mirror of https://gerrit.osmocom.org/libosmocore
As part of fixing issue OS#3075, we want to migrate support for encoding system information from osmo-bsc to libosmocore. This change ports one of the prerequisites for doing so: osmo-bsc code for range-encoding ARFCNs, including tests. An osmo_gsm48_ prefix has been prepended to public symbols in order to avoid clashes with existing symbols in osmo-bsc code. Change-Id: Ia220764fba451be5e975ae7c5eefb1a25ac2bf2c Related: OS#3075changes/85/10185/10
parent
e118ed22e3
commit
fdf8b7b1be
@ -0,0 +1,25 @@
|
||||
/*! \file gsm48_arfcn_range_encode.h */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
enum osmo_gsm48_range {
|
||||
OSMO_GSM48_ARFCN_RANGE_INVALID = -1,
|
||||
OSMO_GSM48_ARFCN_RANGE_128 = 127,
|
||||
OSMO_GSM48_ARFCN_RANGE_256 = 255,
|
||||
OSMO_GSM48_ARFCN_RANGE_512 = 511,
|
||||
OSMO_GSM48_ARFCN_RANGE_1024 = 1023,
|
||||
};
|
||||
|
||||
#define OSMO_GSM48_RANGE_ENC_MAX_ARFCNS 29
|
||||
|
||||
int osmo_gsm48_range_enc_determine_range(const int *arfcns, int size, int *f0_out);
|
||||
int osmo_gsm48_range_enc_arfcns(enum osmo_gsm48_range rng, const int *arfcns, int sze, int *out, int idx);
|
||||
int osmo_gsm48_range_enc_find_index(enum osmo_gsm48_range rng, const int *arfcns, int size);
|
||||
int osmo_gsm48_range_enc_filter_arfcns(int *arfcns, const int sze, const int f0, int *f0_included);
|
||||
|
||||
int osmo_gsm48_range_enc_128(uint8_t *chan_list, int f0, int *w);
|
||||
int osmo_gsm48_range_enc_256(uint8_t *chan_list, int f0, int *w);
|
||||
int osmo_gsm48_range_enc_512(uint8_t *chan_list, int f0, int *w);
|
||||
int osmo_gsm48_range_enc_1024(uint8_t *chan_list, int f0, int f0_incl, int *w);
|
@ -0,0 +1,321 @@
|
||||
/* gsm 04.08 system information (si) encoding and decoding
|
||||
* 3gpp ts 04.08 version 7.21.0 release 1998 / etsi ts 100 940 v7.21.0 */
|
||||
|
||||
/*
|
||||
* (C) 2012 Holger Hans Peter Freyther
|
||||
* (C) 2012 by On-Waves
|
||||
* All Rights Reserved
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU Affero General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU Affero General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Affero General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <osmocom/gsm/protocol/gsm_04_08.h>
|
||||
#include <osmocom/gsm/gsm48_arfcn_range_encode.h>
|
||||
|
||||
#include <osmocom/core/utils.h>
|
||||
|
||||
#include <errno.h>
|
||||
|
||||
static inline int greatest_power_of_2_lesser_or_equal_to(int index)
|
||||
{
|
||||
int power_of_2 = 1;
|
||||
|
||||
do {
|
||||
power_of_2 *= 2;
|
||||
} while (power_of_2 <= index);
|
||||
|
||||
/* now go back one step */
|
||||
return power_of_2 / 2;
|
||||
}
|
||||
|
||||
static inline int mod(int data, int range)
|
||||
{
|
||||
int res = data % range;
|
||||
while (res < 0)
|
||||
res += range;
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine at which index to split the ARFCNs to create an
|
||||
* equally size partition for the given range. Return -1 if
|
||||
* no such partition exists.
|
||||
*/
|
||||
int osmo_gsm48_range_enc_find_index(enum osmo_gsm48_range range, const int *freqs, const int size)
|
||||
{
|
||||
int i, j, n;
|
||||
|
||||
const int RANGE_DELTA = (range - 1) / 2;
|
||||
|
||||
for (i = 0; i < size; ++i) {
|
||||
n = 0;
|
||||
for (j = 0; j < size; ++j) {
|
||||
if (mod(freqs[j] - freqs[i], range) <= RANGE_DELTA)
|
||||
n += 1;
|
||||
}
|
||||
|
||||
if (n - 1 == (size - 1) / 2)
|
||||
return i;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* Worker for range_enc_arfcns(), do not call directly. */
|
||||
static int _range_enc_arfcns(enum osmo_gsm48_range range,
|
||||
const int *arfcns, int size, int *out,
|
||||
const int index)
|
||||
{
|
||||
int split_at;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* The below is a GNU extension and we can remove it when
|
||||
* we move to a quicksort like in-situ swap with the pivot.
