libosmocore/src/fsm.c

1044 lines
38 KiB
C

/*! \file fsm.c
* Osmocom generic Finite State Machine implementation. */
/*
* (C) 2016-2019 by Harald Welte <laforge@gnumonks.org>
*
* SPDX-License-Identifier: GPL-2.0+
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <errno.h>
#include <stdbool.h>
#include <string.h>
#include <inttypes.h>
#include <osmocom/core/fsm.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/logging.h>
#include <osmocom/core/utils.h>
/*! \addtogroup fsm
* @{
* Finite State Machine abstraction
*
* This is a generic C-language abstraction for implementing finite
* state machines within the Osmocom framework. It is intended to
* replace existing hand-coded or even only implicitly existing FSMs
* all over the existing code base.
*
* An libosmocore FSM is described by its \ref osmo_fsm description,
* which in turn refers to an array of \ref osmo_fsm_state descriptor,
* each describing a single state in the FSM.
*
* The general idea is that all actions performed within one state are
* located at one position in the code (the state's action function),
* as opposed to the 'message-centric' view of e.g. the existing
* state machines of the LAPD(m) core, where there is one message for
* each possible event (primitive), and the function then needs to
* concern itself on how to handle that event over all possible states.
*
* For each state, there is a bit-mask of permitted input events for
* this state, as well as a bit-mask of permitted new output states to
* which the state can change. Furthermore, there is a function
* pointer implementing the actual handling of the input events
* occurring whilst in that state.
*
* Furthermore, each state offers a function pointer that can be
* executed just before leaving a state, and another one just after
* entering a state.
*
* When transitioning into a new state, an optional timer number and
* time-out can be passed along. The timer is started just after
* entering the new state, and will call the \ref osmo_fsm timer_cb
* function once it expires. This is intended to be used in telecom
* state machines where a given timer (identified by a certain number)
* is started to terminate the fsm or terminate the fsm once expected
* events are not happening before timeout expiration.
*
* As there can often be many concurrent FSMs of one given class, we
* introduce the concept of \ref osmo_fsm_inst, i.e. an FSM instance.
* The instance keeps the actual state, while the \ref osmo_fsm
* descriptor contains the static/const descriptor of the FSM's states
* and possible transitions.
*
* osmo_fsm are integrated with the libosmocore logging system. The
* logging sub-system is determined by the FSM descriptor, as we assume
* one FSM (let's say one related to a location update procedure) is
* inevitably always tied to a sub-system. The logging level however
* is configurable for each FSM instance, to ensure that e.g. DEBUG
* logging can be used for the LU procedure of one subscriber, while
* NOTICE level is used for all other subscribers.
*
* In order to attach private state to the \ref osmo_fsm_inst, it
* offers an opaque private pointer.
*
* \file fsm.c */
LLIST_HEAD(osmo_g_fsms);
static bool fsm_log_addr = true;
static bool fsm_log_timeouts = false;
/*! See osmo_fsm_term_safely(). */
static bool fsm_term_safely_enabled = false;
/*! Internal state for FSM instance termination cascades. */
static __thread struct {
/*! The first FSM instance that invoked osmo_fsm_inst_term() in the current cascade. */
struct osmo_fsm_inst *root_fi;
/*! 2 if a secondary FSM terminates, 3 if a secondary FSM causes a tertiary FSM to terminate, and so on. */
unsigned int depth;
/*! Talloc context to collect all deferred deallocations (FSM instances, and talloc objects if any). */
void *collect_ctx;
/*! See osmo_fsm_set_dealloc_ctx() */
void *fsm_dealloc_ctx;
} fsm_term_safely;
/*! Internal call to free an FSM instance, which redirects to the context set by osmo_fsm_set_dealloc_ctx() if any.
*/
static void fsm_free_or_steal(void *talloc_object)
{
if (fsm_term_safely.fsm_dealloc_ctx)
talloc_steal(fsm_term_safely.fsm_dealloc_ctx, talloc_object);
else
talloc_free(talloc_object);
}
/*! specify if FSM instance addresses should be logged or not
*
* By default, the FSM name includes the pointer address of the \ref
* osmo_fsm_inst. This behavior can be disabled (and re-enabled)
* using this function.
*
* \param[in] log_addr Indicate if FSM instance address shall be logged
*/
void osmo_fsm_log_addr(bool log_addr)
{
fsm_log_addr = log_addr;
}
/*! Enable or disable logging of timeout values for FSM instance state changes.
*
* By default, state changes are logged by state name only, omitting the timeout. When passing true, each state change
* will also log the T number (or Osmocom-specific X number) and the chosen timeout in seconds.
* osmo_fsm_inst_state_chg_keep_timer() will log remaining timeout in millisecond precision.
*
* The default for this is false to reflect legacy behavior. Since various C tests that verify logging output already
* existed prior to this option, keeping timeout logging off makes sure that they continue to pass. Particularly,
* osmo_fsm_inst_state_chg_keep_timer() may cause non-deterministic logging of remaining timeout values.
