/* packet-flexray.c * Routines for FlexRay dissection * Copyright 2016, Roman Leonhartsberger * * Wireshark - Network traffic analyzer * By Gerald Combs * Copyright 1998 Gerald Combs * * SPDX-License-Identifier: GPL-2.0-or-later */ #include #include #include #include #include #include #include #include "packet-flexray.h" void proto_reg_handoff_flexray(void); void proto_register_flexray(void); static dissector_handle_t flexray_handle; static gboolean prefvar_try_heuristic_first = FALSE; static dissector_table_t subdissector_table; static dissector_table_t flexrayid_subdissector_table; static heur_dissector_list_t heur_subdissector_list; static heur_dtbl_entry_t *heur_dtbl_entry; static int proto_flexray; static int hf_flexray_measurement_header_field; static int hf_flexray_error_flags_field; static int hf_flexray_frame_header; static int hf_flexray_ti; static int hf_flexray_ch; static int hf_flexray_fcrc_err; static int hf_flexray_hcrc_err; static int hf_flexray_fes_err; static int hf_flexray_cod_err; static int hf_flexray_tss_viol; static int hf_flexray_res; static int hf_flexray_ppi; static int hf_flexray_nfi; static int hf_flexray_sfi; static int hf_flexray_stfi; static int hf_flexray_fid; static int hf_flexray_pl; static int hf_flexray_hcrc; static int hf_flexray_cc; static int hf_flexray_sl; static int hf_flexray_flexray_id; static gint ett_flexray; static gint ett_flexray_measurement_header; static gint ett_flexray_error_flags; static gint ett_flexray_frame; static int * const error_fields[] = { &hf_flexray_fcrc_err, &hf_flexray_hcrc_err, &hf_flexray_fes_err, &hf_flexray_cod_err, &hf_flexray_tss_viol, NULL }; static expert_field ei_flexray_frame_payload_truncated; static expert_field ei_flexray_symbol_frame; static expert_field ei_flexray_error_flag; static expert_field ei_flexray_stfi_flag; #define FLEXRAY_FRAME 0x01 #define FLEXRAY_SYMBOL 0x02 #define FLEXRAY_HEADER_LENGTH 5 static const value_string flexray_type_names[] = { { FLEXRAY_FRAME, "FRAME" }, { FLEXRAY_SYMBOL, "SYMB" }, {0, NULL} }; static const true_false_string flexray_channel_tfs = { "CHB", "CHA" }; static const true_false_string flexray_nfi_tfs = { "False", "True" }; /* Senders and Receivers UAT */ typedef struct _sender_receiver_config { guint bus_id; guint channel; guint cycle; guint frame_id; gchar *sender_name; gchar *receiver_name; } sender_receiver_config_t; #define DATAFILE_FR_SENDER_RECEIVER "FR_senders_receivers" static GHashTable *data_sender_receiver = NULL; static sender_receiver_config_t *sender_receiver_configs = NULL; static guint sender_receiver_config_num = 0; UAT_HEX_CB_DEF(sender_receiver_configs, bus_id, sender_receiver_config_t) UAT_HEX_CB_DEF(sender_receiver_configs, channel, sender_receiver_config_t) UAT_HEX_CB_DEF(sender_receiver_configs, cycle, sender_receiver_config_t) UAT_HEX_CB_DEF(sender_receiver_configs, frame_id, sender_receiver_config_t) UAT_CSTRING_CB_DEF(sender_receiver_configs, sender_name, sender_receiver_config_t) UAT_CSTRING_CB_DEF(sender_receiver_configs, receiver_name, sender_receiver_config_t) static void * copy_sender_receiver_config_cb(void *n, const void *o, size_t size _U_) { sender_receiver_config_t *new_rec = (sender_receiver_config_t *)n; const sender_receiver_config_t *old_rec = (const sender_receiver_config_t *)o; new_rec->bus_id = old_rec->bus_id; new_rec->channel = old_rec->channel; new_rec->cycle = old_rec->cycle; new_rec->frame_id = old_rec->frame_id; new_rec->sender_name = g_strdup(old_rec->sender_name); new_rec->receiver_name = g_strdup(old_rec->receiver_name); return new_rec; } static bool update_sender_receiver_config(void *r, char **err) { sender_receiver_config_t *rec = (sender_receiver_config_t *)r; if (rec->channel > 0x1) { *err = ws_strdup_printf("We currently only support 0 and 1 for Channels (Channel: %i Frame ID: %i)", rec->channel, rec->frame_id); return FALSE; } if (rec->cycle > 0xff) { *err = ws_strdup_printf("We currently only support 8 bit Cycles (Cycle: %i Frame ID: %i)", rec->cycle, rec->frame_id); return FALSE; } if (rec->frame_id > 0xffff) { *err = ws_strdup_printf("We currently only support 16 bit Frame IDs (Cycle: %i Frame ID: %i)", rec->cycle, rec->frame_id); return FALSE; } if (rec->bus_id > 0xffff) { *err = ws_strdup_printf("We currently only support 16 bit bus identifiers (Bus ID: 0x%x)", rec->bus_id); return FALSE; } return TRUE; } static void free_sender_receiver_config_cb(void *r) { sender_receiver_config_t *rec = (sender_receiver_config_t *)r; /* freeing result of g_strdup */ g_free(rec->sender_name); rec->sender_name = NULL; g_free(rec->receiver_name); rec->receiver_name = NULL; } static guint64 sender_receiver_key(guint16 bus_id, guint8 channel, guint8 cycle, guint16 frame_id) { return ((guint64)bus_id << 32) | ((guint64)channel << 24) | ((guint64)cycle << 16) | frame_id; } static sender_receiver_config_t * ht_lookup_sender_receiver_config(flexray_info_t *flexray_info) { sender_receiver_config_t *tmp = NULL; guint64 key = 0; if (sender_receiver_configs == NULL) { return NULL; } key = sender_receiver_key(flexray_info->bus_id, flexray_info->ch, flexray_info->cc, flexray_info->id); tmp = (sender_receiver_config_t *)g_hash_table_lookup(data_sender_receiver, &key); if (tmp == NULL) { key = sender_receiver_key(0, flexray_info->ch, flexray_info->cc, flexray_info->id); tmp = (sender_receiver_config_t *)g_hash_table_lookup(data_sender_receiver, &key); } return tmp; } static void sender_receiver_free_key(gpointer key) { wmem_free(wmem_epan_scope(), key); } static void post_update_sender_receiver_cb(void) { guint i; guint64 *key_id = NULL; /* destroy old hash table, if it exist */ if (data_sender_receiver) { g_hash_table_destroy(data_sender_receiver); data_sender_receiver = NULL; } /* create new hash table */ data_sender_receiver = g_hash_table_new_full(g_int64_hash, g_int64_equal, &sender_receiver_free_key, NULL); if (data_sender_receiver == NULL || sender_receiver_configs == NULL || sender_receiver_config_num == 0) { return; } for (i = 0; i < sender_receiver_config_num; i++) { key_id = wmem_new(wmem_epan_scope(), guint64); *key_id = sender_receiver_key(sender_receiver_configs[i].bus_id, sender_receiver_configs[i].channel, sender_receiver_configs[i].cycle, sender_receiver_configs[i].frame_id); g_hash_table_insert(data_sender_receiver, key_id, &sender_receiver_configs[i]); } } gboolean flexray_set_source_and_destination_columns(packet_info *pinfo, flexray_info_t *flexray_info) { sender_receiver_config_t *tmp = ht_lookup_sender_receiver_config(flexray_info); if (tmp != NULL) { /* remove all addresses to support FlexRay as payload (e.g., TECMP) */ clear_address(&pinfo->net_src); clear_address(&pinfo->dl_src); clear_address(&pinfo->src); clear_address(&pinfo->net_dst); clear_address(&pinfo->dl_dst); clear_address(&pinfo->dst); col_add_fstr(pinfo->cinfo, COL_DEF_SRC, "%s", tmp->sender_name); col_add_fstr(pinfo->cinfo, COL_DEF_DST, "%s", tmp->receiver_name); return