|
||||
*/
|
||||
int arfcns_left[size / 2];
|
||||
int arfcns_right[size / 2];
|
||||
int l_size;
|
||||
int r_size;
|
||||
int l_origin;
|
||||
int r_origin;
|
||||
|
||||
/* Now do the processing */
|
||||
split_at = osmo_gsm48_range_enc_find_index(range, arfcns, size);
|
||||
if (split_at < 0)
|
||||
return -EINVAL;
|
||||
|
||||
/* we now know where to split */
|
||||
out[index] = 1 + arfcns[split_at];
|
||||
|
||||
/* calculate the work that needs to be done for the leafs */
|
||||
l_origin = mod(arfcns[split_at] + ((range - 1) / 2) + 1, range);
|
||||
r_origin = mod(arfcns[split_at] + 1, range);
|
||||
for (i = 0, l_size = 0, r_size = 0; i < size; ++i) {
|
||||
if (mod(arfcns[i] - l_origin, range) < range / 2)
|
||||
arfcns_left[l_size++] = mod(arfcns[i] - l_origin, range);
|
||||
if (mod(arfcns[i] - r_origin, range) < range / 2)
|
||||
arfcns_right[r_size++] = mod(arfcns[i] - r_origin, range);
|
||||
}
|
||||
|
||||
/*
|
||||
* Now recurse and we need to make this iterative... but as the
|
||||
* tree is balanced the stack will not be too deep.
|
||||
*/
|
||||
if (l_size)
|
||||
osmo_gsm48_range_enc_arfcns(range / 2, arfcns_left, l_size,
|
||||
out, index + greatest_power_of_2_lesser_or_equal_to(index + 1));
|
||||
if (r_size)
|
||||
osmo_gsm48_range_enc_arfcns((range - 1) / 2, arfcns_right, r_size,
|
||||
out, index + (2 * greatest_power_of_2_lesser_or_equal_to(index + 1)));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Range encode the ARFCN list.
|
||||
* \param range The range to use.
|
||||
* \param arfcns The list of ARFCNs
|
||||
* \param size The size of the list of ARFCNs
|
||||
* \param out Place to store the W(i) output.
|
||||
*/
|
||||
int osmo_gsm48_range_enc_arfcns(enum osmo_gsm48_range range,
|
||||
const int *arfcns, int size, int *out,
|
||||
const int index)
|
||||
{
|
||||
if (size <= 0)
|
||||
return 0;
|
||||
|
||||
if (size == 1) {
|
||||
out[index] = 1 + arfcns[0];
|
||||
return 0;
|
||||
}
|
||||
|
||||
return _range_enc_arfcns(range, arfcns, size, out, index);
|
||||
}
|
||||
|
||||
/*
|
||||
* The easiest is to use f0 == arfcns[0]. This means that under certain
|
||||
* circumstances we can encode less ARFCNs than possible with an optimal f0.
|
||||
*
|
||||
* TODO: Solve the optimisation problem and pick f0 so that the max distance
|
||||
* is the smallest. Taking into account the modulo operation. I think picking
|
||||
* size/2 will be the optimal arfcn.
|
||||
*/
|
||||
/**
|
||||
* This implements the range determination as described in GSM 04.08 J4. The
|
||||
* result will be a base frequency f0 and the range to use. Note that for range
|
||||
* 1024 encoding f0 always refers to ARFCN 0 even if it is not an element of
|
||||
* the arfcns list.
|
||||
*
|
||||
* \param[in] arfcns The input frequencies, they must be sorted, lowest number first
|
||||
* \param[in] size The length of the array
|
||||
* \param[out] f0 The selected F0 base frequency. It might not be inside the list
|
||||
*/
|
||||
int osmo_gsm48_range_enc_determine_range(const int *arfcns, const int size, int *f0)
|
||||
{
|
||||
int max = 0;
|
||||
|
||||
/*
|
||||
* Go for the easiest. And pick arfcns[0] == f0.
