wireshark/epan/dissectors/packet-oran.c

4093 lines
163 KiB
C

/* packet-oran.c
* Routines for O-RAN fronthaul UC-plane dissection
* Copyright 2020, Jan Schiefer, Keysight Technologies, Inc.
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
* Dissector for the O-RAN Fronthaul CUS protocol specification.
* The current implementation is based on the
* ORAN-WG4.CUS.0-v01.00 specification, dated 2019/01/31.
* N.B. by now, descriptions have been taken from a variety of versions, so some section number references
* referring to earlier specs are now out of date.
*/
#include <config.h>
#include <epan/packet.h>
#include <epan/expert.h>
#include <epan/prefs.h>
#include <epan/proto.h>
/* TODO:
* - sequence analysis based on sequence Id. N.B. separate counts per antenna for spatial stream (eAxC Id), plane, direction
* - tap stats by flow?
* - for U-Plane, track back to last C-Plane frame for that eAxC
* - use upCompHdr values from C-Plane if not overridden by U-Plane?
* - Radio transport layer (eCPRI) fragmentation / reassembly
* - Detect/indicate signs of application layer fragmentation?
* - Not handling M-plane setting for "little endian byte order" as applied to IQ samples and beam weights
* - Really long long text in some items will not be displayed. Try to summarise/truncate
* - Register for UDP port(s)
* - for section extensions, check constraints (section type, which other extension types appear with them, order)
* - when section extensions are present, some section header fields are effectively ignored
*/
/* Prototypes */
void proto_reg_handoff_oran(void);
void proto_register_oran(void);
/* Initialize the protocol and registered fields */
static int proto_oran = -1;
static int hf_oran_du_port_id = -1;
static int hf_oran_bandsector_id = -1;
static int hf_oran_cc_id = -1;
static int hf_oran_ru_port_id = -1;
static int hf_oran_sequence_id = -1;
static int hf_oran_e_bit = -1;
static int hf_oran_subsequence_id = -1;
static int hf_oran_data_direction = -1;
static int hf_oran_payload_version = -1;
static int hf_oran_filter_index = -1;
static int hf_oran_frame_id = -1;
static int hf_oran_subframe_id = -1;
static int hf_oran_slot_id = -1;
static int hf_oran_slot_within_frame = -1;
static int hf_oran_start_symbol_id = -1;
static int hf_oran_numberOfSections = -1;
static int hf_oran_sectionType = -1;
static int hf_oran_udCompHdr = -1;
static int hf_oran_udCompHdrIqWidth = -1;
static int hf_oran_udCompHdrMeth = -1;
static int hf_oran_numberOfUEs = -1;
static int hf_oran_timeOffset = -1;
static int hf_oran_frameStructure_fft = -1;
static int hf_oran_frameStructure_subcarrier_spacing = -1;
/* static int hf_oran_frameStructure_u = -1; */
static int hf_oran_cpLength = -1;
static int hf_oran_section_id = -1;
static int hf_oran_rb = -1;
static int hf_oran_symInc = -1;
static int hf_oran_startPrbc = -1;
static int hf_oran_reMask = -1;
static int hf_oran_numPrbc = -1;
static int hf_oran_numSymbol = -1;
static int hf_oran_ef = -1;
static int hf_oran_beamId = -1;
static int hf_oran_extension = -1;
static int hf_oran_exttype = -1;
static int hf_oran_extlen = -1;
static int hf_oran_bfw = -1;
static int hf_oran_bfw_i = -1;
static int hf_oran_bfw_q = -1;
static int hf_oran_ueId = -1;
static int hf_oran_freqOffset = -1;
static int hf_oran_regularizationFactor = -1;
static int hf_oran_laaMsgType = -1;
static int hf_oran_laaMsgLen = -1;
static int hf_oran_lbtHandle = -1;
static int hf_oran_lbtDeferFactor = -1;
static int hf_oran_lbtBackoffCounter = -1;
static int hf_oran_lbtOffset = -1;
static int hf_oran_MCOT = -1;
static int hf_oran_txopSfnSfEnd = -1;
static int hf_oran_lbtMode = -1;
static int hf_oran_sfnSfEnd = -1;
static int hf_oran_lbtResult = -1;
static int hf_oran_lteTxopSymbols = -1;
static int hf_oran_initialPartialSF = -1;
static int hf_oran_reserved = -1;
static int hf_oran_reserved_1bit = -1;
static int hf_oran_reserved_2bits = -1;
static int hf_oran_reserved_4bits = -1;
static int hf_oran_reserved_6bits = -1;
static int hf_oran_ext11_reserved = -1;
static int hf_oran_bfwCompHdr = -1;
static int hf_oran_bfwCompHdr_iqWidth = -1;
static int hf_oran_bfwCompHdr_compMeth = -1;
static int hf_oran_num_bf_weights = -1;
static int hf_oran_symbolId = -1;
static int hf_oran_startPrbu = -1;
static int hf_oran_numPrbu = -1;
/* static int hf_oran_udCompParam = -1; */
static int hf_oran_bfwCompParam = -1;
static int hf_oran_iSample = -1;
static int hf_oran_qSample = -1;
static int hf_oran_blockScaler = -1;
static int hf_oran_compBitWidth = -1;
static int hf_oran_compShift = -1;
static int hf_oran_repetition = -1;
static int hf_oran_rbgSize = -1;
static int hf_oran_rbgMask = -1;
static int hf_oran_noncontig_priority = -1;
static int hf_oran_symbolMask = -1;
static int hf_oran_rsvd8 = -1;
static int hf_oran_rsvd16 = -1;
static int hf_oran_exponent = -1;
static int hf_oran_iq_user_data = -1;
static int hf_oran_disable_bfws = -1;
static int hf_oran_rad = -1;
static int hf_oran_num_bund_prbs = -1;
static int hf_oran_beam_id = -1;
static int hf_oran_num_weights_per_bundle = -1;
static int hf_oran_ack_nack_req_id = -1;
static int hf_oran_off_start_prb_num_prb_pair = -1;
static int hf_oran_off_start_prb = -1;
static int hf_oran_num_prb = -1;
static int hf_oran_samples_prb = -1;
static int hf_oran_ciSample = -1;
static int hf_oran_ciIsample = -1;
static int hf_oran_ciQsample = -1;
static int hf_oran_beamGroupType = -1;
static int hf_oran_numPortc = -1;
static int hf_oran_csf = -1;
static int hf_oran_modcompscaler = -1;
static int hf_oran_mc_scale_re_mask = -1;
static int hf_oran_mc_scale_offset = -1;
static int hf_oran_eAxC_mask = -1;
static int hf_oran_technology = -1;
static int hf_oran_nullLayerInd = -1;
static int hf_oran_portReMask = -1;
static int hf_oran_portSymbolMask = -1;
static int hf_oran_ext19_port = -1;
static int hf_oran_prb_allocation = -1;
static int hf_oran_nextSymbolId = -1;
static int hf_oran_nextStartPrbc = -1;
static int hf_oran_puncPattern = -1;
static int hf_oran_numPuncPatterns = -1;
static int hf_oran_symbolMask_ext20 = -1;
static int hf_oran_startPuncPrb = -1;
static int hf_oran_numPuncPrb = -1;
static int hf_oran_puncReMask = -1;
static int hf_oran_RbgIncl = -1;
static int hf_oran_ci_prb_group_size = -1;
static int hf_oran_num_ueid = -1;
static int hf_oran_antMask = -1;
static int hf_oran_transmissionWindowOffset = -1;
static int hf_oran_transmissionWindowSize = -1;
static int hf_oran_toT = -1;
static int hf_oran_bfaCompHdr = -1;
static int hf_oran_bfAzPtWidth = -1;
static int hf_oran_bfZePtWidth = -1;
static int hf_oran_bfAz3ddWidth = -1;
static int hf_oran_bfZe3ddWidth = -1;
static int hf_oran_bfAzPt = -1;
static int hf_oran_bfZePt = -1;
static int hf_oran_bfAz3dd = -1;
static int hf_oran_bfZe3dd = -1;
static int hf_oran_bfAzSl = -1;
static int hf_oran_bfZeSl = -1;
/* Computed fields */
static int hf_oran_c_eAxC_ID = -1;
static int hf_oran_refa = -1;
/* Initialize the subtree pointers */
static gint ett_oran = -1;
static gint ett_oran_ecpri_rtcid = -1;
static gint ett_oran_ecpri_pcid = -1;
static gint ett_oran_ecpri_seqid = -1;
static gint ett_oran_section = -1;
static gint ett_oran_section_type = -1;
static gint ett_oran_u_timing = -1;
static gint ett_oran_u_section = -1;
static gint ett_oran_u_prb = -1;
static gint ett_oran_iq = -1;
static gint ett_oran_c_section_extension = -1;
static gint ett_oran_bfw = -1;
static gint ett_oran_offset_start_prb_num_prb = -1;
static gint ett_oran_prb_cisamples = -1;
static gint ett_oran_cisample = -1;
static gint ett_oran_udcomphdr = -1;
static gint ett_oran_bfwcomphdr = -1;
static gint ett_oran_bfwcompparam = -1;
static gint ett_oran_ext19_port = -1;
static gint ett_oran_prb_allocation = -1;
static gint ett_oran_punc_pattern = -1;
static gint ett_oran_bfacomphdr = -1;
/* Expert info */
static expert_field ei_oran_invalid_bfw_iqwidth = EI_INIT;
static expert_field ei_oran_invalid_num_bfw_weights = EI_INIT;
static expert_field ei_oran_unsupported_bfw_compression_method = EI_INIT;
static expert_field ei_oran_invalid_sample_bit_width = EI_INIT;
static expert_field ei_oran_reserved_numBundPrb = EI_INIT;
static expert_field ei_oran_extlen_wrong = EI_INIT;
static expert_field ei_oran_invalid_eaxc_bit_width = EI_INIT;
static expert_field ei_oran_extlen_zero = EI_INIT;
static expert_field ei_oran_rbg_size_reserved = EI_INIT;
static expert_field ei_oran_frame_length = EI_INIT;
/* These are the message types handled by this dissector */
#define ECPRI_MT_IQ_DATA 0
#define ECPRI_MT_RT_CTRL_DATA 2
/* Preference settings. */
static guint pref_du_port_id_bits = 2;
static guint pref_bandsector_id_bits = 6;
static guint pref_cc_id_bits = 4;
static guint pref_ru_port_id_bits = 4;
static guint pref_sample_bit_width_uplink = 14;
static guint pref_sample_bit_width_downlink = 14;
/* Compression schemes */
#define COMP_NONE 0
#define COMP_BLOCK_FP 1
#define COMP_BLOCK_SCALE 2
#define COMP_U_LAW 3
#define COMP_MODULATION 4
#define BFP_AND_SELECTIVE_RE 5
#define MOD_COMPR_AND_SELECTIVE_RE 6
static gint pref_iqCompressionUplink = COMP_BLOCK_FP;
static gint pref_iqCompressionDownlink = COMP_BLOCK_FP;
static gboolean pref_includeUdCompHeaderUplink = FALSE;
static gboolean pref_includeUdCompHeaderDownlink = FALSE;
static guint pref_data_plane_section_total_rbs = 273;
static guint pref_num_weights_per_bundle = 32;
static guint pref_num_bf_antennas = 32;
static gboolean pref_showIQSampleValues = TRUE;
static const enum_val_t compression_options[] = {
{ "COMP_NONE", "No Compression", COMP_NONE },
{ "COMP_BLOCK_FP", "Block Floating Point Compression", COMP_BLOCK_FP },
{ "COMP_BLOCK_SCALE", "Block Scaling Compression", COMP_BLOCK_SCALE },
{ "COMP_U_LAW", "u-Law Compression", COMP_U_LAW },
{ "COMP_MODULATION", "Modulation Compression", COMP_MODULATION },
{ "BFP_AND_SELECTIVE_RE", "BFP + selective RE sending", BFP_AND_SELECTIVE_RE },
{ "MOD_COMPR_AND_SELECTIVE_RE", "mod-compr + selective RE sending", MOD_COMPR_AND_SELECTIVE_RE },
{ NULL, NULL, 0 }
};
static const value_string e_bit[] = {
{ 0, "More fragments follow" },
{ 1, "Last fragment" },
{ 0, NULL}
};
#define DIR_UPLINK 0
#define DIR_DOWNLINK 1
static const value_string data_direction_vals[] = {
{ DIR_UPLINK, "Uplink" },
{ DIR_DOWNLINK, "Downlink" },
{ 0, NULL}
};
static const value_string rb_vals[] = {
{ 0, "Every RB used" },
{ 1, "Every other RB used" },
{ 0, NULL}
};
static const value_string sym_inc_vals[] = {
{ 0, "Use the current symbol number" },
{ 1, "Increment the current symbol number" },
{ 0, NULL}
};
static const range_string filter_indices[] = {
{0, 0, "standard channel filter"},
{1, 1, "UL filter for PRACH preamble formats 0, 1, 2; min. passband 839 x 1.25kHz = 1048.75 kHz"},
{2, 2, "UL filter for PRACH preamble format 3, min. passband 839 x 5 kHz = 4195 kHz"},
{3, 3, "UL filter for PRACH preamble formats A1, A2, A3, B1, B2, B3, B4, C0, C2; min. passband 139 x \u0394fRA"},
{4, 4, "UL filter for NPRACH 0, 1; min. passband 48 x 3.75KHz = 180 KHz"},
{5, 5, "UL filter for PRACH preamble formats"},
{6, 15, "Reserved"},
{0, 0, NULL}
};
/* Section types from Table 7.3.1-1 */
enum section_c_types {
SEC_C_UNUSED_RB = 0,
SEC_C_NORMAL = 1,
SEC_C_RSVD2 = 2,
SEC_C_PRACH = 3,
SEC_C_RSVD4 = 4,
SEC_C_UE_SCHED = 5,
SEC_C_CH_INFO = 6,
SEC_C_LAA = 7,
SEC_C_ACK_NACK_FEEDBACK = 8
};
static const range_string section_types[] = {
{SEC_C_UNUSED_RB, SEC_C_UNUSED_RB, "Unused Resource Blocks or symbols in Downlink or Uplink"},
{SEC_C_NORMAL, SEC_C_NORMAL, "Most DL/UL radio channels"},
{SEC_C_RSVD2, SEC_C_RSVD2, "Reserved for future use"},
{SEC_C_PRACH, SEC_C_PRACH, "PRACH and mixed-numerology channels"},
{SEC_C_RSVD4, SEC_C_RSVD4, "Reserved for future use"},
{SEC_C_UE_SCHED, SEC_C_UE_SCHED, "UE scheduling information (UE-ID assignment to section)"},
{SEC_C_CH_INFO, SEC_C_CH_INFO, "Channel information"},
{SEC_C_LAA, SEC_C_LAA, "LAA"},
{SEC_C_ACK_NACK_FEEDBACK, SEC_C_ACK_NACK_FEEDBACK, "ACK/NACK Feedback"},
{9, 255, "Reserved for future use"},
{0, 0, NULL} };
static const range_string section_types_short[] = {
{ SEC_C_UNUSED_RB, SEC_C_UNUSED_RB, "(Unused RBs)" },
{ SEC_C_NORMAL, SEC_C_NORMAL, "(Most channels)" },
{ SEC_C_RSVD2, SEC_C_RSVD2, "(reserved)" },
{ SEC_C_PRACH, SEC_C_PRACH, "(PRACH/mixed-\u03bc)" },
{ SEC_C_RSVD4, SEC_C_RSVD4, "(reserved)" },
{ SEC_C_UE_SCHED, SEC_C_UE_SCHED, "(UE scheduling info)" },
{ SEC_C_CH_INFO, SEC_C_CH_INFO, "(Channel info)" },
{ SEC_C_LAA, SEC_C_LAA, "(LAA)" },
{ SEC_C_ACK_NACK_FEEDBACK, SEC_C_ACK_NACK_FEEDBACK, "(ACK/NACK)"},
{ 9, 255, "Reserved for future use" },
{ 0, 0, NULL }
};
static const range_string ud_comp_header_width[] = {
{0, 0, "I and Q are each 16 bits wide"},
{1, 15, "Bit width of I and Q"},
{0, 0, NULL} };
static const range_string ud_comp_header_meth[] = {
{COMP_NONE, COMP_NONE, "No compression" },
{COMP_BLOCK_FP, COMP_BLOCK_FP, "Block floating point compression" },
{COMP_BLOCK_SCALE, COMP_BLOCK_SCALE, "Block scaling" },
{COMP_U_LAW, COMP_U_LAW, "Mu - law" },
{COMP_MODULATION, COMP_MODULATION, "Modulation compression" },
{BFP_AND_SELECTIVE_RE, BFP_AND_SELECTIVE_RE, "BFP + selective RE sending" },
{MOD_COMPR_AND_SELECTIVE_RE, MOD_COMPR_AND_SELECTIVE_RE, "mod-compr + selective RE sending" },
{7, 15, "Reserved"},
{0, 0, NULL}
};
static const range_string frame_structure_fft[] = {
{0, 0, "Reserved(no FFT / iFFT processing)"},
{1, 6, "Reserved"},
{7, 7, "FFT size 128"},
{8, 8, "FFT size 256"},
{9, 9, "FFT size 512"},
{10, 10, "FFT size 1024"},
{11, 11, "FFT size 2048"},
{12, 12, "FFT size 4096"},
{13, 13, "FFT size 1536"},
{14, 14, "FFT size 3072"},
{15, 15, "Reserved"},
{0, 0, NULL}
};
static const range_string subcarrier_spacings[] = {
{ 0, 0, "SCS 15 kHz, 1 slot/subframe, slot length 1 ms" },
{ 1, 1, "SCS 30 kHz, 2 slots/subframe, slot length 500 \u03bcs" },
{ 2, 2, "SCS 60 kHz, 4 slots/subframe, slot length 250 \u03bcs" },
{ 3, 3, "SCS 120 kHz, 8 slots/subframe, slot length 125 \u03bcs" },
{ 4, 4, "SCS 240 kHz, 16 slots/subframe, slot length 62.5 \u03bcs" },
{ 5, 5, "SCS 480 kHz, 32 slots/subframe, slot length 31.25 \u03bcs" },
{ 6, 11, "Reserved" },
{ 12, 12, "SCS 1.25 kHz, 1 slot/subframe, slot length 1 ms" },
{ 13, 13, "SCS 3.75 kHz(LTE - specific), 1 slot/subframe, slot length 1 ms" },
{ 14, 14, "SCS 5 kHz, 1 slot/subframe, slot length 1 ms" },
{ 15, 15, "SCS 7.5 kHz(LTE - specific), 1 slot/subframe, slot length 1 ms" },
{ 0, 0, NULL }
};
static const range_string laaMsgTypes[] = {
{0, 0, "LBT_PDSCH_REQ - lls - O-DU to O-RU request to obtain a PDSCH channel"},
{1, 1, "LBT_DRS_REQ - lls - O-DU to O-RU request to obtain the channel and send DRS"},
{2, 2, "LBT_PDSCH_RSP - O-RU to O-DU response, channel acq success or failure"},
{3, 3, "LBT_DRS_RSP - O-RU to O-DU response, DRS sending success or failure"},
{4, 4, "LBT_Buffer_Error - O-RU to O-DU response, reporting buffer overflow"},
{5, 5, "LBT_CWCONFIG_REQ - O-DU to O-RU request, congestion window configuration"},
{6, 6, "LBT_CWCONFIG_REQ - O-RU to O-DU request, congestion window config"},
