libosmocore/utils/conv_gen.py

439 lines
12 KiB
Python

#!/usr/bin/env python3
mod_license = """
/*
* Copyright (C) 2011-2016 Sylvain Munaut <tnt@246tNt.com>
* Copyright (C) 2016 sysmocom s.f.m.c. GmbH
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
"""
import sys, os, math, argparse
from functools import reduce
import conv_codes_gsm
class ConvolutionalCode(object):
def __init__(self, block_len, polys, name,
description = None, puncture = [], term_type = None,
vec_in = None, vec_out = None):
# Save simple params
self.block_len = block_len
self.k = 1
self.puncture = puncture
self.rate_inv = len(polys)
self.term_type = term_type
self.vec_in = vec_in
self.vec_out = vec_out
# Infos
self.name = name
self.description = description
# Handle polynomials (and check for recursion)
self.polys = [(1, 1) if x[0] == x[1] else x for x in polys]
# Determine the polynomial degree
for (x, y) in polys:
self.k = max(self.k, int(math.floor(math.log(max(x, y), 2))))
self.k = self.k + 1
self.poly_divider = 1
rp = [x[1] for x in self.polys if x[1] != 1]
if rp:
if not all([x == rp[0] for x in rp]):
raise ValueError("Bad polynomials: "
"Can't have multiple different divider polynomials!")
if not all([x[0] == 1 for x in polys if x[1] == 1]):
raise ValueError("Bad polynomials: "
"Can't have a '1' divider with a non '1' dividend "
"in a recursive code")
self.poly_divider = rp[0]
@property
def recursive(self):
return self.poly_divider != 1
@property
def _state_mask(self):
return (1 << (self.k - 1)) - 1
def next_state(self, state, bit):
nb = combine(
(state << 1) | bit,
self.poly_divider,
self.k,
)
return ((state << 1) | nb) & self._state_mask
def next_term_state(self, state):
return (state << 1) & self._state_mask
def next_output(self, state, bit, ns = None):
# Next state bit
if ns is None:
ns = self.next_state(state, bit)
src = (ns & 1) | (state << 1)
# Scan polynomials
rv = []
for p_n, p_d in self.polys:
if self.recursive and p_d == 1:
# No choice ... (systematic output in recursive case)
o = bit
else:
o = combine(src, p_n, self.k)
rv.append(o)
return rv
def next_term_output(self, state, ns = None):
# Next state bit
if ns is None:
ns = self.next_term_state(state)
src = (ns & 1) | (state << 1)
# Scan polynomials
rv = []
for p_n, p_d in self.polys:
if self.recursive and p_d == 1:
# Systematic output are replaced when in 'termination' mode
o = combine(src, self.poly_divider, self.k)
else:
o = combine(src, p_n, self.k)
rv.append(o)
return rv
def next(self, state, bit):
ns = self.next_state(state, bit)
nb = self.next_output(state, bit, ns = ns)
return ns, nb
def next_term(self, state):
ns = self.next_term_state(state)
nb = self.next_term_output(state, ns = ns)
return ns, nb
def _print_term(self, fi, num_states, pack = False):
items = []
for state in range(num_states):
if pack:
x = pack(self.next_term_output(state))
else:
x = self.next_term_state(state)
items.append(x)
# Up to 12 numbers should be placed per line
print_formatted(items, "%3d, ", 12, fi)
def _print_x(self, fi, num_states, pack = False):
items = []
for state in range(num_states):
if pack:
x0 = pack(self.next_output(state, 0))
x1 = pack(self.next_output(state, 1))
else:
x0 = self.next_state(state, 0)
x1 = self.next_state(state, 1)
items.append((x0, x1))
# Up to 4 blocks should be placed per line
print_formatted(items, "{ %2d, %2d }, ", 4, fi)
def _print_puncture(self, fi):
# Up to 12 numbers should be placed per line
print_formatted(self.puncture, "%3d, ", 12, fi)
def print_description(self, fi, brief = False):
if brief is True:
fi.write("/*! structure describing %s.\n"
