
Using the Free ASB.1 Compiler

Lev Walkin <vlm@lionet.info >

5th September 2004

Revision : 1.6 – describes asn1c-0.9.3

2

4 CONTENTS

4.3.2 Encoding DER . 24
4.3.3 Validating the target structure 25
4.3.4 Printing the target structure 25
4.3.5 Freeing the target structure 26

Part I

ASN.1 Basics

Chapter 1

Abstract Syntax Notation:
ASN.1

This chapter defines some basic ASN.1 concepts and describes several most widely used
types. It is by no means an authoritative or complete reference. For more complete
ASN.1 description, please refer to Olivier Dubuisson’s book [Dub00] or the ASN.1
body of standards itself [ITU-T/ASN.1].

The Abstract Syntax Notation One is used to formally describe the semantics of
data transmitted across the network. Two communicating parties may have different
formats of their native data types (i.e. number of bits in the integer type), thus it is
important to have a way to describe the data in a manner which is independent from
the particular machine’s representation. The ASN.1 specifications is used to achieve
one or more of the following:

•

1.1. SOME OF THE ASN.1 BASIC TYPES 9

1.1.3 The ENUMERATED type

The ENUMERATED type is semantically equivalent to the INTEGER type with some
integer values explicitly named.

FruitId ::= ENUMERATED { apple(1), orange(2) }

-- The numbers in braces are optional,
-- the enumeration can be performed
-- automatically by the compiler
ComputerOSType ::= ENUMERATED {

FreeBSD, -- will be 0
Windows, -- will be 1
Solaris(5), -- will remain 5
Linux, -- will be 6
MacOS -- will be 7

}

1.1.4 The OCTET STRING type

This type models the sequence of 8-bit bytes. This may be used to transmit some
opaque data or data serialized by other types of encoders (i.e. video file, photo picture,
etc).

1.1.5 The OBJECT IDENTIFIER type

The OBJECT IDENTIFIER is used to represent the unique identifier of any object,
starting from the very root of the registration tree. If your organization needs to
uniquely identify something (a router, a room, a person, a standard, or whatever), you
are encouraged to get your own identification subtree athttp://www.iana.org/
protocols/forms.htm .ComputerOIaquepernet.5(alues)-250(e)15(xplicrnet-iapple�used)-36955 77(0.2aqu42 Tders)9.963 T 9.963 Tf 11 -11.955 {051,

12 CHAPTER 1. ABSTRACT SYNTAX NOTATION: ASN.1

-- an array of structures defined in place.
ManyCircles ::= SEQUENCE OF SEQUENCE {

radius INTEGER
}

1.3.5 The SET OF type

Part II

Using the ASN.1 Compiler

13

Chapter 2

Introduction to the ASN.1
Compiler

The ps1aRse of the ASN.1 compiler, of which this document is part, is to convert the
ASN.1 specifications to some other target language (currently, only C is supported1).

16 CHAPTER 2. INTRODUCTION TO THE ASN.1 COMPILER

18 CHAPTER 3. QUICK START

4.3. INVOKING THE ASN.1 HELPER CODE FROM THE APPLICATION 21

4.3 Invoking the ASN.1 helper code from the applica-
tion

First of all, you should to include one or more header files into your application. For
our Rectangle module, including the Rectangle.h file is enough:

#include <Rectangle.h>

The header files defines the C structure corresponding to the ASN.1 definition of a rect-
angle and the declaration of the ASN.1 type descriptor, which is used as an argument
to most of the functions provided by the ASN.1 module. For example, here is the code
which frees the Rectangle_t structure:

Rectangle_t *rect = ...;

asn1_DEF_Rectangle->free_struct(&asn1_DEF_Rectangle,
rect, 0);

This code defines arect pointer which points to the Rectangle_t structure which needs
to be freed. The second line invokes the generic free_struct routine created specifically
for this Rectangle_t structure. Theasn1_DEF_Rectangleis the type descriptor, which

22 CHAPTER 4. USING THE ASN.1 COMPILER

Each of the above function takes the type descriptor (asn1_DEF_. . .) and the target
structure (rect, in the above example). The target structure is typically created by the
generic BER decoder or by the application itself.

Here is how the buffer can be deserialized into the structure:

Rectangle_t *
simple_deserializer(const void *buffer, size_t buf_size) {

Rectangle_t *rect = 0; /* Note this 0! */
ber_dec_rval_t rval;

rval = asn1_DEF_Rectangle->ber_decoder(
&asn1_DEF_Rectangle,
(void **)&rect,
buffer, buf_size,
0);

if(rval .code == RC_OK) {
return rect; /* Decoding succeeded */

} else {
/* Free partially decoded rect */
asn1_DEF_Rectangle->free_struct(

&asn1_DEF_Rectangle, rect, 0);
return 0;

}
}

