port arfcn range encode support from osmo-bsc

As part of fixing issue OS#3075, we want to migrate support
for encoding system information from osmo-bsc to libosmocore.

This change ports one of the prerequisites for doing so:
osmo-bsc code for range-encoding ARFCNs, including tests.

An osmo_gsm48_ prefix has been prepended to public symbols in
order to avoid clashes with existing symbols in osmo-bsc code.

Change-Id: Ia220764fba451be5e975ae7c5eefb1a25ac2bf2c
Related: OS#3075
This commit is contained in:
Stefan Sperling 2018-07-27 12:19:15 +02:00 committed by Harald Welte
parent e118ed22e3
commit fdf8b7b1be
7 changed files with 760 additions and 1 deletions

View File

@ -91,6 +91,7 @@ nobase_include_HEADERS = \
osmocom/gsm/gsm23003.h \
osmocom/gsm/gsm29118.h \
osmocom/gsm/gsm48.h \
osmocom/gsm/gsm48_arfcn_range_encode.h \
osmocom/gsm/gsm48_ie.h \
osmocom/gsm/gsm_utils.h \
osmocom/gsm/gsup.h \

View File

@ -0,0 +1,25 @@
/*! \file gsm48_arfcn_range_encode.h */
#pragma once
#include <stdint.h>
enum osmo_gsm48_range {
OSMO_GSM48_ARFCN_RANGE_INVALID = -1,
OSMO_GSM48_ARFCN_RANGE_128 = 127,
OSMO_GSM48_ARFCN_RANGE_256 = 255,
OSMO_GSM48_ARFCN_RANGE_512 = 511,
OSMO_GSM48_ARFCN_RANGE_1024 = 1023,
};
#define OSMO_GSM48_RANGE_ENC_MAX_ARFCNS 29
int osmo_gsm48_range_enc_determine_range(const int *arfcns, int size, int *f0_out);
int osmo_gsm48_range_enc_arfcns(enum osmo_gsm48_range rng, const int *arfcns, int sze, int *out, int idx);
int osmo_gsm48_range_enc_find_index(enum osmo_gsm48_range rng, const int *arfcns, int size);
int osmo_gsm48_range_enc_filter_arfcns(int *arfcns, const int sze, const int f0, int *f0_included);
int osmo_gsm48_range_enc_128(uint8_t *chan_list, int f0, int *w);
int osmo_gsm48_range_enc_256(uint8_t *chan_list, int f0, int *w);
int osmo_gsm48_range_enc_512(uint8_t *chan_list, int f0, int *w);
int osmo_gsm48_range_enc_1024(uint8_t *chan_list, int f0, int f0_incl, int *w);

View File

@ -21,7 +21,8 @@ lib_LTLIBRARIES = libosmogsm.la
BUILT_SOURCES = gsm0503_conv.c
libgsmint_la_SOURCES = a5.c rxlev_stat.c tlv_parser.c comp128.c comp128v23.c \
gsm_utils.c rsl.c gsm48.c gsm48_ie.c gsm0808.c sysinfo.c \
gsm_utils.c rsl.c gsm48.c gsm48_arfcn_range_encode.c \
gsm48_ie.c gsm0808.c sysinfo.c \
gprs_cipher_core.c gprs_rlc.c gsm0480.c abis_nm.c gsm0502.c \
gsm0411_utils.c gsm0411_smc.c gsm0411_smr.c gsm0414.c \
lapd_core.c lapdm.c kasumi.c gsm29205.c gsm_04_08_gprs.c \

