wireshark/packet-sna.c

1213 lines
38 KiB
C

/* packet-sna.c
* Routines for SNA
* Gilbert Ramirez <gram@xiexie.org>
*
* $Id: packet-sna.c,v 1.18 2000/08/13 14:08:58 deniel Exp $
*
* Ethereal - Network traffic analyzer
* By Gerald Combs <gerald@zing.org>
* Copyright 1998 Gerald Combs
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#include <glib.h>
#include "packet.h"
#include "llcsaps.h"
#include "packet-sna.h"
/*
* http://www.wanresources.com/snacell.html
*
*/
static int proto_sna = -1;
static int hf_sna_th = -1;
static int hf_sna_th_0 = -1;
static int hf_sna_th_fid = -1;
static int hf_sna_th_mpf = -1;
static int hf_sna_th_odai = -1;
static int hf_sna_th_efi = -1;
static int hf_sna_th_daf = -1;
static int hf_sna_th_oaf = -1;
static int hf_sna_th_snf = -1;
static int hf_sna_th_dcf = -1;
static int hf_sna_th_lsid = -1;
static int hf_sna_th_tg_sweep = -1;
static int hf_sna_th_er_vr_supp_ind = -1;
static int hf_sna_th_vr_pac_cnt_ind = -1;
static int hf_sna_th_ntwk_prty = -1;
static int hf_sna_th_tgsf = -1;
static int hf_sna_th_mft = -1;
static int hf_sna_th_piubf = -1;
static int hf_sna_th_iern = -1;
static int hf_sna_th_nlpoi = -1;
static int hf_sna_th_nlp_cp = -1;
static int hf_sna_th_ern = -1;
static int hf_sna_th_vrn = -1;
static int hf_sna_th_tpf = -1;
static int hf_sna_th_vr_cwi = -1;
static int hf_sna_th_tg_nonfifo_ind = -1;
static int hf_sna_th_vr_sqti = -1;
static int hf_sna_th_tg_snf = -1;
static int hf_sna_th_vrprq = -1;
static int hf_sna_th_vrprs = -1;
static int hf_sna_th_vr_cwri = -1;
static int hf_sna_th_vr_rwi = -1;
static int hf_sna_th_vr_snf_send = -1;
static int hf_sna_th_dsaf = -1;
static int hf_sna_th_osaf = -1;
static int hf_sna_th_snai = -1;
static int hf_sna_th_def = -1;
static int hf_sna_th_oef = -1;
static int hf_sna_th_sa = -1;
static int hf_sna_th_cmd_fmt = -1;
static int hf_sna_th_cmd_type = -1;
static int hf_sna_th_cmd_sn = -1;
static int hf_sna_rh = -1;
static int hf_sna_rh_0 = -1;
static int hf_sna_rh_1 = -1;
static int hf_sna_rh_2 = -1;
static int hf_sna_rh_rri = -1;
static int hf_sna_rh_ru_category = -1;
static int hf_sna_rh_fi = -1;
static int hf_sna_rh_sdi = -1;
static int hf_sna_rh_bci = -1;
static int hf_sna_rh_eci = -1;
static int hf_sna_rh_dr1 = -1;
static int hf_sna_rh_lcci = -1;
static int hf_sna_rh_dr2 = -1;
static int hf_sna_rh_eri = -1;
static int hf_sna_rh_rti = -1;
static int hf_sna_rh_rlwi = -1;
static int hf_sna_rh_qri = -1;
static int hf_sna_rh_pi = -1;
static int hf_sna_rh_bbi = -1;
static int hf_sna_rh_ebi = -1;
static int hf_sna_rh_cdi = -1;
static int hf_sna_rh_csi = -1;
static int hf_sna_rh_edi = -1;
static int hf_sna_rh_pdi = -1;
static int hf_sna_rh_cebi = -1;
static int hf_sna_ru = -1;
static gint ett_sna = -1;
static gint ett_sna_th = -1;
static gint ett_sna_th_fid = -1;
static gint ett_sna_rh = -1;
static gint ett_sna_rh_0 = -1;
static gint ett_sna_rh_1 = -1;
static gint ett_sna_rh_2 = -1;
/* Format Identifier */
static const value_string sna_th_fid_vals[] = {
{ 0x0, "SNA device <--> Non-SNA Device" },
{ 0x1, "Subarea Nodes, without ER or VR" },
{ 0x2, "Subarea Node <--> PU2" },
{ 0x3, "Subarea Node or SNA host <--> Subarea Node" },
{ 0x4, "Subarea Nodes, supporting ER and VR" },
{ 0x5, "HPR RTP endpoint nodes" },
{ 0xf, "Adjaced Subarea Nodes, supporting ER and VR" },
{ 0x0, NULL }
};
/* Mapping Field */
static const value_string sna_th_mpf_vals[] = {
{ 0, "Middle segment of a BIU" },
{ 1, "Last segment of a BIU" },
{ 2, "First segment of a BIU" },
{ 3 , "Whole BIU" },
{ 0, NULL }
};
/* Expedited Flow Indicator */
static const value_string sna_th_efi_vals[] = {
{ 0, "Normal Flow" },
{ 1, "Expedited Flow" }
};
/* Request/Response Indicator */
static const value_string sna_rh_rri_vals[] = {
{ 0, "Request" },
{ 1, "Response" }
};
/* Request/Response Unit Category */
static const value_string sna_rh_ru_category_vals[] = {
{ 0x00, "Function Management Data (FMD)" },
{ 0x01, "Network Control (NC)" },
{ 0x10, "Data Flow Control (DFC)" },
{ 0x11, "Session Control (SC)" },
};
/* Format Indicator */
static const true_false_string sna_rh_fi_truth =
{ "FM Header", "No FM Header" };
/* Sense Data Included */
static const true_false_string sna_rh_sdi_truth =
{ "Included", "Not Included" };
/* Begin Chain Indicator */
static const true_false_string sna_rh_bci_truth =
{ "First in Chain", "Not First in Chain" };
/* End Chain Indicator */
static const true_false_string sna_rh_eci_truth =
{ "Last in Chain", "Not Last in Chain" };
/* Lengith-Checked Compression Indicator */
static const true_false_string sna_rh_lcci_truth =
{ "Compressed", "Not Compressed" };
/* Response Type Indicator */
static const true_false_string sna_rh_rti_truth =
{ "Negative", "Positive" };
/* Exception Response Indicator */
static const true_false_string sna_rh_eri_truth =
{ "Exception", "Definite" };
