wireshark/epan/dissectors/asn1/kerberos/packet-kerberos-template.c

4761 lines
148 KiB
C

/* packet-kerberos.c
* Routines for Kerberos
* Wes Hardaker (c) 2000
* wjhardaker@ucdavis.edu
* Richard Sharpe (C) 2002, rsharpe@samba.org, modularized a bit more and
* added AP-REQ and AP-REP dissection
*
* Ronnie Sahlberg (C) 2004, major rewrite for new ASN.1/BER API.
* decryption of kerberos blobs if keytab is provided
*
* See RFC 1510, and various I-Ds and other documents showing additions,
* e.g. ones listed under
*
* http://clifford.neuman.name/krb-revisions/
*
* and
*
* https://tools.ietf.org/html/draft-ietf-krb-wg-kerberos-clarifications-07
*
* and
*
* https://tools.ietf.org/html/draft-ietf-krb-wg-kerberos-referrals-05
*
* Some structures from RFC2630
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
/*
* Some of the development of the Kerberos protocol decoder was sponsored by
* Cable Television Laboratories, Inc. ("CableLabs") based upon proprietary
* CableLabs' specifications. Your license and use of this protocol decoder
* does not mean that you are licensed to use the CableLabs'
* specifications. If you have questions about this protocol, contact
* jf.mule [AT] cablelabs.com or c.stuart [AT] cablelabs.com for additional
* information.
*/
#include <config.h>
#include <stdio.h>
// krb5.h needs to be included before the defines in packet-kerberos.h
#if defined(HAVE_HEIMDAL_KERBEROS) || defined(HAVE_MIT_KERBEROS)
#ifdef _WIN32
/* prevent redefinition warnings in krb5's win-mac.h */
#define SSIZE_T_DEFINED
#endif /* _WIN32 */
#include <krb5.h>
#endif
#include <epan/packet.h>
#include <epan/exceptions.h>
#include <epan/strutil.h>
#include <epan/conversation.h>
#include <epan/asn1.h>
#include <epan/expert.h>
#include <epan/prefs.h>
#include <wsutil/wsgcrypt.h>
#include <wsutil/file_util.h>
#include <wsutil/str_util.h>
#include <wsutil/pint.h>
#include "packet-kerberos.h"
#include "packet-netbios.h"
#include "packet-tcp.h"
#include "packet-ber.h"
#include "packet-pkinit.h"
#include "packet-cms.h"
#include "packet-windows-common.h"
#include "read_keytab_file.h"
#include "packet-dcerpc-netlogon.h"
#include "packet-dcerpc.h"
#include "packet-gssapi.h"
#include "packet-x509af.h"
#define KEY_USAGE_FAST_REQ_CHKSUM 50
#define KEY_USAGE_FAST_ENC 51
#define KEY_USAGE_FAST_REP 52
#define KEY_USAGE_FAST_FINISHED 53
#define KEY_USAGE_ENC_CHALLENGE_CLIENT 54
#define KEY_USAGE_ENC_CHALLENGE_KDC 55
void proto_register_kerberos(void);
void proto_reg_handoff_kerberos(void);
#define UDP_PORT_KERBEROS 88
#define TCP_PORT_KERBEROS 88
#define ADDRESS_STR_BUFSIZ 256
typedef struct kerberos_key {
guint32 keytype;
int keylength;
const guint8 *keyvalue;
} kerberos_key_t;
typedef void (*kerberos_key_save_fn)(tvbuff_t *tvb _U_, int offset _U_, int length _U_,
asn1_ctx_t *actx _U_, proto_tree *tree _U_,
int parent_hf_index _U_,
int hf_index _U_);
typedef struct {
guint32 msg_type;
gboolean is_win2k_pkinit;
guint32 errorcode;
gboolean try_nt_status;
guint32 etype;
guint32 padata_type;
guint32 is_enc_padata;
guint32 enctype;
kerberos_key_t key;
proto_tree *key_tree;
proto_item *key_hidden_item;
tvbuff_t *key_tvb;
kerberos_callbacks *callbacks;
guint32 ad_type;
guint32 addr_type;
guint32 checksum_type;
#ifdef HAVE_KERBEROS
enc_key_t *last_decryption_key;
enc_key_t *last_added_key;
#endif
gint save_encryption_key_parent_hf_index;
kerberos_key_save_fn save_encryption_key_fn;
guint learnt_key_ids;
guint missing_key_ids;
wmem_list_t *decryption_keys;
wmem_list_t *learnt_keys;
wmem_list_t *missing_keys;
guint32 within_PA_TGS_REQ;
#ifdef HAVE_KERBEROS
enc_key_t *PA_TGS_REQ_key;
enc_key_t *PA_TGS_REQ_subkey;
#endif
guint32 fast_type;
guint32 fast_armor_within_armor_value;
#ifdef HAVE_KERBEROS
enc_key_t *PA_FAST_ARMOR_AP_key;
enc_key_t *PA_FAST_ARMOR_AP_subkey;
enc_key_t *fast_armor_key;
enc_key_t *fast_strengthen_key;
#endif
} kerberos_private_data_t;
static dissector_handle_t kerberos_handle_udp;
/* Forward declarations */
static int dissect_kerberos_Applications(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_AuthorizationData(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_PA_ENC_TIMESTAMP(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
#ifdef HAVE_KERBEROS
static int dissect_kerberos_PA_ENC_TS_ENC(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
#endif
static int dissect_kerberos_PA_PAC_REQUEST(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_PA_S4U2Self(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_PA_S4U_X509_USER(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_ETYPE_INFO(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_ETYPE_INFO2(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_AD_IF_RELEVANT(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_PA_AUTHENTICATION_SET_ELEM(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_PA_FX_FAST_REQUEST(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_EncryptedChallenge(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_PA_FX_FAST_REPLY(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_PA_PAC_OPTIONS(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_KERB_AD_RESTRICTION_ENTRY(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_SEQUENCE_OF_ENCTYPE(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
#ifdef HAVE_KERBEROS
static int dissect_kerberos_KrbFastReq(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_KrbFastResponse(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
static int dissect_kerberos_FastOptions(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_);
#endif
/* Desegment Kerberos over TCP messages */
static gboolean krb_desegment = TRUE;
static gint proto_kerberos = -1;
static gint hf_krb_rm_reserved = -1;
static gint hf_krb_rm_reclen = -1;
static gint hf_krb_provsrv_location = -1;
static gint hf_krb_pw_salt = -1;
static gint hf_krb_ext_error_nt_status = -1;
static gint hf_krb_ext_error_reserved = -1;
static gint hf_krb_ext_error_flags = -1;
static gint hf_krb_address_ip = -1;
static gint hf_krb_address_netbios = -1;
static gint hf_krb_address_ipv6 = -1;
static gint hf_krb_gssapi_len = -1;
static gint hf_krb_gssapi_bnd = -1;
static gint hf_krb_gssapi_dlgopt = -1;
static gint hf_krb_gssapi_dlglen = -1;
static gint hf_krb_gssapi_c_flag_deleg = -1;
static gint hf_krb_gssapi_c_flag_mutual = -1;
static gint hf_krb_gssapi_c_flag_replay = -1;
static gint hf_krb_gssapi_c_flag_sequence = -1;
static gint hf_krb_gssapi_c_flag_conf = -1;
static gint hf_krb_gssapi_c_flag_integ = -1;
static gint hf_krb_gssapi_c_flag_dce_style = -1;
static gint hf_krb_midl_version = -1;
static gint hf_krb_midl_hdr_len = -1;
static gint hf_krb_midl_fill_bytes = -1;
static gint hf_krb_midl_blob_len = -1;
static gint hf_krb_pac_signature_type = -1;
static gint hf_krb_pac_signature_signature = -1;
static gint hf_krb_w2k_pac_entries = -1;
static gint hf_krb_w2k_pac_version = -1;
static gint hf_krb_w2k_pac_type = -1;
static gint hf_krb_w2k_pac_size = -1;
static gint hf_krb_w2k_pac_offset = -1;
static gint hf_krb_pac_clientid = -1;
static gint hf_krb_pac_namelen = -1;
static gint hf_krb_pac_clientname = -1;
static gint hf_krb_pac_logon_info = -1;
static gint hf_krb_pac_credential_data = -1;
static gint hf_krb_pac_credential_info = -1;
static gint hf_krb_pac_credential_info_version = -1;
static gint hf_krb_pac_credential_info_etype = -1;
static gint hf_krb_pac_s4u_delegation_info = -1;
static gint hf_krb_pac_upn_dns_info = -1;
static gint hf_krb_pac_upn_flags = -1;
static gint hf_krb_pac_upn_dns_offset = -1;
static gint hf_krb_pac_upn_dns_len = -1;
static gint hf_krb_pac_upn_upn_offset = -1;
static gint hf_krb_pac_upn_upn_len = -1;
static gint hf_krb_pac_upn_upn_name = -1;
static gint hf_krb_pac_upn_dns_name = -1;
static gint hf_krb_pac_server_checksum = -1;
static gint hf_krb_pac_privsvr_checksum = -1;
static gint hf_krb_pac_client_info_type = -1;
static gint hf_krb_pac_client_claims_info = -1;
static gint hf_krb_pac_device_info = -1;
static gint hf_krb_pac_device_claims_info = -1;
static gint hf_krb_pa_supported_enctypes = -1;
static gint hf_krb_pa_supported_enctypes_des_cbc_crc = -1;
static gint hf_krb_pa_supported_enctypes_des_cbc_md5 = -1;
static gint hf_krb_pa_supported_enctypes_rc4_hmac = -1;
static gint hf_krb_pa_supported_enctypes_aes128_cts_hmac_sha1_96 = -1;
static gint hf_krb_pa_supported_enctypes_aes256_cts_hmac_sha1_96 = -1;
static gint hf_krb_pa_supported_enctypes_fast_supported = -1;
static gint hf_krb_pa_supported_enctypes_compound_identity_supported = -1;
static gint hf_krb_pa_supported_enctypes_claims_supported = -1;
static gint hf_krb_pa_supported_enctypes_resource_sid_compression_disabled = -1;
static gint hf_krb_ad_ap_options = -1;
static gint hf_krb_ad_ap_options_cbt = -1;
static gint hf_krb_ad_target_principal = -1;
static gint hf_krb_key_hidden_item = -1;
#ifdef HAVE_KERBEROS
static gint hf_kerberos_KrbFastResponse = -1;
static gint hf_kerberos_strengthen_key = -1;
static gint hf_kerberos_finished = -1;
static gint hf_kerberos_fast_options = -1;
static gint hf_kerberos_ticket_checksum = -1;
static gint hf_krb_patimestamp = -1;
static gint hf_krb_pausec = -1;
static gint hf_kerberos_FastOptions_reserved = -1;
static gint hf_kerberos_FastOptions_hide_client_names = -1;
static gint hf_kerberos_FastOptions_spare_bit2 = -1;
static gint hf_kerberos_FastOptions_spare_bit3 = -1;
static gint hf_kerberos_FastOptions_spare_bit4 = -1;
static gint hf_kerberos_FastOptions_spare_bit5 = -1;
static gint hf_kerberos_FastOptions_spare_bit6 = -1;
static gint hf_kerberos_FastOptions_spare_bit7 = -1;
static gint hf_kerberos_FastOptions_spare_bit8 = -1;
static gint hf_kerberos_FastOptions_spare_bit9 = -1;
static gint hf_kerberos_FastOptions_spare_bit10 = -1;
static gint hf_kerberos_FastOptions_spare_bit11 = -1;
static gint hf_kerberos_FastOptions_spare_bit12 = -1;
static gint hf_kerberos_FastOptions_spare_bit13 = -1;
static gint hf_kerberos_FastOptions_spare_bit14 = -1;
static gint hf_kerberos_FastOptions_spare_bit15 = -1;
static gint hf_kerberos_FastOptions_kdc_follow_referrals = -1;
#endif
#include "packet-kerberos-hf.c"
/* Initialize the subtree pointers */
static gint ett_kerberos = -1;
static gint ett_krb_recordmark = -1;
static gint ett_krb_pac = -1;
static gint ett_krb_pac_drep = -1;
static gint ett_krb_pac_midl_blob = -1;
static gint ett_krb_pac_logon_info = -1;
static gint ett_krb_pac_credential_info = -1;
static gint ett_krb_pac_s4u_delegation_info = -1;
static gint ett_krb_pac_upn_dns_info = -1;
static gint ett_krb_pac_device_info = -1;
static gint ett_krb_pac_server_checksum = -1;
static gint ett_krb_pac_privsvr_checksum = -1;
static gint ett_krb_pac_client_info_type = -1;
static gint ett_krb_pa_supported_enctypes = -1;
static gint ett_krb_ad_ap_options = -1;
#ifdef HAVE_KERBEROS
static gint ett_krb_pa_enc_ts_enc = -1;
static gint ett_kerberos_KrbFastFinished = -1;
static gint ett_kerberos_KrbFastResponse = -1;
static gint ett_kerberos_KrbFastReq = -1;
static gint ett_kerberos_FastOptions = -1;
#endif
#include "packet-kerberos-ett.c"
static expert_field ei_kerberos_missing_keytype = EI_INIT;
static expert_field ei_kerberos_decrypted_keytype = EI_INIT;
static expert_field ei_kerberos_learnt_keytype = EI_INIT;
static expert_field ei_kerberos_address = EI_INIT;
static expert_field ei_krb_gssapi_dlglen = EI_INIT;
static dissector_handle_t krb4_handle=NULL;
/* Global variables */
static guint32 gbl_keytype;
static gboolean gbl_do_col_info;
#include "packet-kerberos-val.h"
static void
call_kerberos_callbacks(packet_info *pinfo, proto_tree *tree, tvbuff_t *tvb, int tag, kerberos_callbacks *cb)
{
if(!cb){
return;
}
while(cb->tag){
if(cb->tag==tag){
cb->callback(pinfo, tvb, tree);
return;
}
cb++;
}
return;
}
static kerberos_private_data_t*
kerberos_new_private_data(void)
{
kerberos_private_data_t *p;
p = wmem_new0(wmem_packet_scope(), kerberos_private_data_t);
if (p == NULL) {
return NULL;
}
p->decryption_keys = wmem_list_new(wmem_packet_scope());
p->learnt_keys = wmem_list_new(wmem_packet_scope());
p->missing_keys = wmem_list_new(wmem_packet_scope());
return p;
}
static kerberos_private_data_t*
kerberos_get_private_data(asn1_ctx_t *actx)
{
if (!actx->private_data) {
actx->private_data = kerberos_new_private_data();
}
return (kerberos_private_data_t *)(actx->private_data);
}
static gboolean
kerberos_private_is_kdc_req(kerberos_private_data_t *private_data)
{
switch (private_data->msg_type) {
case KERBEROS_APPLICATIONS_AS_REQ:
case KERBEROS_APPLICATIONS_TGS_REQ:
return TRUE;
}
return FALSE;
}
gboolean
kerberos_is_win2k_pkinit(asn1_ctx_t *actx)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
return private_data->is_win2k_pkinit;
}
#ifdef HAVE_KERBEROS
/* Decrypt Kerberos blobs */
gboolean krb_decrypt = FALSE;
/* keytab filename */
static const char *keytab_filename = "";
void
read_keytab_file_from_preferences(void)
{
static char *last_keytab = NULL;
if (!krb_decrypt) {
return;
}
if (keytab_filename == NULL) {
return;
}
if (last_keytab && !strcmp(last_keytab, keytab_filename)) {
return;
}
g_free(last_keytab);
last_keytab = g_strdup(keytab_filename);
read_keytab_file(last_keytab);
}
#endif /* HAVE_KERBEROS */
#if defined(HAVE_HEIMDAL_KERBEROS) || defined(HAVE_MIT_KERBEROS)
enc_key_t *enc_key_list=NULL;
static guint kerberos_longterm_ids = 0;
wmem_map_t *kerberos_longterm_keys = NULL;
static wmem_map_t *kerberos_all_keys = NULL;
static wmem_map_t *kerberos_app_session_keys = NULL;
static gboolean
enc_key_list_cb(wmem_allocator_t* allocator _U_, wmem_cb_event_t event _U_, void *user_data _U_)
{
enc_key_list = NULL;
kerberos_longterm_ids = 0;
/* keep the callback registered */
return TRUE;
}
static gint enc_key_cmp_id(gconstpointer k1, gconstpointer k2)
{
const enc_key_t *key1 = (const enc_key_t *)k1;
const enc_key_t *key2 = (const enc_key_t *)k2;
if (key1->fd_num < key2->fd_num) {
return -1;
}
if (key1->fd_num > key2->fd_num) {
return 1;
}
if (key1->id < key2->id) {
return -1;
}
if (key1->id > key2->id) {
return 1;
}
return 0;
}
static gboolean
enc_key_content_equal(gconstpointer k1, gconstpointer k2)
{
const enc_key_t *key1 = (const enc_key_t *)k1;
const enc_key_t *key2 = (const enc_key_t *)k2;
int cmp;
if (key1->keytype != key2->keytype) {
return FALSE;
}
if (key1->keylength != key2->keylength) {
return FALSE;
}
cmp = memcmp(key1->keyvalue, key2->keyvalue, key1->keylength);
if (cmp != 0) {
return FALSE;
}
return TRUE;
}
static guint
enc_key_content_hash(gconstpointer k)
{
const enc_key_t *key = (const enc_key_t *)k;
guint ret = 0;
ret += wmem_strong_hash((const guint8 *)&key->keytype,
sizeof(key->keytype));
ret += wmem_strong_hash((const guint8 *)&key->keylength,
sizeof(key->keylength));
ret += wmem_strong_hash((const guint8 *)key->keyvalue,
key->keylength);
return ret;
}
static void
kerberos_key_map_insert(wmem_map_t *key_map, enc_key_t *new_key)
{
enc_key_t *existing = NULL;
enc_key_t *cur = NULL;
gint cmp;
existing = (enc_key_t *)wmem_map_lookup(key_map, new_key);
if (existing == NULL) {
wmem_map_insert(key_map, new_key, new_key);
return;
}
if (key_map != kerberos_all_keys) {
/*
* It should already be linked to the existing key...
*/
return;
}
if (existing->fd_num == -1 && new_key->fd_num != -1) {
/*
* We can't reference a learnt key
* from a longterm key. As they have
* a shorter lifetime.
*
* So just let the learnt key remember the
* match.
*/
new_key->same_list = existing;
new_key->num_same = existing->num_same + 1;
return;
}
/*
* If a key with the same content (keytype,keylength,keyvalue)
* already exists, we want the earliest key to be
* in the list.
*/
cmp = enc_key_cmp_id(new_key, existing);
if (cmp == 0) {
/*
* It's the same, nothing to do...
*/
return;
}
if (cmp < 0) {
/* The new key has should be added to the list. */
new_key->same_list = existing;
new_key->num_same = existing->num_same + 1;
wmem_map_insert(key_map, new_key, new_key);
return;
}
/*
* We want to link the new_key to the existing one.
*
* But we want keep the list sorted, so we need to forward
* to the correct spot.
*/
for (cur = existing; cur->same_list != NULL; cur = cur->same_list) {
cmp = enc_key_cmp_id(new_key, cur->same_list);
if (cmp == 0) {
/*
* It's the same, nothing to do...
*/
return;
}
if (cmp < 0) {
/*
* We found the correct spot,
* the new_key should added
* between existing and existing->same_list
*/
new_key->same_list = cur->same_list;
new_key->num_same = cur->num_same;
break;
}
}
/*
* finally link new_key to existing
* and fix up the numbers
*/
cur->same_list = new_key;
for (cur = existing; cur != new_key; cur = cur->same_list) {
cur->num_same += 1;
}
return;
}
struct insert_longterm_keys_into_key_map_state {
wmem_map_t *key_map;
};
static void insert_longterm_keys_into_key_map_cb(gpointer __key _U_,
gpointer value,
gpointer user_data)
{
struct insert_longterm_keys_into_key_map_state *state =
(struct insert_longterm_keys_into_key_map_state *)user_data;
enc_key_t *key = (enc_key_t *)value;
kerberos_key_map_insert(state->key_map, key);
}
static void insert_longterm_keys_into_key_map(wmem_map_t *key_map)
{
/*
* Because the kerberos_longterm_keys are allocated on
* wmem_epan_scope() and kerberos_all_keys are allocated
* on wmem_file_scope(), we need to plug the longterm keys
* back to kerberos_all_keys if a new file was loaded
* and wmem_file_scope() got cleared.
*/
if (wmem_map_size(key_map) < wmem_map_size(kerberos_longterm_keys)) {
struct insert_longterm_keys_into_key_map_state state = {
.key_map = key_map,
};
/*
* Reference all longterm keys into kerberos_all_keys
*/
wmem_map_foreach(kerberos_longterm_keys,
insert_longterm_keys_into_key_map_cb,
&state);
}
}
static void
kerberos_key_list_append(wmem_list_t *key_list, enc_key_t *new_key)
{
enc_key_t *existing = NULL;
existing = (enc_key_t *)wmem_list_find(key_list, new_key);
if (existing != NULL) {
return;
}
wmem_list_append(key_list, new_key);
}
static void
add_encryption_key(packet_info *pinfo,
kerberos_private_data_t *private_data,
proto_tree *key_tree,
proto_item *key_hidden_item,
tvbuff_t *key_tvb,
int keytype, int keylength, const char *keyvalue,
const char *origin,
enc_key_t *src1, enc_key_t *src2)
{
wmem_allocator_t *key_scope = NULL;
enc_key_t *new_key = NULL;
const char *methodl = "learnt";
const char *methodu = "Learnt";
proto_item *item = NULL;
private_data->last_added_key = NULL;
if (src1 != NULL && src2 != NULL) {
methodl = "derived";
methodu = "Derived";
}
if(pinfo->fd->visited){
/*
* We already processed this,
* we can use a shortterm scope
*/
key_scope = wmem_packet_scope();
} else {
/*
* As long as we have enc_key_list, we need to
* use wmem_epan_scope(), when that's gone
* we can dynamically select the scope based on
* how long we'll need the particular key.