true; } return false; } guint32 flexray_calc_flexrayid(guint16 bus_id, guint8 channel, guint16 frame_id, guint8 cycle) { /* Bus-ID 4bit->4bit | Channel 1bit->4bit | Frame ID 11bit->16bit | Cycle 6bit->8bit */ return (guint32)(bus_id & 0xf) << 28 | (guint32)(channel & 0x0f) << 24 | (guint32)(frame_id & 0xffff) << 8 | (guint32)(cycle & 0xff); } guint32 flexray_flexrayinfo_to_flexrayid(flexray_info_t *flexray_info) { return flexray_calc_flexrayid(flexray_info->bus_id, flexray_info->ch, flexray_info->id, flexray_info->cc); } gboolean flexray_call_subdissectors(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, flexray_info_t *flexray_info, const gboolean use_heuristics_first) { guint32 flexray_id = flexray_flexrayinfo_to_flexrayid(flexray_info); /* lets try an exact match first */ if (dissector_try_uint_new(flexrayid_subdissector_table, flexray_id, tvb, pinfo, tree, TRUE, flexray_info)) { return TRUE; } /* lets try with BUS-ID = 0 (any) */ if (dissector_try_uint_new(flexrayid_subdissector_table, flexray_id & ~FLEXRAY_ID_BUS_ID_MASK, tvb, pinfo, tree, TRUE, flexray_info)) { return TRUE; } /* lets try with cycle = 0xff (any) */ if (dissector_try_uint_new(flexrayid_subdissector_table, flexray_id | FLEXRAY_ID_CYCLE_MASK, tvb, pinfo, tree, TRUE, flexray_info)) { return TRUE; } /* lets try with BUS-ID = 0 (any) and cycle = 0xff (any) */ if (dissector_try_uint_new(flexrayid_subdissector_table, (flexray_id & ~FLEXRAY_ID_BUS_ID_MASK) | FLEXRAY_ID_CYCLE_MASK, tvb, pinfo, tree, TRUE, flexray_info)) { return TRUE; } if (!use_heuristics_first) { if (!dissector_try_payload_new(subdissector_table, tvb, pinfo, tree, FALSE, flexray_info)) { if (!dissector_try_heuristic(heur_subdissector_list, tvb, pinfo, tree, &heur_dtbl_entry, flexray_info)) { return FALSE; } } } else { if (!dissector_try_heuristic(heur_subdissector_list, tvb, pinfo, tree, &heur_dtbl_entry, flexray_info)) { if (!dissector_try_payload_new(subdissector_table, tvb, pinfo, tree, FALSE, flexray_info)) { return FALSE; } } } return TRUE; } static int dissect_flexray(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_) { proto_item *ti; proto_tree *flexray_tree, *measurement_tree; col_set_str(pinfo->cinfo, COL_PROTOCOL, "FLEXRAY"); col_clear(pinfo->cinfo, COL_INFO); ti = proto_tree_add_item(tree, proto_flexray, tvb, 0, -1, ENC_NA); flexray_tree = proto_item_add_subtree(ti, ett_flexray); /* Measurement Header [1 Byte] */ ti = proto_tree_add_item(flexray_tree, hf_flexray_measurement_header_field, tvb, 0, 1, ENC_BIG_ENDIAN); measurement_tree = proto_item_add_subtree(ti, ett_flexray_measurement_header); gboolean flexray_channel_is_b; proto_tree_add_item_ret_boolean(measurement_tree, hf_flexray_ch, tvb, 0, 1, ENC_BIG_ENDIAN, &flexray_channel_is_b); guint32 frame_type; proto_tree_add_item_ret_uint(measurement_tree, hf_flexray_ti, tvb, 0, 1, ENC_BIG_ENDIAN, &frame_type); col_add_fstr(pinfo->cinfo, COL_INFO, "%s:", val_to_str(frame_type, flexray_type_names, "Unknown (0x%02x)")); if (frame_type == FLEXRAY_FRAME) { proto_tree *error_flags_tree, *flexray_frame_tree; gboolean call_subdissector = TRUE; /* Error Flags [1 Byte] */ ti = proto_tree_add_bitmask(flexray_tree, tvb, 1, hf_flexray_error_flags_field, ett_flexray_error_flags, error_fields, ENC_BIG_ENDIAN); error_flags_tree = proto_item_add_subtree(ti, ett_flexray_error_flags); guint8 error_flags = tvb_get_guint8(tvb, 1) & 0x1f; if (error_flags) { expert_add_info(pinfo, error_flags_tree, &ei_flexray_error_flag); call_subdissector = FALSE; } /* FlexRay Frame [5 Bytes + Payload]*/ gint flexray_frame_length = tvb_captured_length(tvb) - 2; proto_item *ti_header = proto_tree_add_item(flexray_tree, hf_flexray_frame_header, tvb, 2, -1, ENC_NA); flexray_frame_tree = proto_item_add_subtree(ti_header, ett_flexray_frame); gboolean nfi, sfi, stfi; proto_tree_add_item(flexray_frame_tree, hf_flexray_res, tvb, 2, 1, ENC_NA); proto_tree_add_item(flexray_frame_tree, hf_flexray_ppi, tvb, 2, 1, ENC_NA); proto_tree_add_item_ret_boolean(flexray_frame_tree, hf_flexray_nfi, tvb, 2, 1, ENC_NA, &nfi); proto_tree_add_item_ret_boolean(flexray_frame_tree, hf_flexray_sfi, tvb, 2, 1, ENC_NA, &sfi); proto_tree_add_item_ret_boolean(flexray_frame_tree, hf_flexray_stfi, tvb, 2, 1, ENC_NA, &stfi); if (stfi && !sfi) { expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_stfi_flag); call_subdissector = FALSE; } guint32 flexray_id; proto_tree_add_item_ret_uint(flexray_frame_tree, hf_flexray_fid, tvb, 2, 2, ENC_BIG_ENDIAN, &flexray_id); col_append_fstr(pinfo->cinfo, COL_INFO, " ID %4d", flexray_id); if (flexray_id == 0) { call_subdissector = FALSE; } guint32 flexray_pl; proto_tree_add_item_ret_uint(flexray_frame_tree, hf_flexray_pl, tvb, 4, 1, ENC_BIG_ENDIAN, &flexray_pl); gint flexray_reported_payload_length = 2 * flexray_pl; gint flexray_current_payload_length = flexray_frame_length - FLEXRAY_HEADER_LENGTH; gboolean payload_truncated = flexray_reported_payload_length > flexray_current_payload_length; if (flexray_reported_payload_length < flexray_current_payload_length) { flexray_current_payload_length = MAX(0, flexray_reported_payload_length); } proto_tree_add_item(flexray_frame_tree, hf_flexray_hcrc, tvb, 4, 3, ENC_BIG_ENDIAN); guint32 flexray_cc; proto_tree_add_item_ret_uint(flexray_frame_tree, hf_flexray_cc, tvb, 6, 1, ENC_BIG_ENDIAN, &flexray_cc); col_append_fstr(pinfo->cinfo, COL_INFO, " CC %2d", flexray_cc); if (nfi) { if (payload_truncated) { expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_frame_payload_truncated); call_subdissector = FALSE; } if (tvb != NULL && flexray_current_payload_length > 0) { col_append_fstr(pinfo->cinfo, COL_INFO, " %s", tvb_bytes_to_str_punct(pinfo->pool, tvb, 7, flexray_current_payload_length, ' ')); } } else { call_subdissector = FALSE; col_append_fstr(pinfo->cinfo, COL_INFO, " NF"); /* Payload is optional on Null Frames */ if (payload_truncated && flexray_current_payload_length != 0) { expert_add_info(pinfo, flexray_frame_tree, &ei_flexray_frame_payload_truncated); } } proto_item_set_end(ti_header, tvb, 2 + FLEXRAY_HEADER_LENGTH); /* Only supporting single bus id right now */ flexray_info_t flexray_info = { .id = (guint16)flexray_id, .cc = (guint8)flexray_cc, .ch = flexray_channel_is_b ? 