% self.description[0])
for line in self.description[1:]:
fi.write(" * %s\n" % line)
else:
fi.write("/**\n")
for line in self.description:
fi.write(" * %s\n" % line)
fi.write(" */\n")
def print_state_and_output(self, fi):
pack = lambda n: \
sum([x << (self.rate_inv - i - 1) for i, x in enumerate(n)])
num_states = 1 << (self.k - 1)
fi.write("static const uint8_t %s_state[][2] = {\n" % self.name)
self._print_x(fi, num_states)
fi.write("};\n\n")
fi.write("static const uint8_t %s_output[][2] = {\n" % self.name)
self._print_x(fi, num_states, pack)
fi.write("};\n\n")
if self.recursive:
fi.write("static const uint8_t %s_term_state[] = {\n" % self.name)
self._print_term(fi, num_states)
fi.write("};\n\n")
fi.write("static const uint8_t %s_term_output[] = {\n" % self.name)
self._print_term(fi, num_states, pack)
fi.write("};\n\n")
def gen_tables(self, pref, fi, shared_tables = None):
# Do not print shared tables
if shared_tables is None:
self.print_state_and_output(fi)
table_pref = self.name
else:
table_pref = shared_tables
if len(self.puncture):
fi.write("static const int %s_puncture[] = {\n" % self.name)
self._print_puncture(fi)
fi.write("};\n\n")
# Write description as a multi-line comment
if self.description is not None:
self.print_description(fi)
# Print a final convolutional code definition
fi.write("const struct osmo_conv_code %s_%s = {\n" % (pref, self.name))
fi.write("\t.N = %d,\n" % self.rate_inv)
fi.write("\t.K = %d,\n" % self.k)
fi.write("\t.len = %d,\n" % self.block_len)
fi.write("\t.next_output = %s_output,\n" % table_pref)
fi.write("\t.next_state = %s_state,\n" % table_pref)
if self.term_type is not None:
fi.write("\t.term = %s,\n" % self.term_type)
if self.recursive:
fi.write("\t.next_term_output = %s_term_output,\n" % table_pref)
fi.write("\t.next_term_state = %s_term_state,\n" % table_pref)
if len(self.puncture):
fi.write("\t.puncture = %s_puncture,\n" % self.name)
fi.write("};\n\n")
def calc_out_len(self):
out_len = self.block_len * self.rate_inv
# By default CONV_TERM_FLUSH
if self.term_type is None:
out_len += self.rate_inv * (self.k - 1)
if len(self.puncture):
out_len -= len(self.puncture) - 1
return out_len
def gen_test_vector(self, fi, prefix):
code_name = "%s_%s" % (prefix, self.name)
fi.write("\t{\n")
fi.write("\t\t.name = \"%s\",\n" % code_name)
fi.write("\t\t.code = &%s,\n" % code_name)
fi.write("\t\t.in_len = %d,\n" % self.block_len)
fi.write("\t\t.out_len = %d,\n" % self.calc_out_len())
# Print pre computed vectors if preset
if self.vec_in is not None and self.vec_out is not None:
fi.write("\t\t.has_vec = 1,\n")
fi.write("\t\t.vec_in = {\n")
print_formatted(self.vec_in, "0x%02x, ", 8, fi, indent = "\t\t\t")
fi.write("\t\t},\n")
fi.write("\t\t.vec_out = {\n")
print_formatted(self.vec_out, "0x%02x, ", 8, fi, indent = "\t\t\t")
fi.write("\t\t},\n")
else:
fi.write("\t\t.has_vec = 0,\n")
fi.write("\t\t.vec_in = { },\n")
fi.write("\t\t.vec_out = { },\n")
fi.write("\t},\n")
poly = lambda *args: sum([(1 << x) for x in args])
def combine(src, sel, nb):
x = src & sel
fn_xor = lambda x, y: x ^ y
return reduce(fn_xor, [(x >> n) & 1 for n in range(nb)])
def print_formatted(items, format, count, fi):
counter = 0
# Print initial indent
fi.write("\t")
for item in items:
if counter > 0 and counter % count == 0:
fi.write("\n\t")
fi.write(format % item)
counter += 1
fi.write("\n")
def print_shared(fi, shared_polys):
for (name, polys) in shared_polys.items():
# HACK
code = ConvolutionalCode(0, polys, name = name)
code.print_state_and_output(fi)
def open_for_writing(parent_dir, base_name):