*/
key_scope = wmem_epan_scope();
}
new_key = wmem_new0(key_scope, enc_key_t);
g_snprintf(new_key->key_origin, KRB_MAX_ORIG_LEN, "%s %s in frame %u",
methodl, origin, pinfo->num);
new_key->fd_num = pinfo->num;
new_key->id = ++private_data->learnt_key_ids;
g_snprintf(new_key->id_str, KRB_MAX_ID_STR_LEN, "%d.%u",
new_key->fd_num, new_key->id);
new_key->keytype=keytype;
new_key->keylength=keylength;
memcpy(new_key->keyvalue, keyvalue, MIN(keylength, KRB_MAX_KEY_LENGTH));
new_key->src1 = src1;
new_key->src2 = src2;
if(!pinfo->fd->visited){
/*
* Only keep it if we don't processed it before.
*/
new_key->next=enc_key_list;
enc_key_list=new_key;
insert_longterm_keys_into_key_map(kerberos_all_keys);
kerberos_key_map_insert(kerberos_all_keys, new_key);
}
item = proto_tree_add_expert_format(key_tree, pinfo, &ei_kerberos_learnt_keytype,
key_tvb, 0, keylength,
"%s %s keytype %d (id=%d.%u) (%02x%02x%02x%02x...)",
methodu, origin, keytype, pinfo->num, new_key->id,
keyvalue[0] & 0xFF, keyvalue[1] & 0xFF,
keyvalue[2] & 0xFF, keyvalue[3] & 0xFF);
if (item != NULL && key_hidden_item != NULL) {
proto_tree_move_item(key_tree, key_hidden_item, item);
}
if (src1 != NULL) {
enc_key_t *sek = src1;
expert_add_info_format(pinfo, item, &ei_kerberos_learnt_keytype,
"SRC1 %s keytype %d (id=%s same=%u) (%02x%02x%02x%02x...)",
sek->key_origin, sek->keytype,
sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
}
if (src2 != NULL) {
enc_key_t *sek = src2;
expert_add_info_format(pinfo, item, &ei_kerberos_learnt_keytype,
"SRC2 %s keytype %d (id=%s same=%u) (%02x%02x%02x%02x...)",
sek->key_origin, sek->keytype,
sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
}
kerberos_key_list_append(private_data->learnt_keys, new_key);
private_data->last_added_key = new_key;
}
static void
save_encryption_key(tvbuff_t *tvb _U_, int offset _U_, int length _U_,
asn1_ctx_t *actx _U_, proto_tree *tree _U_,
int parent_hf_index _U_,
int hf_index _U_)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
const char *parent = proto_registrar_get_name(parent_hf_index);
const char *element = proto_registrar_get_name(hf_index);
char origin[KRB_MAX_ORIG_LEN] = { 0, };
g_snprintf(origin, KRB_MAX_ORIG_LEN, "%s_%s", parent, element);
add_encryption_key(actx->pinfo,
private_data,
private_data->key_tree,
private_data->key_hidden_item,
private_data->key_tvb,
private_data->key.keytype,
private_data->key.keylength,
private_data->key.keyvalue,
origin,
NULL,
NULL);
}
static void
save_Authenticator_subkey(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
if (private_data->last_decryption_key == NULL) {
return;
}
if (private_data->last_added_key == NULL) {
return;
}
if (private_data->within_PA_TGS_REQ != 0) {
private_data->PA_TGS_REQ_key = private_data->last_decryption_key;
private_data->PA_TGS_REQ_subkey = private_data->last_added_key;
}
if (private_data->fast_armor_within_armor_value != 0) {
private_data->PA_FAST_ARMOR_AP_key = private_data->last_decryption_key;
private_data->PA_FAST_ARMOR_AP_subkey = private_data->last_added_key;
}
}
static void
save_EncAPRepPart_subkey(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
if (actx->pinfo->fd->visited) {
return;
}
if (private_data->last_added_key == NULL) {
return;
}
kerberos_key_map_insert(kerberos_app_session_keys, private_data->last_added_key);
}
static void
save_EncKDCRepPart_key(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
}
static void
save_EncTicketPart_key(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
}
static void
save_KrbCredInfo_key(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
}
static void
save_KrbFastResponse_strengthen_key(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
private_data->fast_strengthen_key = private_data->last_added_key;
}
static void used_encryption_key(proto_tree *tree, packet_info *pinfo,
kerberos_private_data_t *private_data,
enc_key_t *ek, int usage, tvbuff_t *cryptotvb,
const char *keymap_name,
guint keymap_size,
guint decryption_count)
{
proto_item *item = NULL;
enc_key_t *sek = NULL;
item = proto_tree_add_expert_format(tree, pinfo, &ei_kerberos_decrypted_keytype,
cryptotvb, 0, 0,
"Decrypted keytype %d usage %d "
"using %s (id=%s same=%u) (%02x%02x%02x%02x...)",
ek->keytype, usage, ek->key_origin, ek->id_str, ek->num_same,
ek->keyvalue[0] & 0xFF, ek->keyvalue[1] & 0xFF,
ek->keyvalue[2] & 0xFF, ek->keyvalue[3] & 0xFF);
expert_add_info_format(pinfo, item, &ei_kerberos_decrypted_keytype,
"Used keymap=%s num_keys=%u num_tries=%u)",
keymap_name,
keymap_size,
decryption_count);
if (ek->src1 != NULL) {
sek = ek->src1;
expert_add_info_format(pinfo, item, &ei_kerberos_decrypted_keytype,
"SRC1 %s keytype %d (id=%s same=%u) (%02x%02x%02x%02x...)",
sek->key_origin, sek->keytype,
sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
}
if (ek->src2 != NULL) {
sek = ek->src2;
expert_add_info_format(pinfo, item, &ei_kerberos_decrypted_keytype,
"SRC2 %s keytype %d (id=%s same=%u) (%02x%02x%02x%02x...)",
sek->key_origin, sek->keytype,
sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
}
sek = ek->same_list;
while (sek != NULL) {
expert_add_info_format(pinfo, item, &ei_kerberos_decrypted_keytype,
"Decrypted keytype %d usage %d "
"using %s (id=%s same=%u) (%02x%02x%02x%02x...)",
sek->keytype, usage, sek->key_origin, sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
sek = sek->same_list;
}
kerberos_key_list_append(private_data->decryption_keys, ek);
private_data->last_decryption_key = ek;
}
#endif /* HAVE_HEIMDAL_KERBEROS || HAVE_MIT_KERBEROS */
#ifdef HAVE_MIT_KERBEROS
static void missing_encryption_key(proto_tree *tree, packet_info *pinfo,
kerberos_private_data_t *private_data,
int keytype, int usage, tvbuff_t *cryptotvb,
const char *keymap_name,
guint keymap_size,
guint decryption_count)
{
proto_item *item = NULL;
enc_key_t *mek = NULL;
mek = wmem_new0(wmem_packet_scope(), enc_key_t);
g_snprintf(mek->key_origin, KRB_MAX_ORIG_LEN,
"keytype %d usage %d missing in frame %u",
keytype, usage, pinfo->num);
mek->fd_num = pinfo->num;
mek->id = ++private_data->missing_key_ids;
g_snprintf(mek->id_str, KRB_MAX_ID_STR_LEN, "missing.%u",
mek->id);
mek->keytype=keytype;
item = proto_tree_add_expert_format(tree, pinfo, &ei_kerberos_missing_keytype,
cryptotvb, 0, 0,
"Missing keytype %d usage %d (id=%s)",
keytype, usage, mek->id_str);
expert_add_info_format(pinfo, item, &ei_kerberos_missing_keytype,
"Used keymap=%s num_keys=%u num_tries=%u)",
keymap_name,
keymap_size,
decryption_count);
kerberos_key_list_append(private_data->missing_keys, mek);
}
#ifdef HAVE_KRB5_PAC_VERIFY
static void used_signing_key(proto_tree *tree, packet_info *pinfo,
kerberos_private_data_t *private_data,
enc_key_t *ek, tvbuff_t *tvb,
krb5_cksumtype checksum,
const char *reason,
const char *keymap_name,
guint keymap_size,
guint verify_count)
{
proto_item *item = NULL;
enc_key_t *sek = NULL;
item = proto_tree_add_expert_format(tree, pinfo, &ei_kerberos_decrypted_keytype,
tvb, 0, 0,
"%s checksum %d keytype %d "
"using %s (id=%s same=%u) (%02x%02x%02x%02x...)",
reason, checksum, ek->keytype, ek->key_origin,
ek->id_str, ek->num_same,
ek->keyvalue[0] & 0xFF, ek->keyvalue[1] & 0xFF,
ek->keyvalue[2] & 0xFF, ek->keyvalue[3] & 0xFF);
expert_add_info_format(pinfo, item, &ei_kerberos_decrypted_keytype,
"Used keymap=%s num_keys=%u num_tries=%u)",
keymap_name,
keymap_size,
verify_count);
sek = ek->same_list;
while (sek != NULL) {
expert_add_info_format(pinfo, item, &ei_kerberos_decrypted_keytype,
"%s checksum %d keytype %d "
"using %s (id=%s same=%u) (%02x%02x%02x%02x...)",
reason, checksum, sek->keytype, sek->key_origin,
sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
sek = sek->same_list;
}
kerberos_key_list_append(private_data->decryption_keys, ek);
}
static void missing_signing_key(proto_tree *tree, packet_info *pinfo,
kerberos_private_data_t *private_data,
tvbuff_t *tvb,
krb5_cksumtype checksum,
int keytype,
const char *reason,
const char *keymap_name,
guint keymap_size,
guint verify_count)
{
proto_item *item = NULL;
enc_key_t *mek = NULL;
mek = wmem_new0(wmem_packet_scope(), enc_key_t);
g_snprintf(mek->key_origin, KRB_MAX_ORIG_LEN,
"checksum %d keytype %d missing in frame %u",
checksum, keytype, pinfo->num);
mek->fd_num = pinfo->num;
mek->id = ++private_data->missing_key_ids;
g_snprintf(mek->id_str, KRB_MAX_ID_STR_LEN, "missing.%u",
mek->id);
mek->keytype=keytype;
item = proto_tree_add_expert_format(tree, pinfo, &ei_kerberos_missing_keytype,
tvb, 0, 0,
"%s checksum %d keytype %d (id=%s)",
reason, checksum, keytype, mek->id_str);
expert_add_info_format(pinfo, item, &ei_kerberos_missing_keytype,
"Used keymap=%s num_keys=%u num_tries=%u)",
keymap_name,
keymap_size,
verify_count);
kerberos_key_list_append(private_data->missing_keys, mek);
}
#endif /* HAVE_KRB5_PAC_VERIFY */
static krb5_context krb5_ctx;
#ifdef HAVE_KRB5_C_FX_CF2_SIMPLE
static void
krb5_fast_key(asn1_ctx_t *actx, proto_tree *tree, tvbuff_t *tvb,
enc_key_t *ek1 _U_, const char *p1 _U_,
enc_key_t *ek2 _U_, const char *p2 _U_,
const char *origin _U_)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
krb5_error_code ret;
krb5_keyblock k1;
krb5_keyblock k2;
krb5_keyblock *k = NULL;
if (!krb_decrypt) {
return;
}
if (ek1 == NULL) {
return;
}
if (ek2 == NULL) {
return;
}
k1.magic = KV5M_KEYBLOCK;
k1.enctype = ek1->keytype;
k1.length = ek1->keylength;
k1.contents = (guint8 *)ek1->keyvalue;
k2.magic = KV5M_KEYBLOCK;
k2.enctype = ek2->keytype;
k2.length = ek2->keylength;
k2.contents = (guint8 *)ek2->keyvalue;
ret = krb5_c_fx_cf2_simple(krb5_ctx, &k1, p1, &k2, p2, &k);
if (ret != 0) {
return;
}
add_encryption_key(actx->pinfo,
private_data,
tree, NULL, tvb,
k->enctype, k->length,
(const char *)k->contents,
origin,
ek1, ek2);
krb5_free_keyblock(krb5_ctx, k);
}
#else /* HAVE_KRB5_C_FX_CF2_SIMPLE */
static void
krb5_fast_key(asn1_ctx_t *actx _U_, proto_tree *tree _U_, tvbuff_t *tvb _U_,
enc_key_t *ek1 _U_, const char *p1 _U_,
enc_key_t *ek2 _U_, const char *p2 _U_,
const char *origin _U_)
{
}
#endif /* HAVE_KRB5_C_FX_CF2_SIMPLE */
USES_APPLE_DEPRECATED_API
void
read_keytab_file(const char *filename)
{
krb5_keytab keytab;
krb5_error_code ret;
krb5_keytab_entry key;
krb5_kt_cursor cursor;
static gboolean first_time=TRUE;
if (filename == NULL || filename[0] == 0) {
return;
}
if(first_time){
first_time=FALSE;
ret = krb5_init_context(&krb5_ctx);
if(ret && ret != KRB5_CONFIG_CANTOPEN){
return;
}
}
/* should use a file in the wireshark users dir */
ret = krb5_kt_resolve(krb5_ctx, filename, &keytab);
if(ret){
fprintf(stderr, "KERBEROS ERROR: Badly formatted keytab filename :%s\n",filename);
return;
}
ret = krb5_kt_start_seq_get(krb5_ctx, keytab, &cursor);
if(ret){
fprintf(stderr, "KERBEROS ERROR: Could not open or could not read from keytab file :%s\n",filename);
return;
}
do{
ret = krb5_kt_next_entry(krb5_ctx, keytab, &key, &cursor);
if(ret==0){
enc_key_t *new_key;
int i;
char *pos;
new_key = wmem_new0(wmem_epan_scope(), enc_key_t);
new_key->fd_num = -1;
new_key->id = ++kerberos_longterm_ids;
g_snprintf(new_key->id_str, KRB_MAX_ID_STR_LEN, "keytab.%u", new_key->id);
new_key->next = enc_key_list;
/* generate origin string, describing where this key came from */
pos=new_key->key_origin;
pos+=MIN(KRB_MAX_ORIG_LEN,
g_snprintf(pos, KRB_MAX_ORIG_LEN, "keytab principal "));
for(i=0;i<key.principal->length;i++){
pos+=MIN(KRB_MAX_ORIG_LEN-(pos-new_key->key_origin),
g_snprintf(pos, (gulong)(KRB_MAX_ORIG_LEN-(pos-new_key->key_origin)), "%s%s",(i?"/":""),(key.principal->data[i]).data));
}
pos+=MIN(KRB_MAX_ORIG_LEN-(pos-new_key->key_origin),
g_snprintf(pos, (gulong)(KRB_MAX_ORIG_LEN-(pos-new_key->key_origin)), "@%s",key.principal->realm.data));
*pos=0;
new_key->keytype=key.key.enctype;
new_key->keylength=key.key.length;
memcpy(new_key->keyvalue,
key.key.contents,
MIN(key.key.length, KRB_MAX_KEY_LENGTH));
enc_key_list=new_key;
ret = krb5_free_keytab_entry_contents(krb5_ctx, &key);
if (ret) {
fprintf(stderr, "KERBEROS ERROR: Could not release the entry: %d", ret);
ret = 0; /* try to continue with the next entry */
}
kerberos_key_map_insert(kerberos_longterm_keys, new_key);
}
}while(ret==0);
ret = krb5_kt_end_seq_get(krb5_ctx, keytab, &cursor);
if(ret){
fprintf(stderr, "KERBEROS ERROR: Could not release the keytab cursor: %d", ret);
}
ret = krb5_kt_close(krb5_ctx, keytab);
if(ret){
fprintf(stderr, "KERBEROS ERROR: Could not close the key table handle: %d", ret);
}
}
struct decrypt_krb5_with_cb_state {
proto_tree *tree;
packet_info *pinfo;
kerberos_private_data_t *private_data;
int usage;
int keytype;
tvbuff_t *cryptotvb;
krb5_error_code (*decrypt_cb_fn)(
const krb5_keyblock *key,
int usage,
void *decrypt_cb_data);
void *decrypt_cb_data;
guint count;
enc_key_t *ek;
};
static void
decrypt_krb5_with_cb_try_key(gpointer __key _U_, gpointer value, gpointer userdata)
{
struct decrypt_krb5_with_cb_state *state =
(struct decrypt_krb5_with_cb_state *)userdata;
enc_key_t *ek = (enc_key_t *)value;
krb5_error_code ret;
krb5_keytab_entry key;
#ifdef HAVE_KRB5_C_FX_CF2_SIMPLE
enc_key_t *ak = state->private_data->fast_armor_key;
enc_key_t *sk = state->private_data->fast_strengthen_key;
gboolean try_with_armor_key = FALSE;
gboolean try_with_strengthen_key = FALSE;
#endif
if (state->ek != NULL) {
/*
* we're done.
*/
return;
}
#ifdef HAVE_KRB5_C_FX_CF2_SIMPLE
if (ak != NULL && ak != ek && ak->keytype == state->keytype && ek->fd_num == -1) {
switch (state->usage) {
case KEY_USAGE_ENC_CHALLENGE_CLIENT:
case KEY_USAGE_ENC_CHALLENGE_KDC:
if (ek->fd_num == -1) {
/* Challenges are based on a long term key */
try_with_armor_key = TRUE;
}
break;
}
/*
* If we already have a strengthen_key
* we don't need to try with the armor key
* again
*/
if (sk != NULL) {
try_with_armor_key = FALSE;
}
}
if (sk != NULL && sk != ek && sk->keytype == state->keytype && sk->keytype == ek->keytype) {
switch (state->usage) {
case 3:
if (ek->fd_num == -1) {
/* AS-REP is based on a long term key */
try_with_strengthen_key = TRUE;
}
break;
case 8:
case 9:
if (ek->fd_num != -1) {
/* TGS-REP is not based on a long term key */
try_with_strengthen_key = TRUE;
}
break;
}
}
if (try_with_armor_key) {
krb5_keyblock k1;
krb5_keyblock k2;
krb5_keyblock *k = NULL;
const char *p1 = NULL;
k1.magic = KV5M_KEYBLOCK;
k1.enctype = ak->keytype;
k1.length = ak->keylength;
k1.contents = (guint8 *)ak->keyvalue;
k2.magic = KV5M_KEYBLOCK;
k2.enctype = ek->keytype;
k2.length = ek->keylength;
k2.contents = (guint8 *)ek->keyvalue;
switch (state->usage) {
case KEY_USAGE_ENC_CHALLENGE_CLIENT:
p1 = "clientchallengearmor";
break;
case KEY_USAGE_ENC_CHALLENGE_KDC:
p1 = "kdcchallengearmor";
break;
default:
/*
* Should never be called!
*/
/*
* try the next one...
*/
return;
}
ret = krb5_c_fx_cf2_simple(krb5_ctx,
&k1, p1,
&k2, "challengelongterm",
&k);
if (ret != 0) {
/*
* try the next one...
*/
return;
}
state->count += 1;
ret = state->decrypt_cb_fn(k,
state->usage,
state->decrypt_cb_data);
if (ret == 0) {
add_encryption_key(state->pinfo,
state->private_data,
state->tree,
NULL,
state->cryptotvb,
k->enctype, k->length,
(const char *)k->contents,
p1,
ak, ek);
krb5_free_keyblock(krb5_ctx, k);
/*
* remember the key and stop traversing
*/
state->ek = state->private_data->last_added_key;
return;
}
krb5_free_keyblock(krb5_ctx, k);
/*
* don't stop traversing...
* try the next one...
*/
return;
}
if (try_with_strengthen_key) {
krb5_keyblock k1;
krb5_keyblock k2;
krb5_keyblock *k = NULL;
k1.magic = KV5M_KEYBLOCK;
k1.enctype = sk->keytype;
k1.length = sk->keylength;
k1.contents = (guint8 *)sk->keyvalue;
k2.magic = KV5M_KEYBLOCK;
k2.enctype = ek->keytype;
k2.length = ek->keylength;
k2.contents = (guint8 *)ek->keyvalue;
ret = krb5_c_fx_cf2_simple(krb5_ctx,
&k1, "strengthenkey",
&k2, "replykey",
&k);
if (ret != 0) {
/*
* try the next one...
*/
return;
}
state->count += 1;
ret = state->decrypt_cb_fn(k,
state->usage,
state->decrypt_cb_data);
if (ret == 0) {
add_encryption_key(state->pinfo,
state->private_data,
state->tree,
NULL,
state->cryptotvb,
k->enctype, k->length,
(const char *)k->contents,
"strengthen-reply-key",
sk, ek);
krb5_free_keyblock(krb5_ctx, k);
/*
* remember the key and stop traversing
*/
state->ek = state->private_data->last_added_key;
return;
}
krb5_free_keyblock(krb5_ctx, k);
/*
* don't stop traversing...
* try the next one...
*/
return;
}
#endif /* HAVE_KRB5_C_FX_CF2_SIMPLE */
/* shortcircuit and bail out if enctypes are not matching */
if ((state->keytype != -1) && (ek->keytype != state->keytype)) {
/*
* don't stop traversing...
* try the next one...
*/
return;
}
key.key.enctype=ek->keytype;
key.key.length=ek->keylength;
key.key.contents=ek->keyvalue;
state->count += 1;
ret = state->decrypt_cb_fn(&(key.key),
state->usage,
state->decrypt_cb_data);
if (ret != 0) {
/*
* don't stop traversing...
* try the next one...
