asn1c/skeletons/OBJECT_IDENTIFIER.c

639 lines
16 KiB
C

/*-
* Copyright (c) 2003, 2004 Lev Walkin <vlm@lionet.info>. All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <OBJECT_IDENTIFIER.h>
#include <limits.h> /* for CHAR_BIT */
#include <assert.h>
#include <errno.h>
/*
* OBJECT IDENTIFIER basic type description.
*/
static ber_tlv_tag_t asn1_DEF_OBJECT_IDENTIFIER_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (6 << 2))
};
asn1_TYPE_descriptor_t asn1_DEF_OBJECT_IDENTIFIER = {
"OBJECT IDENTIFIER",
INTEGER_free,
OBJECT_IDENTIFIER_print,
OBJECT_IDENTIFIER_constraint,
INTEGER_decode_ber, /* Implemented in terms of INTEGER type */
OBJECT_IDENTIFIER_encode_der,
0, /* Not implemented yet */
OBJECT_IDENTIFIER_encode_xer,
0, /* Use generic outmost tag fetcher */
asn1_DEF_OBJECT_IDENTIFIER_tags,
sizeof(asn1_DEF_OBJECT_IDENTIFIER_tags)
/ sizeof(asn1_DEF_OBJECT_IDENTIFIER_tags[0]),
asn1_DEF_OBJECT_IDENTIFIER_tags, /* Same as above */
sizeof(asn1_DEF_OBJECT_IDENTIFIER_tags)
/ sizeof(asn1_DEF_OBJECT_IDENTIFIER_tags[0]),
0, /* Always in primitive form */
0, 0, /* No members */
0 /* No specifics */
};
/*
* Encode OBJECT IDENTIFIER type using DER.
*/
asn_enc_rval_t
OBJECT_IDENTIFIER_encode_der(asn1_TYPE_descriptor_t *sd, void *ptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
asn_enc_rval_t erval;
OBJECT_IDENTIFIER_t *st = (OBJECT_IDENTIFIER_t *)ptr;
ASN_DEBUG("%s %s as OBJECT IDENTIFIER (tm=%d)",
cb?"Encoding":"Estimating", sd->name, tag_mode);
erval.encoded = der_write_tags(sd, st->size, tag_mode, tag,
cb, app_key);
ASN_DEBUG("OBJECT IDENTIFIER %s wrote tags %d",
sd->name, (int)erval.encoded);
if(erval.encoded == -1) {
erval.failed_type = sd;
erval.structure_ptr = ptr;
return erval;
}
if(cb && st->buf) {
int ret = cb(st->buf, st->size, app_key);
if(ret < 0) {
erval.encoded = -1;
erval.failed_type = sd;
erval.structure_ptr = ptr;
return erval;
}
} else {
assert(st->buf || st->size == 0);
}
erval.encoded += st->size;
return erval;
}
int
OBJECT_IDENTIFIER_constraint(asn1_TYPE_descriptor_t *td, const void *sptr,
asn_app_consume_bytes_f *app_errlog, void *app_key) {
const OBJECT_IDENTIFIER_t *st = (const OBJECT_IDENTIFIER_t *)sptr;
if(st && st->buf) {
if(st->size < 1) {
_ASN_ERRLOG(app_errlog, app_key,
"%s: at least one numerical value "
"expected (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
} else {
_ASN_ERRLOG(app_errlog, app_key,
"%s: value not given (%s:%d)",
td->name, __FILE__, __LINE__);
return -1;
}
return 0;
}
int
OBJECT_IDENTIFIER_get_single_arc(uint8_t *arcbuf, unsigned int arclen, signed int add, void *rvbuf, unsigned int rvsize) {
unsigned LE __attribute__ ((unused)) = 1; /* Little endian (x86) */
uint8_t *arcend = arcbuf + arclen; /* End of arc */
void *rvstart = rvbuf; /* Original start of the value buffer */
unsigned int cache = 0; /* No more than 14 significant bits */
int inc; /* Return value growth direction */
rvsize *= CHAR_BIT; /* bytes to bits */
arclen *= 7; /* bytes to bits */
/*
* The arc has the number of bits
* cannot be represented using supplied return value type.