path = os.path.join(parent_dir, base_name)
if not os.path.isdir(parent_dir):
os.makedirs(parent_dir)
return open(path, 'w')
def generate_codes(codes, path, prefix, name):
# Open a new file for writing
f = open_for_writing(path, name)
f.write(mod_license + "\n")
f.write("#include <stdint.h>\n")
f.write("#include <osmocom/core/conv.h>\n\n")
sys.stderr.write("Generating convolutional codes...\n")
# Print shared tables first
if hasattr(codes, "shared_polys"):
print_shared(f, codes.shared_polys)
# Generate the tables one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' definition\n" % code.name)
# Check whether shared polynomials are used
shared = None
if hasattr(codes, "shared_polys"):
for (name, polys) in codes.shared_polys.items():
if code.polys == polys:
shared = name
break
code.gen_tables(prefix, f, shared_tables = shared)
def generate_vectors(codes, path, prefix, name, inc = None):
# Open a new file for writing
f = open_for_writing(path, name)
f.write(mod_license + "\n")
# Print includes
if inc is not None:
for item in inc:
f.write("%s\n" % item)
f.write("#include <osmocom/core/conv.h>\n")
f.write("#include \"conv.h\"\n\n")
sys.stderr.write("Generating test vectors...\n")
vec_count = len(codes.conv_codes)
f.write("const int %s_vectors_len = %d;\n\n"
% (prefix, vec_count))
f.write("const struct conv_test_vector %s_vectors[%d] = {\n"
% (prefix, vec_count))
# Generate the vectors one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' test vector\n" % code.name)
code.gen_test_vector(f, prefix)
f.write("};\n")
def generate_header(codes, path, prefix, name, description = None):
# Open a new file for writing
f = open_for_writing(path, name)
# Print license and includes
f.write(mod_license + "\n")
f.write("#pragma once\n\n")
f.write("#include <stdint.h>\n")
f.write("#include <osmocom/core/conv.h>\n\n")
# Print general file description if preset
if description is not None:
f.write("/*! \\file %s.h\n" % prefix)
f.write(" * %s\n" % description)
f.write(" */\n\n")
sys.stderr.write("Generating header file...\n")
# Generate declarations one by one
for code in codes.conv_codes:
sys.stderr.write("Generate '%s' declaration\n" % code.name)
code.print_description(f, True)
f.write("extern const struct osmo_conv_code %s_%s;\n\n"
% (prefix, code.name))
def parse_argv():
parser = argparse.ArgumentParser()
# Positional arguments
parser.add_argument("action",
help = "what to generate",
choices = ["gen_codes", "gen_vectors", "gen_header"])
parser.add_argument("family",
help = "convolutional code family",
choices = ["gsm"])
# Optional arguments
parser.add_argument("-p", "--prefix",
help = "internal naming prefix")
parser.add_argument("-n", "--target-name",
help = "target name for generated file")
parser.add_argument("-P", "--target-path",
help = "target path for generated file")
return parser.parse_args()
if __name__ == '__main__':
# Parse and verify arguments
argv = parse_argv()
path = argv.target_path or os.getcwd()
inc = None
# Determine convolutional code family
if argv.family == "gsm":
codes = conv_codes_gsm
prefix = argv.prefix or "gsm0503"
inc = [ "#include <osmocom/gsm/gsm0503.h>" ]
# What to generate?
if argv.action == "gen_codes":
name = argv.target_name or prefix + "_conv.c"
generate_codes(codes, path, prefix, name)
elif argv.action == "gen_vectors":
name = argv.target_name or prefix + "_test_vectors.c"
generate_vectors(codes, path, prefix, name, inc)
elif argv.action == "gen_header":
name = argv.target_name or prefix + ".h"
generate_header(codes, path, prefix, name)
sys.stderr.write("Generation complete.\n")