asn1c/skeletons/INTEGER.c

935 lines
22 KiB
C

/*-
* Copyright (c) 2003, 2004, 2005, 2006, 2007 Lev Walkin <vlm@lionet.info>.
* All rights reserved.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_internal.h>
#include <INTEGER.h>
#include <asn_codecs_prim.h> /* Encoder and decoder of a primitive type */
#include <errno.h>
/*
* INTEGER basic type description.
*/
static ber_tlv_tag_t asn_DEF_INTEGER_tags[] = {
(ASN_TAG_CLASS_UNIVERSAL | (2 << 2))
};
asn_TYPE_descriptor_t asn_DEF_INTEGER = {
"INTEGER",
"INTEGER",
ASN__PRIMITIVE_TYPE_free,
INTEGER_print,
asn_generic_no_constraint,
ber_decode_primitive,
INTEGER_encode_der,
INTEGER_decode_xer,
INTEGER_encode_xer,
INTEGER_decode_uper, /* Unaligned PER decoder */
INTEGER_encode_uper, /* Unaligned PER encoder */
0, /* Use generic outmost tag fetcher */
asn_DEF_INTEGER_tags,
sizeof(asn_DEF_INTEGER_tags) / sizeof(asn_DEF_INTEGER_tags[0]),
asn_DEF_INTEGER_tags, /* Same as above */
sizeof(asn_DEF_INTEGER_tags) / sizeof(asn_DEF_INTEGER_tags[0]),
0, /* No PER visible constraints */
0, 0, /* No members */
0 /* No specifics */
};
/*
* Encode INTEGER type using DER.
*/
asn_enc_rval_t
INTEGER_encode_der(asn_TYPE_descriptor_t *td, void *sptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
INTEGER_t *st = (INTEGER_t *)sptr;
ASN_DEBUG("%s %s as INTEGER (tm=%d)",
cb?"Encoding":"Estimating", td->name, tag_mode);
/*
* Canonicalize integer in the buffer.
* (Remove too long sign extension, remove some first 0x00 bytes)
*/
if(st->buf) {
uint8_t *buf = st->buf;
uint8_t *end1 = buf + st->size - 1;
int shift;
/* Compute the number of superfluous leading bytes */
for(; buf < end1; buf++) {
/*
* If the contents octets of an integer value encoding
* consist of more than one octet, then the bits of the
* first octet and bit 8 of the second octet:
* a) shall not all be ones; and
* b) shall not all be zero.
*/
switch(*buf) {
case 0x00: if((buf[1] & 0x80) == 0)
continue;
break;
case 0xff: if((buf[1] & 0x80))
continue;
break;
}
break;
}
/* Remove leading superfluous bytes from the integer */
shift = buf - st->buf;
if(shift) {
uint8_t *nb = st->buf;
uint8_t *end;
st->size -= shift; /* New size, minus bad bytes */
end = nb + st->size;
for(; nb < end; nb++, buf++)
*nb = *buf;
}
} /* if(1) */
return der_encode_primitive(td, sptr, tag_mode, tag, cb, app_key);
}
static const asn_INTEGER_enum_map_t *INTEGER_map_enum2value(asn_INTEGER_specifics_t *specs, const char *lstart, const char *lstop);
/*
* INTEGER specific human-readable output.
*/
static ssize_t
INTEGER__dump(asn_TYPE_descriptor_t *td, const INTEGER_t *st, asn_app_consume_bytes_f *cb, void *app_key, int plainOrXER) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
char scratch[32]; /* Enough for 64-bit integer */
uint8_t *buf = st->buf;
uint8_t *buf_end = st->buf + st->size;
signed long accum;
ssize_t wrote = 0;
char *p;
int ret;
/*
* Advance buf pointer until the start of the value's body.