1 : 0, .bus_id = 0}; ti = proto_tree_add_uint(flexray_frame_tree, hf_flexray_flexray_id, tvb, 0, 7, flexray_flexrayinfo_to_flexrayid(&flexray_info)); proto_item_set_hidden(ti); flexray_set_source_and_destination_columns(pinfo, &flexray_info); if (flexray_current_payload_length > 0) { tvbuff_t *next_tvb = tvb_new_subset_length(tvb, 7, flexray_current_payload_length); if (!call_subdissector || !flexray_call_subdissectors(next_tvb, pinfo, tree, &flexray_info, prefvar_try_heuristic_first)) { call_data_dissector(next_tvb, pinfo, tree); } } } else if (frame_type == FLEXRAY_SYMBOL) { /* FlexRay Symbol [1 Byte] */ expert_add_info(pinfo, flexray_tree, &ei_flexray_symbol_frame); guint32 symbol_length; proto_tree_add_item_ret_uint(flexray_tree, hf_flexray_sl, tvb, 1, 1, ENC_BIG_ENDIAN, &symbol_length); col_append_fstr(pinfo->cinfo, COL_INFO, " SL %3d", symbol_length); } return tvb_captured_length(tvb); } void proto_register_flexray(void) { module_t *flexray_module; expert_module_t *expert_flexray; uat_t *sender_receiver_uat = NULL; static hf_register_info hf[] = { { &hf_flexray_measurement_header_field, { "Measurement Header", "flexray.mhf", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, { &hf_flexray_ti, { "Type Index", "flexray.ti", FT_UINT8, BASE_HEX, VALS(flexray_type_names), 0x7f, NULL, HFILL } }, { &hf_flexray_ch, { "Channel", "flexray.ch", FT_BOOLEAN, 8, TFS(&flexray_channel_tfs), 0x80, NULL, HFILL } }, { &hf_flexray_error_flags_field, { "Error Flags", "flexray.eff", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL } }, { &hf_flexray_fcrc_err, { "Frame CRC error", "flexray.fcrc_err", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL } }, { &hf_flexray_hcrc_err, { "Header CRC error", "flexray.hcrc_err", FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL } }, { &hf_flexray_fes_err, { "Frame End Sequence error", "flexray.fes_err", FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL } }, { &hf_flexray_cod_err, { "Coding error", "flexray.cod_err", FT_BOOLEAN, 8, NULL, 0x02, NULL, HFILL } }, { &hf_flexray_tss_viol, { "TSS violation", "flexray.tss_viol", FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL } }, { &hf_flexray_frame_header, { "FlexRay Frame Header", "flexray.frame_header", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL } }, { &hf_flexray_res, { "Reserved", "flexray.res", FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL } }, { &hf_flexray_ppi, { "Payload Preamble Indicator", "flexray.ppi", FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL } }, { &hf_flexray_nfi, { "Null Frame Indicator", "flexray.nfi", FT_BOOLEAN, 8, TFS(&flexray_nfi_tfs), 0x20, NULL, HFILL } }, { &hf_flexray_sfi, { "Sync Frame Indicator", "flexray.sfi", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL } }, { &hf_flexray_stfi, { "Startup Frame Indicator", "flexray.stfi", FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL } }, { &hf_flexray_fid, { "Frame ID", "flexray.fid", FT_UINT16, BASE_DEC, NULL, 0x07ff, NULL, HFILL } }, { &hf_flexray_pl, { "Payload length", "flexray.pl", FT_UINT8, BASE_DEC, NULL, 0xfe, NULL, HFILL } }, { &hf_flexray_hcrc, { "Header CRC", "flexray.hcrc", FT_UINT24, BASE_DEC, NULL, 0x01ffc0, NULL, HFILL } }, { &hf_flexray_cc, { "Cycle Counter", "flexray.cc", FT_UINT8, BASE_DEC, NULL, 0x3f, NULL, HFILL } }, { &hf_flexray_sl, { "Symbol length", "flexray.sl", FT_UINT8, BASE_DEC, NULL, 0x7f, NULL, HFILL } }, { &hf_flexray_flexray_id, { "FlexRay ID (combined)", "flexray.combined_id", FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL } }, }; static gint *ett[] = { &ett_flexray, &ett_flexray_measurement_header, &ett_flexray_error_flags, &ett_flexray_frame }; static ei_register_info ei[] = { { &ei_flexray_frame_payload_truncated, { "flexray.malformed_frame_payload_truncated", PI_MALFORMED, PI_ERROR, "Truncated Frame