*/
return;
}
/*
* we're done, remember the key
*/
state->ek = ek;
}
static krb5_error_code
decrypt_krb5_with_cb(proto_tree *tree,
packet_info *pinfo,
kerberos_private_data_t *private_data,
int usage,
int keytype,
tvbuff_t *cryptotvb,
krb5_error_code (*decrypt_cb_fn)(
const krb5_keyblock *key,
int usage,
void *decrypt_cb_data),
void *decrypt_cb_data)
{
const char *key_map_name = NULL;
wmem_map_t *key_map = NULL;
struct decrypt_krb5_with_cb_state state = {
.tree = tree,
.pinfo = pinfo,
.private_data = private_data,
.usage = usage,
.cryptotvb = cryptotvb,
.keytype = keytype,
.decrypt_cb_fn = decrypt_cb_fn,
.decrypt_cb_data = decrypt_cb_data,
};
read_keytab_file_from_preferences();
switch (usage) {
case KRB5_KU_USAGE_INITIATOR_SEAL:
case KRB5_KU_USAGE_ACCEPTOR_SEAL:
key_map_name = "app_session_keys";
key_map = kerberos_app_session_keys;
break;
default:
key_map_name = "all_keys";
key_map = kerberos_all_keys;
insert_longterm_keys_into_key_map(key_map);
break;
}
wmem_map_foreach(key_map, decrypt_krb5_with_cb_try_key, &state);
if (state.ek != NULL) {
used_encryption_key(tree, pinfo, private_data,
state.ek, usage, cryptotvb,
key_map_name,
wmem_map_size(key_map),
state.count);
return 0;
}
missing_encryption_key(tree, pinfo, private_data,
keytype, usage, cryptotvb,
key_map_name,
wmem_map_size(key_map),
state.count);
return -1;
}
struct decrypt_krb5_data_state {
krb5_data input;
krb5_data output;
};
static krb5_error_code
decrypt_krb5_data_cb(const krb5_keyblock *key,
int usage,
void *decrypt_cb_data)
{
struct decrypt_krb5_data_state *state =
(struct decrypt_krb5_data_state *)decrypt_cb_data;
krb5_enc_data input;
memset(&input, 0, sizeof(input));
input.enctype = key->enctype;
input.ciphertext = state->input;
return krb5_c_decrypt(krb5_ctx,
key,
usage,
0,
&input,
&state->output);
}
static guint8 *
decrypt_krb5_data_private(proto_tree *tree _U_, packet_info *pinfo,
kerberos_private_data_t *private_data,
int usage, tvbuff_t *cryptotvb, int keytype,
int *datalen)
{
#define HAVE_DECRYPT_KRB5_DATA_PRIVATE 1
struct decrypt_krb5_data_state state;
krb5_error_code ret;
int length = tvb_captured_length(cryptotvb);
const guint8 *cryptotext = tvb_get_ptr(cryptotvb, 0, length);
/* don't do anything if we are not attempting to decrypt data */
if(!krb_decrypt || length < 1){
return NULL;
}
/* make sure we have all the data we need */
if (tvb_captured_length(cryptotvb) < tvb_reported_length(cryptotvb)) {
return NULL;
}
memset(&state, 0, sizeof(state));
state.input.length = length;
state.input.data = (guint8 *)cryptotext;
state.output.data = (char *)wmem_alloc(pinfo->pool, length);
state.output.length = length;
ret = decrypt_krb5_with_cb(tree,
pinfo,
private_data,
usage,
keytype,
cryptotvb,
decrypt_krb5_data_cb,
&state);
if (ret != 0) {
return NULL;
}
if (datalen) {
*datalen = state.output.length;
}
return (guint8 *)state.output.data;
}
guint8 *
decrypt_krb5_data(proto_tree *tree _U_, packet_info *pinfo,
int usage,
tvbuff_t *cryptotvb,
int keytype,
int *datalen)
{
kerberos_private_data_t *zero_private = kerberos_new_private_data();
return decrypt_krb5_data_private(tree, pinfo, zero_private,
usage, cryptotvb, keytype,
datalen);
}
USES_APPLE_RST
#ifdef KRB5_CRYPTO_TYPE_SIGN_ONLY
struct decrypt_krb5_krb_cfx_dce_state {
const guint8 *gssapi_header_ptr;
guint gssapi_header_len;
tvbuff_t *gssapi_encrypted_tvb;
guint8 *gssapi_payload;
guint gssapi_payload_len;
const guint8 *gssapi_trailer_ptr;
guint gssapi_trailer_len;
tvbuff_t *checksum_tvb;
guint8 *checksum;
guint checksum_len;
};
static krb5_error_code
decrypt_krb5_krb_cfx_dce_cb(const krb5_keyblock *key,
int usage,
void *decrypt_cb_data)
{
struct decrypt_krb5_krb_cfx_dce_state *state =
(struct decrypt_krb5_krb_cfx_dce_state *)decrypt_cb_data;
unsigned int k5_headerlen = 0;
unsigned int k5_headerofs = 0;
unsigned int k5_trailerlen = 0;
unsigned int k5_trailerofs = 0;
size_t _k5_blocksize = 0;
guint k5_blocksize;
krb5_crypto_iov iov[6];
krb5_error_code ret;
guint checksum_remain = state->checksum_len;
guint checksum_crypt_len;
memset(iov, 0, sizeof(iov));
ret = krb5_c_crypto_length(krb5_ctx,
key->enctype,
KRB5_CRYPTO_TYPE_HEADER,
&k5_headerlen);
if (ret != 0) {
return ret;
}
if (checksum_remain < k5_headerlen) {
return -1;
}
checksum_remain -= k5_headerlen;
k5_headerofs = checksum_remain;
ret = krb5_c_crypto_length(krb5_ctx,
key->enctype,
KRB5_CRYPTO_TYPE_TRAILER,
&k5_trailerlen);
if (ret != 0) {
return ret;
}
if (checksum_remain < k5_trailerlen) {
return -1;
}
checksum_remain -= k5_trailerlen;
k5_trailerofs = checksum_remain;
checksum_crypt_len = checksum_remain;
ret = krb5_c_block_size(krb5_ctx,
key->enctype,
&_k5_blocksize);
if (ret != 0) {
return ret;
}
/*
* The cast is required for the Windows build in order
* to avoid the following warning.
*
* warning C4267: '-=': conversion from 'size_t' to 'guint',
* possible loss of data
*/
k5_blocksize = (guint)_k5_blocksize;
if (checksum_remain < k5_blocksize) {
return -1;
}
checksum_remain -= k5_blocksize;
if (checksum_remain < 16) {
return -1;
}
tvb_memcpy(state->gssapi_encrypted_tvb,
state->gssapi_payload,
0,
state->gssapi_payload_len);
tvb_memcpy(state->checksum_tvb,
state->checksum,
0,
state->checksum_len);
iov[0].flags = KRB5_CRYPTO_TYPE_HEADER;
iov[0].data.data = state->checksum + k5_headerofs;
iov[0].data.length = k5_headerlen;
if (state->gssapi_header_ptr != NULL) {
iov[1].flags = KRB5_CRYPTO_TYPE_SIGN_ONLY;
iov[1].data.data = (guint8 *)(guintptr)state->gssapi_header_ptr;
iov[1].data.length = state->gssapi_header_len;
} else {
iov[1].flags = KRB5_CRYPTO_TYPE_EMPTY;
}
iov[2].flags = KRB5_CRYPTO_TYPE_DATA;
iov[2].data.data = state->gssapi_payload;
iov[2].data.length = state->gssapi_payload_len;
if (state->gssapi_trailer_ptr != NULL) {
iov[3].flags = KRB5_CRYPTO_TYPE_SIGN_ONLY;
iov[3].data.data = (guint8 *)(guintptr)state->gssapi_trailer_ptr;
iov[3].data.length = state->gssapi_trailer_len;
} else {
iov[3].flags = KRB5_CRYPTO_TYPE_EMPTY;
}
iov[4].flags = KRB5_CRYPTO_TYPE_DATA;
iov[4].data.data = state->checksum;
iov[4].data.length = checksum_crypt_len;
iov[5].flags = KRB5_CRYPTO_TYPE_TRAILER;
iov[5].data.data = state->checksum + k5_trailerofs;
iov[5].data.length = k5_trailerlen;
return krb5_c_decrypt_iov(krb5_ctx,
key,
usage,
0,
iov,
6);
}
tvbuff_t *
decrypt_krb5_krb_cfx_dce(proto_tree *tree,
packet_info *pinfo,
int usage,
int keytype,
tvbuff_t *gssapi_header_tvb,
tvbuff_t *gssapi_encrypted_tvb,
tvbuff_t *gssapi_trailer_tvb,
tvbuff_t *checksum_tvb)
{
struct decrypt_krb5_krb_cfx_dce_state state;
kerberos_private_data_t *zero_private = kerberos_new_private_data();
tvbuff_t *gssapi_decrypted_tvb = NULL;
krb5_error_code ret;
/* don't do anything if we are not attempting to decrypt data */
if (!krb_decrypt) {
return NULL;
}
memset(&state, 0, sizeof(state));
/* make sure we have all the data we need */
#define __CHECK_TVB_LEN(__tvb) (tvb_captured_length(__tvb) < tvb_reported_length(__tvb))
if (gssapi_header_tvb != NULL) {
if (__CHECK_TVB_LEN(gssapi_header_tvb)) {
return NULL;
}
state.gssapi_header_len = tvb_captured_length(gssapi_header_tvb);
state.gssapi_header_ptr = tvb_get_ptr(gssapi_header_tvb,
0,
state.gssapi_header_len);
}
if (gssapi_encrypted_tvb == NULL || __CHECK_TVB_LEN(gssapi_encrypted_tvb)) {
return NULL;
}
state.gssapi_encrypted_tvb = gssapi_encrypted_tvb;
state.gssapi_payload_len = tvb_captured_length(gssapi_encrypted_tvb);
state.gssapi_payload = (guint8 *)wmem_alloc0(pinfo->pool, state.gssapi_payload_len);
if (state.gssapi_payload == NULL) {
return NULL;
}
if (gssapi_trailer_tvb != NULL) {
if (__CHECK_TVB_LEN(gssapi_trailer_tvb)) {
return NULL;
}
state.gssapi_trailer_len = tvb_captured_length(gssapi_trailer_tvb);
state.gssapi_trailer_ptr = tvb_get_ptr(gssapi_trailer_tvb,
0,
state.gssapi_trailer_len);
}
if (checksum_tvb == NULL || __CHECK_TVB_LEN(checksum_tvb)) {
return NULL;
}
state.checksum_tvb = checksum_tvb;
state.checksum_len = tvb_captured_length(checksum_tvb);
state.checksum = (guint8 *)wmem_alloc0(pinfo->pool, state.checksum_len);
if (state.checksum == NULL) {
return NULL;
}
ret = decrypt_krb5_with_cb(tree,
pinfo,
zero_private,
usage,
keytype,
gssapi_encrypted_tvb,
decrypt_krb5_krb_cfx_dce_cb,
&state);
wmem_free(pinfo->pool, state.checksum);
if (ret != 0) {
wmem_free(pinfo->pool, state.gssapi_payload);
return NULL;
}
gssapi_decrypted_tvb = tvb_new_child_real_data(gssapi_encrypted_tvb,
state.gssapi_payload,
state.gssapi_payload_len,
state.gssapi_payload_len);
if (gssapi_decrypted_tvb == NULL) {
wmem_free(pinfo->pool, state.gssapi_payload);
return NULL;
}
return gssapi_decrypted_tvb;
}
#else /* NOT KRB5_CRYPTO_TYPE_SIGN_ONLY */
#define NEED_DECRYPT_KRB5_KRB_CFX_DCE_NOOP 1
#endif /* NOT KRB5_CRYPTO_TYPE_SIGN_ONLY */
#ifdef HAVE_KRB5_PAC_VERIFY
/*
* macOS up to 10.14.5 only has a MIT shim layer on top
* of heimdal. It means that krb5_pac_verify() is not available
* in /usr/lib/libkrb5.dylib
*
* https://opensource.apple.com/tarballs/Heimdal/Heimdal-520.260.1.tar.gz
* https://opensource.apple.com/tarballs/MITKerberosShim/MITKerberosShim-71.200.1.tar.gz
*/
extern krb5_error_code
krb5int_c_mandatory_cksumtype(krb5_context, krb5_enctype, krb5_cksumtype *);
static int
keytype_for_cksumtype(krb5_cksumtype checksum)
{
#define _ARRAY_SIZE(X) (sizeof(X) / sizeof((X)[0]))
static const int keytypes[] = {
18,
17,
23,
};
guint i;
for (i = 0; i < _ARRAY_SIZE(keytypes); i++) {
krb5_cksumtype checksumtype = 0;
krb5_error_code ret;
ret = krb5int_c_mandatory_cksumtype(krb5_ctx,
keytypes[i],
&checksumtype);
if (ret != 0) {
continue;
}
if (checksum == checksumtype) {
return keytypes[i];
}
}
return -1;
}
struct verify_krb5_pac_state {
krb5_pac pac;
krb5_cksumtype server_checksum;
guint server_count;
enc_key_t *server_ek;
krb5_cksumtype kdc_checksum;
guint kdc_count;
enc_key_t *kdc_ek;
};
static void
verify_krb5_pac_try_key(gpointer __key _U_, gpointer value, gpointer userdata)
{
struct verify_krb5_pac_state *state =
(struct verify_krb5_pac_state *)userdata;
enc_key_t *ek = (enc_key_t *)value;
krb5_keyblock keyblock;
krb5_cksumtype checksumtype = 0;
krb5_error_code ret;
if (state->server_checksum == 0 && state->kdc_checksum == 0) {
/*
* nothing more todo, stop traversing.
*/
return;
}
if (state->server_ek != NULL && state->kdc_ek != NULL) {
/*
* we're done.
*/
return;
}
ret = krb5int_c_mandatory_cksumtype(krb5_ctx, ek->keytype,
&checksumtype);
if (ret != 0) {
/*
* the key is not usable, keep traversing.
* try the next key...
*/
return;
}
keyblock.magic = KV5M_KEYBLOCK;
keyblock.enctype = ek->keytype;
keyblock.length = ek->keylength;
keyblock.contents = (guint8 *)ek->keyvalue;
if (checksumtype == state->server_checksum && state->server_ek == NULL) {
state->server_count += 1;
ret = krb5_pac_verify(krb5_ctx, state->pac, 0, NULL,
&keyblock, NULL);
if (ret == 0) {
state->server_ek = ek;
}
}
if (checksumtype == state->kdc_checksum && state->kdc_ek == NULL) {
state->kdc_count += 1;
ret = krb5_pac_verify(krb5_ctx, state->pac, 0, NULL,
NULL, &keyblock);
if (ret == 0) {
state->kdc_ek = ek;
}
}
}
static void
verify_krb5_pac(proto_tree *tree _U_, asn1_ctx_t *actx, tvbuff_t *pactvb)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
krb5_error_code ret;
krb5_data checksum_data = {0,0,NULL};
int length = tvb_captured_length(pactvb);
const guint8 *pacbuffer = NULL;
struct verify_krb5_pac_state state = {
.kdc_checksum = 0,
};
/* don't do anything if we are not attempting to decrypt data */
if(!krb_decrypt || length < 1){
return;
}
/* make sure we have all the data we need */
if (tvb_captured_length(pactvb) < tvb_reported_length(pactvb)) {
return;
}
pacbuffer = tvb_get_ptr(pactvb, 0, length);
ret = krb5_pac_parse(krb5_ctx, pacbuffer, length, &state.pac);
if (ret != 0) {
proto_tree_add_expert_format(tree, actx->pinfo, &ei_kerberos_decrypted_keytype,
pactvb, 0, 0,
"Failed to parse PAC buffer %d in frame %u",
ret, actx->pinfo->fd->num);
return;
}
ret = krb5_pac_get_buffer(krb5_ctx, state.pac, KRB5_PAC_SERVER_CHECKSUM,
&checksum_data);
if (ret == 0) {
state.server_checksum = pletoh32(checksum_data.data);
krb5_free_data_contents(krb5_ctx, &checksum_data);
};
ret = krb5_pac_get_buffer(krb5_ctx, state.pac, KRB5_PAC_PRIVSVR_CHECKSUM,
&checksum_data);
if (ret == 0) {
state.kdc_checksum = pletoh32(checksum_data.data);
krb5_free_data_contents(krb5_ctx, &checksum_data);
};
read_keytab_file_from_preferences();
wmem_map_foreach(kerberos_longterm_keys,
verify_krb5_pac_try_key,
&state);
if (state.server_ek != NULL) {
used_signing_key(tree, actx->pinfo, private_data,
state.server_ek, pactvb,
state.server_checksum, "Verified Server",
"longterm_keys",
wmem_map_size(kerberos_longterm_keys),
state.server_count);
} else {
int keytype = keytype_for_cksumtype(state.server_checksum);
missing_signing_key(tree, actx->pinfo, private_data,
pactvb, state.server_checksum, keytype,
"Missing Server",
"longterm_keys",
wmem_map_size(kerberos_longterm_keys),
state.server_count);
}
if (state.kdc_ek != NULL) {
used_signing_key(tree, actx->pinfo, private_data,
state.kdc_ek, pactvb,
state.kdc_checksum, "Verified KDC",
"longterm_keys",
wmem_map_size(kerberos_longterm_keys),
state.kdc_count);
} else {
int keytype = keytype_for_cksumtype(state.kdc_checksum);
missing_signing_key(tree, actx->pinfo, private_data,
pactvb, state.kdc_checksum, keytype,
"Missing KDC",
"longterm_keys",
wmem_map_size(kerberos_longterm_keys),
state.kdc_count);
}
krb5_pac_free(krb5_ctx, state.pac);
}
#endif /* HAVE_KRB5_PAC_VERIFY */
#elif defined(HAVE_HEIMDAL_KERBEROS)
static krb5_context krb5_ctx;
USES_APPLE_DEPRECATED_API
static void
krb5_fast_key(asn1_ctx_t *actx _U_, proto_tree *tree _U_, tvbuff_t *tvb _U_,
enc_key_t *ek1 _U_, const char *p1 _U_,
enc_key_t *ek2 _U_, const char *p2 _U_,
const char *origin _U_)
{
/* TODO: use krb5_crypto_fx_cf2() from Heimdal */
}
void
read_keytab_file(const char *filename)
{
krb5_keytab keytab;
krb5_error_code ret;
krb5_keytab_entry key;
krb5_kt_cursor cursor;
enc_key_t *new_key;
static gboolean first_time=TRUE;
if (filename == NULL || filename[0] == 0) {
return;
}
if(first_time){
first_time=FALSE;
ret = krb5_init_context(&krb5_ctx);
if(ret){
return;
}
}
/* should use a file in the wireshark users dir */
ret = krb5_kt_resolve(krb5_ctx, filename, &keytab);
if(ret){
fprintf(stderr, "KERBEROS ERROR: Could not open keytab file :%s\n",filename);
return;
}
ret = krb5_kt_start_seq_get(krb5_ctx, keytab, &cursor);
if(ret){
fprintf(stderr, "KERBEROS ERROR: Could not read from keytab file :%s\n",filename);
return;
}
do{
ret = krb5_kt_next_entry(krb5_ctx, keytab, &key, &cursor);
if(ret==0){
unsigned int i;
char *pos;
new_key = wmem_new0(wmem_epan_scope(), enc_key_t);
new_key->fd_num = -1;
new_key->id = ++kerberos_longterm_ids;
g_snprintf(new_key->id_str, KRB_MAX_ID_STR_LEN, "keytab.%u", new_key->id);
new_key->next = enc_key_list;
/* generate origin string, describing where this key came from */
pos=new_key->key_origin;
pos+=MIN(KRB_MAX_ORIG_LEN,
g_snprintf(pos, KRB_MAX_ORIG_LEN, "keytab principal "));
for(i=0;i<key.principal->name.name_string.len;i++){
pos+=MIN(KRB_MAX_ORIG_LEN-(pos-new_key->key_origin),
g_snprintf(pos, KRB_MAX_ORIG_LEN-(pos-new_key->key_origin), "%s%s",(i?"/":""),key.principal->name.name_string.val[i]));
}
pos+=MIN(KRB_MAX_ORIG_LEN-(pos-new_key->key_origin),
g_snprintf(pos, KRB_MAX_ORIG_LEN-(pos-new_key->key_origin), "@%s",key.principal->realm));
*pos=0;
new_key->keytype=key.keyblock.keytype;
new_key->keylength=(int)key.keyblock.keyvalue.length;
memcpy(new_key->keyvalue,
key.keyblock.keyvalue.data,
MIN((guint)key.keyblock.keyvalue.length, KRB_MAX_KEY_LENGTH));
enc_key_list=new_key;
ret = krb5_kt_free_entry(krb5_ctx, &key);
if (ret) {
fprintf(stderr, "KERBEROS ERROR: Could not release the entry: %d", ret);
ret = 0; /* try to continue with the next entry */
}
kerberos_key_map_insert(kerberos_longterm_keys, new_key);
}
}while(ret==0);
ret = krb5_kt_end_seq_get(krb5_ctx, keytab, &cursor);
if(ret){
fprintf(stderr, "KERBEROS ERROR: Could not release the keytab cursor: %d", ret);
}
ret = krb5_kt_close(krb5_ctx, keytab);
if(ret){
fprintf(stderr, "KERBEROS ERROR: Could not close the key table handle: %d", ret);
}
}
USES_APPLE_RST
guint8 *
decrypt_krb5_data(proto_tree *tree _U_, packet_info *pinfo,
int usage,
tvbuff_t *cryptotvb,
int keytype,
int *datalen)
{
kerberos_private_data_t *zero_private = kerberos_new_private_data();
krb5_error_code ret;
krb5_data data;
enc_key_t *ek;
int length = tvb_captured_length(cryptotvb);
const guint8 *cryptotext = tvb_get_ptr(cryptotvb, 0, length);
/* don't do anything if we are not attempting to decrypt data */
if(!krb_decrypt){
return NULL;
}
/* make sure we have all the data we need */
if (tvb_captured_length(cryptotvb) < tvb_reported_length(cryptotvb)) {
return NULL;
}
read_keytab_file_from_preferences();
for(ek=enc_key_list;ek;ek=ek->next){
krb5_keytab_entry key;
krb5_crypto crypto;
guint8 *cryptocopy; /* workaround for pre-0.6.1 heimdal bug */
/* shortcircuit and bail out if enctypes are not matching */
if((keytype != -1) && (ek->keytype != keytype)) {
continue;
}
key.keyblock.keytype=ek->keytype;
key.keyblock.keyvalue.length=ek->keylength;
key.keyblock.keyvalue.data=ek->keyvalue;
ret = krb5_crypto_init(krb5_ctx, &(key.keyblock), (krb5_enctype)ENCTYPE_NULL, &crypto);
if(ret){
return NULL;
}
/* pre-0.6.1 versions of Heimdal would sometimes change
the cryptotext data even when the decryption failed.