*
* For any program that does not explicitly require deterministic logging output, i.e. anything besides regression tests
* involving FSM instances, it is recommended to call osmo_fsm_log_timeouts(true).
*
* \param[in] log_timeouts Pass true to log timeouts on state transitions, false to omit timeouts.
*/
void osmo_fsm_log_timeouts(bool log_timeouts)
{
fsm_log_timeouts = log_timeouts;
}
/*! Enable safer way to deallocate cascades of terminating FSM instances.
*
* Note, using osmo_fsm_set_dealloc_ctx() is a more general solution to this same problem.
* Particularly, in a program using osmo_select_main_ctx(), the simplest solution to avoid most use-after-free problems
* from FSM instance deallocation is using osmo_fsm_set_dealloc_ctx(OTC_SELECT).
*
* When enabled, an FSM instance termination detects whether another FSM instance is already terminating, and instead of
* deallocating immediately, collects all terminating FSM instances in a talloc context, to be bulk deallocated once all
* event handling and termination cascades are done.
*
* For example, if an FSM's cleanup() sends an event to some "other" FSM, which in turn causes the FSM's parent to
* deallocate, then the parent would talloc_free() the child's memory, causing a use-after-free. There are infinite
* constellations like this, which all are trivially solved with this feature enabled.
*
* For illustration, see fsm_dealloc_test.c.
*
* When enabled, this feature changes the order of logging, which may break legacy unit test expectations, and changes
* the order of deallocation to after the parent term event is dispatched.
*
* \param[in] term_safely Pass true to switch to safer FSM instance termination behavior.
*/
void osmo_fsm_term_safely(bool term_safely)
{
fsm_term_safely_enabled = term_safely;
}
/*! Instead of deallocating FSM instances, move them to the given talloc context.
*
* It is the caller's responsibility to clear this context to actually free the memory of terminated FSM instances.
* Make sure to not talloc_free(ctx) itself before setting a different osmo_fsm_set_dealloc_ctx(). To clear a ctx
* without the need to call osmo_fsm_set_dealloc_ctx() again, rather use talloc_free_children(ctx).
*
* For example, to defer deallocation to the next osmo_select_main_ctx() iteration, set this to OTC_SELECT.
*
* Deferring deallocation is the simplest solution to avoid most use-after-free problems from FSM instance deallocation.
* This is a simpler and more general solution than osmo_fsm_term_safely().
*
* To disable the feature again, pass NULL as ctx.
*
* Both osmo_fsm_term_safely() and osmo_fsm_set_dealloc_ctx() can be enabled at the same time, which will result in
* first collecting deallocated FSM instances in fsm_term_safely.collect_ctx, and finally reparenting that to the ctx
* passed here. However, in practice, it does not really make sense to enable both at the same time.
*
* \param ctx[in] Instead of talloc_free()int, talloc_steal() all future deallocated osmo_fsm_inst instances to this
* ctx. If NULL, go back to talloc_free() as usual.
*/
void osmo_fsm_set_dealloc_ctx(void *ctx)
{
fsm_term_safely.fsm_dealloc_ctx = ctx;
}
/*! talloc_free() the given object immediately, or once ongoing FSM terminations are done.
*
* If an FSM deallocation cascade is ongoing, talloc_steal() the given talloc_object into the talloc context that is
* freed once the cascade is done. If no FSM deallocation cascade is ongoing, or if osmo_fsm_term_safely() is disabled,
* immediately talloc_free the object.
*
* This can be useful if some higher order talloc object, which is the talloc parent for FSM instances or their priv
* objects, is not itself tied to an FSM instance. This function allows safely freeing it without affecting ongoing FSM
* termination cascades.
*
* Once passed to this function, the talloc_object should be considered as already freed. Only FSM instance pre_term()
* and cleanup() functions as well as event handling caused by these may safely assume that it is still valid memory.
*
* The talloc_object should not have multiple parents.
*
* (This function may some day move to public API, which might be redundant if we introduce a select-loop volatile
* context mechanism to defer deallocation instead.)
*
* \param[in] talloc_object Object pointer to free.
*/
static void osmo_fsm_defer_free(void *talloc_object)
{
if (!fsm_term_safely.depth) {
fsm_free_or_steal(talloc_object);
return;
}
if (!fsm_term_safely.collect_ctx) {
/* This is actually the first other object / FSM instance besides the root terminating inst. Create the
* ctx to collect this and possibly more objects to free. Avoid talloc parent loops: don't make this ctx
* the child of the root inst or anything like that. */
fsm_term_safely.collect_ctx = talloc_named_const(NULL, 0, "fsm_term_safely.collect_ctx");
OSMO_ASSERT(fsm_term_safely.collect_ctx);
}
talloc_steal(fsm_term_safely.collect_ctx, talloc_object);
}
struct osmo_fsm *osmo_fsm_find_by_name(const char *name)
{
struct osmo_fsm *fsm;
llist_for_each_entry(fsm, &osmo_g_fsms, list) {
if (!strcmp(name, fsm->name))
return fsm;
}
return NULL;
}
struct osmo_fsm_inst *osmo_fsm_inst_find_by_name(const struct osmo_fsm *fsm,
const char *name)
{
struct osmo_fsm_inst *fi;
if (!name)
return NULL;
llist_for_each_entry(fi, &fsm->instances, list) {
if (!fi->name)
continue;
if (!strcmp(name, fi->name))
return fi;
}
return NULL;
}
struct osmo_fsm_inst *osmo_fsm_inst_find_by_id(const struct osmo_fsm *fsm,
const char *id)
{
struct osmo_fsm_inst *fi;
llist_for_each_entry(fi, &fsm->instances, list) {
if (!strcmp(id, fi->id))
return fi;
}
return NULL;
}
/*! register a FSM with the core
*
* A FSM descriptor needs to be registered with the core before any
* instances can be created for it.