/* Queued Response Indicator */
static const true_false_string sna_rh_qri_truth =
{ "Enqueue response in TC queues", "Response bypasses TC queues" };
/* Code Selection Indicator */
static const value_string sna_rh_csi_vals[] = {
{ 0, "EBCDIC" },
{ 1, "ASCII" }
};
/* TG Sweep */
static const value_string sna_th_tg_sweep_vals[] = {
{ 0, "This PIU may overtake any PU ahead of it." },
{ 1, "This PIU does not ovetake any PIU ahead of it." }
};
/* ER_VR_SUPP_IND */
static const value_string sna_th_er_vr_supp_ind_vals[] = {
{ 0, "Each node supports ER and VR protocols" },
{ 1, "Includes at least one node that does not support ER and VR protocols" }
};
/* VR_PAC_CNT_IND */
static const value_string sna_th_vr_pac_cnt_ind_vals[] = {
{ 0, "Pacing count on the VR has not reached 0" },
{ 1, "Pacing count on the VR has reached 0" }
};
/* NTWK_PRTY */
static const value_string sna_th_ntwk_prty_vals[] = {
{ 0, "PIU flows at a lower priority" },
{ 1, "PIU flows at network priority (highest transmission priority)" }
};
/* TGSF */
static const value_string sna_th_tgsf_vals[] = {
{ 0x00, "Not segmented" },
{ 0x01, "Last segment" },
{ 0x10, "First segment" },
{ 0x11, "Middle segment" }
};
/* PIUBF */
static const value_string sna_th_piubf_vals[] = {
{ 0x00, "Single PIU frame" },
{ 0x01, "Last PIU of a multiple PIU frame" },
{ 0x10, "First PIU of a multiple PIU frame" },
{ 0x11, "Middle PIU of a multiple PIU frame" }
};
/* NLPOI */
static const value_string sna_th_nlpoi_vals[] = {
{ 0x0, "NLP starts within this FID4 TH" },
{ 0x1, "NLP byte 0 starts after RH byte 0 following NLP C/P pad" },
};
/* TPF */
static const value_string sna_th_tpf_vals[] = {
{ 0x00, "Low Priority" },
{ 0x01, "Medium Priority" },
{ 0x10, "High Priority" },
};
/* VR_CWI */
static const value_string sna_th_vr_cwi_vals[] = {
{ 0x0, "Increment window size" },
{ 0x1, "Decrement window size" },
};
/* TG_NONFIFO_IND */
static const true_false_string sna_th_tg_nonfifo_ind_truth =
{ "TG FIFO is not required", "TG FIFO is required" };
/* VR_SQTI */
static const value_string sna_th_vr_sqti_vals[] = {
{ 0x00, "Non-sequenced, Non-supervisory" },
{ 0x01, "Non-sequenced, Supervisory" },
{ 0x10, "Singly-sequenced" },
};
/* VRPRQ */
static const true_false_string sna_th_vrprq_truth = {
"VR pacing request is sent asking for a VR pacing response",
"No VR pacing response is requested",
};
/* VRPRS */
static const true_false_string sna_th_vrprs_truth = {
"VR pacing response is sent in response to a VRPRQ bit set",
"No pacing response sent",
};
/* VR_CWRI */
static const value_string sna_th_vr_cwri_vals[] = {
{ 0, "Increment window size by 1" },
{ 1, "Decrement window size by 1" },
};
/* VR_RWI */
static const true_false_string sna_th_vr_rwi_truth = {
"Reset window size to the minimum specified in NC_ACTVR",
"Do not reset window size",
};
static int dissect_fid0_1 (const u_char*, int, frame_data*, proto_tree*);
static int dissect_fid2 (const u_char*, int, frame_data*, proto_tree*);
static int dissect_fid3 (const u_char*, int, frame_data*, proto_tree*);
static int dissect_fid4 (const u_char*, int, frame_data*, proto_tree*);
static int dissect_fid5 (const u_char*, int, frame_data*, proto_tree*);
static int dissect_fidf (const u_char*, int, frame_data*, proto_tree*);
static void dissect_rh (const u_char*, int, frame_data*, proto_tree*);
static void
dissect_sna(const u_char *pd, int offset, frame_data *fd, proto_tree *tree) {
proto_tree *sna_tree = NULL, *th_tree = NULL, *rh_tree = NULL;
proto_item *sna_ti = NULL, *th_ti = NULL, *rh_ti = NULL;
guint8 th_fid;
int sna_header_len = 0, th_header_len = 0;
OLD_CHECK_DISPLAY_AS_DATA(proto_sna, pd, offset, fd, tree);
/* SNA data should be printed in EBCDIC, not ASCII */
fd->flags.encoding = CHAR_EBCDIC;
if (IS_DATA_IN_FRAME(offset)) {
/* Transmission Header Format Identifier */
th_fid = hi_nibble(pd[offset]);
}
else {
/* If our first byte isn't here, stop dissecting */
return;
}
/* Summary information */
if (check_col(fd, COL_PROTOCOL))
col_add_str(fd, COL_PROTOCOL, "SNA");
if (check_col(fd, COL_INFO))
col_add_str(fd, COL_INFO, val_to_str(th_fid, sna_th_fid_vals, "Unknown FID: %01x"));
if (tree) {
/* Don't bother setting length. We'll set it later after we find
* the lengths of TH/RH/RU */
sna_ti = proto_tree_add_item(tree, proto_sna, NullTVB, offset, 0, FALSE);
sna_tree = proto_item_add_subtree(sna_ti, ett_sna);
/* --- TH --- */
/* Don't bother setting length. We'll set it later after we find
* the length of TH */
th_ti = proto_tree_add_item(sna_tree, hf_sna_th, NullTVB, offset, 0, FALSE);
th_tree = proto_item_add_subtree(th_ti, ett_sna_th);
}
/* Get size of TH */
switch(th_fid) {
case 0x0:
case 0x1:
th_header_len = dissect_fid0_1(pd, offset, fd, th_tree);
break;
case 0x2:
th_header_len = dissect_fid2(pd, offset, fd, th_tree);
break;
case 0x3:
th_header_len = dissect_fid3(pd, offset, fd, th_tree);
break;
case 0x4:
th_header_len = dissect_fid4(pd, offset, fd, th_tree);
break;
case 0x5:
th_header_len = dissect_fid5(pd, offset, fd, th_tree);
break;
case 0xf:
th_header_len = dissect_fidf(pd, offset, fd, th_tree);
break;
default:
old_dissect_data(pd, offset+1, fd, tree);
}
sna_header_len += th_header_len;
offset += th_header_len;
if (tree) {
proto_item_set_len(th_ti, th_header_len);
/* --- RH --- */
if (BYTES_ARE_IN_FRAME(offset, 3)) {
rh_ti = proto_tree_add_item(sna_tree, hf_sna_rh, NullTVB, offset, 3, FALSE);
rh_tree = proto_item_add_subtree(rh_ti, ett_sna_rh);
dissect_rh(pd, offset, fd, rh_tree);
sna_header_len += 3;
offset += 3;
}
else {
/* If our first byte isn't here, stop dissecting */
return;
}
proto_item_set_len(sna_ti, sna_header_len);
}
else {
if (BYTES_ARE_IN_FRAME(offset, 3)) {
sna_header_len += 3;
offset += 3;
}
}
if (IS_DATA_IN_FRAME(offset+1)) {
old_dissect_data(pd, offset, fd, tree);
}
}
/* FID Types 0 and 1 */
static int
dissect_fid0_1 (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) {
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
guint16 daf, oaf, snf, dcf;
static int bytes_in_header = 10;
if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) {
return 0;
}
th_0 = pd[offset+0];
daf = pntohs(&pd[offset+2]);
oaf = pntohs(&pd[offset+4]);
snf = pntohs(&pd[offset+6]);
dcf = pntohs(&pd[offset+8]);
SET_ADDRESS(&pi.net_src, AT_SNA, 2, &pd[offset+4]);
SET_ADDRESS(&pi.src, AT_SNA, 2, &pd[offset+4]);
SET_ADDRESS(&pi.net_dst, AT_SNA, 2, &pd[offset+2]);
SET_ADDRESS(&pi.dst, AT_SNA, 2, &pd[offset+2]);
if (!tree) {
return bytes_in_header;
}
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, NullTVB, offset, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, NullTVB, offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, NullTVB, offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi , NullTVB,offset, 1, th_0);
proto_tree_add_text(tree, NullTVB, offset+1, 1, "Reserved");
proto_tree_add_uint(tree, hf_sna_th_daf , NullTVB,offset+2, 1, daf);
proto_tree_add_uint(tree, hf_sna_th_oaf , NullTVB,offset+4, 1, oaf);
proto_tree_add_uint(tree, hf_sna_th_snf , NullTVB,offset+6, 2, snf);
proto_tree_add_uint(tree, hf_sna_th_dcf , NullTVB,offset+8, 2, dcf);
return bytes_in_header;
}
/* FID Type 2 */
static int
dissect_fid2 (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) {
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0, daf, oaf;
guint16 snf;
static int bytes_in_header = 6;
if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) {
return 0;
}
th_0 = pd[offset+0];
daf = pd[offset+2];
oaf = pd[offset+3];
/* Addresses in FID 2 are FT_UINT8 */
SET_ADDRESS(&pi.net_src, AT_SNA, 1, &pd[offset+3]);
SET_ADDRESS(&pi.src, AT_SNA, 1, &pd[offset+3]);
SET_ADDRESS(&pi.net_dst, AT_SNA, 1, &pd[offset+2]);
SET_ADDRESS(&pi.dst, AT_SNA, 1, &pd[offset+2]);
if (!tree) {
return bytes_in_header;
}
snf = pntohs(&pd[offset+4]);
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, NullTVB, offset, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, NullTVB, offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, NullTVB, offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_odai , NullTVB,offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi , NullTVB,offset, 1, th_0);
/* Addresses in FID 2 are FT_UINT8 */
proto_tree_add_text(tree, NullTVB, offset+1, 1, "Reserved");
proto_tree_add_uint_format(tree, hf_sna_th_daf , NullTVB,offset+2, 1, daf,
"Destination Address Field: 0x%02x", daf);
proto_tree_add_uint_format(tree, hf_sna_th_oaf , NullTVB,offset+3, 1, oaf,
"Origin Address Field: 0x%02x", oaf);
proto_tree_add_uint(tree, hf_sna_th_snf , NullTVB,offset+4, 2, snf);
return bytes_in_header;
}
/* FID Type 3 */
static int
dissect_fid3 (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) {
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
guint8 lsid;
static int bytes_in_header = 2;
if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) {
return 0;
}
if (!tree) {
return bytes_in_header;
}
th_0 = pd[offset+0];
lsid = pd[offset+1];
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, NullTVB, offset, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, NullTVB, offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, NullTVB, offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi , NullTVB,offset, 1, th_0);
proto_tree_add_uint(tree, hf_sna_th_lsid , NullTVB,offset+1, 1, lsid);
return bytes_in_header;
}
/* FID Type 4 */
gchar *
sna_fid_type_4_addr_to_str(const struct sna_fid_type_4_addr *addrp)
{
static gchar str[3][14];
static gchar *cur;
if (cur == &str[0][0]) {
cur = &str[1][0];
} else if (cur == &str[1][0]) {
cur = &str[2][0];
} else {
cur = &str[0][0];
}
sprintf(cur, "%08X.%04X", addrp->saf, addrp->ef);
return cur;
}
static int
