail */
#endif
#ifdef SHOW_EMEM_STATS
total_no_chunks++;
#endif
npc->amount_free = npc->amount_free_init = (unsigned int) size;
npc->free_offset = npc->free_offset_init = 0;
return npc;
}
static emem_chunk_t *
emem_create_chunk_gp(size_t size)
{
#if defined (_WIN32)
BOOL ret;
char *buf_end, *prot1, *prot2;
DWORD oldprot;
#elif defined(USE_GUARD_PAGES)
int ret;
char *buf_end, *prot1, *prot2;
#endif /* _WIN32 / USE_GUARD_PAGES */
emem_chunk_t *npc;
npc = emem_create_chunk(size);
#if defined (_WIN32)
buf_end = npc->buf + size;
/* Align our guard pages on page-sized boundaries */
prot1 = (char *) ((((intptr_t) npc->buf + pagesize - 1) / pagesize) * pagesize);
prot2 = (char *) ((((intptr_t) buf_end - (1 * pagesize)) / pagesize) * pagesize);
ret = VirtualProtect(prot1, pagesize, PAGE_NOACCESS, &oldprot);
g_assert(ret != 0 || iswindowsplatform);
ret = VirtualProtect(prot2, pagesize, PAGE_NOACCESS, &oldprot);
g_assert(ret != 0 || iswindowsplatform);
npc->amount_free_init = (unsigned int) (prot2 - prot1 - pagesize);
npc->free_offset_init = (unsigned int) (prot1 - npc->buf) + pagesize;
#elif defined(USE_GUARD_PAGES)
buf_end = npc->buf + size;
/* Align our guard pages on page-sized boundaries */
prot1 = (char *) ((((intptr_t) npc->buf + pagesize - 1) / pagesize) * pagesize);
prot2 = (char *) ((((intptr_t) buf_end - (1 * pagesize)) / pagesize) * pagesize);
ret = mprotect(prot1, pagesize, PROT_NONE);
g_assert(ret != -1);
ret = mprotect(prot2, pagesize, PROT_NONE);
g_assert(ret != -1);
npc->amount_free_init = (unsigned int)(prot2 - prot1 - pagesize);
npc->free_offset_init = (unsigned int)((prot1 - npc->buf) + pagesize);
#else
npc->amount_free_init = size;
npc->free_offset_init = 0;
#endif /* USE_GUARD_PAGES */
npc->amount_free = npc->amount_free_init;
npc->free_offset = npc->free_offset_init;
return npc;
}
static void *
emem_alloc_chunk(size_t size, emem_pool_t *mem)
{
void *buf;
size_t asize = size;
gboolean use_canary = mem->debug_use_canary;
guint8 pad;
emem_chunk_t *free_list;
/* Allocate room for at least 8 bytes of canary plus some padding
* so the canary ends on an 8-byte boundary.
* But first add the room needed for the pointer to the next canary
* (so the entire allocation will end on an 8-byte boundary).
*/
if (use_canary) {
asize += sizeof(void *);
pad = emem_canary_pad(asize);
} else
pad = (WS_MEM_ALIGN - (asize & (WS_MEM_ALIGN-1))) & (WS_MEM_ALIGN-1);
asize += pad;
#ifdef SHOW_EMEM_STATS
/* Do this check here so we can include the canary size */
if (mem == &se_packet_mem) {
if (asize < 32)
allocations[0]++;
else if (asize < 64)
allocations[1]++;
else if (asize < 128)
allocations[2]++;
else if (asize < 256)
allocations[3]++;
else if (asize < 512)
allocations[4]++;
else if (asize < 1024)
allocations[5]++;
else if (asize < 2048)
allocations[6]++;
else if (asize < 4096)
allocations[7]++;
else if (asize < 8192)
allocations[8]++;
else if (asize < 16384)
allocations[8]++;
else
allocations[(NUM_ALLOC_DIST-1)]++;
}
#endif
/* make sure we dont try to allocate too much (arbitrary limit) */
DISSECTOR_ASSERT(size<(EMEM_PACKET_CHUNK_SIZE>>2));
if (!mem->free_list)
mem->free_list = emem_create_chunk_gp(EMEM_PACKET_CHUNK_SIZE);
/* oops, we need to allocate more memory to serve this request
* than we have free. move this node to the used list and try again
*/
if(asize > mem->free_list->amount_free) {
emem_chunk_t *npc;
npc=mem->free_list;
mem->free_list=mem->free_list->next;
npc->next=mem->used_list;
mem->used_list=npc;
if (!mem->free_list)
mem->free_list = emem_create_chunk_gp(EMEM_PACKET_CHUNK_SIZE);
}
free_list = mem->free_list;
buf = free_list->buf + free_list->free_offset;