{8, 15, "reserved for future methods"},
{0, 0, NULL}
};
static const value_string exttype_vals[] = {
{0, "Reserved"},
{1, "Beamforming weights"},
{2, "Beamforming attributes"},
{3, "DL Precoding configuration parameters and indications"},
{4, "Modulation compr. params"},
{5, "Modulation compression additional scaling parameters"},
{6, "Non-contiguous PRB allocation"},
{7, "Multiple-eAxC designation"},
{8, "Regularization factor"},
{9, "Dynamic Spectrum Sharing parameters"},
{10, "Multiple ports grouping"},
{11, "Flexible BF weights"},
{12, "Non-Contiguous PRB Allocation with Frequency Ranges"},
{13, "PRB Allocation with Frequency Hopping"},
{14, "Nulling-layer Info. for ueId-based beamforming"},
{15, "Mixed-numerology Info. for ueId-based beamforming"},
{16, "Section description for antenna mapping in UE channel information based UL beamforming"},
{17, "Section description for indication of user port group"},
{18, "Section description for Uplink Transmission Management"},
{19, "Compact beamforming information for multiple port"},
{20, "Puncturing extension"},
{21, "Variable PRB group size for channel information"},
{22, "ACK/NACK request"},
{0, NULL}
};
static const value_string bfw_comp_headers_iq_width[] = {
{0, "I and Q are 16 bits wide"},
{1, "I and Q are 1 bit wide"},
{2, "I and Q are 2 bits wide"},
{3, "I and Q are 3 bits wide"},
{4, "I and Q are 4 bits wide"},
{5, "I and Q are 5 bits wide"},
{6, "I and Q are 6 bits wide"},
{7, "I and Q are 7 bits wide"},
{8, "I and Q are 8 bits wide"},
{9, "I and Q are 9 bits wide"},
{10, "I and Q are 10 bits wide"},
{11, "I and Q are 11 bits wide"},
{12, "I and Q are 12 bits wide"},
{13, "I and Q are 13 bits wide"},
{14, "I and Q are 14 bits wide"},
{15, "I and Q are 15 bits wide"},
{0, NULL}
};
static const value_string bfw_comp_headers_comp_meth[] = {
{COMP_NONE, "no compression"},
{COMP_BLOCK_FP, "block floating point"},
{COMP_BLOCK_SCALE, "block scaling"},
{COMP_U_LAW, "u-law"},
{4, "beamspace compression type I"},
{5, "beamspace compression type II"},
{0, NULL}
};
/* 7.7.6.2 */
static const value_string rbg_size_vals[] = {
{0, "reserved"},
{1, "1"},
{2, "2"},
{3, "3"},
{4, "4"},
{5, "6"},
{6, "8"},
{7, "16"},
{0, NULL}
};
/* 7.7.6.5 */
static const value_string priority_vals[] = {
{0, "0"},
{1, "+1"},
{2, "-2 (reserved, should not be used)"},
{3, "-1"},
{0, NULL}
};
/* 7.7.10.2 beamGroupType */
static const value_string beam_group_type_vals[] = {
{0x0, "common beam"},
{0x1, "beam matrix indication"},
{0x2, "beam vector listing"},
{0x3, "reserved"},
{0, NULL}
};
/* 7.7.9.2 technology (interface name) */
static const value_string interface_name_vals[] = {
{0x0, "LTE"},
{0x1, "NR"},
{0, NULL}
};
/* 7.7.18.4 toT (type of transmission) */
static const value_string type_of_transmission_vals[] = {
{0x0, "normal transmission mode, data can be distributed in any way the O-RU is implemented to transmit data"},
{0x1, "uniformly distributed over the transmission window"},
{0, NULL}
};
/* 7.7.2.2 (width of bfa parameters) */
static const value_string bfa_bw_vals[] = {
{0, "no bits, the field is not applicable (e.g., O-RU does not support it) or the default value shall be used"},
{1, "2-bit bitwidth"},
{2, "3-bit bitwidth"},
{3, "4-bit bitwidth"},
{4, "5-bit bitwidth"},
{5, "6-bit bitwidth"},
{6, "7-bit bitwidth"},
{7, "8-bit bitwidth"},
{0, NULL}
};
/* 7.7.2.7 & 7.7.2.8 */
static const value_string sidelobe_suppression_vals[] = {
{0, "10 dB"},
{1, "15 dB"},
{2, "20 dB"},
{3, "25 dB"},
{4, "30 dB"},
{5, "35 dB"},
{6, "40 dB"},
{7, ">= 45 dB"},
{0, NULL}
};
/* Config (and worked-out allocations) bundles for ext11 (dynamic BFW) */
typedef struct {
/* Ext 6 config */
gboolean ext6_set;
guint8 ext6_num_bits_set;
guint8 ext6_bits_set[28];
guint8 ext6_rbg_size;
/* Ext 12 config */
gboolean ext12_set;
guint ext12_num_pairs;
#define MAX_BFW_EXT12_PAIRS 128
struct {
guint8 off_start_prb;
guint8 num_prb;
} ext12_pairs[MAX_BFW_EXT12_PAIRS];
/* Ext 13 config */
gboolean ext13_set;
guint ext13_num_start_prbs;
#define MAX_BFW_EXT13_ALLOCATIONS 128
guint ext13_start_prbs[MAX_BFW_EXT13_ALLOCATIONS];
/* TODO: store nextSymbolId here too? */
/* Results (after calling ext11_work_out_bundles()) */
guint32 num_bundles;
#define MAX_BFW_BUNDLES 512
struct {
guint32 start; /* first prb of bundle */
guint32 end; /* last prb of bundle*/
gboolean is_orphan; /* TRUE if not complete (i.e., < numBundPrb) */
} bundles[MAX_BFW_BUNDLES];
} ext11_settings_t;
/* Work out bundle allocation for ext 11. Take into account ext6, ext12 or ext13 in this section before ext 11. */
static void ext11_work_out_bundles(guint startPrbc,
guint numPrbc,
guint numBundPrb, /* number of PRBs pre (full) bundle */
ext11_settings_t *settings)
{
/* Allocation configured by ext 6 */
if (settings->ext6_set) {
guint bundles_per_entry = settings->ext6_rbg_size / numBundPrb;
guint bundles_set = 0;
for (guint8 n=0; n < settings->ext6_num_bits_set; n++) {
/* For each bit set in the mask */
guint32 prb_start = settings->ext6_bits_set[n] * settings->ext6_rbg_size;
/* For each bundle within identified rbgSize block */
for (guint m=0; m < bundles_per_entry; m++) {
settings->bundles[bundles_set].start = prb_start+(m*numBundPrb);
/* Start already beyond end, so doesn't count. */
if (settings->bundles[bundles_set].start > (startPrbc+numPrbc)) {
break;
}
settings->bundles[bundles_set].end = prb_start+((m+1)*numBundPrb)-1;
if (settings->bundles[bundles_set].end > numPrbc) {
/* Extends beyond end, so counts but is an orphan bundle */
settings->bundles[bundles_set].end = numPrbc;
settings->bundles[bundles_set].is_orphan = TRUE;
}
bundles_set++;
if (bundles_set == MAX_BFW_BUNDLES) {
return;
}
}
}
settings->num_bundles = bundles_set;
}
/* Allocation configured by ext 6 */
else if (settings->ext12_set) {
/* First, allocate normally from startPrbc, numPrbc */
settings->num_bundles = (numPrbc+numBundPrb-1) / numBundPrb;
/* Don't overflow settings->bundles[] ! */
settings->num_bundles = MIN(MAX_BFW_BUNDLES, settings->num_bundles);
for (guint32 n=0; n < settings->num_bundles; n++) {
settings->bundles[n].start = startPrbc + n*numBundPrb;
settings->bundles[n].end = settings->bundles[n].start + numBundPrb-1;
/* Does it go beyond the end? */
if (settings->bundles[n].end > startPrbc+numPrbc) {
settings->bundles[n].end = numPrbc+numPrbc;
settings->bundles[n].is_orphan = TRUE;
}
}
if (settings->num_bundles == MAX_BFW_BUNDLES) {
return;
}
guint prb_offset = startPrbc + numPrbc;
/* Loop over pairs, adding bundles for each */
for (guint p=0; p < settings->ext12_num_pairs; p++) {
prb_offset += settings->ext12_pairs[p].off_start_prb;
guint pair_bundles = (settings->ext12_pairs[p].num_prb+numBundPrb-1) / numBundPrb;
for (guint32 n=0; n < pair_bundles; n++) {
guint idx = settings->num_bundles;
settings->bundles[idx].start = prb_offset + n*numBundPrb;
settings->bundles[idx].end = settings->bundles[idx].start + numBundPrb-1;
/* Does it go beyond the end? */
if (settings->bundles[idx].end > prb_offset + settings->ext12_pairs[p].num_prb) {
settings->bundles[idx].end = prb_offset + settings->ext12_pairs[p].num_prb;
settings->bundles[idx].is_orphan = TRUE;
}
/* Range check / return */
settings->num_bundles++;
if (settings->num_bundles == MAX_BFW_BUNDLES) {
return;
}
}
prb_offset += settings->ext12_pairs[p].num_prb;
}
}
/* Allocation configured by ext 13 */
else if (settings->ext13_set) {
guint alloc_size = (numPrbc+numBundPrb-1) / numBundPrb;
settings->num_bundles = alloc_size * settings->ext13_num_start_prbs;
/* Don't overflow settings->bundles[] ! */
settings->num_bundles = MIN(MAX_BFW_BUNDLES, settings->num_bundles);
for (guint alloc=0; alloc < settings->ext13_num_start_prbs; alloc++) {
guint alloc_start = alloc * alloc_size;
for (guint32 n=0; n < alloc_size; n++) {
settings->bundles[alloc_start+n].start = settings->ext13_start_prbs[alloc] + startPrbc + n*numBundPrb;
settings->bundles[alloc_start+n].end = settings->bundles[alloc_start+n].start + numBundPrb-1;
if (settings->bundles[alloc_start+n].end > settings->ext13_start_prbs[alloc] + numPrbc) {
settings->bundles[alloc_start+n].end = settings->ext13_start_prbs[alloc] + numPrbc;
settings->bundles[alloc_start+n].is_orphan = TRUE;
}
}
}
}
/* Bundles not controlled by other extensions - just divide up range into bundles we have */
else {
settings->num_bundles = (numPrbc+numBundPrb-1) / numBundPrb;
/* Don't overflow settings->bundles[] ! */
settings->num_bundles = MIN(MAX_BFW_BUNDLES, settings->num_bundles);
for (guint32 n=0; n < settings->num_bundles; n++) {
settings->bundles[n].start = startPrbc + n*numBundPrb;
settings->bundles[n].end = settings->bundles[n].start + numBundPrb-1;
/* Does it go beyond the end? */
if (settings->bundles[n].end > startPrbc+numPrbc) {
settings->bundles[n].end = numPrbc+numPrbc;
settings->bundles[n].is_orphan = TRUE;
}
}
}
}
/*******************************************************/
/* Overall state of a flow (eAxC) */
typedef struct {
guint32 last_cplane_frame;
nstime_t last_cplane_frame_ts;
/* TODO: add udCompHdr info for subsequence U-Plane frames? */
/* First U-PLane frame following 'last_cplane' frame */
guint32 first_uplane_frame;
nstime_t first_uplane_frame_ts;
} flow_state_t;
/* Table maintained on first pass from eAxC (guint16) -> flow_state_t* */
static wmem_tree_t *flow_states_table = NULL;
static void write_pdu_label_and_info(proto_item *ti1, proto_item *ti2,
packet_info *pinfo, const char *format, ...) G_GNUC_PRINTF(4, 5);
/* Write the given formatted text to:
- the info column (if pinfo != NULL)
- 1 or 2 other labels (optional)
*/
static void write_pdu_label_and_info(proto_item *ti1, proto_item *ti2,
packet_info *pinfo, const char *format, ...)
{
#define MAX_INFO_BUFFER 256
char info_buffer[MAX_INFO_BUFFER];
va_list ap;
if ((ti1 == NULL) && (ti2 == NULL) && (pinfo == NULL)) {
return;
}
va_start(ap, format);
vsnprintf(info_buffer, MAX_INFO_BUFFER, format, ap);
va_end(ap);
/* Add to indicated places */
if (pinfo != NULL) {
col_append_str(pinfo->cinfo, COL_INFO, info_buffer);
}
if (ti1 != NULL) {
proto_item_append_text(ti1, "%s", info_buffer);
}
if (ti2 != NULL) {
proto_item_append_text(ti2, "%s", info_buffer);
}
}
/* Add section (type + PRB range) for C-Plane, U-Plane */
static void
write_section_info(proto_item *section_heading, packet_info *pinfo, proto_item *protocol_item, guint32 section_id, guint32 start_prbx, guint32 num_prbx)
{
switch (num_prbx) {
case 0:
write_pdu_label_and_info(section_heading, protocol_item, pinfo, ", Id: %d (all PRBs)", section_id);
break;
case 1:
write_pdu_label_and_info(section_heading, protocol_item, pinfo, ", Id: %d (PRB: %3u)", section_id, start_prbx);
break;
default:
write_pdu_label_and_info(section_heading, protocol_item, pinfo, ", Id: %d (PRB: %3u-%3u)", section_id, start_prbx, start_prbx + num_prbx - 1);
}
}
/* 5.1.3.2.7 (real time control data / IQ data transfer message series identifier */
static void
addPcOrRtcid(tvbuff_t *tvb, proto_tree *tree, gint *offset, const char *name, guint16 *eAxC)
{
/* Subtree */
proto_item *item;
proto_tree *oran_pcid_tree = proto_tree_add_subtree(tree, tvb, *offset, 2, ett_oran_ecpri_pcid, &item, name);
guint64 duPortId, bandSectorId, ccId, ruPortId = 0;
gint id_offset = *offset;
/* All parts of eAxC should be above 0, and should total 16 bits (breakdown controlled by preferences) */
if (!((pref_du_port_id_bits > 0) && (pref_bandsector_id_bits > 0) && (pref_cc_id_bits > 0) && (pref_ru_port_id_bits > 0) &&
((pref_du_port_id_bits + pref_bandsector_id_bits + pref_cc_id_bits + pref_ru_port_id_bits) == 16))) {
expert_add_info(NULL, tree, &ei_oran_invalid_eaxc_bit_width);
*offset += 2;
return;
}
guint bit_offset = *offset * 8;
/* N.B. For sequence analysis / tapping, just interpret these 2 bytes as eAxC ID... */
*eAxC = tvb_get_guint16(tvb, *offset, ENC_BIG_ENDIAN);
/* DU Port ID */
proto_tree_add_bits_ret_val(oran_pcid_tree, hf_oran_du_port_id, tvb, bit_offset, pref_du_port_id_bits, &duPortId, ENC_BIG_ENDIAN);
bit_offset += pref_du_port_id_bits;
/* BandSector ID */
proto_tree_add_bits_ret_val(oran_pcid_tree, hf_oran_bandsector_id, tvb, bit_offset, pref_bandsector_id_bits, &bandSectorId, ENC_BIG_ENDIAN);
bit_offset += pref_bandsector_id_bits;
/* CC ID */
proto_tree_add_bits_ret_val(oran_pcid_tree, hf_oran_cc_id, tvb, bit_offset, pref_cc_id_bits, &ccId, ENC_BIG_ENDIAN);
bit_offset += pref_cc_id_bits;
/* RU Port ID */
proto_tree_add_bits_ret_val(oran_pcid_tree, hf_oran_ru_port_id, tvb, bit_offset, pref_ru_port_id_bits, &ruPortId, ENC_BIG_ENDIAN);
*offset += 2;
proto_item_append_text(item, " (DU_Port_ID: %d, BandSector_ID: %d, CC_ID: %d, RU_Port_ID: %d)", (int)duPortId, (int)bandSectorId, (int)ccId, (int)ruPortId);
char id[16];
snprintf(id, 16, "%x:%x:%x:%x", (int)duPortId, (int)bandSectorId, (int)ccId, (int)ruPortId);
proto_item *pi = proto_tree_add_string(oran_pcid_tree, hf_oran_c_eAxC_ID, tvb, id_offset, 2, id);
proto_item_set_generated(pi);
}
/* 5.1.3.2.8 (message series identifier) */
static void
addSeqid(tvbuff_t *tvb, proto_tree *oran_tree, gint *offset)
{
/* Subtree */
proto_item *seqIdItem;
proto_tree *oran_seqid_tree = proto_tree_add_subtree(oran_tree, tvb, *offset, 2, ett_oran_ecpri_seqid, &seqIdItem, "ecpriSeqid");
guint32 seqId, subSeqId, e = 0;
/* Sequence ID */
proto_tree_add_item_ret_uint(oran_seqid_tree, hf_oran_sequence_id, tvb, *offset, 1, ENC_NA, &seqId);
*offset += 1;
/* E bit */
proto_tree_add_item_ret_uint(oran_seqid_tree, hf_oran_e_bit, tvb, *offset, 1, ENC_NA, &e);
/* Subsequence ID */
proto_tree_add_item_ret_uint(oran_seqid_tree, hf_oran_subsequence_id, tvb, *offset, 1, ENC_NA, &subSeqId);
*offset += 1;
proto_item_append_text(seqIdItem, ", SeqId: %d, SubSeqId: %d, E: %d", seqId, subSeqId, e);
}
/* Special case for uncompressed/16-bit value */
static float uncompressed_to_float(guint32 h)
{
gint16 i16 = h & 0x0000ffff;
return ((float)i16) / 0x7fff;
}
static gfloat digital_power_scaling(gfloat f)
{
return f / (1 << 15);
}
/* 7.7.1.2 bfwCompHdr (beamforming weight compression header) */
static int dissect_bfwCompHdr(tvbuff_t *tvb, proto_tree *tree, gint offset,
guint32 *iq_width, guint32 *comp_meth, proto_item **comp_meth_ti)
{
/* Subtree */
proto_item *bfwcomphdr_ti = proto_tree_add_string_format(tree, hf_oran_bfwCompHdr,
tvb, offset, 1, "",
"bfwCompHdr");
proto_tree *bfwcomphdr_tree = proto_item_add_subtree(bfwcomphdr_ti, ett_oran_bfwcomphdr);
/* Width and method */
proto_tree_add_item_ret_uint(bfwcomphdr_tree, hf_oran_bfwCompHdr_iqWidth,
tvb, offset, 1, ENC_BIG_ENDIAN, iq_width);
*comp_meth_ti = proto_tree_add_item_ret_uint(bfwcomphdr_tree, hf_oran_bfwCompHdr_compMeth,
tvb, offset, 1, ENC_BIG_ENDIAN, comp_meth);
offset++;
/* Summary */
proto_item_append_text(bfwcomphdr_ti, " (IqWidth=%u, compMeth=%s)",
*iq_width,
val_to_str_const(*comp_meth, bfw_comp_headers_comp_meth, "reserved"));
return offset;
}
/* 7.7.1.3 bfwCompParam (beamforming weight compression parameter).