dissect_fid4 (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) {
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_byte, mft;
guint16 th_word;
guint16 def, oef, snf, dcf;
guint32 dsaf, osaf;
static struct sna_fid_type_4_addr src, dst;
static int bytes_in_header = 26;
if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) {
return 0;
}
dsaf = pntohl(&pd[offset+8]);
osaf = pntohl(&pd[offset+12]);
def = pntohs(&pd[offset+18]);
oef = pntohs(&pd[offset+20]);
snf = pntohs(&pd[offset+22]);
dcf = pntohs(&pd[offset+24]);
/* Addresses in FID 4 are discontiguous, sigh */
src.saf = osaf;
src.ef = oef;
dst.saf = dsaf;
dst.ef = def;
SET_ADDRESS(&pi.net_src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN,
(guint8 *)&src);
SET_ADDRESS(&pi.src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN,
(guint8 *)&src);
SET_ADDRESS(&pi.net_dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN,
(guint8 *)&dst);
SET_ADDRESS(&pi.dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN,
(guint8 *)&dst);
if (!tree) {
return bytes_in_header;
}
th_byte = pd[offset];
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, NullTVB, offset, 1, th_byte);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 0 */
proto_tree_add_uint(bf_tree, hf_sna_th_fid, NullTVB, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_tg_sweep, NullTVB, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_er_vr_supp_ind, NullTVB, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_vr_pac_cnt_ind, NullTVB, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_ntwk_prty, NullTVB, offset, 1, th_byte);
offset += 1;
th_byte = pd[offset];
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, NullTVB, offset, 1, "Transmision Header Byte 1");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 1 */
proto_tree_add_uint(bf_tree, hf_sna_th_tgsf, NullTVB, offset, 1, th_byte);
proto_tree_add_boolean(bf_tree, hf_sna_th_mft, NullTVB, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_piubf, NullTVB, offset, 1, th_byte);
mft = th_byte & 0x04;
offset += 1;
th_byte = pd[offset];
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, NullTVB, offset, 1, "Transmision Header Byte 2");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 2 */
if (mft) {
proto_tree_add_uint(bf_tree, hf_sna_th_nlpoi, NullTVB, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_nlp_cp, NullTVB, offset, 1, th_byte);
}
else {
proto_tree_add_uint(bf_tree, hf_sna_th_iern, NullTVB, offset, 1, th_byte);
}
proto_tree_add_uint(bf_tree, hf_sna_th_ern, NullTVB, offset, 1, th_byte);
offset += 1;
th_byte = pd[offset];
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, NullTVB, offset, 1, "Transmision Header Byte 3");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 3 */
proto_tree_add_uint(bf_tree, hf_sna_th_vrn, NullTVB, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_tpf, NullTVB, offset, 1, th_byte);
offset += 1;
th_word = pntohs(&pd[offset]);
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, NullTVB, offset, 2, "Transmision Header Bytes 4-5");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Bytes 4-5 */
proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwi, NullTVB, offset, 2, th_word);
proto_tree_add_boolean(bf_tree, hf_sna_th_tg_nonfifo_ind, NullTVB, offset, 2, th_word);
proto_tree_add_uint(bf_tree, hf_sna_th_vr_sqti, NullTVB, offset, 2, th_word);
/* I'm not sure about byte-order on this one... */
proto_tree_add_uint(bf_tree, hf_sna_th_tg_snf, NullTVB, offset, 2, th_word);
offset += 2;
th_word = pntohs(&pd[offset]);
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, NullTVB, offset, 2, "Transmision Header Bytes 6-7");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Bytes 6-7 */
proto_tree_add_boolean(bf_tree, hf_sna_th_vrprq, NullTVB, offset, 2, th_word);
proto_tree_add_boolean(bf_tree, hf_sna_th_vrprs, NullTVB, offset, 2, th_word);
proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwri, NullTVB, offset, 2, th_word);
proto_tree_add_boolean(bf_tree, hf_sna_th_vr_rwi, NullTVB, offset, 2, th_word);
/* I'm not sure about byte-order on this one... */
proto_tree_add_uint(bf_tree, hf_sna_th_vr_snf_send, NullTVB, offset, 2, th_word);
offset += 2;
/* Bytes 8-11 */
proto_tree_add_uint(tree, hf_sna_th_dsaf, NullTVB, offset, 4, dsaf);
offset += 4;
/* Bytes 12-15 */
proto_tree_add_uint(tree, hf_sna_th_osaf, NullTVB, offset, 4, osaf);
offset += 4;
th_byte = pd[offset];
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, NullTVB, offset, 2, "Transmision Header Byte 16");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 16 */
proto_tree_add_boolean(tree, hf_sna_th_snai, NullTVB, offset, 1, th_byte);
/* We luck out here because in their infinite wisdom the SNA
* architects placed the MPF and EFI fields in the same bitfield
* locations, even though for FID4 they're not in byte 0.