View File

@ -0,0 +1,321 @@
/* gsm 04.08 system information (si) encoding and decoding
* 3gpp ts 04.08 version 7.21.0 release 1998 / etsi ts 100 940 v7.21.0 */
/*
* (C) 2012 Holger Hans Peter Freyther
* (C) 2012 by On-Waves
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <osmocom/gsm/protocol/gsm_04_08.h>
#include <osmocom/gsm/gsm48_arfcn_range_encode.h>
#include <osmocom/core/utils.h>
#include <errno.h>
static inline int greatest_power_of_2_lesser_or_equal_to(int index)
{
int power_of_2 = 1;
do {
power_of_2 *= 2;
} while (power_of_2 <= index);
/* now go back one step */
return power_of_2 / 2;
}
static inline int mod(int data, int range)
{
int res = data % range;
while (res < 0)
res += range;
return res;
}
/**
* Determine at which index to split the ARFCNs to create an
* equally size partition for the given range. Return -1 if
* no such partition exists.
*/
int osmo_gsm48_range_enc_find_index(enum osmo_gsm48_range range, const int *freqs, const int size)
{
int i, j, n;
const int RANGE_DELTA = (range - 1) / 2;
for (i = 0; i < size; ++i) {
n = 0;
for (j = 0; j < size; ++j) {
if (mod(freqs[j] - freqs[i], range) <= RANGE_DELTA)
n += 1;
}
if (n - 1 == (size - 1) / 2)
return i;
}
return -1;
}
/* Worker for range_enc_arfcns(), do not call directly. */
static int _range_enc_arfcns(enum osmo_gsm48_range range,
const int *arfcns, int size, int *out,
const int index)
{
int split_at;
int i;
/*
* The below is a GNU extension and we can remove it when
* we move to a quicksort like in-situ swap with the pivot.
*/
int arfcns_left[size / 2];
int arfcns_right[size / 2];
int l_size;
int r_size;
int l_origin;
int r_origin;
/* Now do the processing */
split_at = osmo_gsm48_range_enc_find_index(range, arfcns, size);
if (split_at < 0)
return -EINVAL;
/* we now know where to split */
out[index] = 1 + arfcns[split_at];
/* calculate the work that needs to be done for the leafs */
l_origin = mod(arfcns[split_at] + ((range - 1) / 2) + 1, range);
r_origin = mod(arfcns[split_at] + 1, range);
for (i = 0, l_size = 0, r_size = 0; i < size; ++i) {
if (mod(arfcns[i] - l_origin, range) < range / 2)
arfcns_left[l_size++] = mod(arfcns[i] - l_origin, range);
if (mod(arfcns[i] - r_origin, range) < range / 2)
arfcns_right[r_size++] = mod(arfcns[i] - r_origin, range);
}
/*
* Now recurse and we need to make this iterative... but as the
* tree is balanced the stack will not be too deep.
*/
if (l_size)
osmo_gsm48_range_enc_arfcns(range / 2, arfcns_left, l_size,
out, index + greatest_power_of_2_lesser_or_equal_to(index + 1));
if (r_size)
osmo_gsm48_range_enc_arfcns((range - 1) / 2, arfcns_right, r_size,
out, index + (2 * greatest_power_of_2_lesser_or_equal_to(index + 1)));
return 0;
}
/**
* Range encode the ARFCN list.
* \param range The range to use.
* \param arfcns The list of ARFCNs
* \param size The size of the list of ARFCNs
* \param out Place to store the W(i) output.
*/
int osmo_gsm48_range_enc_arfcns(enum osmo_gsm48_range range,
const int *arfcns, int size, int *out,
const int index)
{
if (size <= 0)
return 0;
if (size == 1) {
out[index] = 1 + arfcns[0];
return 0;
}
return _range_enc_arfcns(range, arfcns, size, out, index);
}
/*
* The easiest is to use f0 == arfcns[0]. This means that under certain
* circumstances we can encode less ARFCNs than possible with an optimal f0.
*
* TODO: Solve the optimisation problem and pick f0 so that the max distance
* is the smallest. Taking into account the modulo operation. I think picking
* size/2 will be the optimal arfcn.
*/
/**
* This implements the range determination as described in GSM 04.08 J4. The