* This will make us able to process large integers using simple case,
* when the actual value is small
* (0x0000000000abcdef would yield a fine 0x00abcdef)
*/
/* Skip the insignificant leading bytes */
for(; buf < buf_end-1; buf++) {
switch(*buf) {
case 0x00: if((buf[1] & 0x80) == 0) continue; break;
case 0xff: if((buf[1] & 0x80) != 0) continue; break;
}
break;
}
/* Simple case: the integer size is small */
if((size_t)(buf_end - buf) <= sizeof(accum)) {
const asn_INTEGER_enum_map_t *el;
size_t scrsize;
char *scr;
if(buf == buf_end) {
accum = 0;
} else {
accum = (*buf & 0x80) ? -1 : 0;
for(; buf < buf_end; buf++)
accum = (accum << 8) | *buf;
}
el = INTEGER_map_value2enum(specs, accum);
if(el) {
scrsize = el->enum_len + 32;
scr = (char *)alloca(scrsize);
if(plainOrXER == 0)
ret = snprintf(scr, scrsize,
"%ld (%s)", accum, el->enum_name);
else
ret = snprintf(scr, scrsize,
"<%s/>", el->enum_name);
} else if(plainOrXER && specs && specs->strict_enumeration) {
ASN_DEBUG("ASN.1 forbids dealing with "
"unknown value of ENUMERATED type");
errno = EPERM;
return -1;
} else {
scrsize = sizeof(scratch);
scr = scratch;
ret = snprintf(scr, scrsize,
(specs && specs->field_unsigned)
?"%lu":"%ld", accum);
}
assert(ret > 0 && (size_t)ret < scrsize);
return (cb(scr, ret, app_key) < 0) ? -1 : ret;
} else if(plainOrXER && specs && specs->strict_enumeration) {
/*
* Here and earlier, we cannot encode the ENUMERATED values
* if there is no corresponding identifier.
*/
ASN_DEBUG("ASN.1 forbids dealing with "
"unknown value of ENUMERATED type");
errno = EPERM;
return -1;
}
/* Output in the long xx:yy:zz... format */
/* TODO: replace with generic algorithm (Knuth TAOCP Vol 2, 4.3.1) */
for(p = scratch; buf < buf_end; buf++) {
static const char *h2c = "0123456789ABCDEF";
if((p - scratch) >= (ssize_t)(sizeof(scratch) - 4)) {
/* Flush buffer */
if(cb(scratch, p - scratch, app_key) < 0)
return -1;
wrote += p - scratch;
p = scratch;
}
*p++ = h2c[*buf >> 4];
*p++ = h2c[*buf & 0x0F];
*p++ = 0x3a; /* ":" */
}
if(p != scratch)
p--; /* Remove the last ":" */
wrote += p - scratch;
return (cb(scratch, p - scratch, app_key) < 0) ? -1 : wrote;
}
/*
* INTEGER specific human-readable output.
*/
int
INTEGER_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
const INTEGER_t *st = (const INTEGER_t *)sptr;
ssize_t ret;
(void)td;
(void)ilevel;
if(!st || !st->buf)
ret = cb("<absent>", 8, app_key);
else
ret = INTEGER__dump(td, st, cb, app_key, 0);
return (ret < 0) ? -1 : 0;
}
struct e2v_key {
const char *start;
const char *stop;
asn_INTEGER_enum_map_t *vemap;
unsigned int *evmap;
};
static int
INTEGER__compar_enum2value(const void *kp, const void *am) {
const struct e2v_key *key = (const struct e2v_key *)kp;
const asn_INTEGER_enum_map_t *el = (const asn_INTEGER_enum_map_t *)am;