*/
if(arclen > rvsize) {
if(arclen > (rvsize + CHAR_BIT)) {
errno = ERANGE; /* Overflow */
return -1;
} else {
/*
* Even if the number of bits in the arc representation
* is higher than the width of supplied * return value
* type, there is still possible to fit it when there
* are few unused high bits in the arc value
* representaion.
*
* Moreover, there is a possibility that the
* number could actually fit the arc space, given
* that add is negative, but we don't handle
* such "temporary lack of precision" situation here.
* May be considered as a bug.
*/
uint8_t mask = (0xff << (7-(arclen - rvsize))) & 0x7f;
if((*arcbuf & mask)) {
errno = ERANGE; /* Overflow */
return -1;
}
/* Fool the routine computing unused bits */
arclen -= 7;
cache = *arcbuf & 0x7f;
arcbuf++;
}
}
/* Faster path for common size */
if(rvsize == (CHAR_BIT * sizeof(unsigned long))) {
unsigned long accum;
/* Gather all bits into the accumulator */
for(accum = cache; arcbuf < arcend; arcbuf++)
accum = (accum << 7) | (*arcbuf & ~0x80);
if(accum < (unsigned)-add) {
errno = ERANGE; /* Overflow */
return -1;
}
*(unsigned long *)rvbuf = accum + add;
return 0;
}
#ifndef WORDS_BIGENDIAN
if(*(unsigned char *)&LE) { /* Little endian (x86) */
/* "Convert" to big endian */
(unsigned char *)rvbuf += rvsize / CHAR_BIT - 1;
((unsigned char *)rvstart)--;
inc = -1; /* Descending */
} else
#endif /* !WORDS_BIGENDIAN */
inc = +1; /* Big endian is known [at compile time] */
{
int bits; /* typically no more than 3-4 bits */
/* Clear the high unused bits */
for(bits = rvsize - arclen;
bits > CHAR_BIT;
(unsigned char *)rvbuf += inc, bits -= CHAR_BIT)
*(unsigned char *)rvbuf = 0;
/* Fill the body of a value */
for(; arcbuf < arcend; arcbuf++) {
cache = (cache << 7) | (*arcbuf & 0x7f);
bits += 7;
if(bits >= CHAR_BIT) {
bits -= CHAR_BIT;
*(unsigned char *)rvbuf = (cache >> bits);
(unsigned char *)rvbuf += inc;
}
}
if(bits) {
*(unsigned char *)rvbuf = cache;
(unsigned char *)rvbuf += inc;
}
}
if(add) {
for((unsigned char *)rvbuf -= inc; rvbuf != rvstart; (unsigned char *)rvbuf -= inc) {
int v = add + *(unsigned char *)rvbuf;
if(v & (-1 << CHAR_BIT)) {
*(unsigned char *)rvbuf
= (unsigned char)(v + (1 << CHAR_BIT));
add = -1;
} else {
*(unsigned char *)rvbuf = v;
break;
}
}
if(rvbuf == rvstart) {
/* No space to carry over */
errno = ERANGE; /* Overflow */
return -1;
}
}
return 0;
}
ssize_t
OBJECT_IDENTIFIER__dump_arc(uint8_t *arcbuf, int arclen, int add,
asn_app_consume_bytes_f *cb, void *app_key) {
char scratch[64]; /* Conservative estimate */
unsigned long accum; /* Bits accumulator */
char *p; /* Position in the scratch buffer */
if(OBJECT_IDENTIFIER_get_single_arc(arcbuf, arclen, add,
&accum, sizeof(accum)))
return -1;
if(accum) {
ssize_t len;
/* Fill the scratch buffer in reverse. */
p = scratch + sizeof(scratch);
for(; accum; accum /= 10)
*(--p) = (char)(accum % 10) + 0x30; /* Put a digit */
len = sizeof(scratch) - (p - scratch);
if(cb(p, len, app_key) < 0)
return -1;
return len;
} else {
*scratch = 0x30;
if(cb(scratch, 1, app_key) < 0)
return -1;
return 1;
}
}
int
OBJECT_IDENTIFIER_print_arc(uint8_t *arcbuf, int arclen, int add,
asn_app_consume_bytes_f *cb, void *app_key) {
if(OBJECT_IDENTIFIER__dump_arc(arcbuf, arclen, add, cb, app_key) < 0)
return -1;
return 0;
}
static ssize_t
OBJECT_IDENTIFIER__dump_body(const OBJECT_IDENTIFIER_t *st, asn_app_consume_bytes_f *cb, void *app_key) {
ssize_t wrote_len = 0;
int startn;
int add = 0;
int i;
for(i = 0, startn = 0; i < st->size; i++) {
uint8_t b = st->buf[i];
if((b & 0x80)) /* Continuation expected */
continue;
if(startn == 0) {
/*
* First two arcs are encoded through the backdoor.
