wireshark/plugins/rlm/packet-rlm.c

228 lines
6.2 KiB
C

/* packet-rlm.c
* Routines for RLM dissection
* Copyright 2004, Duncan Sargeant <dunc-ethereal@rcpt.to>
*
* $Id$
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* RLM is a proprietary Cisco protocol used for centralling managing
* many redundant NASes. I don't know much about the format, but you
* can read about the feature here:
*
* http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120t/120t3/rlm_123.htm
*
* RLM runs on a UDP port (default 3000) between the MGC and the NAS.
* On port N+1 (default 3001), a Q.931/LAPD/UDP connection is maintained.
* Both sides use the same local port number for the connection, so source
* and dest port are always the same.
*
* In large networks, the links are typically split onto higher ports,
* so anything up to 3015 (or higher) could either be RLM or Q.931 traffic,
* although always the RLM has the one lower port number for that RLM group.
*
* Multiple RLM groups are possible on a single NAS.
*
* I haven't been able to find the protocol documented, so I've
* guessed some of the fields based on the output of debug commands on
* cisco NASes.
*
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <glib.h>
#include <epan/packet.h>
/* Initialize the protocol and registered fields */
static int proto_rlm = -1;
static int hf_rlm_version = -1;
static int hf_rlm_type = -1;
static int hf_rlm_unknown = -1;
static int hf_rlm_tid = -1;
static int hf_rlm_unknown2 = -1;
/* Initialize the subtree pointers */
static gint ett_rlm = -1;
/* RLM definitions - missing some! */
#define RLM_START_REQUEST 1
#define RLM_START_ACK 2
/* #define ??? 3 */
/* #define ??? 4 */
#define RLM_ECHO_REQUEST 5
#define RLM_ECHO_REPLY 6
/* #define ??? ?? */
/*
Maybe this isn't the best place for it, but RLM goes hand in hand
with Q.931 traffic on a higher port.
*/
static gboolean
dissect_udp_lapd(tvbuff_t *tvb, packet_info *pinfo _U_ , proto_tree *tree) {
if (pinfo->srcport < 3001 || pinfo->srcport > 3015
|| pinfo->destport < 3001 || pinfo->destport > 3015
|| pinfo->destport != pinfo->srcport)
return FALSE;
call_dissector(find_dissector("lapd"), tvb, pinfo, tree);
return TRUE;
}
/* Code to actually dissect the packets */
static gboolean
dissect_rlm(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *ti;
proto_tree *rlm_tree;
guint8 rlm_type, version;
const char *type_str = NULL;
if (pinfo->srcport < 3000 || pinfo->srcport > 3015
|| pinfo->destport < 3000 || pinfo->destport > 3015
|| pinfo->destport != pinfo->srcport)
return FALSE;
version = tvb_get_guint8(tvb, 0);
rlm_type = tvb_get_guint8(tvb, 1);
/* we only know about version 2, and I've only seen 8 byte packets */
if (tvb_length(tvb) != 8 || version != 2) {
return FALSE;
}
if (check_col(pinfo->cinfo, COL_PROTOCOL))
col_set_str(pinfo->cinfo, COL_PROTOCOL, "RLM");
switch (rlm_type) {
case RLM_START_REQUEST:
type_str = "Start request";
break;;
case RLM_START_ACK:
type_str = "Start acknowledgement";
break;;
case RLM_ECHO_REQUEST:
type_str = "Echo request";
break;;
case RLM_ECHO_REPLY:
type_str = "Echo reply";
break;;
default:
type_str = "Unknown type";
break;;
}
if (check_col(pinfo->cinfo, COL_INFO))
col_set_str(pinfo->cinfo, COL_INFO, type_str);
if (tree) {
/* proto_tree_add_protocol_format(tree, proto_rlm, tvb, 0,
16, "Cisco Session Management"); */
ti = proto_tree_add_item(tree, proto_rlm, tvb, 0, 8, FALSE);
rlm_tree = proto_item_add_subtree(ti, ett_rlm);
ti = proto_tree_add_item(rlm_tree, hf_rlm_version, tvb, 0, 1, FALSE);
proto_tree_add_uint_format(rlm_tree, hf_rlm_type, tvb, 1, 1, rlm_type, "Type: %u (%s)", rlm_type, type_str);
ti = proto_tree_add_item(rlm_tree, hf_rlm_unknown, tvb, 2, 2, FALSE);
ti = proto_tree_add_item(rlm_tree, hf_rlm_tid, tvb, 4, 2, FALSE);
ti = proto_tree_add_item(rlm_tree, hf_rlm_unknown2, tvb, 6, 2, FALSE);
}
return TRUE;
}
/* Register the protocol with Wireshark */
/* this format is require because a script is used to build the C function
that calls all the protocol registration.
*/
void
proto_reg_handoff_rlm(void)
{
heur_dissector_add("udp", dissect_rlm, proto_rlm);
heur_dissector_add("udp", dissect_udp_lapd, proto_get_id_by_filter_name("lapd"));
}
void
proto_register_rlm(void)
{
/* Setup list of header fields See Section 1.6.1 for details*/
static hf_register_info hf[] = {
{ &hf_rlm_version,
{ "Version", "rlm.version",
FT_UINT8, BASE_DEC, NULL, 0x0,
"", HFILL }
},
{ &hf_rlm_type,
{ "Type", "rlm.type",
FT_UINT8, BASE_DEC, NULL, 0x0,
"", HFILL }
},
{ &hf_rlm_unknown,
{ "Unknown", "rlm.unknown",
FT_UINT16, BASE_HEX, NULL, 0x0,
"", HFILL }
},
{ &hf_rlm_tid,
{ "Transaction ID", "rlm.tid",
FT_UINT16, BASE_DEC, NULL, 0x0,
"", HFILL }
},
{ &hf_rlm_unknown2,
{ "Unknown", "rlm.unknown2",
FT_UINT16, BASE_HEX, NULL, 0x0,
"", HFILL }
},
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_rlm,
};
/* Register the protocol name and description */
proto_rlm = proto_register_protocol("Redundant Link Management Protocol",
"RLM", "rlm");
/* Required function calls to register the header fields and subtrees used */
proto_register_field_array(proto_rlm, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
}