free_list->amount_free -= (unsigned int) asize;
free_list->free_offset += (unsigned int) asize;
if (use_canary) {
char *cptr = (char *)buf + size;
memcpy(cptr, mem->canary, pad-1);
cptr[pad-1] = '\0';
memcpy(cptr + pad, &free_list->canary_last, sizeof(void *));
free_list->canary_last = cptr;
}
return buf;
}
static void *
emem_alloc_glib(size_t size, emem_pool_t *mem)
{
emem_chunk_t *npc;
npc=g_new(emem_chunk_t, 1);
npc->next=mem->used_list;
npc->buf=(char *)g_malloc(size);
npc->canary_last = NULL;
mem->used_list=npc;
/* There's no padding/alignment involved (from our point of view) when
* we fetch the memory directly from the system pool, so WYSIWYG */
npc->amount_free = npc->free_offset_init = 0;
npc->free_offset = npc->amount_free_init = (unsigned int) size;
return npc->buf;
}
/* allocate 'size' amount of memory. */
static void *
emem_alloc(size_t size, emem_pool_t *mem)
{
void *buf;
#if 0
/* For testing wmem, effectively redirects most emem memory to wmem.
* You will also have to comment out several assertions in wmem_core.c,
* specifically anything g_assert(allocator->in_scope), since it is much
* stricter about when it is permitted to be called. */
if (mem == &ep_packet_mem) {
return wmem_alloc(wmem_packet_scope(), size);
}
else if (mem == &se_packet_mem) {
return wmem_alloc(wmem_file_scope(), size);
}
#endif
buf = mem->memory_alloc(size, mem);
/* XXX - this is a waste of time if the allocator function is going to
* memset this straight back to 0.
*/
emem_scrub_memory((char *)buf, size, TRUE);
return buf;
}
/* allocate 'size' amount of memory with an allocation lifetime until the
* next packet.
*/
void *
ep_alloc(size_t size)
{
return emem_alloc(size, &ep_packet_mem);
}
/* allocate 'size' amount of memory with an allocation lifetime until the
* next capture.
*/
void *
se_alloc(size_t size)
{
return emem_alloc(size, &se_packet_mem);
}
void *
ep_alloc0(size_t size)
{
return memset(ep_alloc(size),'\0',size);
}
void *
se_alloc0(size_t size)
{
return memset(se_alloc(size),'\0',size);
}
static gchar *
emem_strdup(const gchar *src, void *allocator(size_t))
{
guint len;
gchar *dst;
/* If str is NULL, just return the string "<NULL>" so that the callers don't
* have to bother checking it.
*/
if(!src)
src = "<NULL>";
len = (guint) strlen(src);
dst = (gchar *)memcpy(allocator(len+1), src, len+1);
return dst;
}
gchar *
ep_strdup(const gchar *src)
{
return emem_strdup(src, ep_alloc);
}
gchar *
se_strdup(const gchar *src)
{
return emem_strdup(src, se_alloc);
}
static gchar *
emem_strndup(const gchar *src, size_t len, void *allocator(size_t))
{
gchar *dst = (gchar *)allocator(len+1);
guint i;
for (i = 0; (i < len) && src[i]; i++)
dst[i] = src[i];
dst[i] = '\0';
return dst;
}
gchar *
ep_strndup(const gchar *src, size_t len)
{
return emem_strndup(src, len, ep_alloc);
}
gchar *
se_strndup(const gchar *src, size_t len)
{
return emem_strndup(src, len, se_alloc);
}
void *
ep_memdup(const void* src, size_t len)
{
return memcpy(ep_alloc(len), src, len);
}
void *
se_memdup(const void* src, size_t len)
{
return memcpy(se_alloc(len), src, len);
}
static gchar *
emem_strdup_vprintf(const gchar *fmt, va_list ap, void *allocator(size_t))
{
va_list ap2;
gsize len;
gchar* dst;
G_VA_COPY(ap2, ap);
len = g_printf_string_upper_bound(fmt, ap);
dst = (gchar *)allocator(len+1);
g_vsnprintf (dst, (gulong) len, fmt, ap2);
va_end(ap2);
return dst;
}
gchar *
ep_strdup_vprintf(const gchar *fmt, va_list ap)
{
return emem_strdup_vprintf(fmt, ap, ep_alloc);
}
gchar *
se_strdup_vprintf(const gchar* fmt, va_list ap)
{
return emem_strdup_vprintf(fmt, ap, se_alloc);
}
gchar *
ep_strdup_printf(const gchar *fmt, ...)