*/
if(i) {
add = -80;
if(cb("2", 1, app_key) < 0) return -1;
} else if(b <= 39) {
add = 0;
if(cb("0", 1, app_key) < 0) return -1;
} else if(b < 79) {
add = -40;
if(cb("1", 1, app_key) < 0) return -1;
} else {
add = -80;
if(cb("2", 1, app_key) < 0) return -1;
}
wrote_len += 1;
}
if(cb(".", 1, app_key) < 0) /* Separate arcs */
return -1;
add = OBJECT_IDENTIFIER__dump_arc(&st->buf[startn],
i - startn + 1, add, cb, app_key);
if(add < 0) return -1;
wrote_len += 1 + add;
startn = i + 1;
add = 0;
}
return wrote_len;
}
asn_enc_rval_t
OBJECT_IDENTIFIER_encode_xer(asn1_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
const OBJECT_IDENTIFIER_t *st = (const OBJECT_IDENTIFIER_t *)sptr;
asn_enc_rval_t er;
(void)ilevel;
(void)flags;
if(!st || !st->buf)
_ASN_ENCODE_FAILED;
er.encoded = OBJECT_IDENTIFIER__dump_body(st, cb, app_key);
if(er.encoded < 0) _ASN_ENCODE_FAILED;
return er;
}
int
OBJECT_IDENTIFIER_print(asn1_TYPE_descriptor_t *td, const void *sptr,
int ilevel, asn_app_consume_bytes_f *cb, void *app_key) {
const OBJECT_IDENTIFIER_t *st = (const OBJECT_IDENTIFIER_t *)sptr;
(void)td; /* Unused argument */
(void)ilevel; /* Unused argument */
if(!st || !st->buf)
return cb("<absent>", 8, app_key);
/* Dump preamble */
if(cb("{ ", 2, app_key))
return -1;
if(OBJECT_IDENTIFIER__dump_body(st, cb, app_key) < 0)
return -1;
return cb(" }", 2, app_key);
}
int
OBJECT_IDENTIFIER_get_arcs(OBJECT_IDENTIFIER_t *oid, void *arcs,
unsigned int arc_type_size, unsigned int arc_slots) {
void *arcs_end = (char *)arcs + (arc_type_size * arc_slots);
int num_arcs = 0;
int startn = 0;
int add = 0;
int i;
if(!oid || !oid->buf || (arc_slots && arc_type_size <= 1)) {
errno = EINVAL;
return -1;
}
for(i = 0; i < oid->size; i++) {
uint8_t b = oid->buf[i];
if((b & 0x80)) /* Continuation expected */
continue;
if(num_arcs == 0) {
/*
* First two arcs are encoded through the backdoor.