* Depends upon passed-in bfwCompMeth (field may be empty) */
static int dissect_bfwCompParam(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, gint offset,
proto_item *ti, guint32 bfw_comp_method,
guint32 *exponent, gboolean *supported)
{
/* Subtree */
proto_item *bfwcompparam_ti = proto_tree_add_string_format(tree, hf_oran_bfwCompParam,
tvb, offset, 1, "",
"bfwCompParam");
proto_tree *bfwcompparam_tree = proto_item_add_subtree(bfwcompparam_ti, ett_oran_bfwcompparam);
proto_item_append_text(bfwcompparam_ti,
" (meth=%s)", val_to_str_const(bfw_comp_method, bfw_comp_headers_comp_meth, "Unknown"));
*supported = FALSE;
switch (bfw_comp_method) {
case COMP_NONE: /* no compression */
/* In this case, bfwCompParam is absent! */
*supported = TRUE;
break;
case COMP_BLOCK_FP: /* block floating point */
/* 4 reserved bits + exponent */
proto_tree_add_item_ret_uint(bfwcompparam_tree, hf_oran_exponent,
tvb, offset, 1, ENC_BIG_ENDIAN, exponent);
proto_item_append_text(bfwcompparam_ti, " exponent=%u", *exponent);
*supported = TRUE;
offset++;
break;
case COMP_BLOCK_SCALE: /* block scaling */
proto_tree_add_item(bfwcompparam_tree, hf_oran_blockScaler,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset++;
break;
case COMP_U_LAW: /* u-law */
/* compBitWidth, compShift */
proto_tree_add_item(bfwcompparam_tree, hf_oran_compBitWidth,
tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(bfwcompparam_tree, hf_oran_compShift,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset++;
break;
case 4: /* beamspace I */
/* TODO: activeBeamspaceCoefficientMask - ceil(K/8) octets */
/* proto_tree_add_item(extension_tree, hf_oran_blockScaler,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset++; */
break;
case 5: /* beamspace II */
/* TODO: activeBeamspaceCoefficientMask - ceil(K/8) octets */
/* reserved (4 bits) + exponent (4 bits)
proto_tree_add_item(bfwcompparam_tree, hf_oran_reserved_4bits, tvb, offset, 1, ENC_NA);
proto_tree_add_item_ret_uint(bfwcompparam_tree, hf_oran_exponent, tvb, offset, 1, ENC_BIG_ENDIAN, exponent);
offset += 1;
*/
break;
default:
/* Not handled */
break;
}
/* Can't go on if compression scheme not supported */
if (!*supported) {
expert_add_info_format(pinfo, ti, &ei_oran_unsupported_bfw_compression_method,
"BFW Compression method %u (%s) not supported by dissector",
bfw_comp_method,
val_to_str_const(bfw_comp_method, bfw_comp_headers_comp_meth, "Unknown"));
}
return offset;
}
static gfloat decompress_value(guint32 bits, guint32 comp_method, guint8 iq_width, guint32 exponent)
{
switch (comp_method) {
case COMP_NONE: /* no compression */
return uncompressed_to_float(bits);
case COMP_BLOCK_FP: /* block floating point */
{
/* A.1.2 Block Floating Point Decompression Algorithm */
gint32 cPRB = bits;
guint32 scaler = 1 << exponent; /* i.e. 2^exponent */
/* Check last bit, in case we need to flip to -ve */
if (cPRB >= (1<<(iq_width-1))) {
cPRB -= (1<<iq_width);
}
const guint8 mantissa_bits = iq_width-1;
return (cPRB / (gfloat)(1 << (mantissa_bits))) * scaler;
}
case COMP_BLOCK_SCALE:
case COMP_U_LAW:
case COMP_MODULATION:
case BFP_AND_SELECTIVE_RE:
case MOD_COMPR_AND_SELECTIVE_RE:
default:
/* Not supported! */
return 0.0;
}
}
/* Out-of-range value used for special case */
#define ORPHAN_BUNDLE_NUMBER 999
/* Bundle of PRBs/TRX I/Q samples (ext 11) */
static guint32 dissect_bfw_bundle(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, guint offset,
proto_item *comp_meth_ti, guint32 bfwcomphdr_comp_meth,
guint8 iq_width,
guint bundle_number,
guint first_prb, guint last_prb, gboolean is_orphan)
{
/* Set bundle name */
char bundle_name[32];
if (!is_orphan) {
snprintf(bundle_name, 32, "Bundle %3u", bundle_number);
}
else {
g_strlcpy(bundle_name, "Orphaned ", 32);
}
/* Create Bundle root */
proto_item *bundle_ti = proto_tree_add_string_format(tree, hf_oran_bfw,
tvb, offset, 0, "",
"%s: (PRBs %3u-%3u)",
bundle_name,
first_prb, last_prb);
proto_tree *bundle_tree = proto_item_add_subtree(bundle_ti, ett_oran_bfw);
/* bfwCompParam */
gboolean compression_method_supported = FALSE;
guint32 exponent = 0;
offset = dissect_bfwCompParam(tvb, bundle_tree, pinfo, offset, comp_meth_ti,
bfwcomphdr_comp_meth, &exponent, &compression_method_supported);
/* Can't show details of unsupported compression method */
if (!compression_method_supported) {
/* Don't know how to show, so give up */
return offset;
}
/* Create Bundle subtree */
gint bit_offset = offset*8;
gint bfw_offset;
gint prb_offset = offset;
/* beamId */
guint32 beam_id;
proto_tree_add_item_ret_uint(bundle_tree, hf_oran_beam_id, tvb, offset, 2, ENC_BIG_ENDIAN, &beam_id);
proto_item_append_text(bundle_ti, " (beamId:%u) ", beam_id);
bit_offset += 16;
/* Number of weights per bundle (from preference) */
proto_item *wpb_ti = proto_tree_add_uint(bundle_tree, hf_oran_num_weights_per_bundle, tvb, 0, 0,
pref_num_weights_per_bundle);
proto_item_set_generated(wpb_ti);
/* Add the weights for this bundle */
for (guint m=0; m < pref_num_weights_per_bundle; m++) {
/* Create subtree */
bfw_offset = bit_offset / 8;
guint8 bfw_extent = ((bit_offset + (iq_width*2)) / 8) - bfw_offset;
proto_item *bfw_ti = proto_tree_add_string_format(bundle_tree, hf_oran_bfw,
tvb, bfw_offset, bfw_extent,
"", "TRX %u: (", m);
proto_tree *bfw_tree = proto_item_add_subtree(bfw_ti, ett_oran_bfw);
/* I */
/* Get bits, and convert to float. */
guint32 bits = tvb_get_bits(tvb, bit_offset, iq_width, ENC_BIG_ENDIAN);
gfloat value = decompress_value(bits, bfwcomphdr_comp_meth, iq_width, exponent);
/* Add to tree. */
proto_tree_add_float_format_value(bfw_tree, hf_oran_bfw_i, tvb, bit_offset/8, (iq_width+7)/8, value, "#%u=%f", m, value);
bit_offset += iq_width;
proto_item_append_text(bfw_ti, "I%u=%f ", m, value);
/* Q */
/* Get bits, and convert to float. */
bits = tvb_get_bits(tvb, bit_offset, iq_width, ENC_BIG_ENDIAN);
value = decompress_value(bits, bfwcomphdr_comp_meth, iq_width, exponent);
/* Add to tree. */
proto_tree_add_float_format_value(bfw_tree, hf_oran_bfw_q, tvb, bit_offset/8, (iq_width+7)/8, value, "#%u=%f", m, value);
bit_offset += iq_width;
proto_item_append_text(bfw_ti, "Q%u=%f)", m, value);
}
/* Set extent of bundle */
proto_item_set_len(bundle_ti, (bit_offset+7)/8 - prb_offset);
return (bit_offset+7)/8;
}
/* Section 7.
* N.B. these are the green parts of the tables showing Section Types, differing by section Type */
static int dissect_oran_c_section(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo,
guint32 sectionType, proto_item *protocol_item)
{
guint offset = 0;
proto_tree *oran_tree = NULL;
proto_item *sectionHeading = NULL;
oran_tree = proto_tree_add_subtree(tree, tvb, offset, 8, ett_oran_section, &sectionHeading, "Section");
guint32 sectionId = 0;
guint32 startPrbc;
guint32 numPrbc;
guint32 ueId = 0;
guint32 beamId = 0;
proto_item *beamId_ti = NULL;
gboolean beamId_ignored = FALSE;
/* Config affecting ext11 bundles (initially unset) */
ext11_settings_t ext11_settings;
memset(&ext11_settings, 0, sizeof(ext11_settings));
gboolean extension_flag = FALSE;
/* These sections are similar, so handle as common with per-type differences */
if (sectionType <= SEC_C_UE_SCHED) {
/* sectionID */
proto_tree_add_item_ret_uint(oran_tree, hf_oran_section_id, tvb, offset, 2, ENC_BIG_ENDIAN, &sectionId);
offset++;
/* rb */
proto_tree_add_item(oran_tree, hf_oran_rb, tvb, offset, 1, ENC_NA);
/* symInc */
proto_tree_add_item(oran_tree, hf_oran_symInc, tvb, offset, 1, ENC_NA);
/* startPrbc */
proto_tree_add_item_ret_uint(oran_tree, hf_oran_startPrbc, tvb, offset, 2, ENC_BIG_ENDIAN, &startPrbc);
offset += 2;
/* numPrbc */
proto_item *numprbc_ti = proto_tree_add_item_ret_uint(oran_tree, hf_oran_numPrbc, tvb, offset, 1, ENC_NA, &numPrbc);
if (numPrbc == 0) {
proto_item_append_text(numprbc_ti, " (all PRBs - configured as %u)", pref_data_plane_section_total_rbs);
}
offset += 1;
/* reMask */
proto_tree_add_item(oran_tree, hf_oran_reMask, tvb, offset, 2, ENC_BIG_ENDIAN);
offset++;
/* numSymbol */
guint32 numSymbol;
proto_tree_add_item_ret_uint(oran_tree, hf_oran_numSymbol, tvb, offset, 1, ENC_NA, &numSymbol);
offset++;
/* [ef] (extension flag) */
switch (sectionType) {
case SEC_C_NORMAL: /* Section Type "1" */
case SEC_C_PRACH: /* Section Type "3" */
case SEC_C_UE_SCHED: /* Section Type "5" */
proto_tree_add_item_ret_boolean(oran_tree, hf_oran_ef, tvb, offset, 1, ENC_BIG_ENDIAN, &extension_flag);
break;
default:
break;
}
write_section_info(sectionHeading, pinfo, protocol_item, sectionId, startPrbc, numPrbc);
proto_item_append_text(sectionHeading, ", Symbols: %d", numSymbol);
if (numPrbc == 0) {
/* Special case for all PRBs */
numPrbc = pref_data_plane_section_total_rbs;
startPrbc = 0; /* may already be 0... */
}
/* Section type specific fields (after 'numSymbol') */
switch (sectionType) {
case SEC_C_UNUSED_RB: /* Section Type "0" - Table 5.4 */
/* reserved */
proto_tree_add_item(oran_tree, hf_oran_rsvd16, tvb, offset, 2, ENC_NA);
offset += 2;
break;
case SEC_C_NORMAL: /* Section Type "1" - Table 5.5 */
/* beamId */
beamId_ti = proto_tree_add_item_ret_uint(oran_tree, hf_oran_beamId, tvb, offset, 2, ENC_BIG_ENDIAN, &beamId);
offset += 2;
proto_item_append_text(sectionHeading, ", BeamId: %d", beamId);
break;
case SEC_C_PRACH: /* Section Type "3" - Table 5.6 */
{
/* beamId */
beamId_ti = proto_tree_add_item_ret_uint(oran_tree, hf_oran_beamId, tvb, offset, 2, ENC_BIG_ENDIAN, &beamId);
offset += 2;
/* freqOffset */
gint32 freqOffset; /* Yes, this is signed, so the implicit cast is intentional. */
proto_item *freq_offset_item = proto_tree_add_item_ret_uint(oran_tree, hf_oran_freqOffset, tvb, offset, 3, ENC_BIG_ENDIAN, &freqOffset);
freqOffset |= 0xff000000; /* Must sign-extend */
proto_item_set_text(freq_offset_item, "Frequency offset: %d \u0394f", freqOffset);
offset += 3;
/* reserved */
proto_tree_add_item(oran_tree, hf_oran_rsvd8, tvb, offset, 1, ENC_NA);
offset += 1;
proto_item_append_text(sectionHeading, ", BeamId: %d, FreqOffset: %d \u0394f", beamId, freqOffset);
break;
}
case SEC_C_UE_SCHED: /* Section Type "5" - Table 5.7 */
/* ueId */
proto_tree_add_item_ret_uint(oran_tree, hf_oran_ueId, tvb, offset, 2, ENC_NA, &ueId);
offset += 2;
proto_item_append_text(sectionHeading, ", UEId: %d", ueId);
break;
default:
break;
}
}
else if (sectionType == SEC_C_CH_INFO) { /* Section Type "6" */
/* ef */
proto_tree_add_item_ret_boolean(oran_tree, hf_oran_ef, tvb, offset, 1, ENC_BIG_ENDIAN, &extension_flag);
/* ueId */
proto_tree_add_item_ret_uint(oran_tree, hf_oran_ueId, tvb, offset, 2, ENC_NA, &ueId);
offset += 2;
/* regularizationFactor */
proto_tree_add_item(oran_tree, hf_oran_regularizationFactor, tvb, offset, 2, ENC_NA);
offset += 2;
/* reserved */
proto_tree_add_item(oran_tree, hf_oran_reserved_4bits, tvb, offset, 1, ENC_NA);
/* rb */
proto_tree_add_item(oran_tree, hf_oran_rb, tvb, offset, 1, ENC_NA);
/* symInc */
proto_tree_add_item(oran_tree, hf_oran_symInc, tvb, offset, 1, ENC_NA);
/* startPrbc */
proto_tree_add_item_ret_uint(oran_tree, hf_oran_startPrbc, tvb, offset, 2, ENC_BIG_ENDIAN, &startPrbc);
offset += 2;
/* numPrbc */
proto_tree_add_item_ret_uint(oran_tree, hf_oran_numPrbc, tvb, offset, 1, ENC_NA, &numPrbc);
offset += 1;
/* ciIsample,ciQsample pairs */
guint m;
guint prb;
guint32 bit_offset = offset*8;
/* Antenna count from preference */
guint num_trx = pref_num_bf_antennas;
if (numPrbc > 1) {
proto_item_append_text(sectionHeading, " (UEId=%u PRBs %u-%u, %u antennas", ueId, startPrbc, startPrbc+numPrbc-1, num_trx);
}
else {
proto_item_append_text(sectionHeading, " (UEId=%u PRB %u, %u antennas", ueId, startPrbc, num_trx);
}
for (prb=startPrbc; prb < startPrbc+numPrbc; prb++) {
/* PRB subtree */
guint prb_start_offset = bit_offset;
proto_item *prb_ti = proto_tree_add_string_format(oran_tree, hf_oran_samples_prb,
tvb, bit_offset/8, 0,
"", "PRB=%u", prb);
proto_tree *prb_tree = proto_item_add_subtree(prb_ti, ett_oran_prb_cisamples);
/* Antennas */
for (m=0; m < num_trx; m++) {
guint sample_offset = bit_offset / 8;
guint8 sample_extent = ((bit_offset + (16*2)) / 8) - sample_offset;
/* Create subtree for antenna */
proto_item *sample_ti = proto_tree_add_string_format(prb_tree, hf_oran_ciSample,
tvb, sample_offset, sample_extent,
"", "TRX=%u: ", m);
proto_tree *sample_tree = proto_item_add_subtree(sample_ti, ett_oran_cisample);
/* I */
/* Get bits, and convert to float. */
guint32 bits = tvb_get_bits(tvb, bit_offset, 16, ENC_BIG_ENDIAN);
gfloat value = uncompressed_to_float(bits);
/* Add to tree. */
proto_tree_add_float_format_value(sample_tree, hf_oran_ciIsample, tvb, bit_offset/8, (16+7)/8, value, "#%u=%f", m, value);
bit_offset += 16;
proto_item_append_text(sample_ti, "I%u=%f ", m, value);
/* Q */
/* Get bits, and convert to float. */
bits = tvb_get_bits(tvb, bit_offset, 16, ENC_BIG_ENDIAN);
value = uncompressed_to_float(bits);
/* Add to tree. */
proto_tree_add_float_format_value(sample_tree, hf_oran_ciQsample, tvb, bit_offset/8, (16+7)/8, value, "#%u=%f", m, value);
bit_offset += 16;
proto_item_append_text(sample_ti, "Q%u=%f ", m, value);
}
proto_item_set_len(prb_ti, (bit_offset-prb_start_offset)/8);
}
offset = (bit_offset/8);
}
else if (sectionType == SEC_C_LAA) { /* Section Type "7" */
/* 7.2.5 Table 6.4-6 */
/* laaMsgType */
guint32 laa_msg_type;
proto_tree_add_item_ret_uint(oran_tree, hf_oran_laaMsgType, tvb, offset, 1, ENC_NA, &laa_msg_type);
/* laaMsgLen */
guint32 laa_msg_len;
proto_item *len_ti = proto_tree_add_item_ret_uint(oran_tree, hf_oran_laaMsgLen, tvb, offset, 1, ENC_NA, &laa_msg_len);
proto_item_append_text(len_ti, " (%u bytes)", 4*(laa_msg_len+1));
offset += 1;
/* payload */
switch (laa_msg_type) {
case 0:
/* TODO: LBT_PDSCH_REQ */
break;
case 1:
/* TODO: LBT_DRS_REQ */
break;
case 2:
/* TODO: LBT_PDSCH_RSP */
break;
case 3:
/* TODO: LBT_DRS_RSP */
break;
case 4:
/* TODO: LBT_Buffer_Error */
break;
case 5:
/* TODO: LBT_CWCONFIG_REQ */
break;
case 6:
/* TODO: LBT_CWCONFIG_RSP */
break;
default:
/* Unhandled! */
break;
}
/* For now just skip indicated length of bytes */
offset += 4*(laa_msg_len+1);
}
/* Section extension commands */
while (extension_flag) {
gint extension_start_offset = offset;
/* Create subtree for each extension (with summary) */
proto_item *extension_ti = proto_tree_add_string_format(oran_tree, hf_oran_extension,
tvb, offset, 0, "", "Extension");
proto_tree *extension_tree = proto_item_add_subtree(extension_ti, ett_oran_c_section_extension);
/* ef (i.e. another extension after this one?) */
proto_tree_add_item_ret_boolean(extension_tree, hf_oran_ef, tvb, offset, 1, ENC_BIG_ENDIAN, &extension_flag);
/* extType */
guint32 exttype;
proto_tree_add_item_ret_uint(extension_tree, hf_oran_exttype, tvb, offset, 1, ENC_BIG_ENDIAN, &exttype);
offset++;
proto_item_append_text(sectionHeading, " (ext-%u)", exttype);
proto_item_append_text(extension_ti, " (ext-%u: %s)", exttype, val_to_str_const(exttype, exttype_vals, "Unknown"));
/* extLen (number of 32-bit words) */
guint32 extlen_len = ((exttype==11)||(exttype==19)||(exttype==20)) ? 2 : 1; /* Extensions 11/19/20 are special */
guint32 extlen;
proto_item *extlen_ti = proto_tree_add_item_ret_uint(extension_tree, hf_oran_extlen, tvb,
offset, extlen_len, ENC_BIG_ENDIAN, &extlen);
proto_item_append_text(extlen_ti, " (%u bytes)", extlen*4);
offset += extlen_len;
if (extlen == 0) {
expert_add_info_format(pinfo, extlen_ti, &ei_oran_extlen_zero,
"extlen value of 0 is reserved");
/* Break out to avoid infinitely looping! */
break;
}
switch (exttype) {
case 1: /* Beamforming Weights Extension type */
{
guint32 bfwcomphdr_iq_width, bfwcomphdr_comp_meth;
proto_item *comp_meth_ti = NULL;
/* bfwCompHdr (2 subheaders - bfwIqWidth and bfwCompMeth)*/
offset = dissect_bfwCompHdr(tvb, extension_tree, offset,
&bfwcomphdr_iq_width, &bfwcomphdr_comp_meth, &comp_meth_ti);
/* Look up width of samples. */
guint8 iq_width = !bfwcomphdr_iq_width ? 16 : bfwcomphdr_iq_width;
/* bfwCompParam */
guint32 exponent = 0;
gboolean compression_method_supported = FALSE;
offset = dissect_bfwCompParam(tvb, extension_tree, pinfo, offset, comp_meth_ti,
bfwcomphdr_comp_meth, &exponent, &compression_method_supported);
/* Can't show details of unsupported compression method */
if (!compression_method_supported) {
break;
}
/* We know:
- iq_width (above)
- numBfWeights (taken from preference)
- remaining bytes in extension
We can therefore derive TRX (number of antennas).
*/
/* I & Q samples
Don't know how many there will be, so just fill available bytes...