{
va_list ap;
gchar *dst;
va_start(ap, fmt);
dst = ep_strdup_vprintf(fmt, ap);
va_end(ap);
return dst;
}
gchar *
se_strdup_printf(const gchar *fmt, ...)
{
va_list ap;
gchar *dst;
va_start(ap, fmt);
dst = se_strdup_vprintf(fmt, ap);
va_end(ap);
return dst;
}
gchar **
ep_strsplit(const gchar* string, const gchar* sep, int max_tokens)
{
gchar* splitted;
gchar* s;
guint tokens;
guint str_len;
guint sep_len;
guint i;
gchar** vec;
enum { AT_START, IN_PAD, IN_TOKEN } state;
guint curr_tok = 0;
if ( ! string
|| ! sep
|| ! sep[0])
return NULL;
s = splitted = ep_strdup(string);
str_len = (guint) strlen(splitted);
sep_len = (guint) strlen(sep);
if (max_tokens < 1) max_tokens = INT_MAX;
tokens = 1;
while (tokens <= (guint)max_tokens && ( s = strstr(s,sep) )) {
tokens++;
for(i=0; i < sep_len; i++ )
s[i] = '\0';
s += sep_len;
}
vec = ep_alloc_array(gchar*,tokens+1);
state = AT_START;
for (i=0; i< str_len; i++) {
switch(state) {
case AT_START:
switch(splitted[i]) {
case '\0':
state = IN_PAD;
continue;
default:
vec[curr_tok] = &(splitted[i]);
curr_tok++;
state = IN_TOKEN;
continue;
}
case IN_TOKEN:
switch(splitted[i]) {
case '\0':
state = IN_PAD;
default:
continue;
}
case IN_PAD:
switch(splitted[i]) {
default:
vec[curr_tok] = &(splitted[i]);
curr_tok++;
state = IN_TOKEN;
case '\0':
continue;
}
}
}
vec[curr_tok] = NULL;
return vec;
}
gchar *
ep_strconcat(const gchar *string1, ...)
{
gsize l;
va_list args;
gchar *s;
gchar *concat;
gchar *ptr;
if (!string1)
return NULL;
l = 1 + strlen(string1);
va_start(args, string1);
s = va_arg(args, gchar*);
while (s) {
l += strlen(s);
s = va_arg(args, gchar*);
}
va_end(args);
concat = (gchar *)ep_alloc(l);
ptr = concat;
ptr = g_stpcpy(ptr, string1);
va_start(args, string1);
s = va_arg(args, gchar*);
while (s) {
ptr = g_stpcpy(ptr, s);
s = va_arg(args, gchar*);
}
va_end(args);
return concat;
}
/* release all allocated memory back to the pool. */
static void
emem_free_all(emem_pool_t *mem)
{
gboolean use_chunks = mem->debug_use_chunks;
emem_chunk_t *npc;
/* move all used chunks over to the free list */
while(mem->used_list){
npc=mem->used_list;
mem->used_list=mem->used_list->next;
npc->next=mem->free_list;
mem->free_list=npc;
}
/* clear them all out */
npc = mem->free_list;
while (npc != NULL) {
if (use_chunks) {
while (npc->canary_last != NULL) {
npc->canary_last = emem_canary_next(mem->canary, (guint8 *)npc->canary_last, NULL);
/* XXX, check if canary_last is inside allocated memory? */
if (npc->canary_last == (void *) -1)
g_error("Memory corrupted");
}
emem_scrub_memory((npc->buf + npc->free_offset_init),
(npc->free_offset - npc->free_offset_init),
FALSE);
npc->amount_free = npc->amount_free_init;
npc->free_offset = npc->free_offset_init;
npc = npc->next;
} else {
emem_chunk_t *next = npc->next;
emem_scrub_memory(npc->buf, npc->amount_free_init, FALSE);
g_free(npc->buf);
g_free(npc);
npc = next;
}
}
if (!use_chunks) {
/* We've freed all this memory already */
mem->free_list = NULL;
}
}
/* release all allocated memory back to the pool. */
void
ep_free_all(void)
{
emem_free_all(&ep_packet_mem);
}
/* release all allocated memory back to the pool. */
void
se_free_all(void)
{
#ifdef SHOW_EMEM_STATS
print_alloc_stats();
#endif
emem_free_all(&se_packet_mem);
}
/*
* String buffers
*/
/*
* Presumably we're using these routines for building strings for the tree.