*
* \param[in] fsm Descriptor of Finite State Machine to be registered
* \returns 0 on success; negative on error
*/
int osmo_fsm_register(struct osmo_fsm *fsm)
{
if (!osmo_identifier_valid(fsm->name)) {
LOGP(DLGLOBAL, LOGL_ERROR, "Attempting to register FSM with illegal identifier '%s'\n", fsm->name);
return -EINVAL;
}
if (osmo_fsm_find_by_name(fsm->name))
return -EEXIST;
if (fsm->event_names == NULL)
LOGP(DLGLOBAL, LOGL_ERROR, "FSM '%s' has no event names! Please fix!\n", fsm->name);
llist_add_tail(&fsm->list, &osmo_g_fsms);
INIT_LLIST_HEAD(&fsm->instances);
return 0;
}
/*! unregister a FSM from the core
*
* Once the FSM descriptor is unregistered, active instances can still
* use it, but no new instances may be created for it.
*
* \param[in] fsm Descriptor of Finite State Machine to be removed
*/
void osmo_fsm_unregister(struct osmo_fsm *fsm)
{
llist_del(&fsm->list);
}
/* small wrapper function around timer expiration (for logging) */
static void fsm_tmr_cb(void *data)
{
struct osmo_fsm_inst *fi = data;
struct osmo_fsm *fsm = fi->fsm;
int32_t T = fi->T;
LOGPFSM(fi, "Timeout of " OSMO_T_FMT "\n", OSMO_T_FMT_ARGS(fi->T));
if (fsm->timer_cb) {
int rc = fsm->timer_cb(fi);
if (rc != 1)
/* We don't actually know whether fi exists anymore.
* Make sure to not access it and return right away. */
return;
/* The timer_cb told us to terminate, so we can safely assume
* that fi still exists. */
LOGPFSM(fi, "timer_cb requested termination\n");
} else
LOGPFSM(fi, "No timer_cb, automatic termination\n");
/* if timer_cb returns 1 or there is no timer_cb */
osmo_fsm_inst_term(fi, OSMO_FSM_TERM_TIMEOUT, &T);
}
/*! Change id of the FSM instance
* \param[in] fi FSM instance
* \param[in] id new ID
* \returns 0 if the ID was updated, otherwise -EINVAL
*/
int osmo_fsm_inst_update_id(struct osmo_fsm_inst *fi, const char *id)
{
if (!id)
return osmo_fsm_inst_update_id_f(fi, NULL);
else
return osmo_fsm_inst_update_id_f(fi, "%s", id);
}
static void update_name(struct osmo_fsm_inst *fi)
{
if (fi->name)
talloc_free((char*)fi->name);
if (!fsm_log_addr) {
if (fi->id)
fi->name = talloc_asprintf(fi, "%s(%s)", fi->fsm->name, fi->id);
else
fi->name = talloc_asprintf(fi, "%s", fi->fsm->name);
} else {
if (fi->id)
fi->name = talloc_asprintf(fi, "%s(%s)[%p]", fi->fsm->name, fi->id, fi);
else
fi->name = talloc_asprintf(fi, "%s[%p]", fi->fsm->name, fi);
}
}
/*! Change id of the FSM instance using a string format.
* \param[in] fi FSM instance.
* \param[in] fmt format string to compose new ID.
* \param[in] ... variable argument list for format string.
* \returns 0 if the ID was updated, otherwise -EINVAL.
*/
int osmo_fsm_inst_update_id_f(struct osmo_fsm_inst *fi, const char *fmt, ...)
{
char *id = NULL;
if (fmt) {
va_list ap;
va_start(ap, fmt);
id = talloc_vasprintf(fi, fmt, ap);
va_end(ap);
if (!osmo_identifier_valid(id)) {
LOGP(DLGLOBAL, LOGL_ERROR,
"Attempting to set illegal id for FSM instance of type '%s': %s\n",
fi->fsm->name, osmo_quote_str(id, -1));
talloc_free(id);
return -EINVAL;
}
}
if (fi->id)
talloc_free((char*)fi->id);
fi->id = id;
update_name(fi);
return 0;
}
/*! Change id of the FSM instance using a string format, and ensuring a valid id.
* Replace any characters that are not permitted as FSM identifier with replace_with.