*/
unsigned LE = 1; /* Little endian */
int first_arc;
num_arcs++;
if(!arc_slots) { num_arcs++; continue; }
if(i) first_arc = 2;
else if(b <= 39) first_arc = 0;
else if(b < 79) first_arc = 1;
else first_arc = 2;
add = -40 * first_arc;
memset(arcs, 0, arc_type_size);
*(unsigned char *)((char *)arcs
+ ((*(char *)&LE)?0:(arc_type_size - 1)))
= first_arc;
arcs = ((char *)arcs) + arc_type_size;
}
/* Decode, if has space */
if(arcs < arcs_end) {
if(OBJECT_IDENTIFIER_get_single_arc(&oid->buf[startn],
i - startn + 1, add,
arcs, arc_type_size))
return -1;
startn = i + 1;
arcs = ((char *)arcs) + arc_type_size;
add = 0;
}
num_arcs++;
}
return num_arcs;
}
/*
* Save the single value as an object identifier arc.
*/
int
OBJECT_IDENTIFIER_set_single_arc(uint8_t *arcbuf, void *arcval, unsigned int arcval_size, int prepared_order) {
/*
* The following conditions must hold:
* assert(arcval);
* assert(arcval_size > 0);
* assert(arcbuf);
*/
#ifdef WORDS_BIGENDIAN
const unsigned isLittleEndian = 0;
#else
unsigned LE = 1;
unsigned isLittleEndian = *(char *)&LE;
#endif
uint8_t *tp, *tend;
unsigned int cache;
uint8_t *bp = arcbuf;
int bits;
#ifdef __GNUC__
uint8_t buffer[arcval_size];
#else
uint8_t *buffer = alloca(arcval_size);
if(!buffer) { errno = ENOMEM; return -1; }
#endif
if(isLittleEndian && !prepared_order) {
uint8_t *a = (unsigned char *)arcval + arcval_size - 1;
uint8_t *aend = (uint8_t *)arcval;
uint8_t *msb = buffer + arcval_size - 1;
for(tp = buffer; a >= aend; tp++, a--)
if((*tp = *a) && (tp < msb))
msb = tp;
tend = &buffer[arcval_size];
tp = msb; /* Most significant non-zero byte */
} else {
/* Look for most significant non-zero byte */
tend = (unsigned char *)arcval + arcval_size;
for(tp = (uint8_t *)arcval; tp < tend - 1; tp++)
if(*tp) break;
}
/*
* Split the value in 7-bits chunks.
*/
bits = ((tend - tp) * CHAR_BIT) % 7;
if(bits) {
cache = *tp >> (CHAR_BIT - bits);
if(cache) {
*bp++ = cache | 0x80;
cache = *tp++;
bits = CHAR_BIT - bits;
} else {
bits = -bits;
}
} else {
cache = 0;
}
for(; tp < tend; tp++) {
cache = (cache << CHAR_BIT) + *tp;
bits += CHAR_BIT;
while(bits >= 7) {
bits -= 7;
*bp++ = 0x80 | (cache >> bits);
}
}
if(bits) *bp++ = cache;
bp[-1] &= 0x7f; /* Clear the last bit */
return bp - arcbuf;
}
int
OBJECT_IDENTIFIER_set_arcs(OBJECT_IDENTIFIER_t *oid, void *arcs, unsigned int arc_type_size, unsigned int arc_slots) {
uint8_t *buf;
uint8_t *bp;
unsigned LE = 1; /* Little endian (x86) */
unsigned isLittleEndian = *((char *)&LE);
unsigned int arc0;
unsigned int arc1;
unsigned size;
unsigned i;
if(!oid || !arcs || arc_type_size < 1 || arc_slots < 2) {
errno = EINVAL;
return -1;
}
switch(arc_type_size) {
case sizeof(char):
arc0 = ((unsigned char *)arcs)[0];
arc1 = ((unsigned char *)arcs)[1];
break;
case sizeof(short):
arc0 = ((unsigned short *)arcs)[0];
arc1 = ((unsigned short *)arcs)[1];
break;
case sizeof(int):
arc0 = ((unsigned int *)arcs)[0];
arc1 = ((unsigned int *)arcs)[1];
break;
default:
arc1 = arc0 = 0;
if(isLittleEndian) { /* Little endian (x86) */
unsigned char *ps, *pe;
/* If more significant bytes are present,
* make them > 255 quick */
for(ps = (unsigned char *)arcs + 1, pe = ps+arc_type_size;
ps < pe; ps++)
arc0 |= *ps, arc1 |= *(ps + arc_type_size);
arc0 <<= CHAR_BIT, arc1 <<= CHAR_BIT;
arc0 = *((unsigned char *)arcs + 0);
arc1 = *((unsigned char *)arcs + arc_type_size);
} else {
unsigned char *ps, *pe;
/* If more significant bytes are present,
* make them > 255 quick */
for(ps = (unsigned char *)arcs, pe = ps+arc_type_size - 1; ps < pe; ps++)
arc0 |= *ps, arc1 |= *(ps + arc_type_size);
arc0 = *((unsigned char *)arcs + arc_type_size - 1);
arc1 = *((unsigned char *)arcs +(arc_type_size<< 1)-1);
}
}
/*
* The previous chapter left us with the first and the second arcs.