* Use ITEM_LABEL_LENGTH as the basis for our default lengths.
*/
#define DEFAULT_STRBUF_LEN (ITEM_LABEL_LENGTH / 10)
#define MAX_STRBUF_LEN 65536
static gsize
next_size(gsize cur_alloc_len, gsize wanted_alloc_len, gsize max_alloc_len)
{
if (max_alloc_len < 1 || max_alloc_len > MAX_STRBUF_LEN) {
max_alloc_len = MAX_STRBUF_LEN;
}
if (cur_alloc_len < 1) {
cur_alloc_len = DEFAULT_STRBUF_LEN;
}
while (cur_alloc_len < wanted_alloc_len) {
cur_alloc_len *= 2;
}
return cur_alloc_len < max_alloc_len ? cur_alloc_len : max_alloc_len;
}
static void
ep_strbuf_grow(emem_strbuf_t *strbuf, gsize wanted_alloc_len)
{
gsize new_alloc_len;
gchar *new_str;
if (!strbuf || (wanted_alloc_len <= strbuf->alloc_len) || (strbuf->alloc_len >= strbuf->max_alloc_len)) {
return;
}
new_alloc_len = next_size(strbuf->alloc_len, wanted_alloc_len, strbuf->max_alloc_len);
new_str = (gchar *)ep_alloc(new_alloc_len);
g_strlcpy(new_str, strbuf->str, new_alloc_len);
strbuf->alloc_len = new_alloc_len;
strbuf->str = new_str;
}
emem_strbuf_t *
ep_strbuf_sized_new(gsize alloc_len, gsize max_alloc_len)
{
emem_strbuf_t *strbuf;
strbuf = ep_new(emem_strbuf_t);
if ((max_alloc_len == 0) || (max_alloc_len > MAX_STRBUF_LEN))
max_alloc_len = MAX_STRBUF_LEN;
if (alloc_len == 0)
alloc_len = 1;
else if (alloc_len > max_alloc_len)
alloc_len = max_alloc_len;
strbuf->str = (char *)ep_alloc(alloc_len);
strbuf->str[0] = '\0';
strbuf->len = 0;
strbuf->alloc_len = alloc_len;
strbuf->max_alloc_len = max_alloc_len;
return strbuf;
}
emem_strbuf_t *
ep_strbuf_new(const gchar *init)
{
emem_strbuf_t *strbuf;
strbuf = ep_strbuf_sized_new(next_size(0, init?strlen(init)+1:0, 0), 0); /* +1 for NULL terminator */
if (init) {
gsize full_len;
full_len = g_strlcpy(strbuf->str, init, strbuf->alloc_len);
strbuf->len = MIN(full_len, strbuf->alloc_len-1);
}
return strbuf;
}
emem_strbuf_t *
ep_strbuf_new_label(const gchar *init)
{
emem_strbuf_t *strbuf;
gsize full_len;
/* Be optimistic: Allocate default size strbuf string and only */
/* request an increase if needed. */
/* XXX: Is it reasonable to assume that much of the usage of */
/* ep_strbuf_new_label will have init==NULL or */
/* strlen(init) < DEFAULT_STRBUF_LEN) ??? */
strbuf = ep_strbuf_sized_new(DEFAULT_STRBUF_LEN, ITEM_LABEL_LENGTH);
if (!init)
return strbuf;
/* full_len does not count the trailing '\0'. */
full_len = g_strlcpy(strbuf->str, init, strbuf->alloc_len);
if (full_len < strbuf->alloc_len) {
strbuf->len += full_len;
} else {
strbuf = ep_strbuf_sized_new(full_len+1, ITEM_LABEL_LENGTH);
full_len = g_strlcpy(strbuf->str, init, strbuf->alloc_len);
strbuf->len = MIN(full_len, strbuf->alloc_len-1);
}
return strbuf;
}
emem_strbuf_t *
ep_strbuf_append(emem_strbuf_t *strbuf, const gchar *str)
{
gsize add_len, full_len;
if (!strbuf || !str || str[0] == '\0') {
return strbuf;
}
/* Be optimistic; try the g_strlcpy first & see if enough room. */
/* Note: full_len doesn't count the trailing '\0'; add_len does allow for same */