*/
guint weights_bytes = (extlen*4)-3;
guint num_weights_pairs = (weights_bytes*8) / (iq_width*2);
guint num_trx = num_weights_pairs;
gint bit_offset = offset*8;
for (guint n=0; n < num_trx; n++) {
/* Create antenna subtree */
gint bfw_offset = bit_offset / 8;
proto_item *bfw_ti = proto_tree_add_string_format(extension_tree, hf_oran_bfw,
tvb, bfw_offset, 0, "", "TRX %2u: (", n);
proto_tree *bfw_tree = proto_item_add_subtree(bfw_ti, ett_oran_bfw);
/* I value */
/* Get bits, and convert to float. */
guint32 bits = tvb_get_bits(tvb, bit_offset, iq_width, ENC_BIG_ENDIAN);
gfloat value = decompress_value(bits, COMP_BLOCK_FP, iq_width, exponent);
/* Add to tree. */
proto_tree_add_float_format_value(bfw_tree, hf_oran_bfw_i, tvb, bit_offset/8, (iq_width+7)/8, value, "%f", value);
bit_offset += iq_width;
proto_item_append_text(bfw_ti, "I=%f ", value);
/* Leave a gap between I and Q values */
proto_item_append_text(bfw_ti, " ");
/* Q value */
/* Get bits, and convert to float. */
bits = tvb_get_bits(tvb, bit_offset, iq_width, ENC_BIG_ENDIAN);
value = decompress_value(bits, COMP_BLOCK_FP, iq_width, exponent);
/* Add to tree. */
proto_tree_add_float_format_value(bfw_tree, hf_oran_bfw_q, tvb, bit_offset/8, (iq_width+7)/8, value, "%f", value);
bit_offset += iq_width;
proto_item_append_text(bfw_ti, "Q=%f", value);
proto_item_append_text(bfw_ti, ")");
proto_item_set_len(bfw_ti, (bit_offset+7)/8 - bfw_offset);
}
/* Need to round to next byte */
offset = (bit_offset+7)/8;
break;
}
case 2: /* Beamforming attributes */
{
/* bfaCompHdr (get widths of fields to follow) */
guint32 bfAzPtWidth, bfZePtWidth, bfAz3ddWidth, bfZe3ddWidth;
/* subtree */
proto_item *bfa_ti = proto_tree_add_string_format(extension_tree, hf_oran_bfaCompHdr,
tvb, offset, 2, "", "bfaCompHdr");
proto_tree *bfa_tree = proto_item_add_subtree(bfa_ti, ett_oran_bfacomphdr);
/* reserved (2 bits) */
proto_tree_add_item(bfa_tree, hf_oran_reserved_2bits, tvb, offset, 1, ENC_BIG_ENDIAN);
/* bfAzPtWidth (3 bits) */
proto_tree_add_item_ret_uint(bfa_tree, hf_oran_bfAzPtWidth, tvb, offset, 1, ENC_BIG_ENDIAN, &bfAzPtWidth);
/* bfZePtWidth (3 bits) */
proto_tree_add_item_ret_uint(bfa_tree, hf_oran_bfZePtWidth, tvb, offset, 1, ENC_BIG_ENDIAN, &bfZePtWidth);
offset += 1;
/* reserved (2 bits) */
proto_tree_add_item(bfa_tree, hf_oran_reserved_2bits, tvb, offset, 1, ENC_BIG_ENDIAN);
/* bfAz3ddWidth (3 bits) */
proto_tree_add_item_ret_uint(bfa_tree, hf_oran_bfAz3ddWidth, tvb, offset, 1, ENC_BIG_ENDIAN, &bfAz3ddWidth);
/* bfZe3ddWidth (3 bits) */
proto_tree_add_item_ret_uint(bfa_tree, hf_oran_bfZe3ddWidth, tvb, offset, 1, ENC_BIG_ENDIAN, &bfZe3ddWidth);
offset += 1;
guint bit_offset = offset*8;
/* bfAzPt */
if (bfAzPtWidth > 0) {
proto_tree_add_bits_item(extension_tree, hf_oran_bfAzPt, tvb, bit_offset, bfAzPtWidth+1, ENC_BIG_ENDIAN);
bit_offset += (bfAzPtWidth+1);
}
/* bfZePt */
if (bfZePtWidth > 0) {
proto_tree_add_bits_item(extension_tree, hf_oran_bfZePt, tvb, bit_offset, bfZePtWidth+1, ENC_BIG_ENDIAN);
bit_offset += (bfZePtWidth+1);
}
/* bfAz3dd */
if (bfAz3ddWidth > 0) {
proto_tree_add_bits_item(extension_tree, hf_oran_bfAz3dd, tvb, bit_offset, bfAz3ddWidth+1, ENC_BIG_ENDIAN);
bit_offset += (bfAz3ddWidth+1);
}
/* bfZe3dd */
if (bfZe3ddWidth > 0) {
proto_tree_add_bits_item(extension_tree, hf_oran_bfZe3dd, tvb, bit_offset, bfZe3ddWidth+1, ENC_BIG_ENDIAN);
bit_offset += (bfZe3ddWidth+1);
}
/* go to next byte (zero-padding.. - a little confusing..) */
offset = (bit_offset+7) / 8;
/* 2 reserved/padding bits */
/* bfAzSl (3 bits) */
proto_tree_add_item(extension_tree, hf_oran_bfAzSl, tvb, offset, 1, ENC_BIG_ENDIAN);
/* bfZeSl (3 bits) */
proto_tree_add_item(extension_tree, hf_oran_bfZeSl, tvb, offset, 1, ENC_BIG_ENDIAN);
break;
}
case 4: /* Modulation compression params (5.4.7.4) */
{
/* csf */
proto_tree_add_bits_item(extension_tree, hf_oran_csf, tvb, offset*8, 1, ENC_BIG_ENDIAN);
/* modCompScaler */
guint32 modCompScaler;
proto_item *ti = proto_tree_add_item_ret_uint(extension_tree, hf_oran_modcompscaler,
tvb, offset, 2, ENC_BIG_ENDIAN, &modCompScaler);
/* Work out and show floating point value too. */
guint16 exponent = (modCompScaler >> 11) & 0x000f; /* m.s. 4 bits */
guint16 mantissa = modCompScaler & 0x07ff; /* l.s. 11 bits */
double value = (double)mantissa * (1.0 / (1 << exponent));
proto_item_append_text(ti, " (%f)", value);
offset += 2;
break;
}
case 5: /* Modulation Compression Additional Parameters Extension Type (5.4.7.5) */
{
/* Applies only to section types 1,3 and 5 */
/* There may be one or 2 entries, depending upon extlen */
gint sets = 1, reserved_bits = 0;
switch (extlen) {
case 2:
sets = 1;
reserved_bits = 20;
break;
case 3:
sets = 2;
reserved_bits = 24;
break;
default:
/* Malformed error!!! */
expert_add_info_format(pinfo, extlen_ti, &ei_oran_extlen_wrong,
"For section 5, extlen must be 2 or 3, but %u was dissected",
extlen);
break;
}
guint bit_offset = offset*8;
for (gint n=0; n < sets; n++) {
/* mcScaleReMask (12 bits) */
proto_tree_add_bits_item(extension_tree, hf_oran_mc_scale_re_mask, tvb, bit_offset, 12, ENC_BIG_ENDIAN);
bit_offset += 12;
/* csf (1 bit) */
proto_tree_add_bits_item(extension_tree, hf_oran_csf, tvb, bit_offset, 1, ENC_BIG_ENDIAN);
bit_offset += 1;
/* mcScaleOffset (15 bits) */
proto_tree_add_bits_item(extension_tree, hf_oran_mc_scale_offset, tvb, bit_offset, 15, ENC_BIG_ENDIAN);
bit_offset += 15;
}
/* Reserved */
proto_tree_add_bits_item(extension_tree, hf_oran_reserved, tvb, bit_offset, reserved_bits, ENC_BIG_ENDIAN);
bit_offset += reserved_bits;
offset = bit_offset/8;
break;
}
case 6: /* Non-contiguous PRB allocation in time and frequency domain */
{
/* TODO: Field startSymbolId in the message header and the fields rb, symInc, and numSymbol in the section
description shall not be used for identification of symbols and PRBs referred by the section description */
/* repetition */
proto_tree_add_bits_item(extension_tree, hf_oran_repetition, tvb, offset*8, 1, ENC_BIG_ENDIAN);
/* rbgSize */
guint32 rbgSize;
proto_tree_add_item_ret_uint(extension_tree, hf_oran_rbgSize, tvb, offset, 1, ENC_BIG_ENDIAN, &rbgSize);
if (rbgSize == 0) {
expert_add_info_format(pinfo, extlen_ti, &ei_oran_rbg_size_reserved,
"rbgSize value of 0 is reserved");
}
/* rbgMask */
guint32 rbgMask;
proto_tree_add_item_ret_uint(extension_tree, hf_oran_rbgMask, tvb, offset, 4, ENC_BIG_ENDIAN, &rbgMask);
offset += 4;
/* priority */
proto_tree_add_item(extension_tree, hf_oran_noncontig_priority, tvb, offset, 1, ENC_BIG_ENDIAN);
/* symbolMask */
proto_tree_add_item(extension_tree, hf_oran_symbolMask, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Update ext6 recorded info */
ext11_settings.ext6_set = TRUE;
switch (rbgSize) {
case 0:
/* N.B. reserved, but covered above with expert info (would remain 0) */
break;
case 1:
ext11_settings.ext6_rbg_size = 1; break;
case 2:
ext11_settings.ext6_rbg_size = 2; break;
case 3:
ext11_settings.ext6_rbg_size = 3; break;
case 4:
ext11_settings.ext6_rbg_size = 4; break;
case 5:
ext11_settings.ext6_rbg_size = 6; break;
case 6:
ext11_settings.ext6_rbg_size = 8; break;
case 7:
ext11_settings.ext6_rbg_size = 16; break;
/* N.B., encoded in 3 bits, so no other values are possible */
}
for (guint n=0; n < 28 && ext11_settings.ext6_num_bits_set < 28; n++) {
if ((rbgMask >> n) & 0x01) {
ext11_settings.ext6_bits_set[ext11_settings.ext6_num_bits_set++] = n;
}
}
break;
}
case 7: /* eAxC mask */
proto_tree_add_item(extension_tree, hf_oran_eAxC_mask, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
break;
case 8: /* Regularization factor */
proto_tree_add_item(extension_tree, hf_oran_regularizationFactor, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
break;
case 9: /* Dynamic Spectrum Sharing parameters */
proto_tree_add_item(extension_tree, hf_oran_technology, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
proto_tree_add_bits_item(extension_tree, hf_oran_reserved, tvb, offset*8, 8, ENC_BIG_ENDIAN);
offset += 1;
break;
case 10: /* Section description for group configuration of multiple ports */
{
/* beamGroupType */
guint32 beam_group_type = 0;
proto_tree_add_item_ret_uint(extension_tree, hf_oran_beamGroupType,
tvb, offset, 1, ENC_BIG_ENDIAN, &beam_group_type);
proto_item_append_text(extension_ti, " (%s)", val_to_str_const(beam_group_type, beam_group_type_vals, "Unknown"));
/* numPortc */
guint32 numPortc;
proto_tree_add_item_ret_uint(extension_tree, hf_oran_numPortc,
tvb, offset, 1, ENC_BIG_ENDIAN, &numPortc);
offset++;
/* TODO: any generated fields or expert info should be added, due to enties in table 5-35 ? */
/* Will append all beamId values to extension_ti, regardless of beamGroupType */
proto_item_append_text(extension_ti, "(");
guint n;
switch (beam_group_type) {
case 0x0: /* common beam */
/* Reserved byte */
proto_tree_add_item(oran_tree, hf_oran_rsvd8, tvb, offset, 1, ENC_NA);
offset++;
/* All entries are beamId... */
for (n=0; n < numPortc; n++) {
proto_item_append_text(extension_ti, "%u ", beamId);
}
break;
case 0x1: /* beam matrix indication */
/* Reserved byte */
proto_tree_add_item(oran_tree, hf_oran_rsvd8, tvb, offset, 1, ENC_NA);
offset++;
/* Entries inc from beamId... */
for (n=0; n < numPortc; n++) {
proto_item_append_text(extension_ti, "%u ", beamId+n);
}
break;
case 0x2: /* beam vector listing */
{
/* Beam listing vector case */
/* Work out how many port beam entries there is room for */
/* Using numPortC as visible in issue 18116 */
proto_item_append_text(extension_ti, " (%u entries) ", numPortc);
for (n=0; n < numPortc; n++) {
/* TODO: Single reserved bit */
/* port beam ID (or UEID) */
guint32 id;
proto_item *beamid_or_ueid_ti = proto_tree_add_item_ret_uint(oran_tree, hf_oran_beamId,
tvb, offset, 2, ENC_BIG_ENDIAN, &id);
proto_item_append_text(beamid_or_ueid_ti, " port #%u beam ID (or UEId) %u", n, id);
offset += 2;
proto_item_append_text(extension_ti, "%u ", id);
}
break;
}
default:
/* TODO: warning for unsupported/reserved value */
break;
}
proto_item_append_text(extension_ti, ")");
break;
}
case 11: /* Flexible Weights Extension Type */
{
gboolean disableBFWs;
guint32 numBundPrb;
/* disableBFWs */
proto_tree_add_item_ret_boolean(extension_tree, hf_oran_disable_bfws,
tvb, offset, 1, ENC_BIG_ENDIAN, &disableBFWs);
if (disableBFWs) {
proto_item_append_text(extension_ti, " (disableBFWs)");
}
/* RAD */
proto_tree_add_item(extension_tree, hf_oran_rad,
tvb, offset, 1, ENC_BIG_ENDIAN);
/* 6 reserved bits */
proto_tree_add_item(extension_tree, hf_oran_ext11_reserved, tvb,
offset, 1, ENC_BIG_ENDIAN);
offset++;
/* numBundPrb (number of prbs in each bundle) */
proto_item *num_bund_prb_ti = proto_tree_add_item_ret_uint(extension_tree, hf_oran_num_bund_prbs,
tvb, offset, 1, ENC_BIG_ENDIAN, &numBundPrb);
offset++;
/* value zero is reserved.. */
if (numBundPrb == 0) {
expert_add_info_format(pinfo, num_bund_prb_ti, &ei_oran_reserved_numBundPrb,
"Reserved value 0 for numBundPrb seen - not valid");
}
guint32 num_bundles;
gboolean orphaned_prbs = FALSE;
if (!disableBFWs) {
/********************************************/
/* Table 7.7.1.1-1 */
/********************************************/
guint32 bfwcomphdr_iq_width, bfwcomphdr_comp_meth;
proto_item *comp_meth_ti = NULL;
/* bfwCompHdr (2 subheaders - bfwIqWidth and bfwCompMeth)*/
offset = dissect_bfwCompHdr(tvb, extension_tree, offset,
&bfwcomphdr_iq_width, &bfwcomphdr_comp_meth, &comp_meth_ti);
/* Look up width of samples. */
guint8 iq_width = !bfwcomphdr_iq_width ? 16 : bfwcomphdr_iq_width;
/* Work out number of bundles, but take care not to divide by zero. */
if (numBundPrb == 0) {
break;
}
/* Work out bundles! */
ext11_work_out_bundles(startPrbc, numPrbc, numBundPrb, &ext11_settings);
num_bundles = ext11_settings.num_bundles;
/* Add (complete) bundles */
for (guint b=0; b < num_bundles; b++) {
offset = dissect_bfw_bundle(tvb, extension_tree, pinfo, offset,
comp_meth_ti, bfwcomphdr_comp_meth,
iq_width,
b, /* bundle number */
ext11_settings.bundles[b].start,
ext11_settings.bundles[b].end,
ext11_settings.bundles[b].is_orphan);
if (!offset) {
break;
}
}
/* Set flag from last bundle entry */
orphaned_prbs = ext11_settings.bundles[num_bundles-1].is_orphan;
}
else {
/********************************************/
/* Table 7.7.1.1-2 */
/* No weights in this case */
/********************************************/
/* Work out number of bundles, but take care not to divide by zero. */
if (numBundPrb == 0) {
break;
}
ext11_work_out_bundles(startPrbc, numPrbc, numBundPrb, &ext11_settings);
num_bundles = ext11_settings.num_bundles;
for (guint n=0; n < num_bundles; n++) {
/* beamId */
proto_item *ti = proto_tree_add_item(extension_tree, hf_oran_beam_id,
tvb, offset, 2, ENC_BIG_ENDIAN);
if (!ext11_settings.bundles[n].is_orphan) {
proto_item_append_text(ti, " (Bundle %u)", n);
}
else {
orphaned_prbs = TRUE;
proto_item_append_text(ti, " (Orphaned PRBs)");
}
offset += 2;
}
}
/* Add summary to extension root */
if (orphaned_prbs) {
proto_item_append_text(extension_ti, " (%u bundles + orphaned)", num_bundles);
}
else {
proto_item_append_text(extension_ti, " (%u bundles)", num_bundles);
}
}
break;
case 12: /* Non-Contiguous PRB Allocation with Frequency Ranges */
{
/* priority */
proto_tree_add_item(extension_tree, hf_oran_noncontig_priority, tvb, offset, 1, ENC_BIG_ENDIAN);
/* symbolMask */
proto_tree_add_item(extension_tree, hf_oran_symbolMask, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* There are now 'R' pairs of (offStartPrb, numPrb) values. Fill extlen bytes with values. If last one is not set,
should be populated with 0s. */
guint32 extlen_remaining_bytes = (extlen*4) - 4;
guint8 prb_index;
ext11_settings.ext12_set = TRUE;
for (prb_index = 1; extlen_remaining_bytes > 0; prb_index++)
{
/* Create a subtree for each pair */
proto_item *pair_ti = proto_tree_add_string(extension_tree, hf_oran_off_start_prb_num_prb_pair,
tvb, offset, 2, "");
proto_tree *pair_tree = proto_item_add_subtree(pair_ti, ett_oran_offset_start_prb_num_prb);
/* offStartPrb */
guint32 off_start_prb;
proto_tree_add_item_ret_uint(pair_tree, hf_oran_off_start_prb, tvb, offset, 1, ENC_BIG_ENDIAN, &off_start_prb);
offset++;
/* numPrb */
guint32 num_prb;
proto_tree_add_item_ret_uint(pair_tree, hf_oran_num_prb, tvb, offset, 1, ENC_BIG_ENDIAN, &num_prb);
offset++;
extlen_remaining_bytes -= 2;
/* Last pair may be 0,0 if not used. Check for this */
if ((extlen_remaining_bytes == 0) && (off_start_prb == 0) && (num_prb == 0)) {
proto_item_append_text(pair_ti, " (not used)");
}
/* Add summary to pair root item, and configure details in ext11_settings */
else {
proto_item_append_text(pair_ti, "(%u) offStartPrb=%3u, numPrb=%u",
prb_index, off_start_prb, num_prb);
if (ext11_settings.ext12_num_pairs < MAX_BFW_EXT12_PAIRS) {
ext11_settings.ext12_pairs[ext11_settings.ext12_num_pairs].off_start_prb = off_start_prb;
ext11_settings.ext12_pairs[ext11_settings.ext12_num_pairs++].num_prb = num_prb;
}
}
}
break;
}
case 13: /* PRB Allocation with Frequency Hopping */
{
guint32 extlen_remaining_bytes = (extlen*4) - 2;
guint8 allocation_index;
/* Will update settings for ext11 */
ext11_settings.ext13_set = TRUE;
guint prev_next_symbol_id = 0, prev_next_start_prbc = 0;
for (allocation_index = 1; extlen_remaining_bytes > 0; allocation_index++)
{
/* Subtree for allocation */
proto_item *allocation_ti = proto_tree_add_string(extension_tree, hf_oran_prb_allocation,
tvb, offset, 2, "");
proto_tree *allocation_tree = proto_item_add_subtree(allocation_ti, ett_oran_prb_allocation);
/* Reserved (2 bits) */
proto_tree_add_item(allocation_tree, hf_oran_reserved_2bits, tvb, offset, 1, ENC_BIG_ENDIAN);
/* nextSymbolId (4 bits) */
guint32 next_symbol_id;
proto_tree_add_item_ret_uint(allocation_tree, hf_oran_nextSymbolId, tvb, offset, 1, ENC_BIG_ENDIAN, &next_symbol_id);
/* nextStartPrbc (10 bits) */
guint32 next_start_prbc;
proto_tree_add_item_ret_uint(allocation_tree, hf_oran_nextStartPrbc, tvb, offset, 2, ENC_BIG_ENDIAN, &next_start_prbc);
offset += 2;
/* Add summary to allocation root item */
proto_item_append_text(allocation_ti, "(%u) nextSymbolId=%3u, nextStartPrbc=%u",
allocation_index, next_symbol_id, next_start_prbc);
/* Checking for duplicates (expected if e.g. had only 2 entries but extlen bytes still to fill */
if ((allocation_index > 1) && (next_symbol_id == prev_next_symbol_id) && (next_start_prbc == prev_next_start_prbc)) {