* \param[in] fi FSM instance.
* \param[in] replace_with Character to use instead of non-permitted FSM id characters.
* Make sure to choose a legal character, e.g. '-'.
* \param[in] fmt format string to compose new ID.
* \param[in] ... variable argument list for format string.
* \returns 0 if the ID was updated, otherwise -EINVAL.
*/
int osmo_fsm_inst_update_id_f_sanitize(struct osmo_fsm_inst *fi, char replace_with, const char *fmt, ...)
{
char *id = NULL;
va_list ap;
int rc;
if (!fmt)
return osmo_fsm_inst_update_id(fi, NULL);
va_start(ap, fmt);
id = talloc_vasprintf(fi, fmt, ap);
va_end(ap);
osmo_identifier_sanitize_buf(id, NULL, replace_with);
rc = osmo_fsm_inst_update_id(fi, id);
talloc_free(id);
return rc;
}
/*! allocate a new instance of a specified FSM
* \param[in] fsm Descriptor of the FSM
* \param[in] ctx talloc context from which to allocate memory
* \param[in] priv private data reference store in fsm instance
* \param[in] log_level The log level for events of this FSM
* \param[in] id The name/ID of the FSM instance
* \returns newly-allocated, initialized and registered FSM instance
*/
struct osmo_fsm_inst *osmo_fsm_inst_alloc(struct osmo_fsm *fsm, void *ctx, void *priv,
int log_level, const char *id)
{
struct osmo_fsm_inst *fi = talloc_zero(ctx, struct osmo_fsm_inst);
fi->fsm = fsm;
fi->priv = priv;
fi->log_level = log_level;
osmo_timer_setup(&fi->timer, fsm_tmr_cb, fi);
if (osmo_fsm_inst_update_id(fi, id) < 0) {
fsm_free_or_steal(fi);
return NULL;
}
INIT_LLIST_HEAD(&fi->proc.children);
INIT_LLIST_HEAD(&fi->proc.child);
llist_add(&fi->list, &fsm->instances);
LOGPFSM(fi, "Allocated\n");
return fi;
}
/*! allocate a new instance of a specified FSM as child of
* other FSM instance
*
* This is like \ref osmo_fsm_inst_alloc but using the parent FSM as
* talloc context, and inheriting the log level of the parent.
*
* \param[in] fsm Descriptor of the to-be-allocated FSM
* \param[in] parent Parent FSM instance
* \param[in] parent_term_event Event to be sent to parent when terminating
* \returns newly-allocated, initialized and registered FSM instance
*/
struct osmo_fsm_inst *osmo_fsm_inst_alloc_child(struct osmo_fsm *fsm,
struct osmo_fsm_inst *parent,
uint32_t parent_term_event)
{
struct osmo_fsm_inst *fi;
fi = osmo_fsm_inst_alloc(fsm, parent, NULL, parent->log_level,
parent->id);
if (!fi) {
/* indicate immediate termination to caller */
osmo_fsm_inst_dispatch(parent, parent_term_event, NULL);
return NULL;
}
LOGPFSM(fi, "is child of %s\n", osmo_fsm_inst_name(parent));
osmo_fsm_inst_change_parent(fi, parent, parent_term_event);
return fi;
}
/*! unlink child FSM from its parent FSM.
* \param[in] fi Descriptor of the child FSM to unlink.
* \param[in] ctx New talloc context
*
* Never call this function from the cleanup callback, because at that time
* the child FSMs will already be terminated. If unlinking should be performed
* on FSM termination, use the grace callback instead. */
void osmo_fsm_inst_unlink_parent(struct osmo_fsm_inst *fi, void *ctx)
{
if (fi->proc.parent) {
talloc_steal(ctx, fi);
fi->proc.parent = NULL;
fi->proc.parent_term_event = 0;
llist_del(&fi->proc.child);
}
}
/*! change parent instance of an FSM.
* \param[in] fi Descriptor of the to-be-allocated FSM.
* \param[in] new_parent New parent FSM instance.
* \param[in] new_parent_term_event Event to be sent to parent when terminating.
*
* Never call this function from the cleanup callback!
* (see also osmo_fsm_inst_unlink_parent()).*/
void osmo_fsm_inst_change_parent(struct osmo_fsm_inst *fi,
struct osmo_fsm_inst *new_parent,
uint32_t new_parent_term_event)
{
/* Make sure a possibly existing old parent is unlinked first
* (new_parent can be NULL) */
osmo_fsm_inst_unlink_parent(fi, new_parent);
/* Add new parent */
if (new_parent) {
fi->proc.parent = new_parent;
fi->proc.parent_term_event = new_parent_term_event;
llist_add(&fi->proc.child, &new_parent->proc.children);
}
}
/*! delete a given instance of a FSM
* \param[in] fi FSM instance to be un-registered and deleted
*/
void osmo_fsm_inst_free(struct osmo_fsm_inst *fi)
{
osmo_timer_del(&fi->timer);
llist_del(&fi->list);
if (fsm_term_safely.depth) {
/* Another FSM instance has caused this one to free and is still busy with its termination. Don't free
* yet, until the other FSM instance is done. */
osmo_fsm_defer_free(fi);
/* The root_fi can't go missing really, but to be safe... */
if (fsm_term_safely.root_fi)
LOGPFSM(fi, "Deferring: will deallocate with %s\n", fsm_term_safely.root_fi->name);
else
LOGPFSM(fi, "Deferring deallocation\n");
/* Don't free anything yet. Exit. */
return;
}
/* fsm_term_safely.depth == 0.