|
||||
*/
|
||||
max = arfcns[size - 1] - arfcns[0];
|
||||
*f0 = arfcns[0];
|
||||
|
||||
if (max < 128 && size <= 29)
|
||||
return OSMO_GSM48_ARFCN_RANGE_128;
|
||||
if (max < 256 && size <= 22)
|
||||
return OSMO_GSM48_ARFCN_RANGE_256;
|
||||
if (max < 512 && size <= 18)
|
||||
return OSMO_GSM48_ARFCN_RANGE_512;
|
||||
if (max < 1024 && size <= 17) {
|
||||
*f0 = 0;
|
||||
return OSMO_GSM48_ARFCN_RANGE_1024;
|
||||
}
|
||||
|
||||
return OSMO_GSM48_ARFCN_RANGE_INVALID;
|
||||
}
|
||||
|
||||
static void write_orig_arfcn(uint8_t *chan_list, int f0)
|
||||
{
|
||||
chan_list[0] |= (f0 >> 9) & 1;
|
||||
chan_list[1] = (f0 >> 1);
|
||||
chan_list[2] = (f0 & 1) << 7;
|
||||
}
|
||||
|
||||
static void write_all_wn(uint8_t *chan_list, int bit_offs,
|
||||
int *w, int w_size, int w1_len)
|
||||
{
|
||||
int octet_offs = 0; /* offset into chan_list */
|
||||
int wk_len = w1_len; /* encoding size in bits of w[k] */
|
||||
int k; /* 1 based */
|
||||
int level = 0; /* tree level, top level = 0 */
|
||||
int lvl_left = 1; /* nodes per tree level */
|
||||
|
||||
/* W(2^i) to W(2^(i+1)-1) are on w1_len-i bits when present */
|
||||
|
||||
for (k = 1; k <= w_size; k++) {
|
||||
int wk_left = wk_len;
|
||||
|
||||
while (wk_left > 0) {
|
||||
int cur_bits = 8 - bit_offs;
|
||||
int cur_mask;
|
||||
int wk_slice;
|
||||
|
||||
if (cur_bits > wk_left)
|
||||
cur_bits = wk_left;
|
||||
|
||||
cur_mask = ((1 << cur_bits) - 1);
|
||||
|
||||
/* advance */
|
||||
wk_left -= cur_bits;
|
||||
bit_offs += cur_bits;
|
||||
|
||||
/* right aligned wk data for current out octet */
|
||||
wk_slice = (w[k-1] >> wk_left) & cur_mask;
|
||||
|
||||
/* cur_bits now contains the number of bits
|
||||
* that are to be copied from wk to the chan_list.
|
||||
* wk_left is set to the number of bits that must
|
||||
* not yet be copied.
|
||||
* bit_offs points after the bit area that is going to
|
||||
* be overwritten:
|
||||
*
|
||||
* wk_left
|
||||
* |
|
||||
* v
|
||||
* wk: WWWWWWWWWWW
|
||||
* |||||<-- wk_slice, cur_bits=5
|
||||
* --WWWWW-
|
||||
* ^
|
||||
* |
|
||||
* bit_offs
|
||||
*/
|
||||
|
||||
chan_list[octet_offs] &= ~(cur_mask << (8 - bit_offs));
|
||||
chan_list[octet_offs] |= wk_slice << (8 - bit_offs);
|
||||
|
||||
/* adjust output */
|
||||
if (bit_offs == 8) {
|
||||
bit_offs = 0;
|
||||
octet_offs += 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* adjust bit sizes */
|
||||
lvl_left -= 1;
|
||||
if (!lvl_left) {
|
||||
/* completed tree level, advance to next */
|
||||
level += 1;
|
||||
lvl_left = 1 << level;
|
||||
wk_len -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int osmo_gsm48_range_enc_128(uint8_t *chan_list, int f0, int *w)
|
||||
{
|
||||
chan_list[0] = 0x8C;
|
||||
write_orig_arfcn(chan_list, f0);
|
||||
|
||||
write_all_wn(&chan_list[2], 1, w, 28, 7);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int osmo_gsm48_range_enc_256(uint8_t *chan_list, int f0, int *w)
|
||||
{
|
||||
chan_list[0] = 0x8A;
|
||||
write_orig_arfcn(chan_list, f0);
|
||||
|
||||
write_all_wn(&chan_list[2], 1, w, 21, 8);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int osmo_gsm48_range_enc_512(uint8_t *chan_list, int f0, int *w)
|
||||
{
|
||||
chan_list[0] = 0x88;
|
||||
write_orig_arfcn(chan_list, f0);
|
||||
|
||||
write_all_wn(&chan_list[2], 1, w, 17, 9);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int osmo_gsm48_range_enc_1024(uint8_t *chan_list, int f0, int f0_included, int *w)
|
||||
{
|
||||
chan_list[0] = 0x80 | (f0_included << 2);
|
||||
|
||||
write_all_wn(&chan_list[0], 6, w, 16, 10);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int osmo_gsm48_range_enc_filter_arfcns(int *arfcns, const int size, const int f0, int *f0_included)
|
||||
{
|
||||
int i, j = 0;
|
||||
*f0_included = 0;
|
||||
|
||||
for (i = 0; i < size; ++i) {
|
||||
/*
|
||||
* Appendix J.4 says the following:
|
||||
* All frequencies except F(0), minus F(0) + 1.
|
||||
* I assume we need to exclude it here.
|
||||
*/
|
||||
if (arfcns[i] == f0) {
|
||||
*f0_included = 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
arfcns[j++] = mod(arfcns[i] - (f0 + 1), 1024);
|
||||
}
|
||||
|
||||
return j;
|
||||
}
|
Loading…
Reference in new issue