const char *ptr, *end, *name;
/* Remap the element (sort by different criterion) */
el = key->vemap + key->evmap[el - key->vemap];
/* Compare strings */
for(ptr = key->start, end = key->stop, name = el->enum_name;
ptr < end; ptr++, name++) {
if(*ptr != *name)
return *(const unsigned char *)ptr
- *(const unsigned char *)name;
}
return name[0] ? -1 : 0;
}
static const asn_INTEGER_enum_map_t *
INTEGER_map_enum2value(asn_INTEGER_specifics_t *specs, const char *lstart, const char *lstop) {
asn_INTEGER_enum_map_t *el_found;
int count = specs ? specs->map_count : 0;
struct e2v_key key;
const char *lp;
if(!count) return NULL;
/* Guaranteed: assert(lstart < lstop); */
/* Figure out the tag name */
for(lstart++, lp = lstart; lp < lstop; lp++) {
switch(*lp) {
case 9: case 10: case 11: case 12: case 13: case 32: /* WSP */
case 0x2f: /* '/' */ case 0x3e: /* '>' */
break;
default:
continue;
}
break;
}
if(lp == lstop) return NULL; /* No tag found */
lstop = lp;
key.start = lstart;
key.stop = lstop;
key.vemap = specs->value2enum;
key.evmap = specs->enum2value;
el_found = (asn_INTEGER_enum_map_t *)bsearch(&key,
specs->value2enum, count, sizeof(specs->value2enum[0]),
INTEGER__compar_enum2value);
if(el_found) {
/* Remap enum2value into value2enum */
el_found = key.vemap + key.evmap[el_found - key.vemap];
}
return el_found;
}
static int
INTEGER__compar_value2enum(const void *kp, const void *am) {
long a = *(const long *)kp;
const asn_INTEGER_enum_map_t *el = (const asn_INTEGER_enum_map_t *)am;
long b = el->nat_value;
if(a < b) return -1;
else if(a == b) return 0;
else return 1;
}
const asn_INTEGER_enum_map_t *
INTEGER_map_value2enum(asn_INTEGER_specifics_t *specs, long value) {
int count = specs ? specs->map_count : 0;
if(!count) return 0;
return (asn_INTEGER_enum_map_t *)bsearch(&value, specs->value2enum,
count, sizeof(specs->value2enum[0]),
INTEGER__compar_value2enum);
}
static int
INTEGER_st_prealloc(INTEGER_t *st, int min_size) {
void *p = MALLOC(min_size + 1);
if(p) {
void *b = st->buf;
st->size = 0;
st->buf = p;
FREEMEM(b);
return 0;
} else {
return -1;
}
}
/*
* Decode the chunk of XML text encoding INTEGER.
*/
static enum xer_pbd_rval
INTEGER__xer_body_decode(asn_TYPE_descriptor_t *td, void *sptr, const void *chunk_buf, size_t chunk_size) {
INTEGER_t *st = (INTEGER_t *)sptr;
long sign = 1;
long value;
const char *lp;
const char *lstart = (const char *)chunk_buf;
const char *lstop = lstart + chunk_size;
enum {
ST_SKIPSPACE,
ST_SKIPSPHEX,
ST_WAITDIGITS,
ST_DIGITS,
ST_HEXDIGIT1,
ST_HEXDIGIT2,
ST_HEXCOLON,
ST_EXTRASTUFF
} state = ST_SKIPSPACE;
if(chunk_size)
ASN_DEBUG("INTEGER body %ld 0x%2x..0x%2x",
(long)chunk_size, *lstart, lstop[-1]);
/*
* We may have received a tag here. It will be processed inline.
* Use strtoul()-like code and serialize the result.