* Thank you IBM! */
proto_tree_add_uint(tree, hf_sna_th_mpf, NullTVB, offset, 1, th_byte);
proto_tree_add_uint(tree, hf_sna_th_efi, NullTVB, offset, 1, th_byte);
offset += 2; /* 1 for byte 16, 1 for byte 17 which is reserved */
/* Bytes 18-25 */
proto_tree_add_uint(tree, hf_sna_th_def, NullTVB, offset+0, 2, def);
proto_tree_add_uint(tree, hf_sna_th_oef, NullTVB, offset+2, 2, oef);
proto_tree_add_uint(tree, hf_sna_th_snf, NullTVB, offset+4, 2, snf);
proto_tree_add_uint(tree, hf_sna_th_snf, NullTVB, offset+6, 2, dcf);
return bytes_in_header;
}
/* FID Type 5 */
static int
dissect_fid5 (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) {
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
guint16 snf;
static int bytes_in_header = 12;
if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) {
return 0;
}
th_0 = pd[offset+0];
snf = pntohs(&pd[offset+2]);
if (!tree) {
return bytes_in_header;
}
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, NullTVB, offset, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, NullTVB, offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, NullTVB, offset, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi, NullTVB, offset, 1, th_0);
proto_tree_add_text(tree, NullTVB, offset+1, 1, "Reserved");
proto_tree_add_uint(tree, hf_sna_th_snf, NullTVB, offset+2, 2, snf);
proto_tree_add_bytes(tree, hf_sna_th_sa, NullTVB, offset+4, 8, &pd[offset+4]);
return bytes_in_header;
}
/* FID Type f */
static int
dissect_fidf (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) {
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0, cmd_fmt, cmd_type;
guint16 cmd_sn, dcf;
static int bytes_in_header = 26;
if (!BYTES_ARE_IN_FRAME(offset, bytes_in_header)) {
return 0;
}
th_0 = pd[offset+0];
cmd_fmt = pd[offset+2];
cmd_type = pd[offset+3];
cmd_sn = pntohs(&pd[offset+4]);
/* Yup, bytes 6-23 are reserved! */
dcf = pntohs(&pd[offset+24]);
if (!tree) {
return bytes_in_header;
}
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, NullTVB, offset, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, NullTVB, offset, 1, th_0);
proto_tree_add_text(tree, NullTVB, offset+1, 1, "Reserved");
proto_tree_add_uint(tree, hf_sna_th_cmd_fmt, NullTVB, offset+2, 1, cmd_fmt);
proto_tree_add_uint(tree, hf_sna_th_cmd_type, NullTVB, offset+3, 1, cmd_type);
proto_tree_add_uint(tree, hf_sna_th_cmd_sn, NullTVB, offset+4, 2, cmd_sn);
proto_tree_add_text(tree, NullTVB, offset+6, 18, "Reserved");
proto_tree_add_uint(tree, hf_sna_th_dcf, NullTVB, offset+24, 8, dcf);
return bytes_in_header;
}
/* RH */
static void
dissect_rh (const u_char *pd, int offset, frame_data *fd, proto_tree *tree) {
proto_tree *bf_tree;
proto_item *bf_item;
gboolean is_response;
guint8 rh_0, rh_1, rh_2;
rh_0 = pd[offset+0];
rh_1 = pd[offset+1];
rh_2 = pd[offset+2];
is_response = (rh_0 & 0x80);
/* Create the bitfield tree for byte 0*/
bf_item = proto_tree_add_uint(tree, hf_sna_rh_0, NullTVB, offset, 1, rh_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_0);
proto_tree_add_uint(bf_tree, hf_sna_rh_rri, NullTVB, offset, 1, rh_0);
proto_tree_add_uint(bf_tree, hf_sna_rh_ru_category, NullTVB, offset, 1, rh_0);
proto_tree_add_boolean(bf_tree, hf_sna_rh_fi, NullTVB, offset, 1, rh_0);
proto_tree_add_boolean(bf_tree, hf_sna_rh_sdi, NullTVB, offset, 1, rh_0);
proto_tree_add_boolean(bf_tree, hf_sna_rh_bci, NullTVB, offset, 1, rh_0);
proto_tree_add_boolean(bf_tree, hf_sna_rh_eci, NullTVB, offset, 1, rh_0);
offset += 1;
/* Create the bitfield tree for byte 1*/
bf_item = proto_tree_add_uint(tree, hf_sna_rh_1, NullTVB, offset, 1, rh_1);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_1);
proto_tree_add_boolean(bf_tree, hf_sna_rh_dr1, NullTVB, offset, 1, rh_1);
if (!is_response) {
proto_tree_add_boolean(bf_tree, hf_sna_rh_lcci, NullTVB, offset, 1, rh_1);