* result will be a base frequency f0 and the range to use. Note that for range
* 1024 encoding f0 always refers to ARFCN 0 even if it is not an element of
* the arfcns list.
*
* \param[in] arfcns The input frequencies, they must be sorted, lowest number first
* \param[in] size The length of the array
* \param[out] f0 The selected F0 base frequency. It might not be inside the list
*/
int osmo_gsm48_range_enc_determine_range(const int *arfcns, const int size, int *f0)
{
int max = 0;
/*
* Go for the easiest. And pick arfcns[0] == f0.
*/
max = arfcns[size - 1] - arfcns[0];
*f0 = arfcns[0];
if (max < 128 && size <= 29)
return OSMO_GSM48_ARFCN_RANGE_128;
if (max < 256 && size <= 22)
return OSMO_GSM48_ARFCN_RANGE_256;
if (max < 512 && size <= 18)
return OSMO_GSM48_ARFCN_RANGE_512;
if (max < 1024 && size <= 17) {
*f0 = 0;
return OSMO_GSM48_ARFCN_RANGE_1024;
}
return OSMO_GSM48_ARFCN_RANGE_INVALID;
}
static void write_orig_arfcn(uint8_t *chan_list, int f0)
{
chan_list[0] |= (f0 >> 9) & 1;
chan_list[1] = (f0 >> 1);
chan_list[2] = (f0 & 1) << 7;
}
static void write_all_wn(uint8_t *chan_list, int bit_offs,
int *w, int w_size, int w1_len)
{
int octet_offs = 0; /* offset into chan_list */
int wk_len = w1_len; /* encoding size in bits of w[k] */
int k; /* 1 based */
int level = 0; /* tree level, top level = 0 */
int lvl_left = 1; /* nodes per tree level */
/* W(2^i) to W(2^(i+1)-1) are on w1_len-i bits when present */
for (k = 1; k <= w_size; k++) {
int wk_left = wk_len;
while (wk_left > 0) {
int cur_bits = 8 - bit_offs;
int cur_mask;
int wk_slice;
if (cur_bits > wk_left)
cur_bits = wk_left;
cur_mask = ((1 << cur_bits) - 1);
/* advance */
wk_left -= cur_bits;
bit_offs += cur_bits;
/* right aligned wk data for current out octet */
wk_slice = (w[k-1] >> wk_left) & cur_mask;
/* cur_bits now contains the number of bits
* that are to be copied from wk to the chan_list.
* wk_left is set to the number of bits that must
* not yet be copied.
* bit_offs points after the bit area that is going to
* be overwritten:
*
* wk_left
* |
* v
* wk: WWWWWWWWWWW
* |||||<-- wk_slice, cur_bits=5
* --WWWWW-
* ^
* |
* bit_offs
*/
chan_list[octet_offs] &= ~(cur_mask << (8 - bit_offs));
chan_list[octet_offs] |= wk_slice << (8 - bit_offs);
/* adjust output */
if (bit_offs == 8) {
bit_offs = 0;
octet_offs += 1;
}
}
/* adjust bit sizes */
lvl_left -= 1;
if (!lvl_left) {
/* completed tree level, advance to next */
level += 1;
lvl_left = 1 << level;
wk_len -= 1;
}
}
}
int osmo_gsm48_range_enc_128(uint8_t *chan_list, int f0, int *w)
{
chan_list[0] = 0x8C;
write_orig_arfcn(chan_list, f0);
write_all_wn(&chan_list[2], 1, w, 28, 7);
return 0;
}
int osmo_gsm48_range_enc_256(uint8_t *chan_list, int f0, int *w)
{
chan_list[0] = 0x8A;
write_orig_arfcn(chan_list, f0);
write_all_wn(&chan_list[2], 1, w, 21, 8);
return 0;
}
int osmo_gsm48_range_enc_512(uint8_t *chan_list, int f0, int *w)
{
chan_list[0] = 0x88;
write_orig_arfcn(chan_list, f0);
write_all_wn(&chan_list[2], 1, w, 17, 9);
return 0;
}
int osmo_gsm48_range_enc_1024(uint8_t *chan_list, int f0, int f0_included, int *w)
{
chan_list[0] = 0x80 | (f0_included << 2);
write_all_wn(&chan_list[0], 6, w, 16, 10);
return 0;
}
int osmo_gsm48_range_enc_filter_arfcns(int *arfcns, const int size, const int f0, int *f0_included)
{
int i, j = 0;
*f0_included = 0;
for (i = 0; i < size; ++i) {
/*
* Appendix J.4 says the following:
* All frequencies except F(0), minus F(0) + 1.
* I assume we need to exclude it here.
*/
if (arfcns[i] == f0) {
*f0_included = 1;
continue;
}
arfcns[j++] = mod(arfcns[i] - (f0 + 1), 1024);
}
return j;
}