*/
for(value = 0, lp = lstart; lp < lstop; lp++) {
int lv = *lp;
switch(lv) {
case 0x09: case 0x0a: case 0x0d: case 0x20:
switch(state) {
case ST_SKIPSPACE:
case ST_SKIPSPHEX:
continue;
case ST_HEXCOLON:
if(xer_is_whitespace(lp, lstop - lp)) {
lp = lstop - 1;
continue;
}
break;
default:
break;
}
break;
case 0x2d: /* '-' */
if(state == ST_SKIPSPACE) {
sign = -1;
state = ST_WAITDIGITS;
continue;
}
break;
case 0x2b: /* '+' */
if(state == ST_SKIPSPACE) {
state = ST_WAITDIGITS;
continue;
}
break;
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34:
case 0x35: case 0x36: case 0x37: case 0x38: case 0x39:
switch(state) {
case ST_DIGITS: break;
case ST_SKIPSPHEX: /* Fall through */
case ST_HEXDIGIT1:
value = (lv - 0x30) << 4;
state = ST_HEXDIGIT2;
continue;
case ST_HEXDIGIT2:
value += (lv - 0x30);
state = ST_HEXCOLON;
st->buf[st->size++] = (uint8_t)value;
continue;
case ST_HEXCOLON:
return XPBD_BROKEN_ENCODING;
default:
state = ST_DIGITS;
break;
}
{
long new_value = value * 10;
if(new_value / 10 != value)
/* Overflow */
return XPBD_DECODER_LIMIT;
value = new_value + (lv - 0x30);
/* Check for two's complement overflow */
if(value < 0) {
/* Check whether it is a LONG_MIN */
if(sign == -1
&& (unsigned long)value
== ~((unsigned long)-1 >> 1)) {
sign = 1;
} else {
/* Overflow */
return XPBD_DECODER_LIMIT;
}
}
}
continue;
case 0x3c: /* '<' */
if(state == ST_SKIPSPACE) {
const asn_INTEGER_enum_map_t *el;
el = INTEGER_map_enum2value(
(asn_INTEGER_specifics_t *)
td->specifics, lstart, lstop);
if(el) {
ASN_DEBUG("Found \"%s\" => %ld",
el->enum_name, el->nat_value);
state = ST_DIGITS;
value = el->nat_value;
lp = lstop - 1;
continue;
}
ASN_DEBUG("Unknown identifier for INTEGER");
}
return XPBD_BROKEN_ENCODING;
case 0x3a: /* ':' */
if(state == ST_HEXCOLON) {
/* This colon is expected */
state = ST_HEXDIGIT1;
continue;
} else if(state == ST_DIGITS) {
/* The colon here means that we have
* decoded the first two hexadecimal
* places as a decimal value.
* Switch decoding mode. */
ASN_DEBUG("INTEGER re-evaluate as hex form");
if(INTEGER_st_prealloc(st, (chunk_size/3) + 1))
return XPBD_SYSTEM_FAILURE;
state = ST_SKIPSPHEX;
lp = lstart - 1;
continue;
} else {
ASN_DEBUG("state %d at %d", state, lp - lstart);
break;
}
/* [A-Fa-f] */
case 0x41:case 0x42:case 0x43:case 0x44:case 0x45:case 0x46:
case 0x61:case 0x62:case 0x63:case 0x64:case 0x65:case 0x66:
switch(state) {
case ST_SKIPSPHEX:
case ST_SKIPSPACE: /* Fall through */
case ST_HEXDIGIT1:
value = lv - ((lv < 0x61) ? 0x41 : 0x61);
value += 10;
value <<= 4;
state = ST_HEXDIGIT2;
continue;
case ST_HEXDIGIT2:
value += lv - ((lv < 0x61) ? 0x41 : 0x61);
value += 10;
st->buf[st->size++] = (uint8_t)value;
state = ST_HEXCOLON;
continue;
case ST_DIGITS:
ASN_DEBUG("INTEGER re-evaluate as hex form");
if(INTEGER_st_prealloc(st, (chunk_size/3) + 1))
return XPBD_SYSTEM_FAILURE;
state = ST_SKIPSPHEX;
lp = lstart - 1;
continue;
default:
break;
}
break;
}
/* Found extra non-numeric stuff */
ASN_DEBUG("Found non-numeric 0x%2x at %d",
lv, lp - lstart);
state = ST_EXTRASTUFF;
break;
}
switch(state) {
case ST_DIGITS:
/* Everything is cool */
break;
case ST_HEXCOLON:
st->buf[st->size] = 0; /* Just in case termination */
return XPBD_BODY_CONSUMED;