* - If fsm_term_safely is enabled, this is the original FSM instance that started terminating first. Free this
* and along with it all other collected terminated FSM instances.
* - If fsm_term_safely is disabled, this is just any FSM instance deallocating. */
if (fsm_term_safely.collect_ctx) {
/* The fi may be a child of any other FSM instances or objects collected in the collect_ctx. Don't
* deallocate separately to avoid use-after-free errors, put it in there and deallocate all at once. */
LOGPFSM(fi, "Deallocated, including all deferred deallocations\n");
osmo_fsm_defer_free(fi);
fsm_free_or_steal(fsm_term_safely.collect_ctx);
fsm_term_safely.collect_ctx = NULL;
} else {
LOGPFSM(fi, "Deallocated\n");
fsm_free_or_steal(fi);
}
fsm_term_safely.root_fi = NULL;
}
/*! get human-readable name of FSM event
* \param[in] fsm FSM descriptor of event
* \param[in] event Event integer value
* \returns string rendering of the event
*/
const char *osmo_fsm_event_name(struct osmo_fsm *fsm, uint32_t event)
{
static __thread char buf[32];
if (!fsm->event_names) {
snprintf(buf, sizeof(buf), "%"PRIu32, event);
return buf;
} else
return get_value_string(fsm->event_names, event);
}
/*! get human-readable name of FSM instance
* \param[in] fi FSM instance
* \returns string rendering of the FSM identity
*/
const char *osmo_fsm_inst_name(struct osmo_fsm_inst *fi)
{
if (!fi)
return "NULL";
if (fi->name)
return fi->name;
else
return fi->fsm->name;
}
/*! get human-readable name of FSM state
* \param[in] fsm FSM descriptor
* \param[in] state FSM state number
* \returns string rendering of the FSM state
*/
const char *osmo_fsm_state_name(struct osmo_fsm *fsm, uint32_t state)
{
static __thread char buf[32];
if (state >= fsm->num_states) {
snprintf(buf, sizeof(buf), "unknown %"PRIu32, state);
return buf;
} else
return fsm->states[state].name;
}
static int state_chg(struct osmo_fsm_inst *fi, uint32_t new_state,
bool keep_timer, unsigned long timeout_ms, int T,
const char *file, int line)
{
struct osmo_fsm *fsm = fi->fsm;
uint32_t old_state = fi->state;
const struct osmo_fsm_state *st = &fsm->states[fi->state];
struct timeval remaining;
if (fi->proc.terminating) {
LOGPFSMSRC(fi, file, line,
"FSM instance already terminating, not changing state to %s\n",
osmo_fsm_state_name(fsm, new_state));
return -EINVAL;
}
/* validate if new_state is a valid state */
if (!(st->out_state_mask & (1 << new_state))) {
LOGPFSMLSRC(fi, LOGL_ERROR, file, line,
"transition to state %s not permitted!\n",
osmo_fsm_state_name(fsm, new_state));
return -EPERM;
}
if (!keep_timer) {
/* delete the old timer */
osmo_timer_del(&fi->timer);
}
if (st->onleave)
st->onleave(fi, new_state);
if (fsm_log_timeouts) {
char trailer[64];
trailer[0] = '\0';
if (keep_timer && fi->timer.active) {
/* This should always give us a timeout, but just in case the return value indicates error, omit
* logging the remaining time. */
if (osmo_timer_remaining(&fi->timer, NULL, &remaining))
snprintf(trailer, sizeof(trailer), "(keeping " OSMO_T_FMT ")",
OSMO_T_FMT_ARGS(fi->T));
else
snprintf(trailer, sizeof(trailer), "(keeping " OSMO_T_FMT
", %ld.%03lds remaining)", OSMO_T_FMT_ARGS(fi->T),
(long) remaining.tv_sec, remaining.tv_usec / 1000);
} else if (timeout_ms) {
if (timeout_ms % 1000 == 0)
/* keep log output legacy compatible to avoid autotest failures */
snprintf(trailer, sizeof(trailer), "(" OSMO_T_FMT ", %lus)",
OSMO_T_FMT_ARGS(T), timeout_ms/1000);
else
snprintf(trailer, sizeof(trailer), "(" OSMO_T_FMT ", %lums)",
OSMO_T_FMT_ARGS(T), timeout_ms);
} else
snprintf(trailer, sizeof(trailer), "(no timeout)");
LOGPFSMSRC(fi, file, line, "State change to %s %s\n",
osmo_fsm_state_name(fsm, new_state), trailer);
} else {
LOGPFSMSRC(fi, file, line, "state_chg to %s\n",
osmo_fsm_state_name(fsm, new_state));
}
fi->state = new_state;
st = &fsm->states[new_state];
if (!keep_timer
|| (keep_timer && !osmo_timer_pending(&fi->timer))) {
fi->T = T;
if (timeout_ms)
osmo_timer_schedule(&fi->timer, timeout_ms / 1000, timeout_ms % 1000);
}
/* Call 'onenter' last, user might terminate FSM from there */
if (st->onenter)
st->onenter(fi, old_state);
return 0;
}
/*! perform a state change of the given FSM instance
*
* Best invoke via the osmo_fsm_inst_state_chg() macro which logs the source
* file where the state change was effected. Alternatively, you may pass \a
* file as NULL to use the normal file/line indication instead.