* The values are not precise (that is, they are valid only if
* they're less than 255), but OK for the purposes of making
* the sanity test below.
*/
if(arc0 <= 1) {
if(arc1 >= 39) {
/* 8.19.4: At most 39 subsequent values (including 0) */
errno = ERANGE;
return -1;
}
} else if(arc0 > 2) {
/* 8.19.4: Only three values are allocated from the root node */
errno = ERANGE;
return -1;
}
/*
* After above tests it is known that the value of arc0 is completely
* trustworthy (0..2). However, the arc1's value is still meaningless.
*/
/*
* Roughly estimate the maximum size necessary to encode these arcs.
* This estimation implicitly takes in account the following facts,
* that cancel each other:
* * the first two arcs are encoded in a single value.
* * the first value may require more space (+1 byte)
* * the value of the first arc which is in range (0..2)
*/
size = ((arc_type_size * CHAR_BIT + 6) / 7) * arc_slots;
bp = buf = (uint8_t *)MALLOC(size + 1);
if(!buf) {
/* ENOMEM */
return -1;
}
/*
* Encode the first two arcs.
* These require special treatment.
*/
{
uint8_t *tp;
#ifdef __GNUC__
uint8_t first_value[1 + arc_type_size]; /* of two arcs */
uint8_t *fv = first_value;
#else
uint8_t *first_value = alloca(1 + arc_type_size);
uint8_t *fv = first_value;
if(!first_value) {
errno = ENOMEM;
return -1;
}
#endif
/*
* Simulate first_value = arc0 * 40 + arc1;
*/
/* Copy the second (1'st) arcs[1] into the first_value */
*fv++ = 0;
arcs = ((char *)arcs) + arc_type_size;
if(isLittleEndian) {
uint8_t *aend = (unsigned char *)arcs - 1;
uint8_t *a1 = (unsigned char *)arcs + arc_type_size - 1;
for(; a1 > aend; fv++, a1--) *fv = *a1;
} else {
uint8_t *a1 = (uint8_t *)arcs;
uint8_t *aend = a1 + arc_type_size;
for(; a1 < aend; fv++, a1++) *fv = *a1;
}
/* Increase the first_value by arc0 */
arc0 *= 40; /* (0..80) */
for(tp = first_value + arc_type_size; tp >= first_value; tp--) {
unsigned int v = *tp;
v += arc0;
*tp = v;
if(v >= (1 << CHAR_BIT)) arc0 = v >> CHAR_BIT;
else break;
}
assert(tp >= first_value);
bp += OBJECT_IDENTIFIER_set_single_arc(bp, first_value,
fv - first_value, 1);
}
/*
* Save the rest of arcs.
*/
for(arcs = ((char *)arcs) + arc_type_size, i = 2;
i < arc_slots;
i++, arcs = ((char *)arcs) + arc_type_size) {
bp += OBJECT_IDENTIFIER_set_single_arc(bp,
arcs, arc_type_size, 0);
}
assert((unsigned)(bp - buf) <= size);
/*
* Replace buffer.
*/
oid->size = bp - buf;
bp = oid->buf;
oid->buf = buf;
if(bp) FREEMEM(bp);
return 0;
}