proto_item_append_text(allocation_ti, " (repeated - to fill up extlen)");
}
else {
/* Add entry for configuring ext11. don't store out of range */
if (ext11_settings.ext13_num_start_prbs < MAX_BFW_EXT13_ALLOCATIONS) {
ext11_settings.ext13_start_prbs[ext11_settings.ext13_num_start_prbs++] = next_start_prbc;
}
}
prev_next_symbol_id = next_symbol_id;
prev_next_start_prbc = next_start_prbc;
extlen_remaining_bytes -= 2;
}
break;
}
case 14: /* Nulling-layer Info. for ueId-based beamforming */
proto_tree_add_item(extension_tree, hf_oran_nullLayerInd, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
proto_tree_add_bits_item(extension_tree, hf_oran_reserved, tvb, offset*8, 8, ENC_BIG_ENDIAN);
offset += 1;
break;
case 15: /* Mixed-numerology Info. for ueId-based beamforming */
/* frameStructure */
proto_tree_add_item(extension_tree, hf_oran_frameStructure_fft, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(extension_tree, hf_oran_frameStructure_subcarrier_spacing, tvb, offset, 1, ENC_NA);
offset += 1;
/* freqOffset */
proto_tree_add_item(extension_tree, hf_oran_freqOffset, tvb, offset, 3, ENC_BIG_ENDIAN);
offset += 3;
/* cpLength */
proto_tree_add_item(extension_tree, hf_oran_cpLength, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
break;
case 16: /* Section description for antenna mapping in UE channel information based UL beamforming */
{
guint32 extlen_remaining_bytes = (extlen*4) - 2;
guint num_ant_masks = extlen_remaining_bytes / 8;
for (guint n=0; n < num_ant_masks; n++) {
proto_item *ti = proto_tree_add_item(extension_tree, hf_oran_antMask, tvb, offset, 8, ENC_BIG_ENDIAN);
proto_item_append_text(ti, " (RX eAxC #%u)", n+1);
offset += 8;
}
break;
}
case 17: /* Section description for indication of user port group */
{
guint32 extlen_remaining_bytes = (extlen*4) - 2;
guint32 end_bit = (offset+extlen_remaining_bytes) * 8;
guint32 ueid_index = 1;
/* TODO: just filling up all available bytes - some may actually be padding.. */
for (guint32 bit_offset=offset*8; bit_offset < end_bit; bit_offset+=4, ueid_index++) {
proto_item *ti = proto_tree_add_bits_item(extension_tree, hf_oran_num_ueid, tvb, bit_offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(ti, " (user #%u)", ueid_index);
}
break;
}
case 18: /* Section description for Uplink Transmission Management */
/* transmissionWindowOffset */
proto_tree_add_item(extension_tree, hf_oran_transmissionWindowOffset, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* reserved (2 bits) */
proto_tree_add_item(extension_tree, hf_oran_reserved_2bits, tvb, offset, 1, ENC_BIG_ENDIAN);
/* transmissionWindowSize (14 bits) */
proto_tree_add_item(extension_tree, hf_oran_transmissionWindowSize, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* reserved (6 bits) */
proto_tree_add_item(extension_tree, hf_oran_reserved_6bits, tvb, offset, 1, ENC_BIG_ENDIAN);
/* toT (2 bits) */
proto_tree_add_item(extension_tree, hf_oran_toT, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
break;
case 19: /* Compact beamforming information for multiple port */
{
/* beamId in section header should be ignored */
if (beamId_ti && !beamId_ignored) {
proto_item_append_text(beamId_ti, " (ignored)");
beamId_ignored = TRUE;
}
/* disableBFWs */
gboolean disableBFWs;
proto_tree_add_item_ret_boolean(extension_tree, hf_oran_disable_bfws,
tvb, offset, 1, ENC_BIG_ENDIAN, &disableBFWs);
if (disableBFWs) {
proto_item_append_text(extension_ti, " (disableBFWs)");
}
/* Repetition */
proto_tree_add_bits_item(extension_tree, hf_oran_repetition, tvb, (offset*8)+1, 1, ENC_BIG_ENDIAN);
/* numPortc */
guint32 numPortc;
proto_tree_add_item_ret_uint(extension_tree, hf_oran_numPortc,
tvb, offset, 1, ENC_BIG_ENDIAN, &numPortc);
offset++;
/* priority */
proto_tree_add_item(extension_tree, hf_oran_noncontig_priority, tvb, offset, 1, ENC_BIG_ENDIAN);
/* symbolMask */
proto_tree_add_item(extension_tree, hf_oran_symbolMask, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* bfwCompHdr */
guint32 bfwcomphdr_iq_width, bfwcomphdr_comp_meth;
proto_item *comp_meth_ti = NULL;
offset = dissect_bfwCompHdr(tvb, extension_tree, offset,
&bfwcomphdr_iq_width, &bfwcomphdr_comp_meth, &comp_meth_ti);
/* Add entries for each port */
for (guint port=0; port < numPortc; port++) {
/* Create subtree for port entry*/
gint port_start_offset = offset;
proto_item *port_ti = proto_tree_add_string_format(extension_tree, hf_oran_ext19_port,
tvb, offset, 0,
"", "Port %u: ", port);
proto_tree *port_tree = proto_item_add_subtree(port_ti, ett_oran_ext19_port);
/* Reserved (4 bits) */
proto_tree_add_item(port_tree, hf_oran_reserved_4bits, tvb, offset, 1, ENC_BIG_ENDIAN);
/* portReMask (12 bits) */
proto_tree_add_item(port_tree, hf_oran_portReMask, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Reserved (2 bits) */
proto_tree_add_item(port_tree, hf_oran_reserved_2bits, tvb, offset, 1, ENC_BIG_ENDIAN);
/* portSymbolMask (14 bits) */
proto_tree_add_item(port_tree, hf_oran_portSymbolMask, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Reserved (1 bit) */
proto_tree_add_item(port_tree, hf_oran_reserved_1bit, tvb, offset, 1, ENC_BIG_ENDIAN);
/* beamID (15 bits) */
proto_tree_add_item_ret_uint(port_tree, hf_oran_beamId, tvb, offset, 2, ENC_BIG_ENDIAN, &beamId);
proto_item_append_text(port_ti, " (beamId=%u)", beamId);
offset += 2;
/* bfwCompParam (TODO: present in disableBFWs case?) */
gboolean compression_method_supported = FALSE;
guint32 exponent = 0;
offset = dissect_bfwCompParam(tvb, port_tree, pinfo, offset, comp_meth_ti,
bfwcomphdr_comp_meth, &exponent, &compression_method_supported);
if (!disableBFWs) {
/*****************************************************************/
/* Table 7.7.19.1-1 (there is no part 2 for disableBFWs case...) */
/*****************************************************************/
/* Look up width of samples. */
guint8 iq_width = !bfwcomphdr_iq_width ? 16 : bfwcomphdr_iq_width;
gint bit_offset = offset*8;
gint bfw_offset;
/* Add weights for each TRX */
for (guint b=0; b < pref_num_bf_antennas; b++) {
/* Create BFW subtree */
bfw_offset = bit_offset / 8;
guint8 bfw_extent = ((bit_offset + (iq_width*2)) / 8) - bfw_offset;
proto_item *bfw_ti = proto_tree_add_string_format(port_tree, hf_oran_bfw,
tvb, bfw_offset, bfw_extent,
"", "TRX %u: (", b);
proto_tree *bfw_tree = proto_item_add_subtree(bfw_ti, ett_oran_bfw);
/* I */
/* Get bits, and convert to float. */
guint32 bits = tvb_get_bits(tvb, bit_offset, iq_width, ENC_BIG_ENDIAN);
gfloat value = decompress_value(bits, bfwcomphdr_comp_meth, iq_width, exponent);
/* Add to tree. */
proto_tree_add_float_format_value(bfw_tree, hf_oran_bfw_i, tvb, bit_offset/8, (iq_width+7)/8, value, "#%u=%f", b, value);
bit_offset += iq_width;
proto_item_append_text(bfw_ti, "I%u=%f ", b, value);
/* Q */
/* Get bits, and convert to float. */
bits = tvb_get_bits(tvb, bit_offset, iq_width, ENC_BIG_ENDIAN);
value = decompress_value(bits, bfwcomphdr_comp_meth, iq_width, exponent);
/* Add to tree. */
proto_tree_add_float_format_value(bfw_tree, hf_oran_bfw_q, tvb, bit_offset/8, (iq_width+7)/8, value, "#%u=%f", b, value);
bit_offset += iq_width;
proto_item_append_text(bfw_ti, "Q%u=%f)", b, value);
}
offset = (bit_offset+7)/8;
}
else {
/* No weights... */
/* Reserved (1 bit) */
proto_tree_add_bits_item(extension_tree, hf_oran_reserved, tvb, offset*8, 1, ENC_BIG_ENDIAN);
/* beamID (15 bits) */
proto_tree_add_item_ret_uint(extension_tree, hf_oran_beamId, tvb, offset, 2, ENC_BIG_ENDIAN, &beamId);
proto_item_append_text(port_ti, " (beamId=%u)", beamId);
offset += 2;
}
/* Set length of this port entry */
proto_item_set_len(port_ti, offset-port_start_offset);
}
break;
}
case 20: /* Puncturing extension */
{
/* numPuncPatterns */
guint32 numPuncPatterns;
proto_tree_add_item_ret_uint(extension_tree, hf_oran_numPuncPatterns, tvb, offset, 1, ENC_BIG_ENDIAN, &numPuncPatterns);
offset += 1;
/* Add each puncturing pattern */
for (guint32 n=0; n < numPuncPatterns; n++) {
guint pattern_start_offset = offset;
/* Subtree for this puncturing pattern */
proto_item *pattern_ti = proto_tree_add_string_format(extension_tree, hf_oran_puncPattern,
tvb, offset, 0,
"", "Puncturing Pattern: %u/%u", n+1, hf_oran_numPuncPatterns);
proto_tree *pattern_tree = proto_item_add_subtree(pattern_ti, ett_oran_punc_pattern);
/* SymbolMask (14 bits) */
proto_tree_add_item(pattern_tree, hf_oran_symbolMask_ext20, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 1;
/* startPuncPrb (10 bits) */
proto_tree_add_item(pattern_tree, hf_oran_startPuncPrb, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 2;
/* numPuncPrb (8 bits) */
proto_tree_add_item(pattern_tree, hf_oran_numPuncPrb, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* puncReMask (12 bits) */
proto_tree_add_item(pattern_tree, hf_oran_puncReMask, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 1;
/* rb (1 bit) */
proto_tree_add_item(pattern_tree, hf_oran_rb, tvb, offset, 1, ENC_BIG_ENDIAN);
/* reserved (2 bits? - spec says 1) */
proto_tree_add_bits_item(pattern_tree, hf_oran_reserved, tvb, offset*8, 2, ENC_BIG_ENDIAN);
/* rbgIncl */
gboolean rbgIncl;
proto_tree_add_item_ret_boolean(pattern_tree, hf_oran_RbgIncl, tvb, offset, 1, ENC_BIG_ENDIAN, &rbgIncl);
offset += 1;
if (rbgIncl) {
/* reserved (1 bit) */
proto_tree_add_item(pattern_tree, hf_oran_reserved_1bit, tvb, offset, 1, ENC_BIG_ENDIAN);
/* rbgSize(3 bits) */
proto_tree_add_item(pattern_tree, hf_oran_rbgSize, tvb, offset, 1, ENC_BIG_ENDIAN);
/* rbgMask (28 bits) */
proto_tree_add_item(pattern_tree, hf_oran_rbgMask, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
}
proto_item_set_len(pattern_ti, offset-pattern_start_offset);
}
break;
}
case 21: /* Variable PRB group size for channel information */
/* ciPrbGroupSize */
proto_tree_add_item(extension_tree, hf_oran_ci_prb_group_size, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* reserved (8 bits) */
proto_tree_add_bits_item(extension_tree, hf_oran_reserved, tvb, offset*8, 8, ENC_BIG_ENDIAN);
offset += 1;
break;
case 22: /* ACK/NACK request */
proto_tree_add_item(extension_tree, hf_oran_ack_nack_req_id, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
break;
default:
/* Other/unexpected extension types. */
break;
}
/* Check offset compared with extlen. There should be 0-3 bytes of padding */
gint num_padding_bytes = (extension_start_offset + (extlen*4) - offset);
if ((num_padding_bytes<0) || (num_padding_bytes>3)) {
expert_add_info_format(pinfo, extlen_ti, &ei_oran_extlen_wrong,
"extlen signalled %u bytes (+ 0-3 bytes padding), but %u were dissected",
extlen*4, offset-extension_start_offset);
}
/* Move offset to beyond signalled length of extension */
offset = extension_start_offset + (extlen*4);
/* Set length of extension header. */
proto_item_set_len(extension_ti, extlen*4);
}
/* Set extent of overall section */
proto_item_set_len(sectionHeading, offset);
return offset;
}
/* Dissect udCompHdr (user data compression header, 7.5.2.10) */
/* bit_width and comp_meth are out params */
static int dissect_udcomphdr(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *tree, guint offset,
guint *bit_width, guint *comp_meth)
{
/* Subtree */
proto_item *udcomphdr_ti = proto_tree_add_string_format(tree, hf_oran_udCompHdr,
tvb, offset, 1, "",
"udCompHdr");
proto_tree *udcomphdr_tree = proto_item_add_subtree(udcomphdr_ti, ett_oran_udcomphdr);
/* udIqWidth */
guint32 hdr_iq_width;
proto_item *iq_width_item = proto_tree_add_item_ret_uint(udcomphdr_tree, hf_oran_udCompHdrIqWidth , tvb, offset, 1, ENC_NA, &hdr_iq_width);
*bit_width = (hdr_iq_width) ? hdr_iq_width : 16;
proto_item_append_text(iq_width_item, " (%u bits)", *bit_width);
/* udCompMeth */
guint32 ud_comp_meth;
proto_tree_add_item_ret_uint(udcomphdr_tree, hf_oran_udCompHdrMeth, tvb, offset, 1, ENC_NA, &ud_comp_meth);
if (comp_meth) {
*comp_meth = ud_comp_meth;
}
offset += 1;
/* Summary */
proto_item_append_text(udcomphdr_ti, " (IqWidth=%u, udCompMeth=%s)",
*bit_width, rval_to_str_const(ud_comp_meth, ud_comp_header_meth, "Unknown"));
return offset;
}
/* Control plane dissector (section 7). */
static int dissect_oran_c(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
/* Set up structures needed to add the protocol subtree and manage it */
guint offset = 0;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "O-RAN-FH-C");
col_set_str(pinfo->cinfo, COL_INFO, "C-Plane");
/* Create display subtree for the protocol */
proto_item *protocol_item = proto_tree_add_item(tree, proto_oran, tvb, 0, -1, ENC_NA);
proto_item_append_text(protocol_item, "-C");
proto_tree *oran_tree = proto_item_add_subtree(protocol_item, ett_oran);
guint16 eAxC;
addPcOrRtcid(tvb, oran_tree, &offset, "ecpriRtcid", &eAxC);
if (!PINFO_FD_VISITED(pinfo)) {
/* TODO: create or update conversation for stream eAxC */
}
else {
/* TODO: show stored state for this stream */
}
/* Message identifier */
addSeqid(tvb, oran_tree, &offset);
proto_item *sectionHeading;
/* section subtree */
gint section_tree_offset = offset;
proto_tree *section_tree = proto_tree_add_subtree(oran_tree, tvb, offset, 2, ett_oran_section_type, &sectionHeading, "C-Plane Section Type ");
/* dataDirection */
guint32 direction = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_data_direction, tvb, offset, 1, ENC_NA, &direction);
/* payloadVersion */
proto_tree_add_item(section_tree, hf_oran_payload_version, tvb, offset, 1, ENC_NA);
/* payloadVersion */
proto_tree_add_item(section_tree, hf_oran_filter_index, tvb, offset, 1, ENC_NA);
offset += 1;
guint ref_a_offset = 0;
/* frameId */
guint32 frameId = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_frame_id, tvb, offset, 1, ENC_NA, &frameId);
offset += 1;
/* subframeId */
guint32 subframeId = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_subframe_id, tvb, offset, 1, ENC_NA, &subframeId);
/* slotId */
guint32 slotId = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_slot_id, tvb, offset, 2, ENC_BIG_ENDIAN, &slotId);
offset++;
/* startSymbolId */
guint32 startSymbolId = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_start_symbol_id, tvb, offset, 1, ENC_NA, &startSymbolId);
offset++;
char id[16];
snprintf(id, 16, "%d-%d-%d", frameId, subframeId, slotId);
proto_item *pi = proto_tree_add_string(section_tree, hf_oran_refa, tvb, ref_a_offset, 3, id);
proto_item_set_generated(pi);
/* numberOfSections */
guint32 nSections = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_numberOfSections, tvb, offset, 1, ENC_NA, &nSections);
offset += 1;
/* sectionType */
guint32 sectionType = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_sectionType, tvb, offset, 1, ENC_NA, &sectionType);
offset += 1;
/* Section-specific fields (white entries in Section Type diagrams) */
guint bit_width = 0;
guint32 scs, slots_per_subframe;
guint32 num_ues = 0;
proto_item *ti;
switch (sectionType) {
case SEC_C_UNUSED_RB: /* Section Type "0" */
/* timeOffset */
proto_tree_add_item(section_tree, hf_oran_timeOffset, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* frameStructure */
proto_tree_add_item(section_tree, hf_oran_frameStructure_fft, tvb, offset, 1, ENC_NA);
proto_tree_add_item_ret_uint(section_tree, hf_oran_frameStructure_subcarrier_spacing, tvb, offset, 1, ENC_NA, &scs);
/* slots_per_subframe = 1 << scs; */
offset += 1;
/* cpLength */
proto_tree_add_item(section_tree, hf_oran_cpLength, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* reserved */
proto_tree_add_item(section_tree, hf_oran_rsvd8, tvb, offset, 1, ENC_NA);
offset += 1;
break;
case SEC_C_NORMAL: /* Section Type "1" */
case SEC_C_UE_SCHED: /* Section Type "5" */
/* udCompHdr */
offset = dissect_udcomphdr(tvb, pinfo, section_tree, offset, &bit_width, NULL);
/* reserved */
proto_tree_add_item(section_tree, hf_oran_rsvd8, tvb, offset, 1, ENC_NA);
offset += 1;
break;
case SEC_C_PRACH: /* Section Type "3" */
/* timeOffset */
proto_tree_add_item(section_tree, hf_oran_timeOffset, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* frameStructure */
proto_tree_add_item(section_tree, hf_oran_frameStructure_fft, tvb, offset, 1, ENC_NA);
proto_tree_add_item_ret_uint(section_tree, hf_oran_frameStructure_subcarrier_spacing, tvb, offset, 1, ENC_NA, &scs);
slots_per_subframe = 1 << scs;
ti = proto_tree_add_uint(section_tree, hf_oran_slot_within_frame, tvb, 0, 0, (slots_per_subframe*subframeId) + slotId);