}
proto_tree_add_boolean(bf_tree, hf_sna_rh_dr2, NullTVB, offset, 1, rh_1);
if (is_response) {
proto_tree_add_boolean(bf_tree, hf_sna_rh_rti, NullTVB, offset, 1, rh_1);
}
else {
proto_tree_add_boolean(bf_tree, hf_sna_rh_eri, NullTVB, offset, 1, rh_1);
proto_tree_add_boolean(bf_tree, hf_sna_rh_rlwi, NullTVB, offset, 1, rh_1);
}
proto_tree_add_boolean(bf_tree, hf_sna_rh_qri, NullTVB, offset, 1, rh_1);
proto_tree_add_boolean(bf_tree, hf_sna_rh_pi, NullTVB, offset, 1, rh_1);
offset += 1;
/* Create the bitfield tree for byte 2*/
bf_item = proto_tree_add_uint(tree, hf_sna_rh_2, NullTVB, offset, 1, rh_2);
if (!is_response) {
bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_bbi, NullTVB, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_ebi, NullTVB, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_cdi, NullTVB, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_csi, NullTVB, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_edi, NullTVB, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_pdi, NullTVB, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_cebi, NullTVB, offset, 1, rh_2);
}
/* XXX - check for sdi. If TRUE, the next 4 bytes will be sense data */
}
void
proto_register_sna(void)
{
static hf_register_info hf[] = {
{ &hf_sna_th,
{ "Transmission Header", "sna.th", FT_NONE, BASE_NONE, NULL, 0x0,
"" }},
{ &hf_sna_th_0,
{ "Transmission Header Byte 0", "sna.th.0", FT_UINT8, BASE_HEX, NULL, 0x0,
"Byte 0 of Tranmission Header contains FID, MPF, ODAI,"
" and EFI as bitfields." }},
{ &hf_sna_th_fid,
{ "Format Identifer", "sna.th.fid", FT_UINT8, BASE_HEX, VALS(sna_th_fid_vals), 0xf0,
"Format Identification" }},
{ &hf_sna_th_mpf,
{ "Mapping Field", "sna.th.mpf", FT_UINT8, BASE_NONE, VALS(sna_th_mpf_vals), 0x0c,
"The Mapping Field specifies whether the information field"
" associated with the TH is a complete or partial BIU." }},
{ &hf_sna_th_odai,
{ "ODAI Assignment Indicator", "sna.th.odai", FT_UINT8, BASE_DEC, NULL, 0x02,
"The ODAI indicates which node assigned the OAF'-DAF' values"
" carried in the TH." }},
{ &hf_sna_th_efi,
{ "Expedited Flow Indicator", "sna.th.efi", FT_UINT8, BASE_DEC, VALS(sna_th_efi_vals), 0x01,
"The EFI designates whether the PIU belongs to the normal"
" or expedited flow." }},
{ &hf_sna_th_daf,
{ "Destination Address Field", "sna.th.daf", FT_UINT16, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_oaf,
{ "Origin Address Field", "sna.th.oaf", FT_UINT16, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_snf,
{ "Sequence Number Field", "sna.th.snf", FT_UINT16, BASE_NONE, NULL, 0x0,
"The Sequence Number Field contains a numerical identifier for"
" the associated BIU."}},
{ &hf_sna_th_dcf,
{ "Data Count Field", "sna.th.dcf", FT_UINT16, BASE_DEC, NULL, 0x0,
"A binary count of the number of bytes in the BIU or BIU segment associated "
"with the tranmission header. The count does not include any of the bytes "
"in the transmission header."}},
{ &hf_sna_th_lsid,
{ "Local Session Identification", "sna.th.lsid", FT_UINT8, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_tg_sweep,
{ "Transmission Group Sweep", "sna.th.tg_sweep", FT_UINT8, BASE_DEC,
VALS(sna_th_tg_sweep_vals), 0x08,
"" }},
{ &hf_sna_th_er_vr_supp_ind,
{ "ER and VR Support Indicator", "sna.th.er_vr_supp_ind", FT_UINT8, BASE_DEC,
VALS(sna_th_er_vr_supp_ind_vals), 0x04,
"" }},
{ &hf_sna_th_vr_pac_cnt_ind,
{ "Virtual Route Pacing Count Indicator", "sna.th.vr_pac_cnt_ind",
FT_UINT8, BASE_DEC, VALS(sna_th_vr_pac_cnt_ind_vals), 0x02,
"" }},
{ &hf_sna_th_ntwk_prty,
{ "Network Priority", "sna.th.ntwk_prty",
FT_UINT8, BASE_DEC, VALS(sna_th_ntwk_prty_vals), 0x01,
"" }},
{ &hf_sna_th_tgsf,
{ "Transmission Group Segmenting Field", "sna.th.tgsf",
FT_UINT8, BASE_HEX, VALS(sna_th_tgsf_vals), 0xc0,
"" }},
{ &hf_sna_th_mft,