This would obviously not work since we iterate over the
keys. So just give it a copy of the crypto data instead.
This has been seen for RC4-HMAC blobs.
*/
cryptocopy = (guint8 *)wmem_memdup(wmem_packet_scope(), cryptotext, length);
ret = krb5_decrypt_ivec(krb5_ctx, crypto, usage,
cryptocopy, length,
&data,
NULL);
if((ret == 0) && (length>0)){
char *user_data;
used_encryption_key(tree, pinfo, zero_private,
ek, usage, cryptotvb,
"enc_key_list", 0, 0);
krb5_crypto_destroy(krb5_ctx, crypto);
/* return a private wmem_alloced blob to the caller */
user_data = (char *)wmem_memdup(pinfo->pool, data.data, (guint)data.length);
if (datalen) {
*datalen = (int)data.length;
}
return user_data;
}
krb5_crypto_destroy(krb5_ctx, crypto);
}
return NULL;
}
#define NEED_DECRYPT_KRB5_KRB_CFX_DCE_NOOP 1
#elif defined (HAVE_LIBNETTLE)
#define SERVICE_KEY_SIZE (DES3_KEY_SIZE + 2)
#define KEYTYPE_DES3_CBC_MD5 5 /* Currently the only one supported */
typedef struct _service_key_t {
guint16 kvno;
int keytype;
int length;
guint8 *contents;
char origin[KRB_MAX_ORIG_LEN+1];
} service_key_t;
GSList *service_key_list = NULL;
static void
add_encryption_key(packet_info *pinfo, int keytype, int keylength, const char *keyvalue, const char *origin)
{
service_key_t *new_key;
if(pinfo->fd->visited){
return;
}
new_key = g_malloc(sizeof(service_key_t));
new_key->kvno = 0;
new_key->keytype = keytype;
new_key->length = keylength;
new_key->contents = g_memdup(keyvalue, keylength);
g_snprintf(new_key->origin, KRB_MAX_ORIG_LEN, "%s learnt from frame %u", origin, pinfo->num);
service_key_list = g_slist_append(service_key_list, (gpointer) new_key);
}
static void
save_encryption_key(tvbuff_t *tvb _U_, int offset _U_, int length _U_,
asn1_ctx_t *actx _U_, proto_tree *tree _U_,
int parent_hf_index _U_,
int hf_index _U_)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
const char *parent = proto_registrar_get_name(parent_hf_index);
const char *element = proto_registrar_get_name(hf_index);
char origin[KRB_MAX_ORIG_LEN] = { 0, };
g_snprintf(origin, KRB_MAX_ORIG_LEN, "%s_%s", parent, element);
add_encryption_key(actx->pinfo,
private_data->key.keytype,
private_data->key.keylength,
private_data->key.keyvalue,
origin);
}
static void
save_Authenticator_subkey(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
}
static void
save_EncAPRepPart_subkey(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
}
static void
save_EncKDCRepPart_key(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
}
static void
save_EncTicketPart_key(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
}
static void
save_KrbCredInfo_key(tvbuff_t *tvb, int offset, int length,
asn1_ctx_t *actx, proto_tree *tree,
int parent_hf_index,
int hf_index)
{
save_encryption_key(tvb, offset, length, actx, tree, parent_hf_index, hf_index);
}
static void
save_KrbFastResponse_strengthen_key(tvbuff_t *tvb _U_, int offset _U_, int length _U_,
asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_)
{
save_encryption_key(tvb, offset, length, actx, tree, hf_index);
}
static void
clear_keytab(void) {
GSList *ske;
service_key_t *sk;
for(ske = service_key_list; ske != NULL; ske = g_slist_next(ske)){
sk = (service_key_t *) ske->data;
if (sk) {
g_free(sk->contents);
g_free(sk);
}
}
g_slist_free(service_key_list);
service_key_list = NULL;
}
static void
read_keytab_file(const char *service_key_file)
{
FILE *skf;
ws_statb64 st;
service_key_t *sk;
unsigned char buf[SERVICE_KEY_SIZE];
int newline_skip = 0, count = 0;
if (service_key_file != NULL && ws_stat64 (service_key_file, &st) == 0) {
/* The service key file contains raw 192-bit (24 byte) 3DES keys.
* There can be zero, one (\n), or two (\r\n) characters between
* keys. Trailing characters are ignored.
*/
/* XXX We should support the standard keytab format instead */
if (st.st_size > SERVICE_KEY_SIZE) {
if ( (st.st_size % (SERVICE_KEY_SIZE + 1) == 0) ||
(st.st_size % (SERVICE_KEY_SIZE + 1) == SERVICE_KEY_SIZE) ) {
newline_skip = 1;
} else if ( (st.st_size % (SERVICE_KEY_SIZE + 2) == 0) ||
(st.st_size % (SERVICE_KEY_SIZE + 2) == SERVICE_KEY_SIZE) ) {
newline_skip = 2;
}
}
skf = ws_fopen(service_key_file, "rb");
if (! skf) return;
while (fread(buf, SERVICE_KEY_SIZE, 1, skf) == 1) {
sk = g_malloc(sizeof(service_key_t));
sk->kvno = buf[0] << 8 | buf[1];
sk->keytype = KEYTYPE_DES3_CBC_MD5;
sk->length = DES3_KEY_SIZE;
sk->contents = g_memdup(buf + 2, DES3_KEY_SIZE);
g_snprintf(sk->origin, KRB_MAX_ORIG_LEN, "3DES service key file, key #%d, offset %ld", count, ftell(skf));
service_key_list = g_slist_append(service_key_list, (gpointer) sk);
if (fseek(skf, newline_skip, SEEK_CUR) < 0) {
fprintf(stderr, "unable to seek...\n");
return;
}
count++;
}
fclose(skf);
}
}
#define CONFOUNDER_PLUS_CHECKSUM 24
guint8 *
decrypt_krb5_data(proto_tree *tree, packet_info *pinfo,
int _U_ usage,
tvbuff_t *cryptotvb,
int keytype,
int *datalen)
{
tvbuff_t *encr_tvb;
guint8 *decrypted_data = NULL, *plaintext = NULL;
guint8 cls;
gboolean pc;
guint32 tag, item_len, data_len;
int id_offset, offset;
guint8 key[DES3_KEY_SIZE];
guint8 initial_vector[DES_BLOCK_SIZE];
gcry_md_hd_t md5_handle;
guint8 *digest;
guint8 zero_fill[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
guint8 confounder[8];
gboolean ind;
GSList *ske;
service_key_t *sk;
struct des3_ctx ctx;
int length = tvb_captured_length(cryptotvb);
const guint8 *cryptotext = tvb_get_ptr(cryptotvb, 0, length);
/* don't do anything if we are not attempting to decrypt data */
if(!krb_decrypt){
return NULL;
}
/* make sure we have all the data we need */
if (tvb_captured_length(cryptotvb) < tvb_reported_length(cryptotvb)) {
return NULL;
}
if (keytype != KEYTYPE_DES3_CBC_MD5 || service_key_list == NULL) {
return NULL;
}
decrypted_data = wmem_alloc(wmem_packet_scope(), length);
for(ske = service_key_list; ske != NULL; ske = g_slist_next(ske)){
gboolean do_continue = FALSE;
gboolean digest_ok;
sk = (service_key_t *) ske->data;
des_fix_parity(DES3_KEY_SIZE, key, sk->contents);
memset(initial_vector, 0, DES_BLOCK_SIZE);
des3_set_key(&ctx, key);
cbc_decrypt(&ctx, des3_decrypt, DES_BLOCK_SIZE, initial_vector,
length, decrypted_data, cryptotext);
encr_tvb = tvb_new_real_data(decrypted_data, length, length);
tvb_memcpy(encr_tvb, confounder, 0, 8);
/* We have to pull the decrypted data length from the decrypted
* content. If the key doesn't match or we otherwise get garbage,
* an exception may get thrown while decoding the ASN.1 header.
* Catch it, just in case.
*/
TRY {
id_offset = get_ber_identifier(encr_tvb, CONFOUNDER_PLUS_CHECKSUM, &cls, &pc, &tag);
offset = get_ber_length(encr_tvb, id_offset, &item_len, &ind);
}
CATCH_BOUNDS_ERRORS {
tvb_free(encr_tvb);
do_continue = TRUE;
}
ENDTRY;
if (do_continue) continue;
data_len = item_len + offset - CONFOUNDER_PLUS_CHECKSUM;
if ((int) item_len + offset > length) {
tvb_free(encr_tvb);
continue;
}
if (gcry_md_open(&md5_handle, GCRY_MD_MD5, 0)) {
return NULL;
}
gcry_md_write(md5_handle, confounder, 8);
gcry_md_write(md5_handle, zero_fill, 16);
gcry_md_write(md5_handle, decrypted_data + CONFOUNDER_PLUS_CHECKSUM, data_len);
digest = gcry_md_read(md5_handle, 0);
digest_ok = (tvb_memeql (encr_tvb, 8, digest, HASH_MD5_LENGTH) == 0);
gcry_md_close(md5_handle);
if (digest_ok) {
plaintext = (guint8* )tvb_memdup(pinfo->pool, encr_tvb, CONFOUNDER_PLUS_CHECKSUM, data_len);
tvb_free(encr_tvb);
if (datalen) {
*datalen = data_len;
}
return(plaintext);
}
tvb_free(encr_tvb);
}
return NULL;
}
#endif /* HAVE_MIT_KERBEROS / HAVE_HEIMDAL_KERBEROS / HAVE_LIBNETTLE */
#ifdef NEED_DECRYPT_KRB5_KRB_CFX_DCE_NOOP
tvbuff_t *
decrypt_krb5_krb_cfx_dce(proto_tree *tree _U_,
packet_info *pinfo _U_,
int usage _U_,
int keytype _U_,
tvbuff_t *gssapi_header_tvb _U_,
tvbuff_t *gssapi_encrypted_tvb _U_,
tvbuff_t *gssapi_trailer_tvb _U_,
tvbuff_t *checksum_tvb _U_)
{
return NULL;
}
#endif /* NEED_DECRYPT_KRB5_KRB_CFX_DCE_NOOP */
#define INET6_ADDRLEN 16
/* TCP Record Mark */
#define KRB_RM_RESERVED 0x80000000U
#define KRB_RM_RECLEN 0x7fffffffU
#define KRB5_MSG_TICKET 1 /* Ticket */
#define KRB5_MSG_AUTHENTICATOR 2 /* Authenticator */
#define KRB5_MSG_ENC_TICKET_PART 3 /* EncTicketPart */
#define KRB5_MSG_AS_REQ 10 /* AS-REQ type */
#define KRB5_MSG_AS_REP 11 /* AS-REP type */
#define KRB5_MSG_TGS_REQ 12 /* TGS-REQ type */
#define KRB5_MSG_TGS_REP 13 /* TGS-REP type */
#define KRB5_MSG_AP_REQ 14 /* AP-REQ type */
#define KRB5_MSG_AP_REP 15 /* AP-REP type */
#define KRB5_MSG_SAFE 20 /* KRB-SAFE type */
#define KRB5_MSG_PRIV 21 /* KRB-PRIV type */
#define KRB5_MSG_CRED 22 /* KRB-CRED type */
#define KRB5_MSG_ENC_AS_REP_PART 25 /* EncASRepPart */
#define KRB5_MSG_ENC_TGS_REP_PART 26 /* EncTGSRepPart */
#define KRB5_MSG_ENC_AP_REP_PART 27 /* EncAPRepPart */
#define KRB5_MSG_ENC_KRB_PRIV_PART 28 /* EncKrbPrivPart */
#define KRB5_MSG_ENC_KRB_CRED_PART 29 /* EncKrbCredPart */
#define KRB5_MSG_ERROR 30 /* KRB-ERROR type */
#define KRB5_CHKSUM_GSSAPI 0x8003
/*
* For KERB_ENCTYPE_RC4_HMAC and KERB_ENCTYPE_RC4_HMAC_EXP, see
*
* https://tools.ietf.org/html/draft-brezak-win2k-krb-rc4-hmac-04
*
* unless it's expired.
*/
/* Principal name-type */
#define KRB5_NT_UNKNOWN 0
#define KRB5_NT_PRINCIPAL 1
#define KRB5_NT_SRV_INST 2
#define KRB5_NT_SRV_HST 3
#define KRB5_NT_SRV_XHST 4
#define KRB5_NT_UID 5
#define KRB5_NT_X500_PRINCIPAL 6
#define KRB5_NT_SMTP_NAME 7
#define KRB5_NT_ENTERPRISE 10
/*
* MS specific name types, from
*
* http://msdn.microsoft.com/library/en-us/security/security/kerb_external_name.asp
*/
#define KRB5_NT_MS_PRINCIPAL -128
#define KRB5_NT_MS_PRINCIPAL_AND_SID -129
#define KRB5_NT_ENT_PRINCIPAL_AND_SID -130
#define KRB5_NT_PRINCIPAL_AND_SID -131
#define KRB5_NT_SRV_INST_AND_SID -132
/* error table constants */
/* I prefixed the krb5_err.et constant names with KRB5_ET_ for these */
#define KRB5_ET_KRB5KDC_ERR_NONE 0
#define KRB5_ET_KRB5KDC_ERR_NAME_EXP 1
#define KRB5_ET_KRB5KDC_ERR_SERVICE_EXP 2
#define KRB5_ET_KRB5KDC_ERR_BAD_PVNO 3
#define KRB5_ET_KRB5KDC_ERR_C_OLD_MAST_KVNO 4
#define KRB5_ET_KRB5KDC_ERR_S_OLD_MAST_KVNO 5
#define KRB5_ET_KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN 6
#define KRB5_ET_KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN 7
#define KRB5_ET_KRB5KDC_ERR_PRINCIPAL_NOT_UNIQUE 8
#define KRB5_ET_KRB5KDC_ERR_NULL_KEY 9
#define KRB5_ET_KRB5KDC_ERR_CANNOT_POSTDATE 10
#define KRB5_ET_KRB5KDC_ERR_NEVER_VALID 11
#define KRB5_ET_KRB5KDC_ERR_POLICY 12
#define KRB5_ET_KRB5KDC_ERR_BADOPTION 13
#define KRB5_ET_KRB5KDC_ERR_ETYPE_NOSUPP 14
#define KRB5_ET_KRB5KDC_ERR_SUMTYPE_NOSUPP 15
#define KRB5_ET_KRB5KDC_ERR_PADATA_TYPE_NOSUPP 16
#define KRB5_ET_KRB5KDC_ERR_TRTYPE_NOSUPP 17
#define KRB5_ET_KRB5KDC_ERR_CLIENT_REVOKED 18
#define KRB5_ET_KRB5KDC_ERR_SERVICE_REVOKED 19
#define KRB5_ET_KRB5KDC_ERR_TGT_REVOKED 20
#define KRB5_ET_KRB5KDC_ERR_CLIENT_NOTYET 21
#define KRB5_ET_KRB5KDC_ERR_SERVICE_NOTYET 22
#define KRB5_ET_KRB5KDC_ERR_KEY_EXP 23
#define KRB5_ET_KRB5KDC_ERR_PREAUTH_FAILED 24
#define KRB5_ET_KRB5KDC_ERR_PREAUTH_REQUIRED 25
#define KRB5_ET_KRB5KDC_ERR_SERVER_NOMATCH 26
#define KRB5_ET_KRB5KDC_ERR_MUST_USE_USER2USER 27
#define KRB5_ET_KRB5KDC_ERR_PATH_NOT_ACCEPTED 28
#define KRB5_ET_KRB5KDC_ERR_SVC_UNAVAILABLE 29
#define KRB5_ET_KRB5KRB_AP_ERR_BAD_INTEGRITY 31
#define KRB5_ET_KRB5KRB_AP_ERR_TKT_EXPIRED 32
#define KRB5_ET_KRB5KRB_AP_ERR_TKT_NYV 33
#define KRB5_ET_KRB5KRB_AP_ERR_REPEAT 34
#define KRB5_ET_KRB5KRB_AP_ERR_NOT_US 35
#define KRB5_ET_KRB5KRB_AP_ERR_BADMATCH 36
#define KRB5_ET_KRB5KRB_AP_ERR_SKEW 37
#define KRB5_ET_KRB5KRB_AP_ERR_BADADDR 38
#define KRB5_ET_KRB5KRB_AP_ERR_BADVERSION 39
#define KRB5_ET_KRB5KRB_AP_ERR_MSG_TYPE 40
#define KRB5_ET_KRB5KRB_AP_ERR_MODIFIED 41
#define KRB5_ET_KRB5KRB_AP_ERR_BADORDER 42
#define KRB5_ET_KRB5KRB_AP_ERR_ILL_CR_TKT 43
#define KRB5_ET_KRB5KRB_AP_ERR_BADKEYVER 44
#define KRB5_ET_KRB5KRB_AP_ERR_NOKEY 45
#define KRB5_ET_KRB5KRB_AP_ERR_MUT_FAIL 46
#define KRB5_ET_KRB5KRB_AP_ERR_BADDIRECTION 47
#define KRB5_ET_KRB5KRB_AP_ERR_METHOD 48
#define KRB5_ET_KRB5KRB_AP_ERR_BADSEQ 49
#define KRB5_ET_KRB5KRB_AP_ERR_INAPP_CKSUM 50
#define KRB5_ET_KRB5KDC_AP_PATH_NOT_ACCEPTED 51
#define KRB5_ET_KRB5KRB_ERR_RESPONSE_TOO_BIG 52
#define KRB5_ET_KRB5KRB_ERR_GENERIC 60
#define KRB5_ET_KRB5KRB_ERR_FIELD_TOOLONG 61
#define KRB5_ET_KDC_ERROR_CLIENT_NOT_TRUSTED 62
#define KRB5_ET_KDC_ERROR_KDC_NOT_TRUSTED 63
#define KRB5_ET_KDC_ERROR_INVALID_SIG 64
#define KRB5_ET_KDC_ERR_KEY_TOO_WEAK 65
#define KRB5_ET_KDC_ERR_CERTIFICATE_MISMATCH 66
#define KRB5_ET_KRB_AP_ERR_NO_TGT 67
#define KRB5_ET_KDC_ERR_WRONG_REALM 68
#define KRB5_ET_KRB_AP_ERR_USER_TO_USER_REQUIRED 69
#define KRB5_ET_KDC_ERR_CANT_VERIFY_CERTIFICATE 70
#define KRB5_ET_KDC_ERR_INVALID_CERTIFICATE 71
#define KRB5_ET_KDC_ERR_REVOKED_CERTIFICATE 72
#define KRB5_ET_KDC_ERR_REVOCATION_STATUS_UNKNOWN 73
#define KRB5_ET_KDC_ERR_REVOCATION_STATUS_UNAVAILABLE 74
#define KRB5_ET_KDC_ERR_CLIENT_NAME_MISMATCH 75
#define KRB5_ET_KDC_ERR_KDC_NAME_MISMATCH 76
#define KRB5_ET_KDC_ERR_PREAUTH_EXPIRED 90
#define KRB5_ET_KDC_ERR_MORE_PREAUTH_DATA_REQUIRED 91
#define KRB5_ET_KDC_ERR_PREAUTH_BAD_AUTHENTICATION_SET 92
#define KRB5_ET_KDC_ERR_UNKNOWN_CRITICAL_FAST_OPTIONS 93
static const value_string krb5_error_codes[] = {
{ KRB5_ET_KRB5KDC_ERR_NONE, "KRB5KDC_ERR_NONE" },
{ KRB5_ET_KRB5KDC_ERR_NAME_EXP, "KRB5KDC_ERR_NAME_EXP" },
{ KRB5_ET_KRB5KDC_ERR_SERVICE_EXP, "KRB5KDC_ERR_SERVICE_EXP" },
{ KRB5_ET_KRB5KDC_ERR_BAD_PVNO, "KRB5KDC_ERR_BAD_PVNO" },
{ KRB5_ET_KRB5KDC_ERR_C_OLD_MAST_KVNO, "KRB5KDC_ERR_C_OLD_MAST_KVNO" },
{ KRB5_ET_KRB5KDC_ERR_S_OLD_MAST_KVNO, "KRB5KDC_ERR_S_OLD_MAST_KVNO" },
{ KRB5_ET_KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN, "KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN" },
{ KRB5_ET_KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN, "KRB5KDC_ERR_S_PRINCIPAL_UNKNOWN" },
{ KRB5_ET_KRB5KDC_ERR_PRINCIPAL_NOT_UNIQUE, "KRB5KDC_ERR_PRINCIPAL_NOT_UNIQUE" },
{ KRB5_ET_KRB5KDC_ERR_NULL_KEY, "KRB5KDC_ERR_NULL_KEY" },
{ KRB5_ET_KRB5KDC_ERR_CANNOT_POSTDATE, "KRB5KDC_ERR_CANNOT_POSTDATE" },
{ KRB5_ET_KRB5KDC_ERR_NEVER_VALID, "KRB5KDC_ERR_NEVER_VALID" },
{ KRB5_ET_KRB5KDC_ERR_POLICY, "KRB5KDC_ERR_POLICY" },
{ KRB5_ET_KRB5KDC_ERR_BADOPTION, "KRB5KDC_ERR_BADOPTION" },
{ KRB5_ET_KRB5KDC_ERR_ETYPE_NOSUPP, "KRB5KDC_ERR_ETYPE_NOSUPP" },
{ KRB5_ET_KRB5KDC_ERR_SUMTYPE_NOSUPP, "KRB5KDC_ERR_SUMTYPE_NOSUPP" },
{ KRB5_ET_KRB5KDC_ERR_PADATA_TYPE_NOSUPP, "KRB5KDC_ERR_PADATA_TYPE_NOSUPP" },
{ KRB5_ET_KRB5KDC_ERR_TRTYPE_NOSUPP, "KRB5KDC_ERR_TRTYPE_NOSUPP" },
{ KRB5_ET_KRB5KDC_ERR_CLIENT_REVOKED, "KRB5KDC_ERR_CLIENT_REVOKED" },
{ KRB5_ET_KRB5KDC_ERR_SERVICE_REVOKED, "KRB5KDC_ERR_SERVICE_REVOKED" },
{ KRB5_ET_KRB5KDC_ERR_TGT_REVOKED, "KRB5KDC_ERR_TGT_REVOKED" },
{ KRB5_ET_KRB5KDC_ERR_CLIENT_NOTYET, "KRB5KDC_ERR_CLIENT_NOTYET" },
{ KRB5_ET_KRB5KDC_ERR_SERVICE_NOTYET, "KRB5KDC_ERR_SERVICE_NOTYET" },
{ KRB5_ET_KRB5KDC_ERR_KEY_EXP, "KRB5KDC_ERR_KEY_EXP" },
{ KRB5_ET_KRB5KDC_ERR_PREAUTH_FAILED, "KRB5KDC_ERR_PREAUTH_FAILED" },
{ KRB5_ET_KRB5KDC_ERR_PREAUTH_REQUIRED, "KRB5KDC_ERR_PREAUTH_REQUIRED" },
{ KRB5_ET_KRB5KDC_ERR_SERVER_NOMATCH, "KRB5KDC_ERR_SERVER_NOMATCH" },
{ KRB5_ET_KRB5KDC_ERR_MUST_USE_USER2USER, "KRB5KDC_ERR_MUST_USE_USER2USER" },
{ KRB5_ET_KRB5KDC_ERR_PATH_NOT_ACCEPTED, "KRB5KDC_ERR_PATH_NOT_ACCEPTED" },
{ KRB5_ET_KRB5KDC_ERR_SVC_UNAVAILABLE, "KRB5KDC_ERR_SVC_UNAVAILABLE" },
{ KRB5_ET_KRB5KRB_AP_ERR_BAD_INTEGRITY, "KRB5KRB_AP_ERR_BAD_INTEGRITY" },
{ KRB5_ET_KRB5KRB_AP_ERR_TKT_EXPIRED, "KRB5KRB_AP_ERR_TKT_EXPIRED" },
{ KRB5_ET_KRB5KRB_AP_ERR_TKT_NYV, "KRB5KRB_AP_ERR_TKT_NYV" },
{ KRB5_ET_KRB5KRB_AP_ERR_REPEAT, "KRB5KRB_AP_ERR_REPEAT" },
{ KRB5_ET_KRB5KRB_AP_ERR_NOT_US, "KRB5KRB_AP_ERR_NOT_US" },
{ KRB5_ET_KRB5KRB_AP_ERR_BADMATCH, "KRB5KRB_AP_ERR_BADMATCH" },
{ KRB5_ET_KRB5KRB_AP_ERR_SKEW, "KRB5KRB_AP_ERR_SKEW" },
{ KRB5_ET_KRB5KRB_AP_ERR_BADADDR, "KRB5KRB_AP_ERR_BADADDR" },
{ KRB5_ET_KRB5KRB_AP_ERR_BADVERSION, "KRB5KRB_AP_ERR_BADVERSION" },
{ KRB5_ET_KRB5KRB_AP_ERR_MSG_TYPE, "KRB5KRB_AP_ERR_MSG_TYPE" },
{ KRB5_ET_KRB5KRB_AP_ERR_MODIFIED, "KRB5KRB_AP_ERR_MODIFIED" },
{ KRB5_ET_KRB5KRB_AP_ERR_BADORDER, "KRB5KRB_AP_ERR_BADORDER" },
{ KRB5_ET_KRB5KRB_AP_ERR_ILL_CR_TKT, "KRB5KRB_AP_ERR_ILL_CR_TKT" },
{ KRB5_ET_KRB5KRB_AP_ERR_BADKEYVER, "KRB5KRB_AP_ERR_BADKEYVER" },