*
* All changes to the FSM instance state must be made via an osmo_fsm_inst_state_chg_*
* function. It verifies that the existing state actually permits a
* transition to new_state.
*
* If timeout_secs is 0, stay in the new state indefinitely, without a timeout
* (stop the FSM instance's timer if it was runnning).
*
* If timeout_secs > 0, start or reset the FSM instance's timer with this
* timeout. On expiry, invoke the FSM instance's timer_cb -- if no timer_cb is
* set, an expired timer immediately terminates the FSM instance with
* OSMO_FSM_TERM_TIMEOUT.
*
* The value of T is stored in fi->T and is then available for query in
* timer_cb. If passing timeout_secs == 0, it is recommended to also pass T ==
* 0, so that fi->T is reset to 0 when no timeout is invoked.
*
* Positive values for T are considered to be 3GPP spec compliant and appear in
* logging and VTY as "T1234", while negative values are considered to be
* Osmocom specific timers, represented in logging and VTY as "X1234".
*
* See also osmo_tdef_fsm_inst_state_chg() from the osmo_tdef API, which
* provides a unified way to configure and apply GSM style Tnnnn timers to FSM
* state transitions.
*
* \param[in] fi FSM instance whose state is to change
* \param[in] new_state The new state into which we should change
* \param[in] timeout_secs Timeout in seconds (if !=0), maximum-clamped to 2147483647 seconds.
* \param[in] T Timer number, where positive numbers are considered to be 3GPP spec compliant timer numbers and are
* logged as "T1234", while negative numbers are considered Osmocom specific timer numbers logged as
* "X1234".
* \param[in] file Calling source file (from osmo_fsm_inst_state_chg macro)
* \param[in] line Calling source line (from osmo_fsm_inst_state_chg macro)
* \returns 0 on success; negative on error
*/
int _osmo_fsm_inst_state_chg(struct osmo_fsm_inst *fi, uint32_t new_state,
unsigned long timeout_secs, int T,
const char *file, int line)
{
return state_chg(fi, new_state, false, timeout_secs*1000, T, file, line);
}
int _osmo_fsm_inst_state_chg_ms(struct osmo_fsm_inst *fi, uint32_t new_state,
unsigned long timeout_ms, int T,
const char *file, int line)
{
return state_chg(fi, new_state, false, timeout_ms, T, file, line);
}
/*! perform a state change while keeping the current timer running.
*
* This is useful to keep a timeout across several states (without having to round the
* remaining time to seconds).
*
* Best invoke via the osmo_fsm_inst_state_chg_keep_timer() macro which logs the source
* file where the state change was effected. Alternatively, you may pass \a
* file as NULL to use the normal file/line indication instead.
*
* All changes to the FSM instance state must be made via an osmo_fsm_inst_state_chg_*
* function. It verifies that the existing state actually permits a
* transition to new_state.
*
* \param[in] fi FSM instance whose state is to change
* \param[in] new_state The new state into which we should change
* \param[in] file Calling source file (from osmo_fsm_inst_state_chg macro)
* \param[in] line Calling source line (from osmo_fsm_inst_state_chg macro)
* \returns 0 on success; negative on error
*/
int _osmo_fsm_inst_state_chg_keep_timer(struct osmo_fsm_inst *fi, uint32_t new_state,
const char *file, int line)
{
return state_chg(fi, new_state, true, 0, 0, file, line);
}
/*! perform a state change while keeping the current timer if running, or starting a timer otherwise.
*
* This is useful to keep a timeout across several states, but to make sure that some timeout is actually running.
*
* Best invoke via the osmo_fsm_inst_state_chg_keep_or_start_timer() macro which logs the source file where the state
* change was effected. Alternatively, you may pass file as NULL to use the normal file/line indication instead.
*
* All changes to the FSM instance state must be made via an osmo_fsm_inst_state_chg_*
* function. It verifies that the existing state actually permits a
* transition to new_state.
*
* \param[in] fi FSM instance whose state is to change
* \param[in] new_state The new state into which we should change
* \param[in] timeout_secs If no timer is running yet, set this timeout in seconds (if !=0), maximum-clamped to
* 2147483647 seconds.
* \param[in] T Timer number, where positive numbers are considered to be 3GPP spec compliant timer numbers and are
* logged as "T1234", while negative numbers are considered Osmocom specific timer numbers logged as
* "X1234".