{ "MPR FID4 Type", "sna.th.mft", FT_BOOLEAN, BASE_NONE, NULL, 0x04,
"" }},
{ &hf_sna_th_piubf,
{ "PIU Blocking Field", "sna.th.piubf", FT_UINT8, BASE_HEX,
VALS(sna_th_piubf_vals), 0x03,
"Specifies whether this frame contains a single PIU or multiple PIUs." }},
{ &hf_sna_th_iern,
{ "Initial Explicit Route Number", "sna.th.iern", FT_UINT8, BASE_DEC, NULL, 0xf0,
"" }},
{ &hf_sna_th_nlpoi,
{ "NLP Offset Indicator", "sna.th.nlpoi", FT_UINT8, BASE_DEC,
VALS(sna_th_nlpoi_vals), 0x80,
"" }},
{ &hf_sna_th_nlp_cp,
{ "NLP Count or Padding", "sna.th.nlp_cp", FT_UINT8, BASE_DEC, NULL, 0x70,
"" }},
{ &hf_sna_th_ern,
{ "Explicit Route Number", "sna.th.ern", FT_UINT8, BASE_DEC, NULL, 0x0f,
"The ERN in a TH identifies an explicit route direction of flow." }},
{ &hf_sna_th_vrn,
{ "Virtual Route Number", "sna.th.vrn", FT_UINT8, BASE_DEC, NULL, 0xf0,
"" }},
{ &hf_sna_th_tpf,
{ "Transmission Priority Field", "sna.th.tpf", FT_UINT8, BASE_HEX,
VALS(sna_th_tpf_vals), 0x03,
"" }},
{ &hf_sna_th_vr_cwi,
{ "Virtual Route Change Window Indicator", "sna.th.vr_cwi", FT_UINT16, BASE_DEC,
VALS(sna_th_vr_cwi_vals), 0x8000,
"Used to change the window size of the virtual route by 1." }},
{ &hf_sna_th_tg_nonfifo_ind,
{ "Transmission Group Non-FIFO Indicator", "sna.th.tg_nonfifo_ind", FT_BOOLEAN, 16,
TFS(&sna_th_tg_nonfifo_ind_truth), 0x4000,
"Indicates whether or not FIFO discipline is to enforced in "
"transmitting PIUs through the tranmission groups to prevent the PIUs "
"getting out of sequence during transmission over the TGs." }},
{ &hf_sna_th_vr_sqti,
{ "Virtual Route Sequence and Type Indicator", "sna.th.vr_sqti", FT_UINT16, BASE_HEX,
VALS(sna_th_vr_sqti_vals), 0x3000,
"Specifies the PIU type." }},
{ &hf_sna_th_tg_snf,
{ "Transmission Group Sequence Number Field", "sna.th.tg_snf", FT_UINT16, BASE_DEC,
NULL, 0x0fff,
"" }},
{ &hf_sna_th_vrprq,
{ "Virtual Route Pacing Request", "sna.th.vrprq", FT_BOOLEAN, 16,
TFS(&sna_th_vrprq_truth), 0x8000,
"" }},
{ &hf_sna_th_vrprs,
{ "Virtual Route Pacing Response", "sna.th.vrprs", FT_BOOLEAN, 16,
TFS(&sna_th_vrprs_truth), 0x4000,
"" }},
{ &hf_sna_th_vr_cwri,
{ "Virtual Route Change Window Reply Indicator", "sna.th.vr_cwri", FT_UINT16, BASE_DEC,
VALS(sna_th_vr_cwri_vals), 0x2000,
"Permits changing of the window size by 1 for PIUs received by the "
"sender of this bit." }},
{ &hf_sna_th_vr_rwi,
{ "Virtual Route Reset Window Indicator", "sna.th.vr_rwi", FT_BOOLEAN, 16,
TFS(&sna_th_vr_rwi_truth), 0x1000,
"Indicates severe congestion in a node on the virtual route." }},
{ &hf_sna_th_vr_snf_send,
{ "Virtual Route Send Sequence Number Field", "sna.th.vr_snf_send", FT_UINT16, BASE_DEC,
NULL, 0x0fff,
"" }},
{ &hf_sna_th_dsaf,
{ "Destination Subarea Address Field", "sna.th.dsaf", FT_UINT32, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_osaf,
{ "Origin Subarea Address Field", "sna.th.osaf", FT_UINT32, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_snai,
{ "SNA Indicator", "sna.th.snai", FT_BOOLEAN, 8, NULL, 0x10,
"Used to identify whether the PIU originated or is destined for "
"an SNA or non-SNA device." }},
{ &hf_sna_th_def,
{ "Destination Element Field", "sna.th.def", FT_UINT16, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_oef,
{ "Origin Element Field", "sna.th.oef", FT_UINT16, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_sa,
{ "Session Address", "sna.th.sa", FT_BYTES, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_cmd_fmt,
{ "Command Format", "sna.th.cmd_fmt", FT_UINT8, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_cmd_type,
{ "Command Type", "sna.th.cmd_type", FT_UINT8, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_th_cmd_sn,
{ "Command Sequence Number", "sna.th.cmd_sn", FT_UINT16, BASE_DEC, NULL, 0x0,
"" }},
{ &hf_sna_rh,
{ "Request/Response Header", "sna.rh", FT_NONE, BASE_NONE, NULL, 0x0,