{ KRB5_ET_KRB5KRB_AP_ERR_NOKEY, "KRB5KRB_AP_ERR_NOKEY" },
{ KRB5_ET_KRB5KRB_AP_ERR_MUT_FAIL, "KRB5KRB_AP_ERR_MUT_FAIL" },
{ KRB5_ET_KRB5KRB_AP_ERR_BADDIRECTION, "KRB5KRB_AP_ERR_BADDIRECTION" },
{ KRB5_ET_KRB5KRB_AP_ERR_METHOD, "KRB5KRB_AP_ERR_METHOD" },
{ KRB5_ET_KRB5KRB_AP_ERR_BADSEQ, "KRB5KRB_AP_ERR_BADSEQ" },
{ KRB5_ET_KRB5KRB_AP_ERR_INAPP_CKSUM, "KRB5KRB_AP_ERR_INAPP_CKSUM" },
{ KRB5_ET_KRB5KDC_AP_PATH_NOT_ACCEPTED, "KRB5KDC_AP_PATH_NOT_ACCEPTED" },
{ KRB5_ET_KRB5KRB_ERR_RESPONSE_TOO_BIG, "KRB5KRB_ERR_RESPONSE_TOO_BIG"},
{ KRB5_ET_KRB5KRB_ERR_GENERIC, "KRB5KRB_ERR_GENERIC" },
{ KRB5_ET_KRB5KRB_ERR_FIELD_TOOLONG, "KRB5KRB_ERR_FIELD_TOOLONG" },
{ KRB5_ET_KDC_ERROR_CLIENT_NOT_TRUSTED, "KDC_ERROR_CLIENT_NOT_TRUSTED" },
{ KRB5_ET_KDC_ERROR_KDC_NOT_TRUSTED, "KDC_ERROR_KDC_NOT_TRUSTED" },
{ KRB5_ET_KDC_ERROR_INVALID_SIG, "KDC_ERROR_INVALID_SIG" },
{ KRB5_ET_KDC_ERR_KEY_TOO_WEAK, "KDC_ERR_KEY_TOO_WEAK" },
{ KRB5_ET_KDC_ERR_CERTIFICATE_MISMATCH, "KDC_ERR_CERTIFICATE_MISMATCH" },
{ KRB5_ET_KRB_AP_ERR_NO_TGT, "KRB_AP_ERR_NO_TGT" },
{ KRB5_ET_KDC_ERR_WRONG_REALM, "KDC_ERR_WRONG_REALM" },
{ KRB5_ET_KRB_AP_ERR_USER_TO_USER_REQUIRED, "KRB_AP_ERR_USER_TO_USER_REQUIRED" },
{ KRB5_ET_KDC_ERR_CANT_VERIFY_CERTIFICATE, "KDC_ERR_CANT_VERIFY_CERTIFICATE" },
{ KRB5_ET_KDC_ERR_INVALID_CERTIFICATE, "KDC_ERR_INVALID_CERTIFICATE" },
{ KRB5_ET_KDC_ERR_REVOKED_CERTIFICATE, "KDC_ERR_REVOKED_CERTIFICATE" },
{ KRB5_ET_KDC_ERR_REVOCATION_STATUS_UNKNOWN, "KDC_ERR_REVOCATION_STATUS_UNKNOWN" },
{ KRB5_ET_KDC_ERR_REVOCATION_STATUS_UNAVAILABLE, "KDC_ERR_REVOCATION_STATUS_UNAVAILABLE" },
{ KRB5_ET_KDC_ERR_CLIENT_NAME_MISMATCH, "KDC_ERR_CLIENT_NAME_MISMATCH" },
{ KRB5_ET_KDC_ERR_KDC_NAME_MISMATCH, "KDC_ERR_KDC_NAME_MISMATCH" },
{ KRB5_ET_KDC_ERR_PREAUTH_EXPIRED, "KDC_ERR_PREAUTH_EXPIRED" },
{ KRB5_ET_KDC_ERR_MORE_PREAUTH_DATA_REQUIRED, "KDC_ERR_MORE_PREAUTH_DATA_REQUIRED" },
{ KRB5_ET_KDC_ERR_PREAUTH_BAD_AUTHENTICATION_SET, "KDC_ERR_PREAUTH_BAD_AUTHENTICATION_SET" },
{ KRB5_ET_KDC_ERR_UNKNOWN_CRITICAL_FAST_OPTIONS, "KDC_ERR_UNKNOWN_CRITICAL_FAST_OPTIONS" },
{ 0, NULL }
};
#define PAC_LOGON_INFO 1
#define PAC_CREDENTIAL_TYPE 2
#define PAC_SERVER_CHECKSUM 6
#define PAC_PRIVSVR_CHECKSUM 7
#define PAC_CLIENT_INFO_TYPE 10
#define PAC_S4U_DELEGATION_INFO 11
#define PAC_UPN_DNS_INFO 12
#define PAC_CLIENT_CLAIMS_INFO 13
#define PAC_DEVICE_INFO 14
#define PAC_DEVICE_CLAIMS_INFO 15
static const value_string w2k_pac_types[] = {
{ PAC_LOGON_INFO , "Logon Info" },
{ PAC_CREDENTIAL_TYPE , "Credential Type" },
{ PAC_SERVER_CHECKSUM , "Server Checksum" },
{ PAC_PRIVSVR_CHECKSUM , "Privsvr Checksum" },
{ PAC_CLIENT_INFO_TYPE , "Client Info Type" },
{ PAC_S4U_DELEGATION_INFO , "S4U Delegation Info" },
{ PAC_UPN_DNS_INFO , "UPN DNS Info" },
{ PAC_CLIENT_CLAIMS_INFO , "Client Claims Info" },
{ PAC_DEVICE_INFO , "Device Info" },
{ PAC_DEVICE_CLAIMS_INFO , "Device Claims Info" },
{ 0, NULL },
};
static const value_string krb5_msg_types[] = {
{ KRB5_MSG_TICKET, "Ticket" },
{ KRB5_MSG_AUTHENTICATOR, "Authenticator" },
{ KRB5_MSG_ENC_TICKET_PART, "EncTicketPart" },
{ KRB5_MSG_TGS_REQ, "TGS-REQ" },
{ KRB5_MSG_TGS_REP, "TGS-REP" },
{ KRB5_MSG_AS_REQ, "AS-REQ" },
{ KRB5_MSG_AS_REP, "AS-REP" },
{ KRB5_MSG_AP_REQ, "AP-REQ" },
{ KRB5_MSG_AP_REP, "AP-REP" },
{ KRB5_MSG_SAFE, "KRB-SAFE" },
{ KRB5_MSG_PRIV, "KRB-PRIV" },
{ KRB5_MSG_CRED, "KRB-CRED" },
{ KRB5_MSG_ENC_AS_REP_PART, "EncASRepPart" },
{ KRB5_MSG_ENC_TGS_REP_PART, "EncTGSRepPart" },
{ KRB5_MSG_ENC_AP_REP_PART, "EncAPRepPart" },
{ KRB5_MSG_ENC_KRB_PRIV_PART, "EncKrbPrivPart" },
{ KRB5_MSG_ENC_KRB_CRED_PART, "EncKrbCredPart" },
{ KRB5_MSG_ERROR, "KRB-ERROR" },
{ 0, NULL },
};
#define KRB5_GSS_C_DELEG_FLAG 0x01
#define KRB5_GSS_C_MUTUAL_FLAG 0x02
#define KRB5_GSS_C_REPLAY_FLAG 0x04
#define KRB5_GSS_C_SEQUENCE_FLAG 0x08
#define KRB5_GSS_C_CONF_FLAG 0x10
#define KRB5_GSS_C_INTEG_FLAG 0x20
#define KRB5_GSS_C_DCE_STYLE 0x1000
static const true_false_string tfs_gss_flags_deleg = {
"Delegate credentials to remote peer",
"Do NOT delegate"
};
static const true_false_string tfs_gss_flags_mutual = {
"Request that remote peer authenticates itself",
"Mutual authentication NOT required"
};
static const true_false_string tfs_gss_flags_replay = {
"Enable replay protection for signed or sealed messages",
"Do NOT enable replay protection"
};
static const true_false_string tfs_gss_flags_sequence = {
"Enable Out-of-sequence detection for sign or sealed messages",
"Do NOT enable out-of-sequence detection"
};
static const true_false_string tfs_gss_flags_conf = {
"Confidentiality (sealing) may be invoked",
"Do NOT use Confidentiality (sealing)"
};
static const true_false_string tfs_gss_flags_integ = {
"Integrity protection (signing) may be invoked",
"Do NOT use integrity protection"
};
static const true_false_string tfs_gss_flags_dce_style = {
"DCE-STYLE",
"Not using DCE-STYLE"
};
#ifdef HAVE_KERBEROS
static guint8 *
decrypt_krb5_data_asn1(proto_tree *tree, asn1_ctx_t *actx,
int usage, tvbuff_t *cryptotvb, int *datalen)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
#ifdef HAVE_DECRYPT_KRB5_DATA_PRIVATE
return decrypt_krb5_data_private(tree, actx->pinfo, private_data,
usage, cryptotvb,
private_data->etype,
datalen);
#else
return decrypt_krb5_data(tree, actx->pinfo, usage, cryptotvb,
private_data->etype, datalen);
#endif
}
static int
dissect_krb5_decrypt_ticket_data (gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
guint8 *plaintext;
int length;
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* draft-ietf-krb-wg-kerberos-clarifications-05.txt :
* 7.5.1
* All Ticket encrypted parts use usage == 2
*/
plaintext=decrypt_krb5_data_asn1(tree, actx, 2, next_tvb, NULL);
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 Ticket");
offset=dissect_kerberos_Applications(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_authenticator_data (gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
guint8 *plaintext;
int length;
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* draft-ietf-krb-wg-kerberos-clarifications-05.txt :
* 7.5.1
* Authenticators are encrypted with usage
* == 7 or
* == 11
*
* 7. TGS-REQ PA-TGS-REQ padata AP-REQ Authenticator
* (includes TGS authenticator subkey), encrypted with the
* TGS session key (section 5.5.1)
* 11. AP-REQ Authenticator (includes application
* authenticator subkey), encrypted with the application
* session key (section 5.5.1)
*/
if (private_data->within_PA_TGS_REQ > 0) {
plaintext=decrypt_krb5_data_asn1(tree, actx, 7, next_tvb, NULL);
} else {
plaintext=decrypt_krb5_data_asn1(tree, actx, 11, next_tvb, NULL);
}
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 Authenticator");
offset=dissect_kerberos_Applications(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_authorization_data(gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
guint8 *plaintext;
int length;
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* draft-ietf-krb-wg-kerberos-clarifications-05.txt :
* 7.5.1
* Authenticators are encrypted with usage
* == 5 or
* == 4
*
* 4. TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with
* the TGS session key (section 5.4.1)
* 5. TGS-REQ KDC-REQ-BODY AuthorizationData, encrypted with
* the TGS authenticator subkey (section 5.4.1)
*/
if (private_data->PA_TGS_REQ_subkey != NULL) {
plaintext=decrypt_krb5_data_asn1(tree, actx, 5, next_tvb, NULL);
} else {
plaintext=decrypt_krb5_data_asn1(tree, actx, 4, next_tvb, NULL);
}
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 AuthorizationData");
offset=dissect_kerberos_AuthorizationData(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_KDC_REP_data (gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
guint8 *plaintext = NULL;
int length;
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* draft-ietf-krb-wg-kerberos-clarifications-05.txt :
* 7.5.1
* ASREP/TGSREP encryptedparts are encrypted with usage
* == 3 or
* == 8 or
* == 9
*
* 3. AS-REP encrypted part (includes TGS session key or
* application session key), encrypted with the client key
* (section 5.4.2)
*
* 8. TGS-REP encrypted part (includes application session
* key), encrypted with the TGS session key (section
* 5.4.2)
* 9. TGS-REP encrypted part (includes application session
* key), encrypted with the TGS authenticator subkey
* (section 5.4.2)
*
* We currently don't have a way to find the TGS-REQ state
* in order to check if an authenticator subkey was used.
*
* But if we client used FAST and we got a strengthen_key,
* we're sure an authenticator subkey was used.
*
* Windows don't use an authenticator subkey without FAST,
* but heimdal does.
*
* For now try 8 before 9 in order to avoid overhead and false
* positives for the 'kerberos.missing_keytype' filter in pure
* windows captures.
*/
switch (private_data->msg_type) {
case KERBEROS_APPLICATIONS_AS_REP:
plaintext=decrypt_krb5_data_asn1(tree, actx, 3, next_tvb, NULL);
break;
case KERBEROS_APPLICATIONS_TGS_REP:
if (private_data->fast_strengthen_key != NULL) {
plaintext=decrypt_krb5_data_asn1(tree, actx, 9, next_tvb, NULL);
} else {
plaintext=decrypt_krb5_data_asn1(tree, actx, 8, next_tvb, NULL);
if(!plaintext){
plaintext=decrypt_krb5_data_asn1(tree, actx, 9, next_tvb, NULL);
}
}
break;
}
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 KDC-REP");
offset=dissect_kerberos_Applications(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_PA_ENC_TIMESTAMP (gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
guint8 *plaintext;
int length;
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* draft-ietf-krb-wg-kerberos-clarifications-05.txt :
* 7.5.1
* AS-REQ PA_ENC_TIMESTAMP are encrypted with usage
* == 1
*/
plaintext=decrypt_krb5_data_asn1(tree, actx, 1, next_tvb, NULL);
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 EncTimestamp");
offset=dissect_kerberos_PA_ENC_TS_ENC(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_AP_REP_data (gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
guint8 *plaintext;
int length;
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* draft-ietf-krb-wg-kerberos-clarifications-05.txt :
* 7.5.1
* AP-REP are encrypted with usage == 12
*/
plaintext=decrypt_krb5_data_asn1(tree, actx, 12, next_tvb, NULL);
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 AP-REP");
offset=dissect_kerberos_Applications(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_PRIV_data (gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
guint8 *plaintext;
int length;
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* RFC4120 :
* EncKrbPrivPart encrypted with usage
* == 13
*/
plaintext=decrypt_krb5_data_asn1(tree, actx, 13, next_tvb, NULL);
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 PRIV");
offset=dissect_kerberos_Applications(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_CRED_data (gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
guint8 *plaintext;
int length;
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* RFC4120 :
* EncKrbCredPart encrypted with usage
* == 14
*/
plaintext=decrypt_krb5_data_asn1(tree, actx, 14, next_tvb, NULL);
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 CRED");
offset=dissect_kerberos_Applications(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_KrbFastReq(gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
guint8 *plaintext;
int length;
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
private_data->fast_armor_key = NULL;
if (private_data->PA_FAST_ARMOR_AP_subkey != NULL) {
krb5_fast_key(actx, tree, tvb,
private_data->PA_FAST_ARMOR_AP_subkey,
"subkeyarmor",
private_data->PA_FAST_ARMOR_AP_key,
"ticketarmor",
"KrbFastReq_FAST_armorKey");
if (private_data->PA_TGS_REQ_subkey != NULL) {
enc_key_t *explicit_armor_key = private_data->last_added_key;
/*
* See [MS-KILE] 3.3.5.7.4 Compound Identity
*/
krb5_fast_key(actx, tree, tvb,
explicit_armor_key,
"explicitarmor",
private_data->PA_TGS_REQ_subkey,
"tgsarmor",
"KrbFastReq_explicitArmorKey");
}
private_data->fast_armor_key = private_data->last_added_key;
} else if (private_data->PA_TGS_REQ_subkey != NULL) {
krb5_fast_key(actx, tree, tvb,
private_data->PA_TGS_REQ_subkey,
"subkeyarmor",
private_data->PA_TGS_REQ_key,
"ticketarmor",
"KrbFastReq_TGS_armorKey");
private_data->fast_armor_key = private_data->last_added_key;
}
/* RFC6113 :
* KrbFastResponse encrypted with usage
* KEY_USAGE_FAST_ENC 51
*/
plaintext=decrypt_krb5_data_asn1(tree, actx, KEY_USAGE_FAST_ENC,
next_tvb, NULL);
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 FastReq");
offset=dissect_kerberos_KrbFastReq(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_KrbFastResponse(gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
guint8 *plaintext;
int length;
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
tvbuff_t *next_tvb;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/*
* RFC6113 :
* KrbFastResponse encrypted with usage
* KEY_USAGE_FAST_REP 52
*/
plaintext=decrypt_krb5_data_asn1(tree, actx, KEY_USAGE_FAST_REP,
next_tvb, NULL);
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 FastRep");
private_data->fast_armor_key = private_data->last_decryption_key;
offset=dissect_kerberos_KrbFastResponse(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
static int
dissect_krb5_decrypt_EncryptedChallenge(gboolean imp_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx,
proto_tree *tree, int hf_index _U_)
{
guint8 *plaintext;
int length;
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
tvbuff_t *next_tvb;
int usage = 0;
const char *name = NULL;
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
/* RFC6113 :
* KEY_USAGE_ENC_CHALLENGE_CLIENT 54
* KEY_USAGE_ENC_CHALLENGE_KDC 55
*/
if (kerberos_private_is_kdc_req(private_data)) {
usage = KEY_USAGE_ENC_CHALLENGE_CLIENT;
name = "Krb5 CHALLENGE_CLIENT";
} else {
usage = KEY_USAGE_ENC_CHALLENGE_KDC;
name = "Krb5 CHALLENGE_KDC";
}
plaintext=decrypt_krb5_data_asn1(tree, actx, usage, next_tvb, NULL);
if(plaintext){
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, length, length);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, name);
offset=dissect_kerberos_PA_ENC_TS_ENC(FALSE, child_tvb, 0, actx , tree, /* hf_index*/ -1);
}
return offset;
}
#endif /* HAVE_KERBEROS */
static int * const hf_krb_pa_supported_enctypes_fields[] = {
&hf_krb_pa_supported_enctypes_des_cbc_crc,
&hf_krb_pa_supported_enctypes_des_cbc_md5,
&hf_krb_pa_supported_enctypes_rc4_hmac,
&hf_krb_pa_supported_enctypes_aes128_cts_hmac_sha1_96,
&hf_krb_pa_supported_enctypes_aes256_cts_hmac_sha1_96,
&hf_krb_pa_supported_enctypes_fast_supported,
&hf_krb_pa_supported_enctypes_compound_identity_supported,
&hf_krb_pa_supported_enctypes_claims_supported,
&hf_krb_pa_supported_enctypes_resource_sid_compression_disabled,
NULL,
};
static const true_false_string supported_tfs = {
"Supported", "Not supported"
};
static int
dissect_kerberos_PA_SUPPORTED_ENCTYPES(gboolean implicit_tag _U_, tvbuff_t *tvb _U_,
int offset _U_, asn1_ctx_t *actx _U_,
proto_tree *tree _U_, int hf_index _U_)
{
actx->created_item = proto_tree_add_bitmask(tree, tvb, offset,
hf_krb_pa_supported_enctypes,
ett_krb_pa_supported_enctypes,
hf_krb_pa_supported_enctypes_fields,
ENC_LITTLE_ENDIAN);
offset += 4;
return offset;
}
static int * const hf_krb_ad_ap_options_fields[] = {
&hf_krb_ad_ap_options_cbt,
NULL,
};
static const true_false_string set_tfs = {
"Set", "Not set"
};
static int
dissect_kerberos_AD_AP_OPTIONS(gboolean implicit_tag _U_, tvbuff_t *tvb _U_,
int offset _U_, asn1_ctx_t *actx _U_,
proto_tree *tree _U_, int hf_index _U_)
{
actx->created_item = proto_tree_add_bitmask(tree, tvb, offset,
hf_krb_ad_ap_options,
ett_krb_ad_ap_options,
hf_krb_ad_ap_options_fields,
ENC_LITTLE_ENDIAN);
offset += 4;
return offset;
}
static int
dissect_kerberos_AD_TARGET_PRINCIPAL(gboolean implicit_tag _U_, tvbuff_t *tvb _U_,
int offset _U_, asn1_ctx_t *actx _U_,
proto_tree *tree _U_, int hf_index _U_)
{
int tp_offset, tp_len;
guint16 bc;
bc = tvb_reported_length_remaining(tvb, offset);
tp_offset = offset;
tp_len = bc;
proto_tree_add_item(tree, hf_krb_ad_target_principal, tvb,
tp_offset, tp_len,
ENC_UTF_16 | ENC_LITTLE_ENDIAN);
return offset;
}
/* Dissect a GSSAPI checksum as per RFC1964. This is NOT ASN.1 encoded.