proto_item_set_generated(ti);
offset += 1;
/* cpLength */
proto_tree_add_item(section_tree, hf_oran_cpLength, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* udCompHdr */
offset = dissect_udcomphdr(tvb, pinfo, section_tree, offset, &bit_width, NULL);
break;
case SEC_C_CH_INFO:
/* numberOfUEs */
proto_tree_add_item_ret_uint(section_tree, hf_oran_numberOfUEs, tvb, offset, 1, ENC_NA, &num_ues);
offset += 1;
/* reserved */
proto_tree_add_item(section_tree, hf_oran_rsvd8, tvb, offset, 1, ENC_NA);
offset += 1;
/* Number of sections may not be filled in, so set to the number of UEs */
if (nSections == 0) {
nSections = num_ues;
}
break;
case SEC_C_RSVD2:
case SEC_C_LAA:
/* TODO: */
break;
};
/* Set actual length of section. */
proto_item_set_len(section_tree, offset - section_tree_offset);
proto_item_append_text(sectionHeading, "%d, %s, Frame: %d, Subframe: %d, Slot: %d, StartSymbol: %d",
sectionType, val_to_str(direction, data_direction_vals, "Unknown"),
frameId, subframeId, slotId, startSymbolId);
write_pdu_label_and_info(protocol_item, NULL, pinfo, ", Type: %d %s", sectionType, rval_to_str(sectionType, section_types_short, "Unknown"));
/* Dissect each C section */
for (guint32 i = 0; i < nSections; ++i) {
tvbuff_t *section_tvb = tvb_new_subset_length_caplen(tvb, offset, -1, -1);
offset += dissect_oran_c_section(section_tvb, oran_tree, pinfo, sectionType, protocol_item);
}
/* Expert error if we are short of tvb by > 3 bytes */
if (tvb_reported_length_remaining(tvb, offset) > 3) {
expert_add_info_format(pinfo, protocol_item, &ei_oran_frame_length,
"%u bytes remain at end of frame - should be 0-3",
tvb_reported_length_remaining(tvb, offset));
}
return tvb_captured_length(tvb);
}
/* User plane dissector (section 8) */
static int
dissect_oran_u(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
/* Set up structures needed to add the protocol subtree and manage it */
gint offset = 0;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "O-RAN-FH-U");
col_set_str(pinfo->cinfo, COL_INFO, "U-Plane");
/* create display subtree for the protocol */
proto_item *protocol_item = proto_tree_add_item(tree, proto_oran, tvb, 0, -1, ENC_NA);
proto_item_append_text(protocol_item, "-U");
proto_tree *oran_tree = proto_item_add_subtree(protocol_item, ett_oran);
/* Transport header */
/* Real-time control data / IQ data transfer message series identifier */
guint16 eAxC;
addPcOrRtcid(tvb, oran_tree, &offset, "ecpriPcid", &eAxC);
if (!PINFO_FD_VISITED(pinfo)) {
/* TODO: create or update conversation for stream eAxC */
}
else {
/* TODO: show stored state for this stream */
}
/* Message identifier */
addSeqid(tvb, oran_tree, &offset);
/* Common header for time reference */
proto_item *timingHeader;
proto_tree *timing_header_tree = proto_tree_add_subtree(oran_tree, tvb, offset, 4, ett_oran_u_timing, &timingHeader, "Timing header");
/* dataDirection */
guint32 direction;
proto_tree_add_item_ret_uint(timing_header_tree, hf_oran_data_direction, tvb, offset, 1, ENC_NA, &direction);
/* payloadVersion */
proto_tree_add_item(timing_header_tree, hf_oran_payload_version, tvb, offset, 1, ENC_NA);
/* filterIndex */
proto_tree_add_item(timing_header_tree, hf_oran_filter_index, tvb, offset, 1, ENC_NA);
offset += 1;
gint ref_a_offset = offset;
/* frameId */
guint32 frameId = 0;
proto_tree_add_item_ret_uint(timing_header_tree, hf_oran_frame_id, tvb, offset, 1, ENC_NA, &frameId);
offset += 1;
/* subframeId */
guint32 subframeId = 0;
proto_tree_add_item_ret_uint(timing_header_tree, hf_oran_subframe_id, tvb, offset, 1, ENC_NA, &subframeId);
/* slotId */
guint32 slotId = 0;
proto_tree_add_item_ret_uint(timing_header_tree, hf_oran_slot_id, tvb, offset, 2, ENC_BIG_ENDIAN, &slotId);
offset++;
/* symbolId */
guint32 symbolId = 0;
proto_tree_add_item_ret_uint(timing_header_tree, hf_oran_symbolId, tvb, offset, 1, ENC_NA, &symbolId);
offset++;
char id[16];
snprintf(id, 16, "%d-%d-%d", frameId, subframeId, slotId);
proto_item *pi = proto_tree_add_string(timing_header_tree, hf_oran_refa, tvb, ref_a_offset, 3, id);
proto_item_set_generated(pi);
proto_item_append_text(timingHeader, " %s, Frame: %d, Subframe: %d, Slot: %d, Symbol: %d",
val_to_str(direction, data_direction_vals, "Unknown"), frameId, subframeId, slotId, symbolId);
guint sample_bit_width;
gint compression;
gboolean includeUdCompHeader;
if (direction == DIR_UPLINK) {
sample_bit_width = pref_sample_bit_width_uplink;
compression = pref_iqCompressionUplink;
includeUdCompHeader = pref_includeUdCompHeaderUplink;
} else {
sample_bit_width = pref_sample_bit_width_downlink;
compression = pref_iqCompressionDownlink;
includeUdCompHeader = pref_includeUdCompHeaderDownlink;
}
/* Need a valid value (e.g. 9, 14). 0 definitely won't work, as won't progress around loop! */
if (sample_bit_width == 0) {
expert_add_info_format(pinfo, protocol_item, &ei_oran_invalid_sample_bit_width,
"%cL Sample bit width from preference (%u) not valid, so can't decode sections",
(direction == DIR_UPLINK) ? 'U' : 'D', sample_bit_width);
return offset;
}
guint bytesLeft;
guint number_of_sections = 0;
guint nBytesPerPrb;
do {
proto_item *sectionHeading;
proto_tree *section_tree = proto_tree_add_subtree(oran_tree, tvb, offset, 2, ett_oran_u_section, &sectionHeading, "Section");
/* Section Header fields */
/* sectionId */
guint32 sectionId = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_section_id, tvb, offset, 2, ENC_BIG_ENDIAN, &sectionId);
offset++;
/* rb */
proto_tree_add_item(section_tree, hf_oran_rb, tvb, offset, 1, ENC_NA);
/* symInc */
proto_tree_add_item(section_tree, hf_oran_symInc, tvb, offset, 1, ENC_NA);
/* startPrbu */
guint32 startPrbu = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_startPrbu, tvb, offset, 2, ENC_BIG_ENDIAN, &startPrbu);
offset += 2;
/* numPrbu */
guint32 numPrbu = 0;
proto_tree_add_item_ret_uint(section_tree, hf_oran_numPrbu, tvb, offset, 1, ENC_NA, &numPrbu);
offset += 1;
if (includeUdCompHeader) {
/* 5.4.4.10. Described in 6.3.3.13 */
/* Extract these values to inform how wide IQ samples in each PRB will be. */
offset = dissect_udcomphdr(tvb, pinfo, section_tree, offset, &sample_bit_width, &compression);
/* Not part of udCompHdr */
proto_tree_add_item(section_tree, hf_oran_rsvd8, tvb, offset, 1, ENC_NA);
offset += 1;
}
/* Work this out each time, as udCompHdr may have changed things */
guint nBytesForSamples = (sample_bit_width * 12 * 2) / 8;
nBytesPerPrb = nBytesForSamples;
if ((compression != COMP_NONE) && (compression != COMP_MODULATION)) {
nBytesPerPrb++; /* 1 extra byte reserved/exponent */
}
write_section_info(sectionHeading, pinfo, protocol_item, sectionId, startPrbu, numPrbu);
/* TODO: should this use the same pref as c-plane? */
if (numPrbu == 0) {
/* Special case for all PRBs (NR: the total number of PRBs may be > 255) */
numPrbu = pref_data_plane_section_total_rbs;
startPrbu = 0; /* may already be 0... */
}
for (guint i = 0; i < numPrbu; ++i) {
proto_item *prbHeading;
proto_tree *rb_tree = proto_tree_add_subtree(section_tree, tvb, offset, nBytesPerPrb, ett_oran_u_prb, &prbHeading, "PRB");
guint32 exponent = 0;
if ((compression != COMP_NONE) && (compression != COMP_MODULATION)) {
proto_tree_add_item(rb_tree, hf_oran_reserved_4bits, tvb, offset, 1, ENC_NA);
proto_tree_add_item_ret_uint(rb_tree, hf_oran_exponent, tvb, offset, 1, ENC_BIG_ENDIAN, &exponent);
offset += 1;
}
/* Show PRB number in root */
proto_item_append_text(prbHeading, " %u", startPrbu + i);
proto_tree_add_item(rb_tree, hf_oran_iq_user_data, tvb, offset, nBytesForSamples, ENC_NA);
if (pref_showIQSampleValues) {
/* Individual values */
guint samples_offset = offset*8;
guint sample_number = 0;
for (guint n = 0; n<12; n++) {
/* I */
guint i_bits = tvb_get_bits(tvb, samples_offset, sample_bit_width, ENC_BIG_ENDIAN);
gfloat i_value = decompress_value(i_bits, COMP_BLOCK_FP, sample_bit_width, exponent);
i_value = digital_power_scaling(i_value);
guint sample_len_in_bytes = ((samples_offset%8)+sample_bit_width+7)/8;
proto_item *i_ti = proto_tree_add_float(rb_tree, hf_oran_iSample, tvb, samples_offset/8, sample_len_in_bytes, i_value);
proto_item_set_text(i_ti, "iSample: %0.12f 0x%04x (iSample-%u in the PRB)", i_value, i_bits, sample_number);
samples_offset += sample_bit_width;
/* Q */
guint q_bits = tvb_get_bits(tvb, samples_offset, sample_bit_width, ENC_BIG_ENDIAN);
gfloat q_value = decompress_value(q_bits, COMP_BLOCK_FP, sample_bit_width, exponent);
q_value = digital_power_scaling(q_value);
sample_len_in_bytes = ((samples_offset%8)+sample_bit_width+7)/8;
proto_item *q_ti = proto_tree_add_float(rb_tree, hf_oran_qSample, tvb, samples_offset/8, sample_len_in_bytes, q_value);
proto_item_set_text(q_ti, "qSample: %0.12f 0x%04x (qSample-%u in the PRB)", q_value, q_bits, sample_number);
samples_offset += sample_bit_width;
sample_number++;
}
proto_item_append_text(prbHeading, " (%u samples)", sample_number);
}
offset += nBytesForSamples;
proto_item_set_len(sectionHeading, nBytesPerPrb * numPrbu + 4); /* 4 bytes for section header */
}
bytesLeft = tvb_captured_length(tvb) - offset;
number_of_sections++;
} while (bytesLeft >= (4 + nBytesPerPrb)); /* FIXME: bad heuristic */
/* Show number of sections found */
proto_item *ti = proto_tree_add_uint(oran_tree, hf_oran_numberOfSections, tvb, 0, 0, number_of_sections);
proto_item_set_generated(ti);
/* Expert error if we are short of tvb by > 3 bytes */
if (tvb_reported_length_remaining(tvb, offset) > 3) {
expert_add_info_format(pinfo, protocol_item, &ei_oran_frame_length,
"%u bytes remain at end of frame - should be 0-3",
tvb_reported_length_remaining(tvb, offset));
}
return tvb_captured_length(tvb);
}
/*****************************/
/* Main dissection function. */
/* N.B. ecpri message type passed in as 'data' arg by eCPRI dissector */
static int
dissect_oran(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
guint32 ecpri_message_type = *(guint32 *)data;
switch (ecpri_message_type) {
case ECPRI_MT_IQ_DATA:
return dissect_oran_u(tvb, pinfo, tree, data);
case ECPRI_MT_RT_CTRL_DATA:
return dissect_oran_c(tvb, pinfo, tree, data);
default:
/* Not dissecting other types - assume these are handled by eCPRI dissector */
return 0;
}
}
/* Register the protocol with Wireshark. */
void
proto_register_oran(void)
{
static hf_register_info hf[] = {
/* Section 3.1.3.1.6 */
{ &hf_oran_du_port_id,
{ "DU Port ID", "oran_fh_cus.du_port_id",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"Width set in dissector preference", HFILL }
},
/* Section 3.1.3.1.6 */
{ &hf_oran_bandsector_id,
{ "BandSector ID", "oran_fh_cus.bandsector_id",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"Width set in dissector preference", HFILL }
},
/* Section 3.1.3.1.6 */
{ &hf_oran_cc_id,
{ "CC ID", "oran_fh_cus.cc_id",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"Width set in dissector preference", HFILL }
},
/* Section 3.1.3.1.6 */
{ &hf_oran_ru_port_id,
{ "RU Port ID", "oran_fh_cus.ru_port_id",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"Width set in dissector preference", HFILL }
},
/* Section 3.1.3.1.7 */
{ &hf_oran_sequence_id,
{ "Sequence ID", "oran_fh_cus.sequence_id",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"The Sequence ID wraps around individually per c_eAxC",
HFILL }
},
/* Section 3.1.3.1.7 */
{ &hf_oran_e_bit,
{ "E Bit", "oran_fh_cus.e_bit",
FT_UINT8, BASE_DEC,
VALS(e_bit), 0x80,
"One bit (the \"E-bit\") is reserved to indicate the last message of a subsequence",
HFILL }
},
/* Section 3.1.3.1.7 */
{ &hf_oran_subsequence_id,
{ "Subsequence ID", "oran_fh_cus.subsequence_id",
FT_UINT8, BASE_DEC,
NULL, 0x7f,
"The subsequence identifier",
HFILL }
},
/* Section 5.4.4.1 */
{ &hf_oran_data_direction,
{ "Data Direction", "oran_fh_cus.data_direction",
FT_UINT8, BASE_DEC,
VALS(data_direction_vals), 0x80,
"The gNB data direction",
HFILL }
},
/* Section 5.4.4.2 */
{ &hf_oran_payload_version,
{"Payload Version", "oran_fh_cus.payloadVersion",
FT_UINT8, BASE_DEC,
NULL, 0x70,
"Payload protocol version valid for the "
"following IEs in the application layer. In this version of the "
"specification payloadVersion=001b shall be used",
HFILL}
},
/* Section 5.4.4.3 */
{&hf_oran_filter_index,
{"Filter Index", "oran_fh_cus.filterIndex",
FT_UINT8, BASE_DEC | BASE_RANGE_STRING,
RVALS(filter_indices), 0x0f,
"An index to the channel filter to be used "
"between IQ data and air interface, both in DL and UL. For most "
"physical channels filterIndex =0000b is used which indexes the "
"standard channel filter, e.g. 100MHz channel filter for 100MHz "
"nominal carrier bandwidth. Another use case is PRACH in UL, where "
"different filter indices can be used for different PRACH formats, "
"assuming that before FFT processing of PRACH data there is a "
"separate PRACH filter or PRACH filter in addition to the standard "
"channel filter in UL. Please note that for PRACH there is typically "
"also a frequency offset (see freqOffset) applied before the "
"PRACH filter. NOTE: Filter index is commanded from lls-CU to RU. "
"Likewise, it is not mandatory to command special filters, and "
"filter index = 0000b is also allowed for PRACH",
HFILL}
},
/* Section 5.4.4.4 */
{&hf_oran_frame_id,
{"Frame ID", "oran_fh_cus.frameId",
FT_UINT8, BASE_DEC,
NULL, 0x00,
"A counter for 10 ms frames (wrapping period 2.56 seconds)",
HFILL}
},
/* Section 5.4.4.5 */
{&hf_oran_subframe_id,
{"Subframe ID", "oran_fh_cus.subframe_id",
FT_UINT8, BASE_DEC,
NULL, 0xf0,
"A counter for 1 ms sub-frames within 10ms frame",
HFILL}
},
/* Section 5.4.4.6 */
{&hf_oran_slot_id,
{"Slot ID", "oran_fh_cus.slotId",
FT_UINT16, BASE_DEC,
NULL, 0x0fc0,
"Slot number within a 1ms sub-frame. All slots "
"in one sub-frame are counted by this parameter, slotId running "
"from 0 to Nslot-1. In this version of the specification the "
"maximum Nslot=16, All other values of the 6 bits are reserved for "
"future use",
HFILL}
},
/* Section 5.4.4.6 */
{&hf_oran_slot_within_frame,
{"Slot within frame", "oran_fh_cus.slot-within-frame",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"Slot within frame, to match DT logs",
HFILL}
},
/* Section 5.4.4.7 */
{&hf_oran_start_symbol_id,
{"Start Symbol ID", "oran_fh_cus.startSymbolId",
FT_UINT8, BASE_DEC,
NULL, 0x3f,
"The first symbol number within slot, to "
"which the information of this message is applies",
HFILL}
},
/* Section 5.4.4.8 */
{&hf_oran_numberOfSections,
{"Number of Sections", "oran_fh_cus.numberOfSections",
FT_UINT8, BASE_DEC,
NULL, 0x00,
"The number of section IDs included in this C-Plane message",
HFILL}
},
/* Section 5.4.4.9 */
{&hf_oran_sectionType,
{"Section Type", "oran_fh_cus.sectionType",
FT_UINT8, BASE_DEC | BASE_RANGE_STRING,
RVALS(section_types), 0x00,
"Determines the characteristics of U-plane data to "
"be transferred or received from a beam with one pattern id",
HFILL}
},
/* Section 5.4.4.10 */
{&hf_oran_udCompHdr,
{"udCompHdr", "oran_fh_cus.udCompHdr",
FT_STRING, BASE_NONE,
NULL, 0x00,
NULL,
HFILL}
},
/* Section 5.4.4.11 */
{&hf_oran_numberOfUEs,
{"Number Of UEs", "oran_fh_cus.numberOfUEs",
FT_UINT8, BASE_DEC,
NULL, 0x00,
"Applies to section type 6 messages and indicates "
"the number of UEs (for which channel information is provided) are "
"included in the message. This allows the parser to determine "
"when the last UE's data has been parsed",
HFILL}
},
/* Section 5.4.4.12 */
{&hf_oran_timeOffset,
{"Time Offset", "oran_fh_cus.timeOffset",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"The time_offset from the start of the slot "
"to the start of the Cyclic Prefix (CP) in number of samples tsample "
"(=1/30.72MHz as specified in 3GPP TS38.211 section 4.1). "
"Because this is denominated in \"samples\" there is no fixed "
"microsecond unit for this parameter; time_offset = \"n\" may be longer "
"or shorter in time depending on the sampling interval (which is "
"a NR capability only, not applicable to LTE). time_offset = time"
"Offset * tsample",
HFILL}
},
/* Section 7.5.2.13 */
{ &hf_oran_frameStructure_fft,
{ "FFT Size", "oran_fh_cus.frameStructure.fft",
FT_UINT8, BASE_HEX | BASE_RANGE_STRING,
RVALS(frame_structure_fft), 0xf0,
"The FFT/iFFT size being used for all IQ data processing related "
"to this message",
HFILL }
},
/* Section 7.5.2.13 */
{ &hf_oran_frameStructure_subcarrier_spacing,
{ "Subcarrier Spacing", "oran_fh_cus.frameStructure.spacing",