View File

@ -518,6 +518,15 @@ osmo_apn_qualify_from_imsi;
osmo_apn_to_str;
osmo_apn_from_str;
osmo_gsm48_range_enc_determine_range;
osmo_gsm48_range_enc_arfcns;
osmo_gsm48_range_enc_find_index;
osmo_gsm48_range_enc_filter_arfcns;
osmo_gsm48_range_enc_128;
osmo_gsm48_range_enc_256;
osmo_gsm48_range_enc_512;
osmo_gsm48_range_enc_1024;
osmo_gsup_encode;
osmo_gsup_decode;
osmo_gsup_message_type_names;

View File

@ -25,6 +25,7 @@
#include <osmocom/gsm/protocol/gsm_04_08.h>
#include <osmocom/gsm/gsm48_ie.h>
#include <osmocom/gsm/gsm48.h>
#include <osmocom/gsm/gsm48_arfcn_range_encode.h>
#include <osmocom/gsm/mncc.h>
#include <osmocom/core/backtrace.h>
#include <osmocom/core/utils.h>
@ -609,6 +610,338 @@ static void test_mid_decode_zero_length(void)
printf("\n");
}
struct {
int range;
int arfcns_num;
int arfcns[OSMO_GSM48_RANGE_ENC_MAX_ARFCNS];
} arfcn_test_ranges[] = {
{OSMO_GSM48_ARFCN_RANGE_512, 12,
{ 1, 12, 31, 51, 57, 91, 97, 98, 113, 117, 120, 125 }},
{OSMO_GSM48_ARFCN_RANGE_512, 17,
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 }},
{OSMO_GSM48_ARFCN_RANGE_512, 18,
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 }},
{OSMO_GSM48_ARFCN_RANGE_512, 18,
{ 1, 17, 31, 45, 58, 79, 81, 97,
113, 127, 213, 277, 287, 311, 331, 391,
417, 511 }},
{OSMO_GSM48_ARFCN_RANGE_512, 6,
{ 1, 17, 31, 45, 58, 79 }},
{OSMO_GSM48_ARFCN_RANGE_512, 6,
{ 10, 17, 31, 45, 58, 79 }},
{OSMO_GSM48_ARFCN_RANGE_1024, 17,
{ 0, 17, 31, 45, 58, 79, 81, 97,
113, 127, 213, 277, 287, 311, 331, 391,
1023 }},
{OSMO_GSM48_ARFCN_RANGE_1024, 16,
{ 17, 31, 45, 58, 79, 81, 97, 113,
127, 213, 277, 287, 311, 331, 391, 1023 }},
{-1}
};
static int test_single_range_encoding(int range, const int *orig_arfcns, int arfcns_num, int silent)
{
int arfcns[OSMO_GSM48_RANGE_ENC_MAX_ARFCNS];
int w[OSMO_GSM48_RANGE_ENC_MAX_ARFCNS];
int f0_included = 0;
int rc, f0;
uint8_t chan_list[16] = {0};
struct gsm_sysinfo_freq dec_freq[1024] = {{0}};
int dec_arfcns[OSMO_GSM48_RANGE_ENC_MAX_ARFCNS] = {0};
int dec_arfcns_count = 0;
int arfcns_used = 0;
int i;
arfcns_used = arfcns_num;
memmove(arfcns, orig_arfcns, sizeof(arfcns));
f0 = range == OSMO_GSM48_ARFCN_RANGE_1024 ? 0 : arfcns[0];
/*
* Manipulate the ARFCN list according to the rules in J4 depending
* on the selected range.
*/
arfcns_used = osmo_gsm48_range_enc_filter_arfcns(arfcns, arfcns_used, f0, &f0_included);
memset(w, 0, sizeof(w));
osmo_gsm48_range_enc_arfcns(range, arfcns, arfcns_used, w, 0);
if (!silent)
printf("range=%d, arfcns_used=%d, f0=%d, f0_included=%d\n", range, arfcns_used, f0, f0_included);
/* Select the range and the amount of bits needed */
switch (range) {
case OSMO_GSM48_ARFCN_RANGE_128:
osmo_gsm48_range_enc_128(chan_list, f0, w);
break;
case OSMO_GSM48_ARFCN_RANGE_256:
osmo_gsm48_range_enc_256(chan_list, f0, w);
break;
case OSMO_GSM48_ARFCN_RANGE_512:
osmo_gsm48_range_enc_512(chan_list, f0, w);
break;
case OSMO_GSM48_ARFCN_RANGE_1024:
osmo_gsm48_range_enc_1024(chan_list, f0, f0_included, w);
break;
default:
return 1;
};
if (!silent)
printf("chan_list = %s\n",
osmo_hexdump(chan_list, sizeof(chan_list)));
rc = gsm48_decode_freq_list(dec_freq, chan_list, sizeof(chan_list),