*/
static int
dissect_krb5_rfc1964_checksum(asn1_ctx_t *actx _U_, proto_tree *tree, tvbuff_t *tvb)
{
int offset=0;
guint32 len;
guint16 dlglen;
/* Length of Bnd field */
len=tvb_get_letohl(tvb, offset);
proto_tree_add_item(tree, hf_krb_gssapi_len, tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset += 4;
/* Bnd field */
proto_tree_add_item(tree, hf_krb_gssapi_bnd, tvb, offset, len, ENC_NA);
offset += len;
/* flags */
proto_tree_add_item(tree, hf_krb_gssapi_c_flag_dce_style, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_krb_gssapi_c_flag_integ, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_krb_gssapi_c_flag_conf, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_krb_gssapi_c_flag_sequence, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_krb_gssapi_c_flag_replay, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_krb_gssapi_c_flag_mutual, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(tree, hf_krb_gssapi_c_flag_deleg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset += 4;
/* the next fields are optional so we have to check that we have
* more data in our buffers */
if(tvb_reported_length_remaining(tvb, offset)<2){
return offset;
}
/* dlgopt identifier */
proto_tree_add_item(tree, hf_krb_gssapi_dlgopt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
if(tvb_reported_length_remaining(tvb, offset)<2){
return offset;
}
/* dlglen identifier */
dlglen=tvb_get_letohs(tvb, offset);
proto_tree_add_item(tree, hf_krb_gssapi_dlglen, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset += 2;
if(dlglen!=tvb_reported_length_remaining(tvb, offset)){
proto_tree_add_expert_format(tree, actx->pinfo, &ei_krb_gssapi_dlglen, tvb, 0, 0,
"Error: DlgLen:%d is not the same as number of bytes remaining:%d", dlglen, tvb_captured_length_remaining(tvb, offset));
return offset;
}
/* this should now be a KRB_CRED message */
offset=dissect_kerberos_Applications(FALSE, tvb, offset, actx, tree, /* hf_index */ -1);
return offset;
}
static int
dissect_krb5_PA_PROV_SRV_LOCATION(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_)
{
offset=dissect_ber_GeneralString(actx, tree, tvb, offset, hf_krb_provsrv_location, NULL, 0);
return offset;
}
static int
dissect_krb5_PW_SALT(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_)
{
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
gint length;
guint32 nt_status = 0;
guint32 reserved = 0;
guint32 flags = 0;
/*
* Microsoft stores a special 12 byte blob here
* [MS-KILE] 2.2.1 KERB-EXT-ERROR
* guint32 NT_status
* guint32 reserved (== 0)
* guint32 flags (at least 0x00000001 is set)
*/
length = tvb_reported_length_remaining(tvb, offset);
if (length <= 0) {
return offset;
}
if (length != 12) {
goto no_error;
}
if (private_data->errorcode == 0) {
goto no_error;
}
if (!private_data->try_nt_status) {
goto no_error;
}
nt_status = tvb_get_letohl(tvb, offset);
reserved = tvb_get_letohl(tvb, offset + 4);
flags = tvb_get_letohl(tvb, offset + 8);
if (nt_status == 0 || reserved != 0 || flags == 0) {
goto no_error;
}
proto_tree_add_item(tree, hf_krb_ext_error_nt_status, tvb, offset, 4,
ENC_LITTLE_ENDIAN);
col_append_fstr(actx->pinfo->cinfo, COL_INFO,
" NT Status: %s",
val_to_str(nt_status, NT_errors,
"Unknown error code %#x"));
offset += 4;
proto_tree_add_item(tree, hf_krb_ext_error_reserved, tvb, offset, 4,
ENC_LITTLE_ENDIAN);
offset += 4;
proto_tree_add_item(tree, hf_krb_ext_error_flags, tvb, offset, 4,
ENC_LITTLE_ENDIAN);
offset += 4;
return offset;
no_error:
proto_tree_add_item(tree, hf_krb_pw_salt, tvb, offset, length, ENC_NA);
offset += length;
return offset;
}
static int
dissect_krb5_PAC_DREP(proto_tree *parent_tree, tvbuff_t *tvb, int offset, guint8 *drep)
{
proto_tree *tree;
guint8 val;
tree = proto_tree_add_subtree(parent_tree, tvb, offset, 16, ett_krb_pac_drep, NULL, "DREP");
val = tvb_get_guint8(tvb, offset);
proto_tree_add_uint(tree, hf_dcerpc_drep_byteorder, tvb, offset, 1, val>>4);
offset++;
if (drep) {
*drep = val;
}
return offset;
}
/* This might be some sort of header that MIDL generates when creating
* marshalling/unmarshalling code for blobs that are not to be transported
* ontop of DCERPC and where the DREP fields specifying things such as
* endianess and similar are not available.
*/
static int
dissect_krb5_PAC_NDRHEADERBLOB(proto_tree *parent_tree, tvbuff_t *tvb, int offset, guint8 *drep, asn1_ctx_t *actx _U_)
{
proto_tree *tree;
tree = proto_tree_add_subtree(parent_tree, tvb, offset, 16, ett_krb_pac_midl_blob, NULL, "MES header");
/* modified DREP field that is used for stuff that is transporetd ontop
of non dcerpc
*/
proto_tree_add_item(tree, hf_krb_midl_version, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset++;
offset = dissect_krb5_PAC_DREP(tree, tvb, offset, drep);
proto_tree_add_item(tree, hf_krb_midl_hdr_len, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset+=2;
proto_tree_add_item(tree, hf_krb_midl_fill_bytes, tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset += 4;
/* length of blob that follows */
proto_tree_add_item(tree, hf_krb_midl_blob_len, tvb, offset, 8, ENC_LITTLE_ENDIAN);
offset += 8;
return offset;
}
static int
dissect_krb5_PAC_LOGON_INFO(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
proto_item *item;
proto_tree *tree;
guint8 drep[4] = { 0x10, 0x00, 0x00, 0x00}; /* fake DREP struct */
static dcerpc_info di; /* fake dcerpc_info struct */
static dcerpc_call_value call_data;
item = proto_tree_add_item(parent_tree, hf_krb_pac_logon_info, tvb, offset, -1, ENC_NA);
tree = proto_item_add_subtree(item, ett_krb_pac_logon_info);
/* skip the first 16 bytes, they are some magic created by the idl
* compiler the first 4 bytes might be flags?
*/
offset = dissect_krb5_PAC_NDRHEADERBLOB(tree, tvb, offset, &drep[0], actx);
/* the PAC_LOGON_INFO blob */
/* fake whatever state the dcerpc runtime support needs */
di.conformant_run=0;
/* we need di->call_data->flags.NDR64 == 0 */
di.call_data=&call_data;
init_ndr_pointer_list(&di);
offset = dissect_ndr_pointer(tvb, offset, actx->pinfo, tree, &di, drep,
netlogon_dissect_PAC_LOGON_INFO, NDR_POINTER_UNIQUE,
"PAC_LOGON_INFO:", -1);
return offset;
}
static int
dissect_krb5_PAC_CREDENTIAL_DATA(proto_tree *parent_tree, tvbuff_t *tvb, int offset, packet_info *pinfo _U_)
{
proto_tree_add_item(parent_tree, hf_krb_pac_credential_data, tvb, offset, -1, ENC_NA);
return offset;
}
static int
dissect_krb5_PAC_CREDENTIAL_INFO(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx)
{
proto_item *item;
proto_tree *tree;
guint8 *plaintext = NULL;
int plainlen = 0;
int length = 0;
#define KRB5_KU_OTHER_ENCRYPTED 16
#ifdef HAVE_KERBEROS
guint32 etype;
tvbuff_t *next_tvb;
int usage = KRB5_KU_OTHER_ENCRYPTED;
#endif
item = proto_tree_add_item(parent_tree, hf_krb_pac_credential_info, tvb, offset, -1, ENC_NA);
tree = proto_item_add_subtree(item, ett_krb_pac_credential_info);
/* version */
proto_tree_add_item(tree, hf_krb_pac_credential_info_version, tvb,
offset, 4, ENC_LITTLE_ENDIAN);
offset+=4;
#ifdef HAVE_KERBEROS
/* etype */
etype = tvb_get_letohl(tvb, offset);
#endif
proto_tree_add_item(tree, hf_krb_pac_credential_info_etype, tvb,
offset, 4, ENC_LITTLE_ENDIAN);
offset+=4;
#ifdef HAVE_KERBEROS
/* data */
next_tvb=tvb_new_subset_remaining(tvb, offset);
length=tvb_captured_length_remaining(tvb, offset);
plaintext=decrypt_krb5_data(tree, actx->pinfo, usage, next_tvb, (int)etype, &plainlen);
#endif
if (plaintext != NULL) {
tvbuff_t *child_tvb;
child_tvb = tvb_new_child_real_data(tvb, plaintext, plainlen, plainlen);
/* Add the decrypted data to the data source list. */
add_new_data_source(actx->pinfo, child_tvb, "Krb5 PAC_CREDENTIAL");
dissect_krb5_PAC_CREDENTIAL_DATA(tree, child_tvb, 0, actx->pinfo);
}
return offset + length;
}
static int
dissect_krb5_PAC_S4U_DELEGATION_INFO(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx)
{
proto_item *item;
proto_tree *tree;
guint8 drep[4] = { 0x10, 0x00, 0x00, 0x00}; /* fake DREP struct */
static dcerpc_info di; /* fake dcerpc_info struct */
static dcerpc_call_value call_data;
item = proto_tree_add_item(parent_tree, hf_krb_pac_s4u_delegation_info, tvb, offset, -1, ENC_NA);
tree = proto_item_add_subtree(item, ett_krb_pac_s4u_delegation_info);
/* skip the first 16 bytes, they are some magic created by the idl
* compiler the first 4 bytes might be flags?
*/
offset = dissect_krb5_PAC_NDRHEADERBLOB(tree, tvb, offset, &drep[0], actx);
/* the S4U_DELEGATION_INFO blob. See [MS-PAC] */
/* fake whatever state the dcerpc runtime support needs */
di.conformant_run=0;
/* we need di->call_data->flags.NDR64 == 0 */
di.call_data=&call_data;
init_ndr_pointer_list(&di);
offset = dissect_ndr_pointer(tvb, offset, actx->pinfo, tree, &di, drep,
netlogon_dissect_PAC_S4U_DELEGATION_INFO, NDR_POINTER_UNIQUE,
"PAC_S4U_DELEGATION_INFO:", -1);
return offset;
}
static int
dissect_krb5_PAC_UPN_DNS_INFO(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
proto_item *item;
proto_tree *tree;
guint16 dns_offset, dns_len;
guint16 upn_offset, upn_len;
item = proto_tree_add_item(parent_tree, hf_krb_pac_upn_dns_info, tvb, offset, -1, ENC_NA);
tree = proto_item_add_subtree(item, ett_krb_pac_upn_dns_info);
/* upn */
upn_len = tvb_get_letohs(tvb, offset);
proto_tree_add_item(tree, hf_krb_pac_upn_upn_len, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset+=2;
upn_offset = tvb_get_letohs(tvb, offset);
proto_tree_add_item(tree, hf_krb_pac_upn_upn_offset, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset+=2;
/* dns */
dns_len = tvb_get_letohs(tvb, offset);
proto_tree_add_item(tree, hf_krb_pac_upn_dns_len, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset+=2;
dns_offset = tvb_get_letohs(tvb, offset);
proto_tree_add_item(tree, hf_krb_pac_upn_dns_offset, tvb, offset, 2, ENC_LITTLE_ENDIAN);
offset+=2;
/* flags */
proto_tree_add_item(tree, hf_krb_pac_upn_flags, tvb, offset, 4, ENC_LITTLE_ENDIAN);
/* upn */
proto_tree_add_item(tree, hf_krb_pac_upn_upn_name, tvb, upn_offset, upn_len, ENC_UTF_16|ENC_LITTLE_ENDIAN);
/* dns */
proto_tree_add_item(tree, hf_krb_pac_upn_dns_name, tvb, dns_offset, dns_len, ENC_UTF_16|ENC_LITTLE_ENDIAN);
return dns_offset;
}
static int
dissect_krb5_PAC_CLIENT_CLAIMS_INFO(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
int length = tvb_captured_length_remaining(tvb, offset);
if (length == 0) {
return offset;
}
proto_tree_add_item(parent_tree, hf_krb_pac_client_claims_info, tvb, offset, -1, ENC_NA);
return offset;
}
static int
dissect_krb5_PAC_DEVICE_INFO(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
proto_item *item;
proto_tree *tree;
guint8 drep[4] = { 0x10, 0x00, 0x00, 0x00}; /* fake DREP struct */
static dcerpc_info di; /* fake dcerpc_info struct */
static dcerpc_call_value call_data;
item = proto_tree_add_item(parent_tree, hf_krb_pac_device_info, tvb, offset, -1, ENC_NA);
tree = proto_item_add_subtree(item, ett_krb_pac_device_info);
/* skip the first 16 bytes, they are some magic created by the idl
* compiler the first 4 bytes might be flags?