add_len = strbuf->alloc_len - strbuf->len;
full_len = g_strlcpy(&strbuf->str[strbuf->len], str, add_len);
if (full_len < add_len) {
strbuf->len += full_len;
} else {
strbuf->str[strbuf->len] = '\0'; /* end string at original length again */
ep_strbuf_grow(strbuf, strbuf->len + full_len + 1);
add_len = strbuf->alloc_len - strbuf->len;
full_len = g_strlcpy(&strbuf->str[strbuf->len], str, add_len);
strbuf->len += MIN(add_len-1, full_len);
}
return strbuf;
}
void
ep_strbuf_append_vprintf(emem_strbuf_t *strbuf, const gchar *format, va_list ap)
{
va_list ap2;
gsize add_len, full_len;
G_VA_COPY(ap2, ap);
/* Be optimistic; try the g_vsnprintf first & see if enough room. */
/* Note: full_len doesn't count the trailing '\0'; add_len does allow for same. */
add_len = strbuf->alloc_len - strbuf->len;
full_len = g_vsnprintf(&strbuf->str[strbuf->len], (gulong) add_len, format, ap);
if (full_len < add_len) {
strbuf->len += full_len;
} else {
strbuf->str[strbuf->len] = '\0'; /* end string at original length again */
ep_strbuf_grow(strbuf, strbuf->len + full_len + 1);
add_len = strbuf->alloc_len - strbuf->len;
full_len = g_vsnprintf(&strbuf->str[strbuf->len], (gulong) add_len, format, ap2);
strbuf->len += MIN(add_len-1, full_len);
}
va_end(ap2);
}
void
ep_strbuf_append_printf(emem_strbuf_t *strbuf, const gchar *format, ...)
{
va_list ap;
va_start(ap, format);
ep_strbuf_append_vprintf(strbuf, format, ap);
va_end(ap);
}
void
ep_strbuf_printf(emem_strbuf_t *strbuf, const gchar *format, ...)
{
va_list ap;
if (!strbuf) {
return;
}
strbuf->len = 0;
va_start(ap, format);
ep_strbuf_append_vprintf(strbuf, format, ap);
va_end(ap);
}
emem_strbuf_t *
ep_strbuf_append_c(emem_strbuf_t *strbuf, const gchar c)
{
if (!strbuf) {
return strbuf;
}
/* +1 for the new character & +1 for the trailing '\0'. */
if (strbuf->alloc_len < strbuf->len + 1 + 1) {
ep_strbuf_grow(strbuf, strbuf->len + 1 + 1);
}
if (strbuf->alloc_len >= strbuf->len + 1 + 1) {
strbuf->str[strbuf->len] = c;
strbuf->len++;
strbuf->str[strbuf->len] = '\0';
}
return strbuf;
}
emem_strbuf_t *
ep_strbuf_append_unichar(emem_strbuf_t *strbuf, const gunichar c)
{
gchar buf[6];
gint charlen;
if (!strbuf) {
return strbuf;
}
charlen = g_unichar_to_utf8(c, buf);
/* +charlen for the new character & +1 for the trailing '\0'. */
if (strbuf->alloc_len < strbuf->len + charlen + 1) {
ep_strbuf_grow(strbuf, strbuf->len + charlen + 1);
}
if (strbuf->alloc_len >= strbuf->len + charlen + 1) {
memcpy(&strbuf->str[strbuf->len], buf, charlen);
strbuf->len += charlen;
strbuf->str[strbuf->len] = '\0';
}
return strbuf;
}
emem_strbuf_t *
ep_strbuf_truncate(emem_strbuf_t *strbuf, gsize len)
{
if (!strbuf || len >= strbuf->len) {
return strbuf;
}
strbuf->str[len] = '\0';
strbuf->len = len;
return strbuf;
}
/*
* Editor modelines
*
* Local Variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* ex: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/