0xfe, 1);
if (rc != 0) {
printf("Cannot decode freq list, rc = %d\n", rc);
return 1;
}
for (i = 0; i < ARRAY_SIZE(dec_freq); i++) {
if (dec_freq[i].mask &&
dec_arfcns_count < ARRAY_SIZE(dec_arfcns))
dec_arfcns[dec_arfcns_count++] = i;
}
if (!silent) {
printf("Decoded freqs %d (expected %d)\n",
dec_arfcns_count, arfcns_num);
printf("Decoded: ");
for (i = 0; i < dec_arfcns_count; i++) {
printf("%d ", dec_arfcns[i]);
if (dec_arfcns[i] != orig_arfcns[i])
printf("(!= %d) ", orig_arfcns[i]);
}
printf("\n");
}
if (dec_arfcns_count != arfcns_num) {
printf("Wrong number of arfcns\n");
return 1;
}
if (memcmp(dec_arfcns, orig_arfcns, sizeof(dec_arfcns)) != 0) {
printf("Decoding error, got wrong freqs\n");
printf(" w = ");
for (i = 0; i < ARRAY_SIZE(w); i++)
printf("%d ", w[i]);
printf("\n");
return 1;
}
return 0;
}
static void test_random_range_encoding(int range, int max_arfcn_num)
{
int arfcns_num = 0;
int test_idx;
int rc, max_count;
int num_tests = 1024;
printf("Random range test: range %d, max num ARFCNs %d\n",
range, max_arfcn_num);
srandom(1);
for (max_count = 1; max_count < max_arfcn_num; max_count++) {
for (test_idx = 0; test_idx < num_tests; test_idx++) {
int count;
int i;
int min_freq = 0;
int rnd_arfcns[OSMO_GSM48_RANGE_ENC_MAX_ARFCNS] = {0};
char rnd_arfcns_set[1024] = {0};
if (range < OSMO_GSM48_ARFCN_RANGE_1024)
min_freq = random() % (1023 - range);
for (count = max_count; count; ) {
int arfcn = min_freq + random() % (range + 1);
OSMO_ASSERT(arfcn < ARRAY_SIZE(rnd_arfcns_set));
if (!rnd_arfcns_set[arfcn]) {
rnd_arfcns_set[arfcn] = 1;
count -= 1;
}
}
arfcns_num = 0;
for (i = 0; i < ARRAY_SIZE(rnd_arfcns_set); i++)
if (rnd_arfcns_set[i])
rnd_arfcns[arfcns_num++] = i;
rc = test_single_range_encoding(range, rnd_arfcns,
arfcns_num, 1);
if (rc != 0) {
printf("Failed on test %d, range %d, num ARFCNs %d\n",
test_idx, range, max_count);
test_single_range_encoding(range, rnd_arfcns,
arfcns_num, 0);
return;
}
}
}
}
static void test_range_encoding()
{
int *arfcns;
int arfcns_num = 0;
int test_idx;
int range;
for (test_idx = 0; arfcn_test_ranges[test_idx].arfcns_num > 0; test_idx++)
{
arfcns_num = arfcn_test_ranges[test_idx].arfcns_num;
arfcns = &arfcn_test_ranges[test_idx].arfcns[0];
range = arfcn_test_ranges[test_idx].range;
printf("Range test %d: range %d, num ARFCNs %d\n",
test_idx, range, arfcns_num);
test_single_range_encoding(range, arfcns, arfcns_num, 0);
}
test_random_range_encoding(OSMO_GSM48_ARFCN_RANGE_128, 29);
test_random_range_encoding(OSMO_GSM48_ARFCN_RANGE_256, 22);
test_random_range_encoding(OSMO_GSM48_ARFCN_RANGE_512, 18);
test_random_range_encoding(OSMO_GSM48_ARFCN_RANGE_1024, 16);
}
static int freqs1[] = {
12, 70, 121, 190, 250, 320, 401, 475, 520, 574, 634, 700, 764, 830, 905, 980
};
static int freqs2[] = {
402, 460, 1, 67, 131, 197, 272, 347,
};
static int freqs3[] = {
68, 128, 198, 279, 353, 398, 452,
};
static int w_out[] = {
122, 2, 69, 204, 75, 66, 60, 70, 83, 3, 24, 67, 54, 64, 70, 9,
};
static int range128[] = {
1, 1 + 127,
};
static int range256[] = {
1, 1 + 128,
};
static int range512[] = {
1, 1+ 511,
};
#define VERIFY(res, cmp, wanted) \
if (!(res cmp wanted)) { \