*/
offset = dissect_krb5_PAC_NDRHEADERBLOB(tree, tvb, offset, &drep[0], actx);
/* the PAC_DEVICE_INFO blob */
/* fake whatever state the dcerpc runtime support needs */
di.conformant_run=0;
/* we need di->call_data->flags.NDR64 == 0 */
di.call_data=&call_data;
init_ndr_pointer_list(&di);
offset = dissect_ndr_pointer(tvb, offset, actx->pinfo, tree, &di, drep,
netlogon_dissect_PAC_DEVICE_INFO, NDR_POINTER_UNIQUE,
"PAC_DEVICE_INFO:", -1);
return offset;
}
static int
dissect_krb5_PAC_DEVICE_CLAIMS_INFO(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
int length = tvb_captured_length_remaining(tvb, offset);
if (length == 0) {
return offset;
}
proto_tree_add_item(parent_tree, hf_krb_pac_device_claims_info, tvb, offset, -1, ENC_NA);
return offset;
}
static int
dissect_krb5_PAC_SERVER_CHECKSUM(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
proto_item *item;
proto_tree *tree;
item = proto_tree_add_item(parent_tree, hf_krb_pac_server_checksum, tvb, offset, -1, ENC_NA);
tree = proto_item_add_subtree(item, ett_krb_pac_server_checksum);
/* signature type */
proto_tree_add_item(tree, hf_krb_pac_signature_type, tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset+=4;
/* signature data */
proto_tree_add_item(tree, hf_krb_pac_signature_signature, tvb, offset, -1, ENC_NA);
return offset;
}
static int
dissect_krb5_PAC_PRIVSVR_CHECKSUM(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
proto_item *item;
proto_tree *tree;
item = proto_tree_add_item(parent_tree, hf_krb_pac_privsvr_checksum, tvb, offset, -1, ENC_NA);
tree = proto_item_add_subtree(item, ett_krb_pac_privsvr_checksum);
/* signature type */
proto_tree_add_item(tree, hf_krb_pac_signature_type, tvb, offset, 4, ENC_LITTLE_ENDIAN);
offset+=4;
/* signature data */
proto_tree_add_item(tree, hf_krb_pac_signature_signature, tvb, offset, -1, ENC_NA);
return offset;
}
static int
dissect_krb5_PAC_CLIENT_INFO_TYPE(proto_tree *parent_tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
proto_item *item;
proto_tree *tree;
guint16 namelen;
item = proto_tree_add_item(parent_tree, hf_krb_pac_client_info_type, tvb, offset, -1, ENC_NA);
tree = proto_item_add_subtree(item, ett_krb_pac_client_info_type);
/* clientid */
offset = dissect_nt_64bit_time(tvb, tree, offset, hf_krb_pac_clientid);
/* name length */
namelen=tvb_get_letohs(tvb, offset);
proto_tree_add_uint(tree, hf_krb_pac_namelen, tvb, offset, 2, namelen);
offset+=2;
/* client name */
proto_tree_add_item(tree, hf_krb_pac_clientname, tvb, offset, namelen, ENC_UTF_16|ENC_LITTLE_ENDIAN);
offset+=namelen;
return offset;
}
static int
dissect_krb5_AD_WIN2K_PAC_struct(proto_tree *tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx)
{
guint32 pac_type;
guint32 pac_size;
guint32 pac_offset;
proto_item *it=NULL;
proto_tree *tr=NULL;
tvbuff_t *next_tvb;
/* type of pac data */
pac_type=tvb_get_letohl(tvb, offset);
it=proto_tree_add_uint(tree, hf_krb_w2k_pac_type, tvb, offset, 4, pac_type);
tr=proto_item_add_subtree(it, ett_krb_pac);
offset += 4;
/* size of pac data */
pac_size=tvb_get_letohl(tvb, offset);
proto_tree_add_uint(tr, hf_krb_w2k_pac_size, tvb, offset, 4, pac_size);
offset += 4;
/* offset to pac data */
pac_offset=tvb_get_letohl(tvb, offset);
proto_tree_add_uint(tr, hf_krb_w2k_pac_offset, tvb, offset, 4, pac_offset);
offset += 8;
next_tvb=tvb_new_subset_length_caplen(tvb, pac_offset, pac_size, pac_size);
switch(pac_type){
case PAC_LOGON_INFO:
dissect_krb5_PAC_LOGON_INFO(tr, next_tvb, 0, actx);
break;
case PAC_CREDENTIAL_TYPE:
dissect_krb5_PAC_CREDENTIAL_INFO(tr, next_tvb, 0, actx);
break;
case PAC_SERVER_CHECKSUM:
dissect_krb5_PAC_SERVER_CHECKSUM(tr, next_tvb, 0, actx);
break;
case PAC_PRIVSVR_CHECKSUM:
dissect_krb5_PAC_PRIVSVR_CHECKSUM(tr, next_tvb, 0, actx);
break;
case PAC_CLIENT_INFO_TYPE:
dissect_krb5_PAC_CLIENT_INFO_TYPE(tr, next_tvb, 0, actx);
break;
case PAC_S4U_DELEGATION_INFO:
dissect_krb5_PAC_S4U_DELEGATION_INFO(tr, next_tvb, 0, actx);
break;
case PAC_UPN_DNS_INFO:
dissect_krb5_PAC_UPN_DNS_INFO(tr, next_tvb, 0, actx);
break;
case PAC_CLIENT_CLAIMS_INFO:
dissect_krb5_PAC_CLIENT_CLAIMS_INFO(tr, next_tvb, 0, actx);
break;
case PAC_DEVICE_INFO:
dissect_krb5_PAC_DEVICE_INFO(tr, next_tvb, 0, actx);
break;
case PAC_DEVICE_CLAIMS_INFO:
dissect_krb5_PAC_DEVICE_CLAIMS_INFO(tr, next_tvb, 0, actx);
break;
default:
break;
}
return offset;
}
static int
dissect_krb5_AD_WIN2K_PAC(gboolean implicit_tag _U_, tvbuff_t *tvb, int offset, asn1_ctx_t *actx, proto_tree *tree, int hf_index _U_)
{
guint32 entries;
guint32 version;
guint32 i;
#if defined(HAVE_MIT_KERBEROS) && defined(HAVE_KRB5_PAC_VERIFY)
verify_krb5_pac(tree, actx, tvb);
#endif
/* first in the PAC structure comes the number of entries */
entries=tvb_get_letohl(tvb, offset);
proto_tree_add_uint(tree, hf_krb_w2k_pac_entries, tvb, offset, 4, entries);
offset += 4;
/* second comes the version */
version=tvb_get_letohl(tvb, offset);
proto_tree_add_uint(tree, hf_krb_w2k_pac_version, tvb, offset, 4, version);
offset += 4;
for(i=0;i<entries;i++){
offset=dissect_krb5_AD_WIN2K_PAC_struct(tree, tvb, offset, actx);
}
return offset;
}
#include "packet-kerberos-fn.c"
#ifdef HAVE_KERBEROS
static const ber_sequence_t PA_ENC_TS_ENC_sequence[] = {
{ &hf_krb_patimestamp, BER_CLASS_CON, 0, 0, dissect_kerberos_KerberosTime },
{ &hf_krb_pausec , BER_CLASS_CON, 1, BER_FLAGS_OPTIONAL, dissect_kerberos_Microseconds },
{ NULL, 0, 0, 0, NULL }
};
static int
dissect_kerberos_PA_ENC_TS_ENC(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_) {
offset = dissect_ber_sequence(implicit_tag, actx, tree, tvb, offset,
PA_ENC_TS_ENC_sequence, hf_index, ett_krb_pa_enc_ts_enc);
return offset;
}
static int
dissect_kerberos_T_strengthen_key(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_) {
#line 491 "./asn1/kerberos/kerberos.cnf"
kerberos_private_data_t *private_data = kerberos_get_private_data(actx);
gint save_encryption_key_parent_hf_index = private_data->save_encryption_key_parent_hf_index;
kerberos_key_save_fn saved_encryption_key_fn = private_data->save_encryption_key_fn;
private_data->save_encryption_key_parent_hf_index = hf_kerberos_KrbFastResponse;
#ifdef HAVE_KERBEROS
private_data->save_encryption_key_fn = save_KrbFastResponse_strengthen_key;
#endif
offset = dissect_kerberos_EncryptionKey(implicit_tag, tvb, offset, actx, tree, hf_index);
private_data->save_encryption_key_parent_hf_index = save_encryption_key_parent_hf_index;
private_data->save_encryption_key_fn = saved_encryption_key_fn;
return offset;
}
static const ber_sequence_t KrbFastFinished_sequence[] = {
{ &hf_kerberos_timestamp , BER_CLASS_CON, 0, 0, dissect_kerberos_KerberosTime },
{ &hf_kerberos_usec , BER_CLASS_CON, 1, 0, dissect_kerberos_Microseconds },
{ &hf_kerberos_crealm , BER_CLASS_CON, 2, 0, dissect_kerberos_Realm },
{ &hf_kerberos_cname_01 , BER_CLASS_CON, 3, 0, dissect_kerberos_PrincipalName },
{ &hf_kerberos_ticket_checksum, BER_CLASS_CON, 4, 0, dissect_kerberos_Checksum },
{ NULL, 0, 0, 0, NULL }
};
static int
dissect_kerberos_KrbFastFinished(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_) {
offset = dissect_ber_sequence(implicit_tag, actx, tree, tvb, offset,
KrbFastFinished_sequence, hf_index, ett_kerberos_KrbFastFinished);
return offset;
}
static const ber_sequence_t KrbFastResponse_sequence[] = {
{ &hf_kerberos_padata , BER_CLASS_CON, 0, 0, dissect_kerberos_SEQUENCE_OF_PA_DATA },
{ &hf_kerberos_strengthen_key, BER_CLASS_CON, 1, BER_FLAGS_OPTIONAL, dissect_kerberos_T_strengthen_key },
{ &hf_kerberos_finished , BER_CLASS_CON, 2, BER_FLAGS_OPTIONAL, dissect_kerberos_KrbFastFinished },
{ &hf_kerberos_nonce , BER_CLASS_CON, 3, 0, dissect_kerberos_UInt32 },
{ NULL, 0, 0, 0, NULL }
};
static int
dissect_kerberos_KrbFastResponse(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_) {
offset = dissect_ber_sequence(implicit_tag, actx, tree, tvb, offset,
KrbFastResponse_sequence, hf_index, ett_kerberos_KrbFastResponse);
return offset;
}
static const ber_sequence_t KrbFastReq_sequence[] = {
{ &hf_kerberos_fast_options, BER_CLASS_CON, 0, 0, dissect_kerberos_FastOptions },
{ &hf_kerberos_padata , BER_CLASS_CON, 1, 0, dissect_kerberos_SEQUENCE_OF_PA_DATA },
{ &hf_kerberos_req_body , BER_CLASS_CON, 2, 0, dissect_kerberos_KDC_REQ_BODY },
{ NULL, 0, 0, 0, NULL }
};
static int
dissect_kerberos_KrbFastReq(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_) {
offset = dissect_ber_sequence(implicit_tag, actx, tree, tvb, offset,
KrbFastReq_sequence, hf_index, ett_kerberos_KrbFastReq);
return offset;
}
static int * const FastOptions_bits[] = {
&hf_kerberos_FastOptions_reserved,
&hf_kerberos_FastOptions_hide_client_names,
&hf_kerberos_FastOptions_spare_bit2,
&hf_kerberos_FastOptions_spare_bit3,
&hf_kerberos_FastOptions_spare_bit4,
&hf_kerberos_FastOptions_spare_bit5,
&hf_kerberos_FastOptions_spare_bit6,
&hf_kerberos_FastOptions_spare_bit7,
&hf_kerberos_FastOptions_spare_bit8,
&hf_kerberos_FastOptions_spare_bit9,
&hf_kerberos_FastOptions_spare_bit10,
&hf_kerberos_FastOptions_spare_bit11,
&hf_kerberos_FastOptions_spare_bit12,
&hf_kerberos_FastOptions_spare_bit13,
&hf_kerberos_FastOptions_spare_bit14,
&hf_kerberos_FastOptions_spare_bit15,
&hf_kerberos_FastOptions_kdc_follow_referrals,
NULL
};
static int
dissect_kerberos_FastOptions(gboolean implicit_tag _U_, tvbuff_t *tvb _U_, int offset _U_, asn1_ctx_t *actx _U_, proto_tree *tree _U_, int hf_index _U_) {
offset = dissect_ber_bitstring(implicit_tag, actx, tree, tvb, offset,
FastOptions_bits, 17, hf_index, ett_kerberos_FastOptions,
NULL);
return offset;
}
#endif /* HAVE_KERBEROS */
/* Make wrappers around exported functions for now */
int
dissect_krb5_Checksum(proto_tree *tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
return dissect_kerberos_Checksum(FALSE, tvb, offset, actx, tree, hf_kerberos_cksum);
}
int
dissect_krb5_ctime(proto_tree *tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
return dissect_kerberos_KerberosTime(FALSE, tvb, offset, actx, tree, hf_kerberos_ctime);
}
int
dissect_krb5_cname(proto_tree *tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
return dissect_kerberos_PrincipalName(FALSE, tvb, offset, actx, tree, hf_kerberos_cname);
}
int
dissect_krb5_realm(proto_tree *tree, tvbuff_t *tvb, int offset, asn1_ctx_t *actx _U_)
{
return dissect_kerberos_Realm(FALSE, tvb, offset, actx, tree, hf_kerberos_realm);
}
struct kerberos_display_key_state {
proto_tree *tree;
packet_info *pinfo;
expert_field *expindex;
const char *name;
tvbuff_t *tvb;
gint start;
gint length;
};
static void
#ifdef HAVE_KERBEROS
kerberos_display_key(gpointer data, gpointer userdata)
#else
kerberos_display_key(gpointer data _U_, gpointer userdata _U_)
#endif
{
#ifdef HAVE_KERBEROS
struct kerberos_display_key_state *state =
(struct kerberos_display_key_state *)userdata;
const enc_key_t *ek = (const enc_key_t *)data;
proto_item *item = NULL;
enc_key_t *sek = NULL;
item = proto_tree_add_expert_format(state->tree,
state->pinfo,
state->expindex,
state->tvb,
state->start,
state->length,
"%s %s keytype %d (id=%s same=%u) (%02x%02x%02x%02x...)",
state->name,
ek->key_origin, ek->keytype,
ek->id_str, ek->num_same,
ek->keyvalue[0] & 0xFF, ek->keyvalue[1] & 0xFF,
ek->keyvalue[2] & 0xFF, ek->keyvalue[3] & 0xFF);
if (ek->src1 != NULL) {
sek = ek->src1;
expert_add_info_format(state->pinfo,
item,
state->expindex,
"SRC1 %s keytype %d (id=%s same=%u) (%02x%02x%02x%02x...)",
sek->key_origin, sek->keytype,
sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
}
if (ek->src2 != NULL) {
sek = ek->src2;
expert_add_info_format(state->pinfo,
item,
state->expindex,
"SRC2 %s keytype %d (id=%s same=%u) (%02x%02x%02x%02x...)",
sek->key_origin, sek->keytype,
sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
}
sek = ek->same_list;
while (sek != NULL) {
expert_add_info_format(state->pinfo,
item,
state->expindex,
"%s %s keytype %d (id=%s same=%u) (%02x%02x%02x%02x...)",
state->name,
sek->key_origin, sek->keytype,
sek->id_str, sek->num_same,
sek->keyvalue[0] & 0xFF, sek->keyvalue[1] & 0xFF,
sek->keyvalue[2] & 0xFF, sek->keyvalue[3] & 0xFF);
sek = sek->same_list;
}
#endif /* HAVE_KERBEROS */
}
static gint
dissect_kerberos_common(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
gboolean dci, gboolean do_col_protocol, gboolean have_rm,
kerberos_callbacks *cb)
{
volatile int offset = 0;
proto_tree *volatile kerberos_tree = NULL;
proto_item *volatile item = NULL;
kerberos_private_data_t *private_data = NULL;
asn1_ctx_t asn1_ctx;
/* TCP record mark and length */
guint32 krb_rm = 0;
gint krb_reclen = 0;
gbl_do_col_info=dci;
if (have_rm) {
krb_rm = tvb_get_ntohl(tvb, offset);
krb_reclen = kerberos_rm_to_reclen(krb_rm);
/*
* What is a reasonable size limit?
*/
if (krb_reclen > 10 * 1024 * 1024) {
return (-1);
}
if (do_col_protocol) {
col_set_str(pinfo->cinfo, COL_PROTOCOL, "KRB5");
}
if (tree) {
item = proto_tree_add_item(tree, proto_kerberos, tvb, 0, -1, ENC_NA);
kerberos_tree = proto_item_add_subtree(item, ett_kerberos);
}
show_krb_recordmark(kerberos_tree, tvb, offset, krb_rm);
offset += 4;
} else {
/* Do some sanity checking here,
* All krb5 packets start with a TAG class that is BER_CLASS_APP
* and a tag value that is either of the values below:
* If it doesn't look like kerberos, return 0 and let someone else have
* a go at it.
*/
gint8 tmp_class;
gboolean tmp_pc;
gint32 tmp_tag;
get_ber_identifier(tvb, offset, &tmp_class, &tmp_pc, &tmp_tag);
if(tmp_class!=BER_CLASS_APP){
return 0;
}
switch(tmp_tag){
case KRB5_MSG_TICKET:
case KRB5_MSG_AUTHENTICATOR:
case KRB5_MSG_ENC_TICKET_PART:
case KRB5_MSG_AS_REQ:
case KRB5_MSG_AS_REP:
case KRB5_MSG_TGS_REQ:
case KRB5_MSG_TGS_REP:
case KRB5_MSG_AP_REQ:
case KRB5_MSG_AP_REP:
case KRB5_MSG_ENC_AS_REP_PART:
case KRB5_MSG_ENC_TGS_REP_PART:
case KRB5_MSG_ENC_AP_REP_PART:
case KRB5_MSG_ENC_KRB_PRIV_PART:
case KRB5_MSG_ENC_KRB_CRED_PART:
case KRB5_MSG_SAFE:
case KRB5_MSG_PRIV:
case KRB5_MSG_ERROR:
break;
default:
return 0;
}
if (do_col_protocol) {
col_set_str(pinfo->cinfo, COL_PROTOCOL, "KRB5");
}
if (gbl_do_col_info) {
col_clear(pinfo->cinfo, COL_INFO);
}
if (tree) {
item = proto_tree_add_item(tree, proto_kerberos, tvb, 0, -1, ENC_NA);
kerberos_tree = proto_item_add_subtree(item, ett_kerberos);
}
}
asn1_ctx_init(&asn1_ctx, ASN1_ENC_BER, TRUE, pinfo);
asn1_ctx.private_data = NULL;
private_data = kerberos_get_private_data(&asn1_ctx);
private_data->callbacks = cb;
TRY {
offset=dissect_kerberos_Applications(FALSE, tvb, offset, &asn1_ctx , kerberos_tree, /* hf_index */ -1);
} CATCH_BOUNDS_ERRORS {
RETHROW;
} ENDTRY;
if (kerberos_tree != NULL) {
struct kerberos_display_key_state display_state = {
.tree = kerberos_tree,
.pinfo = pinfo,
.expindex = &ei_kerberos_learnt_keytype,
.name = "Provides",
.tvb = tvb,
};
wmem_list_foreach(private_data->learnt_keys,
kerberos_display_key,
&display_state);
}
if (kerberos_tree != NULL) {
struct kerberos_display_key_state display_state = {
.tree = kerberos_tree,
.pinfo = pinfo,
.expindex = &ei_kerberos_missing_keytype,
.name = "Missing",
.tvb = tvb,
};
wmem_list_foreach(private_data->missing_keys,
kerberos_display_key,
&display_state);
}
if (kerberos_tree != NULL) {
struct kerberos_display_key_state display_state = {
.tree = kerberos_tree,
.pinfo = pinfo,
.expindex = &ei_kerberos_decrypted_keytype,
.name = "Used",
.tvb = tvb,
};
wmem_list_foreach(private_data->decryption_keys,
kerberos_display_key,
&display_state);
}
proto_item_set_len(item, offset);
return offset;
}
/*
* Display the TCP record mark.
*/
void
show_krb_recordmark(proto_tree *tree, tvbuff_t *tvb, gint start, guint32 krb_rm)
{
gint rec_len;
proto_tree *rm_tree;
if (tree == NULL)
return;
rec_len = kerberos_rm_to_reclen(krb_rm);
rm_tree = proto_tree_add_subtree_format(tree, tvb, start, 4, ett_krb_recordmark, NULL,
"Record Mark: %u %s", rec_len, plurality(rec_len, "byte", "bytes"));
proto_tree_add_boolean(rm_tree, hf_krb_rm_reserved, tvb, start, 4, krb_rm);
proto_tree_add_uint(rm_tree, hf_krb_rm_reclen, tvb, start, 4, krb_rm);
}
gint
dissect_kerberos_main(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, int do_col_info, kerberos_callbacks *cb)
{
return (dissect_kerberos_common(tvb, pinfo, tree, do_col_info, FALSE, FALSE, cb));
}
guint32
kerberos_output_keytype(void)
{
return gbl_keytype;
}
static gint
dissect_kerberos_udp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
/* Some weird kerberos implementation apparently do krb4 on the krb5 port.
Since all (except weirdo transarc krb4 stuff) use
an opcode <=16 in the first byte, use this to see if it might
be krb4.
All krb5 commands start with an APPL tag and thus is >=0x60
so if first byte is <=16 just blindly assume it is krb4 then
*/
if(tvb_captured_length(tvb) >= 1 && tvb_get_guint8(tvb, 0)<=0x10){
if(krb4_handle){
gboolean res;
res=call_dissector_only(krb4_handle, tvb, pinfo, tree, NULL);
return res;
}else{
return 0;
}
}
return dissect_kerberos_common(tvb, pinfo, tree, TRUE, TRUE, FALSE, NULL);
}
gint
kerberos_rm_to_reclen(guint krb_rm)
{
return (krb_rm & KRB_RM_RECLEN);
}
guint
get_krb_pdu_len(packet_info *pinfo _U_, tvbuff_t *tvb, int offset, void *data _U_)
{
guint krb_rm;
gint pdulen;
krb_rm = tvb_get_ntohl(tvb, offset);
pdulen = kerberos_rm_to_reclen(krb_rm);
return (pdulen + 4);
}
static void
kerberos_prefs_apply_cb(void) {
#ifdef HAVE_LIBNETTLE
clear_keytab();
read_keytab_file(keytab_filename);
#endif
}
static int
dissect_kerberos_tcp_pdu(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
pinfo->fragmented = TRUE;
if (dissect_kerberos_common(tvb, pinfo, tree, TRUE, TRUE, TRUE, NULL) < 0) {
/*
* The dissector failed to recognize this as a valid
* Kerberos message. Mark it as a continuation packet.