"" }},
{ &hf_sna_rh_0,
{ "Request/Response Header Byte 0", "sna.rh.0", FT_UINT8, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_rh_1,
{ "Request/Response Header Byte 1", "sna.rh.1", FT_UINT8, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_rh_2,
{ "Request/Response Header Byte 2", "sna.rh.2", FT_UINT8, BASE_HEX, NULL, 0x0,
"" }},
{ &hf_sna_rh_rri,
{ "Request/Response Indicator", "sna.rh.rri", FT_UINT8, BASE_DEC, VALS(sna_rh_rri_vals), 0x80,
"Denotes whether this is a request or a response." }},
{ &hf_sna_rh_ru_category,
{ "Request/Response Unit Category", "sna.rh.ru_category", FT_UINT8, BASE_HEX,
VALS(sna_rh_ru_category_vals), 0x60,
"" }},
{ &hf_sna_rh_fi,
{ "Format Indicator", "sna.rh.fi", FT_BOOLEAN, 8, TFS(&sna_rh_fi_truth), 0x08,
"" }},
{ &hf_sna_rh_sdi,
{ "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN, 8, TFS(&sna_rh_sdi_truth), 0x04,
"Indicates that a 4-byte sense data field is included in the associated RU." }},
{ &hf_sna_rh_bci,
{ "Begin Chain Indicator", "sna.rh.bci", FT_BOOLEAN, 8, TFS(&sna_rh_bci_truth), 0x02,
"" }},
{ &hf_sna_rh_eci,
{ "End Chain Indicator", "sna.rh.eci", FT_BOOLEAN, 8, TFS(&sna_rh_eci_truth), 0x01,
"" }},
{ &hf_sna_rh_dr1,
{ "Definite Response 1 Indicator", "sna.rh.dr1", FT_BOOLEAN, 8, NULL, 0x80,
"" }},
{ &hf_sna_rh_lcci,
{ "Length-Checked Compression Indicator", "sna.rh.lcci", FT_BOOLEAN, 8,
TFS(&sna_rh_lcci_truth), 0x40,
"" }},
{ &hf_sna_rh_dr2,
{ "Definite Response 2 Indicator", "sna.rh.dr2", FT_BOOLEAN, 8, NULL, 0x20,
"" }},
{ &hf_sna_rh_eri,
{ "Exception Response Indicator", "sna.rh.eri", FT_BOOLEAN, 8, NULL, 0x10,
"Used in conjunction with DR1I and DR2I to indicate, in a request, "
"the form of response requested." }},
{ &hf_sna_rh_rti,
{ "Response Type Indicator", "sna.rh.rti", FT_BOOLEAN, 8, TFS(&sna_rh_rti_truth), 0x10,
"" }},
{ &hf_sna_rh_rlwi,
{ "Request Larger Window Indicator", "sna.rh.rlwi", FT_BOOLEAN, 8, NULL, 0x04,
"Indicates whether a larger pacing window was requested." }},
{ &hf_sna_rh_qri,
{ "Queued Response Indicator", "sna.rh.qri", FT_BOOLEAN, 8, TFS(&sna_rh_qri_truth), 0x02,
"" }},
{ &hf_sna_rh_pi,
{ "Pacing Indicator", "sna.rh.pi", FT_BOOLEAN, 8, NULL, 0x01,
"" }},
{ &hf_sna_rh_bbi,
{ "Begin Bracket Indicator", "sna.rh.bbi", FT_BOOLEAN, 8, NULL, 0x80,
"" }},
{ &hf_sna_rh_ebi,
{ "End Bracket Indicator", "sna.rh.ebi", FT_BOOLEAN, 8, NULL, 0x40,
"" }},
{ &hf_sna_rh_cdi,
{ "Change Direction Indicator", "sna.rh.cdi", FT_BOOLEAN, 8, NULL, 0x20,
"" }},
{ &hf_sna_rh_csi,
{ "Code Selection Indicator", "sna.rh.csi", FT_BOOLEAN, 8, VALS(sna_rh_csi_vals), 0x08,
"Specifies the encoding used for the associated FMD RU." }},
{ &hf_sna_rh_edi,
{ "Enciphered Data Indicator", "sna.rh.edi", FT_BOOLEAN, 8, NULL, 0x04,
"Indicates that information in the associated RU is enciphered under "
"session-level cryptography protocols." }},
{ &hf_sna_rh_pdi,
{ "Padded Data Indicator", "sna.rh.pdi", FT_BOOLEAN, 8, NULL, 0x02,
"Indicates that the RU was padded at the end, before encipherment, to the next "
"integral multiple of 8 bytes." }},
{ &hf_sna_rh_cebi,
{ "Conditional End Bracket Indicator", "sna.rh.cebi", FT_BOOLEAN, 8, NULL, 0x01,
"Used to indicate the beginning or end of a group of exchanged "
"requests and responses called a bracket. Only used on LU-LU sessions." }},
{ &hf_sna_ru,
{ "Request/Response Unit", "sna.ru", FT_NONE, BASE_NONE, NULL, 0x0,
""}},
};
static gint *ett[] = {
&ett_sna,
&ett_sna_th,
&ett_sna_th_fid,
&ett_sna_rh,
&ett_sna_rh_0,
&ett_sna_rh_1,
&ett_sna_rh_2,
};
proto_sna = proto_register_protocol("Systems Network Architecture", "sna");
proto_register_field_array(proto_sna, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
}
void
proto_reg_handoff_sna(void)
{
old_dissector_add("llc.dsap", SAP_SNA_PATHCTRL, dissect_sna);
}