printf("ASSERT failed: %s:%d Wanted: %d %s %d\n", \
__FILE__, __LINE__, (int) res, # cmp, (int) wanted); \
}
static void test_arfcn_filter()
{
int arfcns[50], i, res, f0_included;
for (i = 0; i < ARRAY_SIZE(arfcns); ++i)
arfcns[i] = (i + 1) * 2;
/* check that the arfcn is taken out. f0_included is only set for Range1024 */
f0_included = 24;
res = osmo_gsm48_range_enc_filter_arfcns(arfcns, ARRAY_SIZE(arfcns), arfcns[0], &f0_included);
VERIFY(res, ==, ARRAY_SIZE(arfcns) - 1);
VERIFY(f0_included, ==, 1);
for (i = 0; i < res; ++i)
VERIFY(arfcns[i], ==, ((i+2) * 2) - (2+1));
/* check with range1024, ARFCN 0 is included */
for (i = 0; i < ARRAY_SIZE(arfcns); ++i)
arfcns[i] = i * 2;
res = osmo_gsm48_range_enc_filter_arfcns(arfcns, ARRAY_SIZE(arfcns), 0, &f0_included);
VERIFY(res, ==, ARRAY_SIZE(arfcns) - 1);
VERIFY(f0_included, ==, 1);
for (i = 0; i < res; ++i)
VERIFY(arfcns[i], ==, (i + 1) * 2 - 1);
/* check with range1024, ARFCN 0 not included */
for (i = 0; i < ARRAY_SIZE(arfcns); ++i)
arfcns[i] = (i + 1) * 2;
res = osmo_gsm48_range_enc_filter_arfcns(arfcns, ARRAY_SIZE(arfcns), 0, &f0_included);
VERIFY(res, ==, ARRAY_SIZE(arfcns));
VERIFY(f0_included, ==, 0);
for (i = 0; i < res; ++i)
VERIFY(arfcns[i], ==, ((i + 1) * 2) - 1);
}
static void test_print_encoding()
{
int rc;
int w[17];
uint8_t chan_list[16];
memset(chan_list, 0x23, sizeof(chan_list));
for (rc = 0; rc < ARRAY_SIZE(w); ++rc)
switch (rc % 3) {
case 0:
w[rc] = 0xAAAA;
break;
case 1:
w[rc] = 0x5555;
break;
case 2:
w[rc] = 0x9696;
break;
}
osmo_gsm48_range_enc_512(chan_list, (1 << 9) | 0x96, w);
printf("Range512: %s\n", osmo_hexdump(chan_list, ARRAY_SIZE(chan_list)));
}
static void test_si_range_helpers()
{
int ws[(sizeof(freqs1)/sizeof(freqs1[0]))];
int i, f0 = 0xFFFFFF;
memset(&ws[0], 0x23, sizeof(ws));
i = osmo_gsm48_range_enc_find_index(1023, freqs1, ARRAY_SIZE(freqs1));
printf("Element is: %d => freqs[i] = %d\n", i, i >= 0 ? freqs1[i] : -1);
VERIFY(i, ==, 2);
i = osmo_gsm48_range_enc_find_index(511, freqs2, ARRAY_SIZE(freqs2));
printf("Element is: %d => freqs[i] = %d\n", i, i >= 0 ? freqs2[i] : -1);
VERIFY(i, ==, 2);
i = osmo_gsm48_range_enc_find_index(511, freqs3, ARRAY_SIZE(freqs3));
printf("Element is: %d => freqs[i] = %d\n", i, i >= 0 ? freqs3[i] : -1);
VERIFY(i, ==, 0);
osmo_gsm48_range_enc_arfcns(1023, freqs1, ARRAY_SIZE(freqs1), ws, 0);
for (i = 0; i < sizeof(freqs1)/sizeof(freqs1[0]); ++i) {
printf("w[%d]=%d\n", i, ws[i]);
VERIFY(ws[i], ==, w_out[i]);
}
i = osmo_gsm48_range_enc_determine_range(range128, ARRAY_SIZE(range128), &f0);
VERIFY(i, ==, OSMO_GSM48_ARFCN_RANGE_128);
VERIFY(f0, ==, 1);
i = osmo_gsm48_range_enc_determine_range(range256, ARRAY_SIZE(range256), &f0);
VERIFY(i, ==, OSMO_GSM48_ARFCN_RANGE_256);
VERIFY(f0, ==, 1);
i = osmo_gsm48_range_enc_determine_range(range512, ARRAY_SIZE(range512), &f0);
VERIFY(i, ==, OSMO_GSM48_ARFCN_RANGE_512);
VERIFY(f0, ==, 1);
}
int main(int argc, char **argv)
{
test_bearer_cap();
@ -619,5 +952,10 @@ int main(int argc, char **argv)
test_ra_cap();
test_lai_encode_decode();
test_si_range_helpers();
test_arfcn_filter();
test_print_encoding();
test_range_encoding();
return EXIT_SUCCESS;
}