FT_UINT8, BASE_HEX | BASE_RANGE_STRING,
RVALS(subcarrier_spacings), 0x0f,
"The sub carrier spacing "
"as well as the number of slots per 1ms sub-frame according "
"to 3GPP TS 38.211, taking for completeness also 3GPP TS 36.211 "
"into account. The parameter \u03bc=0...5 from 3GPP TS 38.211 is "
"extended to apply for PRACH processing",
HFILL }
},
/* Section 7.5.2.14 */
{&hf_oran_cpLength,
{"cpLength", "oran_fh_cus.cpLength",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"cyclic prefix length",
HFILL}
},
/* Section 7.5.3.1 */
{&hf_oran_section_id,
{"Section ID", "oran_fh_cus.sectionId",
FT_UINT16, BASE_DEC,
NULL, 0xfff0,
"Identifies individual sections within the C-Plane "
"message. The purpose of section ID is mapping of U-Plane messages "
"to the corresponding C-Plane message (and Section Type) associated "
"with the data. Two C-Plane sections with same Section ID "
"may be combined and mapped to a common section in a corresponding "
"U-Plane message containing a combined payload for both sections "
"(e.g., for supporting mixed CSI RS and PDSCH). This case is "
"applicable when usage of reMask is complimentary (or orthogonal) "
"and different beam directions (i.e. beamIds) are given the resource "
"elements. NOTE: In case of two sections with same Section ID "
"are combined, both sections shall have same rb, startPrbc, numPrbc "
"and numSymbol IE fields' content",
HFILL}
},
/* Section 7.5.3.2 */
{&hf_oran_rb,
{"RB Indicator", "oran_fh_cus.rb",
FT_UINT8, BASE_DEC,
VALS(rb_vals), 0x08,
"Indicate if every RB is used or every "
"other RB is used. The starting RB is defined by startPrbc and "
"total number of used RBs is defined by numPrbc. Example: RB=1, "
"startPrb=1, numPrb=3, then the PRBs used are 1, 3, and 5",
HFILL}
},
/* Section 7.5.5.3 */
{&hf_oran_symInc,
{"symInc", "oran_fh_cus.symInc",
FT_UINT8, BASE_DEC,
VALS(sym_inc_vals), 0x04,
"Symbol Number Increment Command",
HFILL}
},
/* Section 7.5.3.4 */
{&hf_oran_startPrbc,
{"startPrbc", "oran_fh_cus.startPrbc",
FT_UINT16, BASE_DEC,
NULL, 0x03ff,
"Starting PRB of Control Plane Section",
HFILL}
},
/* Section 7.5.3.5 */
{&hf_oran_reMask,
{"RE Mask", "oran_fh_cus.reMask",
FT_UINT16, BASE_HEX,
NULL, 0xfff0,
"The Resource Element (RE) mask within a "
"PRB. Each bit setting in the reMask indicates if the section control "
"is applicable to the RE sent in U-Plane messages (0=not applicable; "
"1=applicable)",
HFILL}
},
/* Section 7.5.3.6 */
{&hf_oran_numPrbc,
{"numPrbc", "oran_fh_cus.numPrbc",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"Number of contiguous PRBs per data section description",
HFILL}
},
/* Section 7.5.3.7 */
{&hf_oran_numSymbol,
{"Number of Symbols", "oran_fh_cus.numSymbol",
FT_UINT8, BASE_DEC,
NULL, 0x0f,
"Defines number of symbols to which the section "
"control is applicable. At minimum, the section control shall be "
"applicable to at least one symbol. However, possible optimizations "
"could allow for several (up to 14) symbols, if e.g., all 14 "
"symbols use the same beam ID",
HFILL}
},
/* Section 7.5.3.8 */
{&hf_oran_ef,
{"Extension Flag", "oran_fh_cus.ef",
FT_BOOLEAN, 8,
NULL, 0x80,
"Used to indicate if this section will contain "
"both beamforming index and any ex(tension information (ef=1) or "
"just a beamforming index (ewf=0)",
HFILL}
},
/* Section 7.5.3.9 */
{&hf_oran_beamId,
{"Beam ID", "oran_fh_cus.beamId",
FT_UINT16, BASE_DEC,
NULL, 0x7fff,
"Defines the beam pattern to be applied to the U-Plane "
"data. beamId = 0 means no beamforming operation will be "
"performed. Note that the beamId encodes the beamforming to be done "
"on the RU. This beamforming may be digital, analog or both "
"(\"hybrid beamforming\") and the beamId provides all the information "
"necessary for the RU to select the correct beam (or weight table "
"from which to create a beam). The specific mapping of beamId "
"to e.g. weight table, directionality, beam adjacency or any other "
"beam attributes is specific to the RU design and must be conveyed "
"via M-Plane from the RU to lls-CU upon startup",
HFILL}
},
/* Section 5.4.6.2 */
{&hf_oran_extension,
{"Extension", "oran_fh_cus.extension",
FT_STRING, BASE_NONE,
NULL, 0x0,
"Section extension",
HFILL}
},
/* Section 5.4.6.1 */
{&hf_oran_exttype,
{"extType", "oran_fh_cus.extType",
FT_UINT8, BASE_DEC,
VALS(exttype_vals), 0x7f,
"The extension type, which provides additional parameters specific to subject data extension",
HFILL}
},
/* Section 5.4.6.3 */
{&hf_oran_extlen,
{"extLen", "oran_fh_cus.extLen",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"Extension length in 32-bit words",
HFILL}
},
/* Section 5.4.7.1 */
{&hf_oran_bfw,
{"bfw", "oran_fh_cus.bfw",
FT_STRING, BASE_NONE,
NULL, 0x0,
"Set of weights for a particular antenna",
HFILL}
},
/* Section 5.4.7.1.3 */
{&hf_oran_bfw_i,
{"bfwI", "oran_fh_cus.bfwI",
FT_FLOAT, BASE_NONE,
NULL, 0x0,
"In-phase beamforming weight value. The total "
"number of weights in the section is RU-specific and is conveyed "
"from the RU to the lls-CU as part of the initialization procedure "
"via the M-Plane",
HFILL}
},
/* Section 5.4.7.1.4 */
{&hf_oran_bfw_q,
{"bfwQ", "oran_fh_cus.bfwQ",
FT_FLOAT, BASE_NONE,
NULL, 0x0,
"Quadrature beamforming weight value. The "
"total number of weights in the section is RU-specific and is "
"conveyed from the RU to the lls-CU as part of the initialization "
"procedure via the M-Plane",
HFILL}
},
/* Section 7.5.3.10 */
{&hf_oran_ueId,
{"UE ID", "oran_fh_cus.ueId",
FT_UINT16, BASE_HEX_DEC,
NULL, 0x7fff,
"Label for the UE for which the section "
"contents apply. This is used to support channel information "
"sending from the lls-CU to the RU. This is just a label and the "
"specific value has no meaning regarding types of UEs that may be "
"supported within the system",
HFILL}
},
/* Section 7.5.3.11 */
{&hf_oran_freqOffset,
{"Frequency Offset", "oran_fh_cus.freqOffset",
FT_UINT24, BASE_DEC,
NULL, 0x0,
"The frequency offset with respect to the "
"carrier center frequency before additional filtering (e.g. for "
"PRACH) and FFT processing (in UL) in steps of subcarrier spacings"
" ?f. The frequency offset shall be individual per control section. "
"frequency_offset = freqOffset * ?f Note: It may be studied "
"whether this IEs should be individual per control section to allow "
"scheduling of several simultaneous PRACH opportunities with "
"different individual frequency offsets",
HFILL}
},
/* Section 7.5.3.12 */
{&hf_oran_regularizationFactor,
{"Regularization Factor", "oran_fh_cus.regularizationFactor",
FT_INT16, BASE_DEC,
NULL, 0x0,
"Provides a signed value to support MMSE operation "
"within the RU when beamforming weights are supported in the RU, "
"so related to section type 6",
HFILL}
},
/* Section 7.5.3.14 */
{&hf_oran_laaMsgType,
{"LAA Message Type", "oran_fh_cus.laaMsgType",
FT_UINT8, BASE_DEC | BASE_RANGE_STRING,
RVALS(laaMsgTypes), 0xf0,
NULL,
HFILL}
},
/* Section 7.5.3.15 */
{&hf_oran_laaMsgLen,
{"LAA Message Length", "oran_fh_cus.laaMsgLen",
FT_UINT8, BASE_DEC,
NULL, 0x0f,
"Defines number of 32-bit words in the LAA section, "
"where \"0\" means one 32-bit word, \"1\" means 2 32-bit words, etc. "
"- including the byte containing the lssMsgLen parameter",
HFILL}
},
/* Section 7.5.3.16 */
{&hf_oran_lbtHandle,
{"LBT Handle", "oran_fh_cus.lbtHandle",
FT_UINT16, BASE_HEX,
NULL, 0x0,
"Provides a label that is included in the configuration "
"request message (e.g., LBT_PDSCH_REQ, LBT_DRS_REQ) transmitted "
"from the lls-CU to the RU and returned in the corresponding "
"response message (e.g., LBT_PDSCH_RSP, LBT_DRS_RSP)",
HFILL}
},
/* Section 7.5.3.17 */
{&hf_oran_lbtDeferFactor,
{"Defer Factor", "oran_fh_cus.lbtDeferFactor",
FT_UINT8, BASE_DEC,
NULL, 0x1c,
"Defer factor in sensing slots as described in 3GPP TS 36.213 "
"Section 15.1.1. This parameter is used for LBT CAT 4 and can take "
"one of three values: {1,3, 7} based on the priority class. Four "
"priority classes are defined in 3GPP TS 36.213",
HFILL}
},
/* Section 7.5.3.18 */
{&hf_oran_lbtBackoffCounter,
{"Backoff Counter", "oran_fh_cus.lbtBackoffCounter",
FT_UINT16, BASE_DEC,
NULL, 0x03ff,
"LBT backoff counter in sensing slots as described in 3GPP TS 36.213 "
"Section 15.1.1. This parameter is used for LBT CAT 4 and can "
"take one of nine values: {3, 7, 15, 31, 63, 127, 255, 511, 1023} "
"based on the priority class. Four priority classes are defined "
"in 3GPP TS 36.213",
HFILL}
},
/* Section 7.5.3.19 */
{&hf_oran_lbtOffset,
{"LBT Offset", "oran_fh_cus.lbtOffset",
FT_UINT16, BASE_DEC,
NULL, 0xff80,
"LBT start time in microseconds from the beginning of the subframe "
"scheduled by this message",
HFILL}
},
/* Section 7.5.3.20 */
{&hf_oran_MCOT,
{"Maximum Channel Occupancy Time", "oran_fh_cus.MCOT",
FT_UINT8, BASE_DEC,
NULL, 0xf0,
"LTE TXOP duration in subframes as described in 3GPP TS 36.213 "
"Section 15.1.1. The maximum values for this parameter are {2, 3, 8, "
"10} based on the priority class. Four priority classes are "
"defined in 3GPP TS 36.213",
HFILL}
},
/* Section 5.4.5.21 */
{&hf_oran_txopSfnSfEnd,
{"TXOP SFN/SF End", "oran_fh_cus.txopSfnSfEnd",
FT_UINT16, BASE_DEC,
NULL, 0x0fff,
"SFN/SF by which the TXOP must end",
HFILL}
},
/* Section 5.4.5.22 */
{&hf_oran_lbtMode,
{"LBT Mode", "oran_fh_cus.lbtMode",
FT_UINT8, BASE_DEC,
NULL, 0x20,
"Part of multi-carrier support. Indicates whether full LBT process "
"is carried or partial LBT process is carried (multi carrier mode "
"B according to 3GPP TS 36.213 Section 15.1.5.2). 0 - full LBT "
"(regular LBT). 1 - Partial LBT (looking back 25usec prior to "
"transmission as indicated in 3GPP TS 36.213 section 15.1.5.2)",
HFILL}
},
/* Section 5.4.5.23 */
{&hf_oran_sfnSfEnd,
{"SFN/SF End", "oran_fh_cus.sfnSfEnd",
FT_UINT16, BASE_DEC,
NULL, 0x0fff,
"SFN/SF by which the DRS window must end",
HFILL}
},
/* Section 5.4.5.24 */
{&hf_oran_lbtResult,
{"LBT Result", "oran_fh_cus.lbtResult",
FT_UINT8, BASE_DEC,
NULL, 0x80,
"LBT result of SFN/SF. 0 - SUCCESS - indicates that the channel was "
"successfully acquired. 1 - FAILURE - indicates failure to "
"acquire the channel by the end of SFN/SF",
HFILL}
},
/* Section 5.4.5.25 */
{&hf_oran_lteTxopSymbols,
{"LTE TXOP Symbols", "oran_fh_cus.lteTxopSymbols",
FT_UINT16, BASE_DEC,
NULL, 0x3fff,
"Actual LTE TXOP in symbols. Valid when LBT result = SUCCESS",
HFILL}
},
/* Section 5.4.5.26 */
{&hf_oran_initialPartialSF,
{"Initial partial SF", "oran_fh_cus.initialPartialSF",
FT_UINT8, BASE_DEC,
NULL, 0x40,
"Indicates whether the initial SF in the LBT process is full or "
"partial. 0 - full SF (two slots, 14 symbols). 1 - partial SF (only "
"second slot, last 7 symbols)",
HFILL}
},
/* Section 5.4.5.27 */
{&hf_oran_reserved,
{"reserved", "oran_fh_cus.reserved",
FT_UINT64, BASE_HEX,
NULL, 0x0,
NULL,
HFILL}
},
{&hf_oran_reserved_1bit,
{"reserved", "oran_fh_cus.reserved",
FT_UINT8, BASE_HEX,
NULL, 0x80,
NULL,
HFILL}
},
{&hf_oran_reserved_2bits,
{"reserved", "oran_fh_cus.reserved",
FT_UINT8, BASE_HEX,
NULL, 0xc0,
NULL,
HFILL}
},
{&hf_oran_reserved_4bits,
{"reserved", "oran_fh_cus.reserved",
FT_UINT8, BASE_HEX,
NULL, 0xf0,
NULL,
HFILL}
},
{&hf_oran_reserved_6bits,
{"reserved", "oran_fh_cus.reserved",
FT_UINT8, BASE_HEX,
NULL, 0xfc,
NULL,
HFILL}
},
{&hf_oran_ext11_reserved,
{"Reserved", "oran_fh_cus.reserved",
FT_UINT8, BASE_HEX,
NULL, 0x3f,
NULL,
HFILL}
},
/* 7.7.1.2 bfwCompHdr (beamforming weight compression header) */
{&hf_oran_bfwCompHdr,
{"bfwCompHdr", "oran_fh_cus.bfwCompHdr",
FT_STRING, BASE_NONE,
NULL, 0x0,
NULL,
HFILL}
},
/* Section 5.4.7.1.1 */
{&hf_oran_bfwCompHdr_iqWidth,
{"IQ Bit Width", "oran_fh_cus.bfwCompHdr_iqWidth",
FT_UINT8, BASE_HEX,
VALS(bfw_comp_headers_iq_width), 0xf0,
"Defines the compression method and IQ bit width "
"for the beamforming weights in the specific section in the C-Plane "
"message. In this way each set of weights may employ a separate "
"compression method. Note that for the block compression methods, "
"the block size is the entire vector of beamforming weights, not "
"some subset of them",
HFILL}
},
/* Section 5.4.7.1.1 */
{&hf_oran_bfwCompHdr_compMeth,
{"Compression Method", "oran_fh_cus.bfwCompHdr_compMeth",
FT_UINT8, BASE_HEX,
VALS(bfw_comp_headers_comp_meth), 0x0f,
"Defines the compression method and IQ bit width for "
"the beamforming weights in the specific section in the C-Plane "
"message. In this way each set of weights may employ a separate "
"compression method. Note that for the block compression methods, "
"the block size is the entire vector of beamforming weights, "
"not some subset of them",
HFILL}
},
{&hf_oran_num_bf_weights,
{"Number of BF weights", "oran_fh_cus.num_bf_weights",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"This is the number of BF weights per antenna - currently set in a preference",
HFILL}
},
/* Section 5.4.7.1.2 */
{&hf_oran_blockScaler,
{"blockScaler", "oran_fh_cus.blockScaler",
FT_UINT8, BASE_HEX,
NULL, 0x0,
"unsigned, 1 integer bit, 7 fractional bits",
HFILL}
},
{&hf_oran_compBitWidth,
{"compBitWidth", "oran_fh_cus.compBitWidth",
FT_UINT8, BASE_DEC,
NULL, 0xf0,
"Length of I bits and length of Q bits after compression over entire PRB",
HFILL}
},
{&hf_oran_compShift,
{"compShift", "oran_fh_cus.compShift",
FT_UINT8, BASE_DEC,
NULL, 0x0f,
"The shift applied to the entire PRB",
HFILL}
},
/* Section 5.4.7.6 */
{&hf_oran_repetition,
{"repetition", "oran_fh_cus.repetition",
FT_BOOLEAN, 1,
NULL, 0x0,
"Repetition of a highest priority data section inside a C-Plane message",
HFILL}
},
{&hf_oran_rbgSize,
{"rbgSize", "oran_fh_cus.rbgSize",
FT_UINT8, BASE_HEX,
VALS(rbg_size_vals), 0x70,
"Number of PRBs of the resource block groups allocated by the bit mask",
HFILL}
},
{&hf_oran_rbgMask,
{"rbgMask", "oran_fh_cus.rbgMask",
FT_UINT32, BASE_HEX,
NULL, 0x0fffffff,
"Each bit indicates whether a corresponding resource block group is present",
HFILL}
},
{&hf_oran_noncontig_priority,
{"priority", "oran_fh_cus.priority",
FT_UINT8, BASE_HEX,
VALS(priority_vals), 0xc0,
NULL,
HFILL}
},
{&hf_oran_symbolMask,
{"symbolMask", "oran_fh_cus.symbolMask",
FT_UINT16, BASE_HEX,
NULL, 0x3fff,
"Each bit indicates whether the rbgMask applies to a given symbol in the slot",
HFILL}
},
/* 7.7.22.1 */
{&hf_oran_ack_nack_req_id,
{"ackNackReqId", "oran_fh_cus.ackNackReqId",
FT_UINT16, BASE_HEX,
NULL, 0x0,
"Indicates the ACK/NACK request ID of a section description",
HFILL}
},
/* Section 5.4.7.12 */
{&hf_oran_off_start_prb_num_prb_pair,
{"Pair", "oran_fh_cus.offStartPrb_numPrb",
FT_STRING, BASE_NONE,
NULL, 0x0,
"Pair of offStartPrb and numPrb",
HFILL}
},
{&hf_oran_off_start_prb,
{"offStartPrb", "oran_fh_cus.offStartPrb",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"Offset of PRB range start",
HFILL}
},
{&hf_oran_num_prb,
{"numPrb", "oran_fh_cus.numPrb",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"Number of PRBs in PRB range",
HFILL}
},
/* symbolId 8.3.3.7 */
{&hf_oran_symbolId,
{"Symbol Identifier", "oran_fh_cus.symbolId",
FT_UINT8, BASE_HEX,
NULL, 0x3f,
"Identifies a symbol number within a slot",
HFILL}
},
/* startPrbu 8.3.3.11 */
{&hf_oran_startPrbu,
{"Starting PRB of User Plane Section", "oran_fh_cus.startPrbu",
FT_UINT16, BASE_DEC,
NULL, 0x03ff,
"The starting PRB of a user plane section. For "
"one C-Plane message, there may be multiple U-Plane messages "
"associated with it and requiring defining from which PRB the contained "
"IQ data are applicable",
HFILL}
},
/* numPrbu 8.3.3.12 */
{ &hf_oran_numPrbu,
{"Number of PRBs per User Plane Section", "oran_fh_cus.numPrbu",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"Defines the PRBs where the user plane section is valid",
HFILL}
},
/* 7.7.1.3 */
{&hf_oran_bfwCompParam,
{"bfwCompParam", "oran_fh_cus.bfwCompParam",
FT_STRING, BASE_NONE,
NULL, 0x0,
"Beamforming weight compression parameter",
HFILL}
},
/* 6.3.3.13 */
{ &hf_oran_udCompHdrMeth,
{"User Data Compression Method", "oran_fh_cus.udCompHdrMeth",
FT_UINT8, BASE_DEC | BASE_RANGE_STRING,
RVALS(ud_comp_header_meth), 0x0f,
"Defines the compression method for "
"the user data in every section in the C-Plane message",
HFILL}
},
/* 6.3.3.13 */
{&hf_oran_udCompHdrIqWidth,
{"User Data IQ width", "oran_fh_cus.udCompHdrWidth",
FT_UINT8, BASE_DEC | BASE_RANGE_STRING,
RVALS(ud_comp_header_width), 0xf0,
"Defines the IQ bit width "
"for the user data in every section in the C-Plane message",
HFILL}