case ST_HEXDIGIT1:
case ST_HEXDIGIT2:
case ST_SKIPSPHEX:
return XPBD_BROKEN_ENCODING;
default:
if(xer_is_whitespace(lp, lstop - lp)) {
if(state != ST_EXTRASTUFF)
return XPBD_NOT_BODY_IGNORE;
break;
} else {
ASN_DEBUG("INTEGER: No useful digits (state %d)",
state);
return XPBD_BROKEN_ENCODING; /* No digits */
}
break;
}
value *= sign; /* Change sign, if needed */
if(asn_long2INTEGER(st, value))
return XPBD_SYSTEM_FAILURE;
return XPBD_BODY_CONSUMED;
}
asn_dec_rval_t
INTEGER_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **sptr, const char *opt_mname,
const void *buf_ptr, size_t size) {
return xer_decode_primitive(opt_codec_ctx, td,
sptr, sizeof(INTEGER_t), opt_mname,
buf_ptr, size, INTEGER__xer_body_decode);
}
asn_enc_rval_t
INTEGER_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
const INTEGER_t *st = (const INTEGER_t *)sptr;
asn_enc_rval_t er;
(void)ilevel;
(void)flags;
if(!st || !st->buf)
_ASN_ENCODE_FAILED;
er.encoded = INTEGER__dump(td, st, cb, app_key, 1);
if(er.encoded < 0) _ASN_ENCODE_FAILED;
_ASN_ENCODED_OK(er);
}
asn_dec_rval_t
INTEGER_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval = { RC_OK, 0 };
INTEGER_t *st = (INTEGER_t *)*sptr;
asn_per_constraint_t *ct;
int repeat;
(void)opt_codec_ctx;
if(!st) {
st = (INTEGER_t *)(*sptr = CALLOC(1, sizeof(*st)));
if(!st) _ASN_DECODE_FAILED;
}
if(!constraints) constraints = td->per_constraints;
ct = constraints ? &constraints->value : 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int inext = per_get_few_bits(pd, 1);
if(inext < 0) _ASN_DECODE_STARVED;
if(inext) ct = 0;
}
FREEMEM(st->buf);
st->buf = 0;
st->size = 0;
if(ct) {
if(ct->flags & APC_SEMI_CONSTRAINED) {
st->buf = (uint8_t *)CALLOC(1, 2);
if(!st->buf) _ASN_DECODE_FAILED;
st->size = 1;
} else if(ct->flags & APC_CONSTRAINED && ct->range_bits >= 0) {
size_t size = (ct->range_bits + 7) >> 3;
st->buf = (uint8_t *)MALLOC(1 + size + 1);
if(!st->buf) _ASN_DECODE_FAILED;
st->size = size;
}
}
/* X.691, #12.2.2 */
if(ct && ct->flags != APC_UNCONSTRAINED) {
/* #10.5.6 */
ASN_DEBUG("Integer with range %d bits", ct->range_bits);
if(ct->range_bits >= 0) {
long value;
if(ct->range_bits == 32) {
long lhalf;
value = per_get_few_bits(pd, 16);
if(value < 0) _ASN_DECODE_STARVED;
lhalf = per_get_few_bits(pd, 16);
if(lhalf < 0) _ASN_DECODE_STARVED;
value = (value << 16) | lhalf;
} else {
value = per_get_few_bits(pd, ct->range_bits);
if(value < 0) _ASN_DECODE_STARVED;
}
ASN_DEBUG("Got value %ld + low %ld",
value, ct->lower_bound);
value += ct->lower_bound;
if((specs && specs->field_unsigned)
? asn_ulong2INTEGER(st, value)
: asn_long2INTEGER(st, value))
_ASN_DECODE_FAILED;
return rval;
}
} else {
ASN_DEBUG("Decoding unconstrained integer %s", td->name);
}
/* X.691, #12.2.3, #12.2.4 */
do {
ssize_t len;
void *p;
int ret;
/* Get the PER length */
len = uper_get_length(pd, -1, &repeat);
if(len < 0) _ASN_DECODE_STARVED;
p = REALLOC(st->buf, st->size + len + 1);
if(!p) _ASN_DECODE_FAILED;
st->buf = (uint8_t *)p;
ret = per_get_many_bits(pd, &st->buf[st->size], 0, 8 * len);
if(ret < 0) _ASN_DECODE_STARVED;
st->size += len;
} while(repeat);
st->buf[st->size] = 0; /* JIC */
/* #12.2.3 */
if(ct && ct->lower_bound) {
/*
* TODO: replace by in-place arithmetics.