View File

@ -282,3 +282,67 @@ RA test...passed
Encoded 21 63 54 00 17
gsm48_decode_lai2() gives 123-456-23 (3-digit MNC)
passed
Element is: 2 => freqs[i] = 121
Element is: 2 => freqs[i] = 1
Element is: 0 => freqs[i] = 68
w[0]=122
w[1]=2
w[2]=69
w[3]=204
w[4]=75
w[5]=66
w[6]=60
w[7]=70
w[8]=83
w[9]=3
w[10]=24
w[11]=67
w[12]=54
w[13]=64
w[14]=70
w[15]=9
Range512: 89 4b 2a 95 65 95 55 2c a9 55 aa 55 6a 95 59 55
Range test 0: range 511, num ARFCNs 12
range=511, arfcns_used=11, f0=1, f0_included=1
chan_list = 88 00 98 34 85 36 7c 50 22 dc 5e ec 00 00 00 00
Decoded freqs 12 (expected 12)
Decoded: 1 12 31 51 57 91 97 98 113 117 120 125
Range test 1: range 511, num ARFCNs 17
range=511, arfcns_used=16, f0=1, f0_included=1
chan_list = 88 00 82 7f 01 3f 7e 04 0b ff ff fc 10 41 07 e0
Decoded freqs 17 (expected 17)
Decoded: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Range test 2: range 511, num ARFCNs 18
range=511, arfcns_used=17, f0=1, f0_included=1
chan_list = 88 00 82 7f 01 7f 7e 04 0b ff ff fc 10 41 07 ff
Decoded freqs 18 (expected 18)
Decoded: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Range test 3: range 511, num ARFCNs 18
range=511, arfcns_used=17, f0=1, f0_included=1
chan_list = 88 00 94 3a 44 32 d7 2a 43 2a 13 94 e5 38 39 f6
Decoded freqs 18 (expected 18)
Decoded: 1 17 31 45 58 79 81 97 113 127 213 277 287 311 331 391 417 511
Range test 4: range 511, num ARFCNs 6
range=511, arfcns_used=5, f0=1, f0_included=1
chan_list = 88 00 8b 3c 88 b9 6b 00 00 00 00 00 00 00 00 00
Decoded freqs 6 (expected 6)
Decoded: 1 17 31 45 58 79
Range test 5: range 511, num ARFCNs 6
range=511, arfcns_used=5, f0=10, f0_included=1
chan_list = 88 05 08 fc 88 b9 6b 00 00 00 00 00 00 00 00 00
Decoded freqs 6 (expected 6)
Decoded: 10 17 31 45 58 79
Range test 6: range 1023, num ARFCNs 17
range=1023, arfcns_used=16, f0=0, f0_included=1
chan_list = 84 71 e4 ab b9 58 05 cb 39 17 fd b0 75 62 0f 2f
Decoded freqs 17 (expected 17)
Decoded: 0 17 31 45 58 79 81 97 113 127 213 277 287 311 331 391 1023
Range test 7: range 1023, num ARFCNs 16
range=1023, arfcns_used=16, f0=0, f0_included=0
chan_list = 80 71 e4 ab b9 58 05 cb 39 17 fd b0 75 62 0f 2f
Decoded freqs 16 (expected 16)
Decoded: 17 31 45 58 79 81 97 113 127 213 277 287 311 331 391 1023
Random range test: range 127, max num ARFCNs 29
Random range test: range 255, max num ARFCNs 22
Random range test: range 511, max num ARFCNs 18
Random range test: range 1023, max num ARFCNs 16