* \param[in] file Calling source file (from osmo_fsm_inst_state_chg macro)
* \param[in] line Calling source line (from osmo_fsm_inst_state_chg macro)
* \returns 0 on success; negative on error
*/
int _osmo_fsm_inst_state_chg_keep_or_start_timer(struct osmo_fsm_inst *fi, uint32_t new_state,
unsigned long timeout_secs, int T,
const char *file, int line)
{
return state_chg(fi, new_state, true, timeout_secs*1000, T, file, line);
}
int _osmo_fsm_inst_state_chg_keep_or_start_timer_ms(struct osmo_fsm_inst *fi, uint32_t new_state,
unsigned long timeout_ms, int T,
const char *file, int line)
{
return state_chg(fi, new_state, true, timeout_ms, T, file, line);
}
/*! dispatch an event to an osmocom finite state machine instance
*
* Best invoke via the osmo_fsm_inst_dispatch() macro which logs the source
* file where the event was effected. Alternatively, you may pass \a file as
* NULL to use the normal file/line indication instead.
*
* Any incoming events to \ref osmo_fsm instances must be dispatched to
* them via this function. It verifies, whether the event is permitted
* based on the current state of the FSM. If not, -1 is returned.
*
* \param[in] fi FSM instance
* \param[in] event Event to send to FSM instance
* \param[in] data Data to pass along with the event
* \param[in] file Calling source file (from osmo_fsm_inst_dispatch macro)
* \param[in] line Calling source line (from osmo_fsm_inst_dispatch macro)
* \returns 0 in case of success; negative on error
*/
int _osmo_fsm_inst_dispatch(struct osmo_fsm_inst *fi, uint32_t event, void *data,
const char *file, int line)
{
struct osmo_fsm *fsm;
const struct osmo_fsm_state *fs;
if (!fi) {
LOGPSRC(DLGLOBAL, LOGL_ERROR, file, line,
"Trying to dispatch event %"PRIu32" to non-existent"
" FSM instance!\n", event);
osmo_log_backtrace(DLGLOBAL, LOGL_ERROR);
return -ENODEV;
}
fsm = fi->fsm;
if (fi->proc.terminating) {
LOGPFSMSRC(fi, file, line,
"FSM instance already terminating, not dispatching event %s\n",
osmo_fsm_event_name(fsm, event));
return -EINVAL;
}
OSMO_ASSERT(fi->state < fsm->num_states);
fs = &fi->fsm->states[fi->state];
LOGPFSMSRC(fi, file, line,
"Received Event %s\n", osmo_fsm_event_name(fsm, event));
if (((1 << event) & fsm->allstate_event_mask) && fsm->allstate_action) {
fsm->allstate_action(fi, event, data);
return 0;
}
if (!((1 << event) & fs->in_event_mask)) {
LOGPFSMLSRC(fi, LOGL_ERROR, file, line,
"Event %s not permitted\n",
osmo_fsm_event_name(fsm, event));
return -1;
}
if (fs->action)
fs->action(fi, event, data);
return 0;
}
/*! Terminate FSM instance with given cause
*
* This safely terminates the given FSM instance by first iterating
* over all children and sending them a termination event. Next, it
* calls the FSM descriptors cleanup function (if any), followed by
* releasing any memory associated with the FSM instance.
*
* Finally, the parent FSM instance (if any) is notified using the
* parent termination event configured at time of FSM instance start.
*
* \param[in] fi FSM instance to be terminated
* \param[in] cause Cause / reason for termination
* \param[in] data Opaque event data to be passed with the parent term event
* \param[in] file Calling source file (from osmo_fsm_inst_term macro)
* \param[in] line Calling source line (from osmo_fsm_inst_term macro)
*/
void _osmo_fsm_inst_term(struct osmo_fsm_inst *fi,
enum osmo_fsm_term_cause cause, void *data,
const char *file, int line)
{
struct osmo_fsm_inst *parent;
uint32_t parent_term_event = fi->proc.parent_term_event;
if (fi->proc.terminating) {
LOGPFSMSRC(fi, file, line, "Ignoring trigger to terminate: already terminating\n");
return;
}
fi->proc.terminating = true;
/* Start termination cascade handling only if the feature is enabled. Also check the current depth: though
* unlikely, theoretically the fsm_term_safely_enabled flag could be toggled in the middle of a cascaded
* termination, so make sure to continue if it already started. */
if (fsm_term_safely_enabled || fsm_term_safely.depth) {
fsm_term_safely.depth++;
/* root_fi is just for logging, so no need to be extra careful about it. */
if (!fsm_term_safely.root_fi)
fsm_term_safely.root_fi = fi;
}
if (fsm_term_safely.depth > 1) {
/* fsm_term_safely is enabled and this is a secondary FSM instance terminated, caused by the root_fi. */
LOGPFSMSRC(fi, file, line, "Terminating in cascade, depth %d (cause = %s, caused by: %s)\n",