Payload", EXPFILL } }, { &ei_flexray_symbol_frame, { "flexray.symbol_frame", PI_SEQUENCE, PI_CHAT, "Packet is a Symbol Frame", EXPFILL } }, { &ei_flexray_error_flag, { "flexray.error_flag", PI_PROTOCOL, PI_WARN, "One or more Error Flags set", EXPFILL } }, { &ei_flexray_stfi_flag, { "flexray.stfi_flag", PI_PROTOCOL, PI_WARN, "A startup frame must always be a sync frame", EXPFILL } } }; proto_flexray = proto_register_protocol("FlexRay Protocol", "FLEXRAY", "flexray"); flexray_module = prefs_register_protocol(proto_flexray, NULL); proto_register_field_array(proto_flexray, hf, array_length(hf)); proto_register_subtree_array(ett, array_length(ett)); expert_flexray = expert_register_protocol(proto_flexray); expert_register_field_array(expert_flexray, ei, array_length(ei)); flexray_handle = register_dissector("flexray", dissect_flexray, proto_flexray); prefs_register_bool_preference(flexray_module, "try_heuristic_first", "Try heuristic sub-dissectors first", "Try to decode a packet using an heuristic sub-dissector before using a sub-dissector registered to \"decode as\"", &prefvar_try_heuristic_first ); static uat_field_t sender_receiver_mapping_uat_fields[] = { UAT_FLD_HEX(sender_receiver_configs, bus_id, "Bus ID", "Bus ID of the Interface with 0 meaning any(hex uint16 without leading 0x)."), UAT_FLD_HEX(sender_receiver_configs, channel, "Channel", "Channel (8bit hex without leading 0x)"), UAT_FLD_HEX(sender_receiver_configs, cycle, "Cycle", "Cycle (8bit hex without leading 0x)"), UAT_FLD_HEX(sender_receiver_configs, frame_id, "Frame ID", "Frame ID (16bit hex without leading 0x)"), UAT_FLD_CSTRING(sender_receiver_configs, sender_name, "Sender Name", "Name of Sender(s)"), UAT_FLD_CSTRING(sender_receiver_configs, receiver_name, "Receiver Name", "Name of Receiver(s)"), UAT_END_FIELDS }; sender_receiver_uat = uat_new("Sender Receiver Config", sizeof(sender_receiver_config_t), /* record size */ DATAFILE_FR_SENDER_RECEIVER, /* filename */ TRUE, /* from profile */ (void**)&sender_receiver_configs, /* data_ptr */ &sender_receiver_config_num, /* numitems_ptr */ UAT_AFFECTS_DISSECTION, /* but not fields */ NULL, /* help */ copy_sender_receiver_config_cb, /* copy callback */ update_sender_receiver_config, /* update callback */ free_sender_receiver_config_cb, /* free callback */ post_update_sender_receiver_cb, /* post update callback */ NULL, /* reset callback */ sender_receiver_mapping_uat_fields /* UAT field definitions */ ); prefs_register_uat_preference(flexray_module, "_sender_receiver_config", "Sender Receiver Config", "A table to define the mapping between Bus ID and CAN ID to Sender and Receiver.", sender_receiver_uat); subdissector_table = register_decode_as_next_proto(proto_flexray, "flexray.subdissector", "FLEXRAY next level dissector", NULL); flexrayid_subdissector_table = register_dissector_table("flexray.combined_id", "FlexRay ID (combined)", proto_flexray, FT_UINT32, BASE_HEX); heur_subdissector_list = register_heur_dissector_list_with_description("flexray", "FlexRay info", proto_flexray); } void proto_reg_handoff_flexray(void) { dissector_add_uint("wtap_encap", WTAP_ENCAP_FLEXRAY, flexray_handle); } /* * Editor modelines - https://www.wireshark.org/tools/modelines.html * * Local variables: * c-basic-offset: 4 * tab-width: 8 * indent-tabs-mode: nil * End: * * vi: set shiftwidth=4 tabstop=8 expandtab: * :indentSize=4:tabSize=8:noTabs=true: */