*/
long value;
if(asn_INTEGER2long(st, &value))
_ASN_DECODE_FAILED;
if(asn_long2INTEGER(st, value + ct->lower_bound))
_ASN_DECODE_FAILED;
}
return rval;
}
asn_enc_rval_t
INTEGER_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
INTEGER_t *st = (INTEGER_t *)sptr;
const uint8_t *buf;
const uint8_t *end;
asn_per_constraint_t *ct;
long value = 0;
if(!st || st->size == 0) _ASN_ENCODE_FAILED;
if(!constraints) constraints = td->per_constraints;
ct = constraints ? &constraints->value : 0;
er.encoded = 0;
if(ct) {
int inext = 0;
if(specs && specs->field_unsigned) {
unsigned long uval;
if(asn_INTEGER2ulong(st, &uval))
_ASN_ENCODE_FAILED;
/* Check proper range */
if(ct->flags & APC_SEMI_CONSTRAINED) {
if(uval < (unsigned long)ct->lower_bound)
inext = 1;
} else if(ct->range_bits >= 0) {
if(uval < (unsigned long)ct->lower_bound
|| uval > (unsigned long)ct->upper_bound)
inext = 1;
}
ASN_DEBUG("Value %lu (%02x/%d) lb %lu ub %lu %s",
uval, st->buf[0], st->size,
ct->lower_bound, ct->upper_bound,
inext ? "ext" : "fix");
value = uval;
} else {
if(asn_INTEGER2long(st, &value))
_ASN_ENCODE_FAILED;
/* Check proper range */
if(ct->flags & APC_SEMI_CONSTRAINED) {
if(value < ct->lower_bound)
inext = 1;
} else if(ct->range_bits >= 0) {
if(value < ct->lower_bound
|| value > ct->upper_bound)
inext = 1;
}
ASN_DEBUG("Value %ld (%02x/%d) lb %ld ub %ld %s",
value, st->buf[0], st->size,
ct->lower_bound, ct->upper_bound,
inext ? "ext" : "fix");
}
if(ct->flags & APC_EXTENSIBLE) {
if(per_put_few_bits(po, inext, 1))
_ASN_ENCODE_FAILED;
if(inext) ct = 0;
} else if(inext) {
_ASN_ENCODE_FAILED;
}
}
/* X.691, #12.2.2 */
if(ct && ct->range_bits >= 0) {
/* #10.5.6 */
ASN_DEBUG("Encoding integer with range %d bits",
ct->range_bits);
if(ct->range_bits == 32) {
/* TODO: extend to >32 bits */
long v = value - ct->lower_bound;
if(per_put_few_bits(po, v >> 1, 31)
|| per_put_few_bits(po, v, 1))
_ASN_ENCODE_FAILED;
} else {
if(per_put_few_bits(po, value - ct->lower_bound,
ct->range_bits))
_ASN_ENCODE_FAILED;
}
_ASN_ENCODED_OK(er);
}
if(ct && ct->lower_bound) {
ASN_DEBUG("Adjust lower bound to %ld", ct->lower_bound);
/* TODO: adjust lower bound */
_ASN_ENCODE_FAILED;
}
for(buf = st->buf, end = st->buf + st->size; buf < end;) {
ssize_t mayEncode = uper_put_length(po, end - buf);
if(mayEncode < 0)
_ASN_ENCODE_FAILED;
if(per_put_many_bits(po, buf, 8 * mayEncode))
_ASN_ENCODE_FAILED;
buf += mayEncode;
}
_ASN_ENCODED_OK(er);
}
int
asn_INTEGER2long(const INTEGER_t *iptr, long *lptr) {
uint8_t *b, *end;
size_t size;
long l;
/* Sanity checking */
if(!iptr || !iptr->buf || !lptr) {
errno = EINVAL;
return -1;
}
/* Cache the begin/end of the buffer */
b = iptr->buf; /* Start of the INTEGER buffer */
size = iptr->size;
end = b + size; /* Where to stop */
if(size > sizeof(long)) {