},
#if 0
/* Section 6.3.3.14 */
{&hf_oran_udCompParam,
{"User Data Compression Parameter", "oran_fh_cus.udCompParam",
FT_UINT8, BASE_DEC | BASE_RANGE_STRING,
RVALS(udCompParams), 0x0,
"Applies to whatever compression method is specified "
"by the associated sectionID's compMeth value",
HFILL}
},
#endif
/* Section 6.3.3.15 */
{&hf_oran_iSample,
{"iSample", "oran_fh_cus.iSample",
FT_FLOAT, BASE_NONE,
NULL, 0x0,
"In-phase Sample value", HFILL}
},
/* Section 6.3.3.16 */
{&hf_oran_qSample,
{"qSample", "oran_fh_cus.qSample",
FT_FLOAT, BASE_NONE,
NULL, 0x0,
"Quadrature Sample value", HFILL}
},
{ &hf_oran_rsvd8,
{ "Reserved", "oran_fh_cus.reserved8",
FT_UINT8, BASE_HEX,
NULL, 0x00,
"Reserved for future use", HFILL }
},
{ &hf_oran_rsvd16,
{ "Reserved", "oran_fh_cus.reserved16",
FT_UINT16, BASE_HEX,
NULL, 0x00,
"Reserved for future use", HFILL }
},
{ &hf_oran_exponent,
{ "Exponent", "oran_fh_cus.exponent",
FT_UINT8, BASE_DEC,
NULL, 0x0f,
"Exponent applicable to the I & Q mantissas. "
"NOTE : Exponent is used for all mantissa sample sizes(i.e. 6bit "
"- 16bit). Likewise, a native \"uncompressed\" format is not supported "
"within this specification",
HFILL }
},
{ &hf_oran_iq_user_data,
{ "IQ User Data", "oran_fh_cus.iq_user_data",
FT_BYTES, BASE_NONE,
NULL, 0x0,
"Used for the In-phase and Quadrature sample "
"mantissa. Twelve I/Q Samples are included per resource block. The width "
"of the mantissa can be between 6 and 16 bits",
HFILL }
},
{ &hf_oran_c_eAxC_ID,
{ "c_eAxC_ID", "oran_fh_cus.c_eaxc_id",
FT_STRING, BASE_NONE,
NULL, 0x0,
"This is a calculated field for the c_eAxC ID, which identifies the message stream",
HFILL } },
{ &hf_oran_refa,
{ "RefA", "oran_fh_cus.refa",
FT_STRING, BASE_NONE,
NULL, 0x0,
"This is a calculated field for the RefA ID, which provides a reference in time",
HFILL }
},
{ &hf_oran_disable_bfws,
{ "disableBFWs", "oran_fh_cus.disableBFWs",
FT_BOOLEAN, 8,
NULL, 0x80,
"Indicate if BFWs under section extension are disabled",
HFILL }
},
{ &hf_oran_rad,
{ "RAD", "oran_fh_cus.rad",
FT_BOOLEAN, 8,
NULL, 0x40,
"Reset After PRB Discontinuity",
HFILL }
},
{ &hf_oran_num_bund_prbs,
{ "numBundPrb", "oran_fh_cus.numBundPrbs",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"Number of bundled PRBs per BFWs",
HFILL }
},
{ &hf_oran_beam_id,
{ "beamId", "oran_fh_cus.beamId",
FT_UINT16, BASE_DEC,
NULL, 0x7fff,
NULL,
HFILL }
},
{ &hf_oran_num_weights_per_bundle,
{ "Num weights per bundle", "oran_fh_cus.num_weights_per_bundle",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"From dissector preference",
HFILL }
},
{ &hf_oran_samples_prb,
{"PRB", "oran_fh_cus.prb",
FT_STRING, BASE_NONE,
NULL, 0x0,
"Grouping of samples for a particular PRB",
HFILL}
},
{&hf_oran_ciSample,
{"ciSample", "oran_fh_cus.ciSample",
FT_STRING, BASE_NONE,
NULL, 0x0,
"Sample (I and Q values)",
HFILL}
},
{&hf_oran_ciIsample,
{"ciIsample", "oran_fh_cus.ciISample",
FT_FLOAT, BASE_NONE,
NULL, 0x0,
"Channel information complex value - I part",
HFILL}
},
{&hf_oran_ciQsample,
{ "ciQsample", "oran_fh_cus.ciQSample",
FT_FLOAT, BASE_NONE,
NULL, 0x0,
"Channel information complex value - Q part",
HFILL}
},
/* 7.7.10.2 */
{ &hf_oran_beamGroupType,
{ "beamGroupType", "oran_fh_cus.beamGroupType",
FT_UINT8, BASE_DEC,
VALS(beam_group_type_vals), 0xc0,
"The type of beam grouping",
HFILL }
},
/* 7.7.10.3 */
{ &hf_oran_numPortc,
{ "numPortc", "oran_fh_cus.numPortc",
FT_UINT8, BASE_DEC,
NULL, 0x3f,
"The number of eAxC ports",
HFILL }
},
/* 7.7.4.2 (1 bit) */
{ &hf_oran_csf,
{ "csf", "oran_fh_cus.csf",
FT_BOOLEAN, 1,
NULL, 0x0,
"constellation shift flag",
HFILL }
},
/* 7.7.4.3 */
{ &hf_oran_modcompscaler,
{ "modCompScaler", "oran_fh_cus.modcompscaler",
FT_UINT16, BASE_DEC,
NULL, 0x7fff,
"modulation compression scaler value",
HFILL }
},
/* mcScaleReMask 7.7.5.2 (12 bits) */
{ &hf_oran_mc_scale_re_mask,
{ "mcScaleReMask", "oran_fh_cus.mcscaleremask",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"modulation compression power scale RE mask",
HFILL }
},
/* mcScaleOffset 7.7.5.4 (15 bits) */
{ &hf_oran_mc_scale_offset,
{ "mcScaleOffset", "oran_fh_cus.mcscaleoffset",
FT_UINT24, BASE_DEC,
NULL, 0x0,
"scaling value for modulation compression",
HFILL }
},
/* eAxCmask (7.7.7.2) */
{ &hf_oran_eAxC_mask,
{ "eAxC Mask", "oran_fh_cus.eaxcmask",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"Which eAxC_ID values the C-Plane message applies to",
HFILL }
},
/* technology (interface name) 7.7.9.2 */
{ &hf_oran_technology,
{ "Technology", "oran_fh_cus.technology",
FT_UINT8, BASE_DEC,
VALS(interface_name_vals), 0x0,
"Interface name (that C-PLane section applies to)",
HFILL }
},
/* Exttype 14 (7.7.14.2) */
{ &hf_oran_nullLayerInd,
{ "nullLayerInd", "oran_fh_cus.nulllayerind",
FT_BOOLEAN, 8,
NULL, 0x0,
"Whether corresponding layer is nulling-layer or not",
HFILL }
},
/* Exttype 19 (7.7.19.8) */
{ &hf_oran_portReMask,
{ "portReMask", "oran_fh_cus.portReMask",
FT_BOOLEAN, 16,
TFS(&tfs_set_notset), 0x0fff,
"RE bitmask per port",
HFILL }
},
{ &hf_oran_portSymbolMask,
{ "portSymbolMask", "oran_fh_cus.portSymbolMask",
FT_BOOLEAN, 16,
TFS(&tfs_set_notset), 0x3fff,
"Symbol bitmask port port",
HFILL }
},
{ &hf_oran_ext19_port,
{"Port", "oran_fh_cus.ext19.port",
FT_STRING, BASE_NONE,
NULL, 0x0,
"Entry for a given port in ext19",
HFILL}
},
/* Ext 13 */
{ &hf_oran_prb_allocation,
{"PRB allocation", "oran_fh_cus.prb-allocation",
FT_STRING, BASE_NONE,
NULL, 0x0,
NULL,
HFILL}
},
{ &hf_oran_nextSymbolId,
{ "nextSymbolId", "oran_fh_cus.nextSymbolId",
FT_UINT8, BASE_DEC,
NULL, 0x3c,
"offset of PRB range start",
HFILL }
},
{ &hf_oran_nextStartPrbc,
{ "nextStartPrbc", "oran_fh_cus.nextStartPrbc",
FT_UINT16, BASE_DEC,
NULL, 0x03ff,
"number of PRBs in PRB range",
HFILL }
},
/* Puncturing patters as appears in SE 20 */
{&hf_oran_puncPattern,
{"puncPattern", "oran_fh_cus.puncPattern",
FT_STRING, FT_NONE,
NULL, 0x0,
NULL,
HFILL}
},
/* 7.7.20.2 numPuncPatterns */
{ &hf_oran_numPuncPatterns,
{ "numPuncPatterns", "oran_fh_cus.numPuncPatterns",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"number of puncturing patterns",
HFILL }
},
/* 7.7.20.3 symbolMask */
{&hf_oran_symbolMask_ext20,
{"symbolMask", "oran_fh_cus.symbolMask",
FT_UINT16, BASE_HEX,
NULL, 0xfffc,
"Bitmask where each bit indicates the symbols associated with the puncturing pattern",
HFILL}
},
/* 7.7.20.4 startPuncPrb */
{&hf_oran_startPuncPrb,
{"numPuncPrb", "oran_fh_cus.startPuncPrb",
FT_UINT16, BASE_DEC,
NULL, 0x03ff,
"starting PRB to which one puncturing pattern applies",
HFILL}
},
/* 7.7.20.5 numPuncPrb */
{&hf_oran_numPuncPrb,
{"numPuncPrb", "oran_fh_cus.numPuncPrb",
FT_UINT24, BASE_DEC,
NULL, 0x03ffff,
"the number of PRBs of the puncturing pattern",
HFILL}
},
/* 7.7.20.6 puncReMask */
{&hf_oran_puncReMask,
{"puncReMask", "oran_fh_cus.punkReMask",
FT_UINT16, BASE_DEC,
NULL, 0xffc0,
"puncturing pattern RE mask",
HFILL}
},
/* 7.7.20.4 rbgIncl */
{&hf_oran_RbgIncl,
{"rbgIncl", "oran_fh_cus.rbgIncl",
FT_BOOLEAN, 8,
NULL, 0x01,
"rbg included flag",
HFILL}
},
/* 7.7.21.2 ciPrbGroupSize */
{&hf_oran_ci_prb_group_size,
{"ciPrbGroupSize", "oran_fh_cus.ciPrbGroupSize",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"channel information PRB group size",
HFILL}
},
/* 7.7.17.2 numUeID */
{&hf_oran_num_ueid,
{"numUeID", "oran_fh_cus.numUeID",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"number of ueIDs per user",
HFILL}
},
/* 7.7.16.2 antMask */
{&hf_oran_antMask,
{"antMask", "oran_fh_cus.antMask",
FT_UINT64, BASE_HEX,
NULL, 0xffffffffffffffff,
"indices of antennas to be pre-combined per RX endpoint",
HFILL}
},
/* 7.7.18.2 transmissionWindowOffset */
{&hf_oran_transmissionWindowOffset,
{"transmissionWindowOffset", "oran_fh_cus.transmissionWindowOffset",
FT_UINT16, BASE_DEC,
NULL, 0x0,
"start of the transmission window as an offset to when the transmission window would have been without this parameter, i.e. (Ta3_max - Ta3_min)",
HFILL}
},
/* 7.7.18.3 transmissionWindowSize */
{&hf_oran_transmissionWindowSize,
{"transmissionWindowSize", "oran_fh_cus.transmissionWindowSize",
FT_UINT16, BASE_DEC,
NULL, 0x3fff,
"size of the transmission window in resolution µs",
HFILL}
},
/* 7.7.18.4 toT */
{&hf_oran_toT,
{"toT", "oran_fh_cus.toT",
FT_UINT8, BASE_DEC,
VALS(type_of_transmission_vals), 0x03,
"type of transmission",
HFILL}
},
/* 7.7.2.2 bfaCompHdr */
{&hf_oran_bfaCompHdr,
{"bfaCompHdr", "oran_fh_cus.bfaCompHdr",
FT_STRING, BASE_NONE,
NULL, 0x0,
"beamforming attributes compression header",
HFILL}
},
/* 7.7.2.2-2: bfAzPtWidth */
{&hf_oran_bfAzPtWidth,
{"bfAzPtWidth", "oran_fh_cus.bfAzPtWidth",
FT_UINT8, BASE_DEC,
VALS(bfa_bw_vals), 0x38,
NULL,
HFILL}
},
/* 7.7.2.2-3: bfZePtWidth */
{&hf_oran_bfZePtWidth,
{"bfZePtWidth", "oran_fh_cus.bfZePtWidth",
FT_UINT8, BASE_DEC,
VALS(bfa_bw_vals), 0x07,
NULL,
HFILL}
},
/* 7.7.2.2-4: bfAz3ddWidth */
{&hf_oran_bfAz3ddWidth,
{"bfAz3ddWidth", "oran_fh_cus.bfAz3ddWidth",
FT_UINT8, BASE_DEC,
VALS(bfa_bw_vals), 0x38,
NULL,
HFILL}
},
/* 7.7.2.2-5: bfZe3ddWidth */
{&hf_oran_bfZe3ddWidth,
{"bfZe3ddWidth", "oran_fh_cus.bfZe3ddWidth",
FT_UINT8, BASE_DEC,
VALS(bfa_bw_vals), 0x07,
NULL,
HFILL}
},
/* 7.7.2.3 bfAzPt */
{&hf_oran_bfAzPt,
{"bfAzPt", "oran_fh_cus.bfAzPt",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"beamforming azimuth pointing parameter",
HFILL}
},
/* 7.7.2.4 bfZePt */
{&hf_oran_bfZePt,
{"bfZePt", "oran_fh_cus.bfZePt",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"beamforming zenith pointing parameter",
HFILL}
},
/* 7.7.2.5 bfAz3dd */
{&hf_oran_bfAz3dd,
{"bfAz3dd", "oran_fh_cus.bfAz3dd",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"beamforming azimuth beamwidth parameter",
HFILL}
},
/* 7.7.2.6 bfZe3dd */
{&hf_oran_bfZe3dd,
{"bfZe3dd", "oran_fh_cus.bfZe3dd",
FT_UINT8, BASE_DEC,
NULL, 0x0,
"beamforming zenith beamwidth parameter",
HFILL}
},
/* 7.7.2.7 bfAzSl */
{&hf_oran_bfAzSl,
{"bfAzSl", "oran_fh_cus.bfAzSl",
FT_UINT8, BASE_DEC,
VALS(sidelobe_suppression_vals), 0x38,
"beamforming azimuth sidelobe parameter",
HFILL}
},
/* 7.7.2.8 bfZeSl */
{&hf_oran_bfZeSl,
{"bfZeSl", "oran_fh_cus.bfZeSl",
FT_UINT8, BASE_DEC,
VALS(sidelobe_suppression_vals), 0x38,
"beamforming zenith sidelobe parameter",
HFILL}
}
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_oran,
&ett_oran_ecpri_pcid,
&ett_oran_ecpri_rtcid,
&ett_oran_ecpri_seqid,
&ett_oran_section_type,
&ett_oran_u_timing,
&ett_oran_u_section,
&ett_oran_u_prb,
&ett_oran_section,
&ett_oran_iq,
&ett_oran_c_section_extension,
&ett_oran_bfw,
&ett_oran_offset_start_prb_num_prb,
&ett_oran_prb_cisamples,
&ett_oran_cisample,
&ett_oran_udcomphdr,
&ett_oran_bfwcomphdr,
&ett_oran_bfwcompparam,
&ett_oran_ext19_port,
&ett_oran_prb_allocation,
&ett_oran_punc_pattern,
&ett_oran_bfacomphdr
};
expert_module_t* expert_oran;
static ei_register_info ei[] = {
{ &ei_oran_invalid_bfw_iqwidth, { "oran_fh_cus.bfw_iqwidth_invalid", PI_MALFORMED, PI_ERROR, "Invalid IQ Width", EXPFILL }},
{ &ei_oran_invalid_num_bfw_weights, { "oran_fh_cus.num_bf_weights_invalid", PI_MALFORMED, PI_ERROR, "Invalid number of BF Weights", EXPFILL }},
{ &ei_oran_unsupported_bfw_compression_method, { "oran_fh_cus.unsupported_bfw_compression_method", PI_UNDECODED, PI_WARN, "Unsupported BFW Compression Method", EXPFILL }},
{ &ei_oran_invalid_sample_bit_width, { "oran_fh_cus.invalid_sample_bit_width", PI_UNDECODED, PI_ERROR, "Unsupported sample bit width", EXPFILL }},
{ &ei_oran_reserved_numBundPrb, { "oran_fh_cus.reserved_numBundPrb", PI_MALFORMED, PI_ERROR, "Reserved value of numBundPrb", EXPFILL }},
{ &ei_oran_extlen_wrong, { "oran_fh_cus.extlen_wrong", PI_MALFORMED, PI_ERROR, "extlen doesn't match number of dissected bytes", EXPFILL }},
{ &ei_oran_invalid_eaxc_bit_width, { "oran_fh_cus.invalid_exac_bit_width", PI_UNDECODED, PI_ERROR, "Inconsistent eAxC bit width", EXPFILL }},
{ &ei_oran_extlen_zero, { "oran_fh_cus.extlen_zero", PI_MALFORMED, PI_ERROR, "extlen - zero is reserved value", EXPFILL }},
{ &ei_oran_rbg_size_reserved, { "oran_fh_cus.rbg_size_reserved", PI_MALFORMED, PI_ERROR, "rbgSize - zero is reserved value", EXPFILL }},
{ &ei_oran_frame_length, { "oran_fh_cus.frame_length", PI_MALFORMED, PI_ERROR, "there should be 0-3 bytes remaining after PDU in frame", EXPFILL }},
};
/* Register the protocol name and description */
proto_oran = proto_register_protocol("O-RAN Fronthaul CUS", "O-RAN FH CUS", "oran_fh_cus");
/* Allow dissector to find be found by name. */
register_dissector("oran_fh_cus", dissect_oran, proto_oran);
/* Required function calls to register the header fields and subtrees */
proto_register_field_array(proto_oran, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_oran = expert_register_protocol(proto_oran);
expert_register_field_array(expert_oran, ei, array_length(ei));
module_t * oran_module = prefs_register_protocol(proto_oran, NULL);
/* Register bit width/compression preferences separately by direction. */
prefs_register_uint_preference(oran_module, "oran.du_port_id_bits", "DU Port ID bits [a]",
"The bit width of DU Port ID - sum of a,b,c&d (eAxC) must be 16", 10, &pref_du_port_id_bits);
prefs_register_uint_preference(oran_module, "oran.bandsector_id_bits", "BandSector ID bits [b]",
"The bit width of BandSector ID - sum of a,b,c&d (eAxC) must be 16", 10, &pref_bandsector_id_bits);
prefs_register_uint_preference(oran_module, "oran.cc_id_bits", "CC ID bits [c]",
"The bit width of CC ID - sum of a,b,c&d (eAxC) must be 16", 10, &pref_cc_id_bits);
prefs_register_uint_preference(oran_module, "oran.ru_port_id_bits", "RU Port ID bits [d]",
"The bit width of RU Port ID - sum of a,b,c&d (eAxC) must be 16", 10, &pref_ru_port_id_bits);
prefs_register_uint_preference(oran_module, "oran.iq_bitwidth_up", "IQ Bitwidth Uplink",
"The bit width of a sample in the Uplink (if no udcompHdr)", 10, &pref_sample_bit_width_uplink);
prefs_register_enum_preference(oran_module, "oran.ud_comp_up", "Uplink User Data Compression",
"Uplink User Data Compression", &pref_iqCompressionUplink, compression_options, TRUE);
prefs_register_bool_preference(oran_module, "oran.ud_comp_hdr_up", "udCompHdr field is present for uplink",
"The udCompHdr field in U-Plane messages may or may not be present, depending on the "
"configuration of the O-RU. This preference instructs the dissector to expect "
"this field to be present in uplink messages", &pref_includeUdCompHeaderUplink);
prefs_register_uint_preference(oran_module, "oran.iq_bitwidth_down", "IQ Bitwidth Downlink",
"The bit width of a sample in the Downlink (if no udcompHdr)", 10, &pref_sample_bit_width_downlink);
prefs_register_enum_preference(oran_module, "oran.ud_comp_down", "Downlink User Data Compression",
"Downlink User Data Compression", &pref_iqCompressionDownlink, compression_options, TRUE);
prefs_register_bool_preference(oran_module, "oran.ud_comp_hdr_down", "udCompHdr field is present for downlink",
"The udCompHdr field in U-Plane messages may or may not be present, depending on the "
"configuration of the O-RU. This preference instructs the dissector to expect "
"this field to be present in downlink messages", &pref_includeUdCompHeaderDownlink);
prefs_register_uint_preference(oran_module, "oran.rbs_in_uplane_section", "Total RBs in User-Plane data section",
"This is used if numPrbu is signalled as 0", 10, &pref_data_plane_section_total_rbs);
prefs_register_uint_preference(oran_module, "oran.num_weights_per_bundle", "Number of weights per bundle",
"Used in decoding of section extension type 11 (Flexible BF weights)", 10, &pref_num_weights_per_bundle);
prefs_register_uint_preference(oran_module, "oran.num_bf_antennas", "Number of BF Antennas",
"Number of BF Antennas (used for C section type 6)", 10, &pref_num_bf_antennas);
prefs_register_bool_preference(oran_module, "oran.show_iq_samples", "Show IQ Sample values",
"When enabled, for U-Plane frames show each I and Q value in PRB", &pref_showIQSampleValues);
prefs_register_obsolete_preference(oran_module, "oran.num_bf_weights");
flow_states_table = wmem_tree_new_autoreset(wmem_epan_scope(), wmem_file_scope());
}
/* Simpler form of proto_reg_handoff_oran which can be used if there are
* no prefs-dependent registration function calls. */
void
proto_reg_handoff_oran(void)
{
create_dissector_handle(dissect_oran, proto_oran);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local Variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/