fsm_term_safely.depth, osmo_fsm_term_cause_name(cause),
fsm_term_safely.root_fi ? fsm_term_safely.root_fi->name : "unknown");
/* The root_fi can't go missing really, but to be safe, log "unknown" in that case. */
} else {
/* fsm_term_safely is disabled, or this is the root_fi. */
LOGPFSMSRC(fi, file, line, "Terminating (cause = %s)\n", osmo_fsm_term_cause_name(cause));
}
/* graceful exit (optional) */
if (fi->fsm->pre_term)
fi->fsm->pre_term(fi, cause);
_osmo_fsm_inst_term_children(fi, OSMO_FSM_TERM_PARENT, NULL,
file, line);
/* delete ourselves from the parent */
parent = fi->proc.parent;
if (parent) {
LOGPFSMSRC(fi, file, line, "Removing from parent %s\n",
osmo_fsm_inst_name(parent));
llist_del(&fi->proc.child);
}
/* call destructor / clean-up function */
if (fi->fsm->cleanup)
fi->fsm->cleanup(fi, cause);
/* Fetch parent again in case it has changed. */
parent = fi->proc.parent;
/* Legacy behavior if fsm_term_safely is disabled: free before dispatching parent event. (If fsm_term_safely is
* enabled, depth will *always* be > 0 here.) Pivot on depth instead of the enabled flag in case the enabled
* flag is toggled in the middle of an FSM term. */
if (!fsm_term_safely.depth) {
LOGPFSMSRC(fi, file, line, "Freeing instance\n");
osmo_fsm_inst_free(fi);
}
/* indicate our termination to the parent */
if (parent && cause != OSMO_FSM_TERM_PARENT)
_osmo_fsm_inst_dispatch(parent, parent_term_event, data,
file, line);
/* Newer, safe deallocation: free only after the parent_term_event was dispatched, to catch all termination
* cascades, and free all FSM instances at once. (If fsm_term_safely is enabled, depth will *always* be > 0
* here.) osmo_fsm_inst_free() will do the defer magic depending on the fsm_term_safely.depth. */
if (fsm_term_safely.depth) {
fsm_term_safely.depth--;
osmo_fsm_inst_free(fi);
}
}
/*! Terminate all child FSM instances of an FSM instance.
*
* Iterate over all children and send them a termination event, with the given
* cause. Pass OSMO_FSM_TERM_PARENT to avoid dispatching events from the
* terminated child FSMs.
*
* \param[in] fi FSM instance that should be cleared of child FSMs
* \param[in] cause Cause / reason for termination (OSMO_FSM_TERM_PARENT)
* \param[in] data Opaque event data to be passed with the parent term events
* \param[in] file Calling source file (from osmo_fsm_inst_term_children macro)
* \param[in] line Calling source line (from osmo_fsm_inst_term_children macro)
*/
void _osmo_fsm_inst_term_children(struct osmo_fsm_inst *fi,
enum osmo_fsm_term_cause cause,
void *data,
const char *file, int line)
{
struct osmo_fsm_inst *first_child, *last_seen_first_child;
/* iterate over all children, starting from the beginning every time:
* terminating an FSM may emit events that cause other FSMs to also
* terminate and remove themselves from this list. */
last_seen_first_child = NULL;
while (!llist_empty(&fi->proc.children)) {
first_child = llist_entry(fi->proc.children.next,
typeof(*first_child),
proc.child);
/* paranoia: do not loop forever */
if (first_child == last_seen_first_child) {
LOGPFSMLSRC(fi, LOGL_ERROR, file, line,
"Internal error while terminating child"
" FSMs: a child FSM is stuck\n");
break;
}
last_seen_first_child = first_child;
/* terminate child */
_osmo_fsm_inst_term(first_child, cause, data,
file, line);
}
}
/*! Broadcast an event to all the FSMs children.
*
* Iterate over all children and send them the specified event.
*
* \param[in] fi FSM instance of the parent
* \param[in] event Event to send to children of FSM instance
* \param[in] data Data to pass along with the event
* \param[in] file Calling source file (from osmo_fsm_inst_dispatch macro)
* \param[in] line Calling source line (from osmo_fsm_inst_dispatch macro)
*/
void _osmo_fsm_inst_broadcast_children(struct osmo_fsm_inst *fi,
uint32_t event, void *data,
const char *file, int line)
{
struct osmo_fsm_inst *child, *tmp;
llist_for_each_entry_safe(child, tmp, &fi->proc.children, proc.child) {
_osmo_fsm_inst_dispatch(child, event, data, file, line);
}
}
const struct value_string osmo_fsm_term_cause_names[] = {
OSMO_VALUE_STRING(OSMO_FSM_TERM_PARENT),
OSMO_VALUE_STRING(OSMO_FSM_TERM_REQUEST),
OSMO_VALUE_STRING(OSMO_FSM_TERM_REGULAR),
OSMO_VALUE_STRING(OSMO_FSM_TERM_ERROR),
OSMO_VALUE_STRING(OSMO_FSM_TERM_TIMEOUT),
{ 0, NULL }
};
/*! @} */