uint8_t *end1 = end - 1;
/*
* Slightly more advanced processing,
* able to >sizeof(long) bytes,
* when the actual value is small
* (0x0000000000abcdef would yield a fine 0x00abcdef)
*/
/* Skip out the insignificant leading bytes */
for(; b < end1; b++) {
switch(*b) {
case 0x00: if((b[1] & 0x80) == 0) continue; break;
case 0xff: if((b[1] & 0x80) != 0) continue; break;
}
break;
}
size = end - b;
if(size > sizeof(long)) {
/* Still cannot fit the long */
errno = ERANGE;
return -1;
}
}
/* Shortcut processing of a corner case */
if(end == b) {
*lptr = 0;
return 0;
}
/* Perform the sign initialization */
/* Actually l = -(*b >> 7); gains nothing, yet unreadable! */
if((*b >> 7)) l = -1; else l = 0;
/* Conversion engine */
for(; b < end; b++)
l = (l << 8) | *b;
*lptr = l;
return 0;
}
int
asn_INTEGER2ulong(const INTEGER_t *iptr, unsigned long *lptr) {
uint8_t *b, *end;
unsigned long l;
size_t size;
if(!iptr || !iptr->buf || !lptr) {
errno = EINVAL;
return -1;
}
b = iptr->buf;
size = iptr->size;
end = b + size;
/* If all extra leading bytes are zeroes, ignore them */
for(; size > sizeof(unsigned long); b++, size--) {
if(*b) {
/* Value won't fit unsigned long */
errno = ERANGE;
return -1;
}
}
/* Conversion engine */
for(l = 0; b < end; b++)
l = (l << 8) | *b;
*lptr = l;
return 0;
}
int
asn_ulong2INTEGER(INTEGER_t *st, unsigned long value) {
uint8_t *buf;
uint8_t *end;
uint8_t *b;
int shr;
if(value <= LONG_MAX)
return asn_long2INTEGER(st, value);
buf = (uint8_t *)MALLOC(1 + sizeof(value));
if(!buf) return -1;
end = buf + (sizeof(value) + 1);
buf[0] = 0;
for(b = buf, shr = (sizeof(long)-1)*8; b < end; shr -= 8)
*(++b) = (uint8_t)(value >> shr);
if(st->buf) FREEMEM(st->buf);
st->buf = buf;
st->size = 1 + sizeof(value);
return 0;
}
int
asn_long2INTEGER(INTEGER_t *st, long value) {
uint8_t *buf, *bp;
uint8_t *p;
uint8_t *pstart;
uint8_t *pend1;
int littleEndian = 1; /* Run-time detection */
int add;
if(!st) {
errno = EINVAL;
return -1;
}
buf = (uint8_t *)MALLOC(sizeof(value));
if(!buf) return -1;
if(*(char *)&littleEndian) {
pstart = (uint8_t *)&value + sizeof(value) - 1;
pend1 = (uint8_t *)&value;
add = -1;
} else {
pstart = (uint8_t *)&value;
pend1 = pstart + sizeof(value) - 1;
add = 1;
}
/*
* If the contents octet consists of more than one octet,
* then bits of the first octet and bit 8 of the second octet:
* a) shall not all be ones; and
* b) shall not all be zero.
*/
for(p = pstart; p != pend1; p += add) {
switch(*p) {
case 0x00: if((*(p+add) & 0x80) == 0)
continue;
break;
case 0xff: if((*(p+add) & 0x80))
continue;
break;
}
break;
}
/* Copy the integer body */
for(pstart = p, bp = buf, pend1 += add; p != pend1; p += add)
*bp++ = *p;
if(st->buf) FREEMEM(st->buf);
st->buf = buf;
st->size = bp - buf;
return 0;
}