*/
col_set_str(pinfo->cinfo, COL_INFO, "Continuation");
}
return tvb_captured_length(tvb);
}
static int
dissect_kerberos_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data)
{
col_set_str(pinfo->cinfo, COL_PROTOCOL, "KRB5");
col_clear(pinfo->cinfo, COL_INFO);
tcp_dissect_pdus(tvb, pinfo, tree, krb_desegment, 4, get_krb_pdu_len,
dissect_kerberos_tcp_pdu, data);
return tvb_captured_length(tvb);
}
/*--- proto_register_kerberos -------------------------------------------*/
void proto_register_kerberos(void) {
/* List of fields */
static hf_register_info hf[] = {
{ &hf_krb_rm_reserved, {
"Reserved", "kerberos.rm.reserved", FT_BOOLEAN, 32,
TFS(&tfs_set_notset), KRB_RM_RESERVED, "Record mark reserved bit", HFILL }},
{ &hf_krb_rm_reclen, {
"Record Length", "kerberos.rm.length", FT_UINT32, BASE_DEC,
NULL, KRB_RM_RECLEN, NULL, HFILL }},
{ &hf_krb_provsrv_location, {
"PROVSRV Location", "kerberos.provsrv_location", FT_STRING, BASE_NONE,
NULL, 0, "PacketCable PROV SRV Location", HFILL }},
{ &hf_krb_pw_salt,
{ "pw-salt", "kerberos.pw_salt", FT_BYTES, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_krb_ext_error_nt_status, /* we keep kerberos.smb.nt_status for compat reasons */
{ "NT Status", "kerberos.smb.nt_status", FT_UINT32, BASE_HEX,
VALS(NT_errors), 0, "NT Status code", HFILL }},
{ &hf_krb_ext_error_reserved,
{ "Reserved", "kerberos.ext_error.reserved", FT_UINT32, BASE_HEX,
NULL, 0, NULL, HFILL }},
{ &hf_krb_ext_error_flags,
{ "Flags", "kerberos.ext_error.flags", FT_UINT32, BASE_HEX,
NULL, 0, NULL, HFILL }},
{ &hf_krb_address_ip, {
"IP Address", "kerberos.addr_ip", FT_IPv4, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_krb_address_ipv6, {
"IPv6 Address", "kerberos.addr_ipv6", FT_IPv6, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_krb_address_netbios, {
"NetBIOS Address", "kerberos.addr_nb", FT_STRING, BASE_NONE,
NULL, 0, "NetBIOS Address and type", HFILL }},
{ &hf_krb_gssapi_len, {
"Length", "kerberos.gssapi.len", FT_UINT32, BASE_DEC,
NULL, 0, "Length of GSSAPI Bnd field", HFILL }},
{ &hf_krb_gssapi_bnd, {
"Bnd", "kerberos.gssapi.bdn", FT_BYTES, BASE_NONE,
NULL, 0, "GSSAPI Bnd field", HFILL }},
{ &hf_krb_gssapi_c_flag_deleg, {
"Deleg", "kerberos.gssapi.checksum.flags.deleg", FT_BOOLEAN, 32,
TFS(&tfs_gss_flags_deleg), KRB5_GSS_C_DELEG_FLAG, NULL, HFILL }},
{ &hf_krb_gssapi_c_flag_mutual, {
"Mutual", "kerberos.gssapi.checksum.flags.mutual", FT_BOOLEAN, 32,
TFS(&tfs_gss_flags_mutual), KRB5_GSS_C_MUTUAL_FLAG, NULL, HFILL }},
{ &hf_krb_gssapi_c_flag_replay, {
"Replay", "kerberos.gssapi.checksum.flags.replay", FT_BOOLEAN, 32,
TFS(&tfs_gss_flags_replay), KRB5_GSS_C_REPLAY_FLAG, NULL, HFILL }},
{ &hf_krb_gssapi_c_flag_sequence, {
"Sequence", "kerberos.gssapi.checksum.flags.sequence", FT_BOOLEAN, 32,
TFS(&tfs_gss_flags_sequence), KRB5_GSS_C_SEQUENCE_FLAG, NULL, HFILL }},
{ &hf_krb_gssapi_c_flag_conf, {
"Conf", "kerberos.gssapi.checksum.flags.conf", FT_BOOLEAN, 32,
TFS(&tfs_gss_flags_conf), KRB5_GSS_C_CONF_FLAG, NULL, HFILL }},
{ &hf_krb_gssapi_c_flag_integ, {
"Integ", "kerberos.gssapi.checksum.flags.integ", FT_BOOLEAN, 32,
TFS(&tfs_gss_flags_integ), KRB5_GSS_C_INTEG_FLAG, NULL, HFILL }},
{ &hf_krb_gssapi_c_flag_dce_style, {
"DCE-style", "kerberos.gssapi.checksum.flags.dce-style", FT_BOOLEAN, 32,
TFS(&tfs_gss_flags_dce_style), KRB5_GSS_C_DCE_STYLE, NULL, HFILL }},
{ &hf_krb_gssapi_dlgopt, {
"DlgOpt", "kerberos.gssapi.dlgopt", FT_UINT16, BASE_DEC,
NULL, 0, "GSSAPI DlgOpt", HFILL }},
{ &hf_krb_gssapi_dlglen, {
"DlgLen", "kerberos.gssapi.dlglen", FT_UINT16, BASE_DEC,
NULL, 0, "GSSAPI DlgLen", HFILL }},
{ &hf_krb_midl_blob_len, {
"Blob Length", "kerberos.midl_blob_len", FT_UINT64, BASE_DEC,
NULL, 0, "Length of NDR encoded data that follows", HFILL }},
{ &hf_krb_midl_fill_bytes, {
"Fill bytes", "kerberos.midl.fill_bytes", FT_UINT32, BASE_HEX,
NULL, 0, "Just some fill bytes", HFILL }},
{ &hf_krb_midl_version, {
"Version", "kerberos.midl.version", FT_UINT8, BASE_DEC,
NULL, 0, "Version of pickling", HFILL }},
{ &hf_krb_midl_hdr_len, {
"HDR Length", "kerberos.midl.hdr_len", FT_UINT16, BASE_DEC,
NULL, 0, "Length of header", HFILL }},
{ &hf_krb_pac_signature_type, {
"Type", "kerberos.pac.signature.type", FT_INT32, BASE_DEC,
NULL, 0, "PAC Signature Type", HFILL }},
{ &hf_krb_pac_signature_signature, {
"Signature", "kerberos.pac.signature.signature", FT_BYTES, BASE_NONE,
NULL, 0, "A PAC signature blob", HFILL }},
{ &hf_krb_w2k_pac_entries, {
"Num Entries", "kerberos.pac.entries", FT_UINT32, BASE_DEC,
NULL, 0, "Number of W2k PAC entries", HFILL }},
{ &hf_krb_w2k_pac_version, {
"Version", "kerberos.pac.version", FT_UINT32, BASE_DEC,
NULL, 0, "Version of PAC structures", HFILL }},
{ &hf_krb_w2k_pac_type, {
"Type", "kerberos.pac.type", FT_UINT32, BASE_DEC,
VALS(w2k_pac_types), 0, "Type of W2k PAC entry", HFILL }},
{ &hf_krb_w2k_pac_size, {
"Size", "kerberos.pac.size", FT_UINT32, BASE_DEC,
NULL, 0, "Size of W2k PAC entry", HFILL }},
{ &hf_krb_w2k_pac_offset, {
"Offset", "kerberos.pac.offset", FT_UINT32, BASE_DEC,
NULL, 0, "Offset to W2k PAC entry", HFILL }},
{ &hf_krb_pac_clientid, {
"ClientID", "kerberos.pac.clientid", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_LOCAL,
NULL, 0, "ClientID Timestamp", HFILL }},
{ &hf_krb_pac_namelen, {
"Name Length", "kerberos.pac.namelen", FT_UINT16, BASE_DEC,
NULL, 0, "Length of client name", HFILL }},
{ &hf_krb_pac_clientname, {
"Name", "kerberos.pac.name", FT_STRING, BASE_NONE,
NULL, 0, "Name of the Client in the PAC structure", HFILL }},
{ &hf_krb_pac_logon_info, {
"PAC_LOGON_INFO", "kerberos.pac_logon_info", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_LOGON_INFO structure", HFILL }},
{ &hf_krb_pac_credential_data, {
"PAC_CREDENTIAL_DATA", "kerberos.pac_credential_data", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_CREDENTIAL_DATA structure", HFILL }},
{ &hf_krb_pac_credential_info, {
"PAC_CREDENTIAL_INFO", "kerberos.pac_credential_info", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_CREDENTIAL_INFO structure", HFILL }},
{ &hf_krb_pac_credential_info_version, {
"Version", "kerberos.pac_credential_info.version", FT_UINT32, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_krb_pac_credential_info_etype, {
"Etype", "kerberos.pac_credential_info.etype", FT_UINT32, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_krb_pac_server_checksum, {
"PAC_SERVER_CHECKSUM", "kerberos.pac_server_checksum", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_SERVER_CHECKSUM structure", HFILL }},
{ &hf_krb_pac_privsvr_checksum, {
"PAC_PRIVSVR_CHECKSUM", "kerberos.pac_privsvr_checksum", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_PRIVSVR_CHECKSUM structure", HFILL }},
{ &hf_krb_pac_client_info_type, {
"PAC_CLIENT_INFO_TYPE", "kerberos.pac_client_info_type", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_CLIENT_INFO_TYPE structure", HFILL }},
{ &hf_krb_pac_s4u_delegation_info, {
"PAC_S4U_DELEGATION_INFO", "kerberos.pac_s4u_delegation_info", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_S4U_DELEGATION_INFO structure", HFILL }},
{ &hf_krb_pac_upn_dns_info, {
"UPN_DNS_INFO", "kerberos.pac_upn_dns_info", FT_BYTES, BASE_NONE,
NULL, 0, "UPN_DNS_INFO structure", HFILL }},
{ &hf_krb_pac_upn_flags, {
"Flags", "kerberos.pac.upn.flags", FT_UINT32, BASE_HEX,
NULL, 0, "UPN flags", HFILL }},
{ &hf_krb_pac_upn_dns_offset, {
"DNS Offset", "kerberos.pac.upn.dns_offset", FT_UINT16, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_krb_pac_upn_dns_len, {
"DNS Len", "kerberos.pac.upn.dns_len", FT_UINT16, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_krb_pac_upn_upn_offset, {
"UPN Offset", "kerberos.pac.upn.upn_offset", FT_UINT16, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_krb_pac_upn_upn_len, {
"UPN Len", "kerberos.pac.upn.upn_len", FT_UINT16, BASE_DEC,
NULL, 0, NULL, HFILL }},
{ &hf_krb_pac_upn_upn_name, {
"UPN Name", "kerberos.pac.upn.upn_name", FT_STRING, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_krb_pac_upn_dns_name, {
"DNS Name", "kerberos.pac.upn.dns_name", FT_STRING, BASE_NONE,
NULL, 0, NULL, HFILL }},
{ &hf_krb_pac_client_claims_info, {
"PAC_CLIENT_CLAIMS_INFO", "kerberos.pac_client_claims_info", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_CLIENT_CLAIMS_INFO structure", HFILL }},
{ &hf_krb_pac_device_info, {
"PAC_DEVICE_INFO", "kerberos.pac_device_info", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_DEVICE_INFO structure", HFILL }},
{ &hf_krb_pac_device_claims_info, {
"PAC_DEVICE_CLAIMS_INFO", "kerberos.pac_device_claims_info", FT_BYTES, BASE_NONE,
NULL, 0, "PAC_DEVICE_CLAIMS_INFO structure", HFILL }},
{ &hf_krb_pa_supported_enctypes,
{ "SupportedEnctypes", "kerberos.supported_entypes",
FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_des_cbc_crc,
{ "des-cbc-crc", "kerberos.supported_entypes.des-cbc-crc",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00000001, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_des_cbc_md5,
{ "des-cbc-md5", "kerberos.supported_entypes.des-cbc-md5",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00000002, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_rc4_hmac,
{ "rc4-hmac", "kerberos.supported_entypes.rc4-hmac",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00000004, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_aes128_cts_hmac_sha1_96,
{ "aes128-cts-hmac-sha1-96", "kerberos.supported_entypes.aes128-cts-hmac-sha1-96",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00000008, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_aes256_cts_hmac_sha1_96,
{ "aes256-cts-hmac-sha1-96", "kerberos.supported_entypes.aes256-cts-hmac-sha1-96",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00000010, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_fast_supported,
{ "fast-supported", "kerberos.supported_entypes.fast-supported",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00010000, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_compound_identity_supported,
{ "compound-identity-supported", "kerberos.supported_entypes.compound-identity-supported",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00020000, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_claims_supported,
{ "claims-supported", "kerberos.supported_entypes.claims-supported",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00040000, NULL, HFILL }},
{ &hf_krb_pa_supported_enctypes_resource_sid_compression_disabled,
{ "resource-sid-compression-disabled", "kerberos.supported_entypes.resource-sid-compression-disabled",
FT_BOOLEAN, 32, TFS(&supported_tfs), 0x00080000, NULL, HFILL }},
{ &hf_krb_ad_ap_options,
{ "AD-AP-Options", "kerberos.ad_ap_options",
FT_UINT32, BASE_HEX, NULL, 0, NULL, HFILL }},
{ &hf_krb_ad_ap_options_cbt,
{ "ChannelBindings", "kerberos.ad_ap_options.cbt",
FT_BOOLEAN, 32, TFS(&set_tfs), 0x00004000, NULL, HFILL }},
{ &hf_krb_ad_target_principal,
{ "Target Principal", "kerberos.ad_target_principal",
FT_STRING, BASE_NONE, NULL, 0, NULL, HFILL }},
{ &hf_krb_key_hidden_item,
{ "KeyHiddenItem", "krb5.key_hidden_item",
FT_NONE, BASE_NONE, NULL, 0x0, NULL, HFILL }},
#ifdef HAVE_KERBEROS
{ &hf_kerberos_KrbFastResponse,
{ "KrbFastResponse", "kerberos.KrbFastResponse_element",
FT_NONE, BASE_NONE, NULL, 0, NULL, HFILL }},
{ &hf_kerberos_strengthen_key,
{ "strengthen-key", "kerberos.strengthen_key_element",
FT_NONE, BASE_NONE, NULL, 0,
NULL, HFILL }},
{ &hf_kerberos_finished,
{ "finished", "kerberos.finished_element",
FT_NONE, BASE_NONE, NULL, 0,
"KrbFastFinished", HFILL }},
{ &hf_kerberos_fast_options,
{ "fast-options", "kerberos.fast_options",
FT_BYTES, BASE_NONE, NULL, 0,
"FastOptions", HFILL }},
{ &hf_kerberos_FastOptions_reserved,
{ "reserved", "kerberos.FastOptions.reserved",
FT_BOOLEAN, 8, NULL, 0x80,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_hide_client_names,
{ "hide-client-names", "kerberos.FastOptions.hide.client.names",
FT_BOOLEAN, 8, NULL, 0x40,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit2,
{ "spare_bit2", "kerberos.FastOptions.spare.bit2",
FT_BOOLEAN, 8, NULL, 0x20,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit3,
{ "spare_bit3", "kerberos.FastOptions.spare.bit3",
FT_BOOLEAN, 8, NULL, 0x10,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit4,
{ "spare_bit4", "kerberos.FastOptions.spare.bit4",
FT_BOOLEAN, 8, NULL, 0x08,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit5,
{ "spare_bit5", "kerberos.FastOptions.spare.bit5",
FT_BOOLEAN, 8, NULL, 0x04,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit6,
{ "spare_bit6", "kerberos.FastOptions.spare.bit6",
FT_BOOLEAN, 8, NULL, 0x02,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit7,
{ "spare_bit7", "kerberos.FastOptions.spare.bit7",
FT_BOOLEAN, 8, NULL, 0x01,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit8,
{ "spare_bit8", "kerberos.FastOptions.spare.bit8",
FT_BOOLEAN, 8, NULL, 0x80,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit9,
{ "spare_bit9", "kerberos.FastOptions.spare.bit9",
FT_BOOLEAN, 8, NULL, 0x40,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit10,
{ "spare_bit10", "kerberos.FastOptions.spare.bit10",
FT_BOOLEAN, 8, NULL, 0x20,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit11,
{ "spare_bit11", "kerberos.FastOptions.spare.bit11",
FT_BOOLEAN, 8, NULL, 0x10,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit12,
{ "spare_bit12", "kerberos.FastOptions.spare.bit12",
FT_BOOLEAN, 8, NULL, 0x08,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit13,
{ "spare_bit13", "kerberos.FastOptions.spare.bit13",
FT_BOOLEAN, 8, NULL, 0x04,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit14,
{ "spare_bit14", "kerberos.FastOptions.spare.bit14",
FT_BOOLEAN, 8, NULL, 0x02,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_spare_bit15,
{ "spare_bit15", "kerberos.FastOptions.spare.bit15",
FT_BOOLEAN, 8, NULL, 0x01,
NULL, HFILL }},
{ &hf_kerberos_FastOptions_kdc_follow_referrals,
{ "kdc-follow-referrals", "kerberos.FastOptions.kdc.follow.referrals",
FT_BOOLEAN, 8, NULL, 0x80,
NULL, HFILL }},
{ &hf_kerberos_ticket_checksum,
{ "ticket-checksum", "kerberos.ticket_checksum_element",
FT_NONE, BASE_NONE, NULL, 0,
"Checksum", HFILL }},
{ &hf_krb_patimestamp,
{ "patimestamp", "kerberos.patimestamp",
FT_STRING, BASE_NONE, NULL, 0, "KerberosTime", HFILL }},
{ &hf_krb_pausec,
{ "pausec", "kerberos.pausec",
FT_UINT32, BASE_DEC, NULL, 0, "Microseconds", HFILL }},
#endif /* HAVE_KERBEROS */
#include "packet-kerberos-hfarr.c"
};
/* List of subtrees */
static gint *ett[] = {
&ett_kerberos,
&ett_krb_recordmark,
&ett_krb_pac,
&ett_krb_pac_drep,
&ett_krb_pac_midl_blob,
&ett_krb_pac_logon_info,
&ett_krb_pac_credential_info,
&ett_krb_pac_s4u_delegation_info,
&ett_krb_pac_upn_dns_info,
&ett_krb_pac_device_info,
&ett_krb_pac_server_checksum,
&ett_krb_pac_privsvr_checksum,
&ett_krb_pac_client_info_type,
&ett_krb_pa_supported_enctypes,
&ett_krb_ad_ap_options,
#ifdef HAVE_KERBEROS
&ett_krb_pa_enc_ts_enc,
&ett_kerberos_KrbFastFinished,
&ett_kerberos_KrbFastResponse,
&ett_kerberos_KrbFastReq,
&ett_kerberos_FastOptions,
#endif
#include "packet-kerberos-ettarr.c"
};
static ei_register_info ei[] = {
{ &ei_kerberos_missing_keytype, { "kerberos.missing_keytype", PI_DECRYPTION, PI_WARN, "Missing keytype", EXPFILL }},
{ &ei_kerberos_decrypted_keytype, { "kerberos.decrypted_keytype", PI_SECURITY, PI_CHAT, "Decryted keytype", EXPFILL }},
{ &ei_kerberos_learnt_keytype, { "kerberos.learnt_keytype", PI_SECURITY, PI_CHAT, "Learnt keytype", EXPFILL }},
{ &ei_kerberos_address, { "kerberos.address.unknown", PI_UNDECODED, PI_WARN, "KRB Address: I don't know how to parse this type of address yet", EXPFILL }},
{ &ei_krb_gssapi_dlglen, { "kerberos.gssapi.dlglen.error", PI_MALFORMED, PI_ERROR, "DlgLen is not the same as number of bytes remaining", EXPFILL }},
};
expert_module_t* expert_krb;
module_t *krb_module;
proto_kerberos = proto_register_protocol("Kerberos", "KRB5", "kerberos");
proto_register_field_array(proto_kerberos, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_krb = expert_register_protocol(proto_kerberos);
expert_register_field_array(expert_krb, ei, array_length(ei));
/* Register preferences */
krb_module = prefs_register_protocol(proto_kerberos, kerberos_prefs_apply_cb);
prefs_register_bool_preference(krb_module, "desegment",
"Reassemble Kerberos over TCP messages spanning multiple TCP segments",
"Whether the Kerberos dissector should reassemble messages spanning multiple TCP segments."
" To use this option, you must also enable \"Allow subdissectors to reassemble TCP streams\" in the TCP protocol settings.",
&krb_desegment);
#ifdef HAVE_KERBEROS
prefs_register_bool_preference(krb_module, "decrypt",
"Try to decrypt Kerberos blobs",
"Whether the dissector should try to decrypt "
"encrypted Kerberos blobs. This requires that the proper "
"keytab file is installed as well.", &krb_decrypt);
prefs_register_filename_preference(krb_module, "file",
"Kerberos keytab file",
"The keytab file containing all the secrets",
&keytab_filename, FALSE);
#if defined(HAVE_HEIMDAL_KERBEROS) || defined(HAVE_MIT_KERBEROS)
wmem_register_callback(wmem_epan_scope(), enc_key_list_cb, NULL);
kerberos_longterm_keys = wmem_map_new(wmem_epan_scope(),
enc_key_content_hash,
enc_key_content_equal);
kerberos_all_keys = wmem_map_new_autoreset(wmem_epan_scope(),
wmem_file_scope(),
enc_key_content_hash,
enc_key_content_equal);
kerberos_app_session_keys = wmem_map_new_autoreset(wmem_epan_scope(),
wmem_file_scope(),
enc_key_content_hash,
enc_key_content_equal);
#endif /* defined(HAVE_HEIMDAL_KERBEROS) || defined(HAVE_MIT_KERBEROS) */
#endif /* HAVE_KERBEROS */
}
static int wrap_dissect_gss_kerb(tvbuff_t *tvb, int offset, packet_info *pinfo,
proto_tree *tree, dcerpc_info *di _U_,guint8 *drep _U_)
{
tvbuff_t *auth_tvb;
auth_tvb = tvb_new_subset_remaining(tvb, offset);
dissect_kerberos_main(auth_tvb, pinfo, tree, FALSE, NULL);
return tvb_captured_length_remaining(tvb, offset);
}
static dcerpc_auth_subdissector_fns gss_kerb_auth_connect_fns = {
wrap_dissect_gss_kerb, /* Bind */
wrap_dissect_gss_kerb, /* Bind ACK */
wrap_dissect_gss_kerb, /* AUTH3 */
NULL, /* Request verifier */
NULL, /* Response verifier */
NULL, /* Request data */
NULL /* Response data */
};
static dcerpc_auth_subdissector_fns gss_kerb_auth_sign_fns = {
wrap_dissect_gss_kerb, /* Bind */
wrap_dissect_gss_kerb, /* Bind ACK */
wrap_dissect_gss_kerb, /* AUTH3 */
wrap_dissect_gssapi_verf, /* Request verifier */
wrap_dissect_gssapi_verf, /* Response verifier */
NULL, /* Request data */
NULL /* Response data */
};
static dcerpc_auth_subdissector_fns gss_kerb_auth_seal_fns = {
wrap_dissect_gss_kerb, /* Bind */
wrap_dissect_gss_kerb, /* Bind ACK */
wrap_dissect_gss_kerb, /* AUTH3 */
wrap_dissect_gssapi_verf, /* Request verifier */
wrap_dissect_gssapi_verf, /* Response verifier */
wrap_dissect_gssapi_payload, /* Request data */
wrap_dissect_gssapi_payload /* Response data */
};
void
proto_reg_handoff_kerberos(void)
{
dissector_handle_t kerberos_handle_tcp;
krb4_handle = find_dissector_add_dependency("krb4", proto_kerberos);
kerberos_handle_udp = create_dissector_handle(dissect_kerberos_udp,
proto_kerberos);
kerberos_handle_tcp = create_dissector_handle(dissect_kerberos_tcp,
proto_kerberos);
dissector_add_uint_with_preference("udp.port", UDP_PORT_KERBEROS, kerberos_handle_udp);
dissector_add_uint_with_preference("tcp.port", TCP_PORT_KERBEROS, kerberos_handle_tcp);
register_dcerpc_auth_subdissector(DCE_C_AUTHN_LEVEL_CONNECT,
DCE_C_RPC_AUTHN_PROTOCOL_GSS_KERBEROS,
&gss_kerb_auth_connect_fns);
register_dcerpc_auth_subdissector(DCE_C_AUTHN_LEVEL_PKT_INTEGRITY,
DCE_C_RPC_AUTHN_PROTOCOL_GSS_KERBEROS,
&gss_kerb_auth_sign_fns);
register_dcerpc_auth_subdissector(DCE_C_AUTHN_LEVEL_PKT_PRIVACY,
DCE_C_RPC_AUTHN_PROTOCOL_GSS_KERBEROS,
&gss_kerb_auth_seal_fns);
}
/*
* Editor modelines - https://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 8
* tab-width: 8
* indent-tabs-mode: t
* End:
*
* vi: set shiftwidth=8 tabstop=8 noexpandtab:
* :indentSize=8:tabSize=8:noTabs=false:
*/