wireshark/epan/dissectors/packet-cipmotion.c

2948 lines
125 KiB
C

/* packet-cipmotion.c
* Routines for CIP (Common Industrial Protocol) Motion dissection
* CIP Motion Home: www.odva.org
*
* Copyright 2006-2007
* Benjamin M. Stocks <bmstocks@ra.rockwell.com>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <epan/packet.h>
#include "packet-cip.h"
void proto_register_cipmotion(void);
/* The entry point to the actual dissection is: dissect_cipmotion */
void proto_reg_handoff_cipmotion(void);
/* Protocol handle for CIP Motion */
static int proto_cipmotion = -1;
/* Header field identifiers, these are registered in the
* proto_register_cipmotion function along with the bites/bytes
* they represent */
static int hf_cip_format = -1;
static int hf_cip_revision = -1;
static int hf_cip_class1_seqnum = -1;
static int hf_cip_updateid = -1;
static int hf_cip_instance_cnt = -1;
static int hf_cip_last_update = -1;
static int hf_cip_node_status = -1;
static int hf_cip_node_control = -1;
static int hf_cip_node_control_remote = -1;
static int hf_cip_node_control_sync = -1;
static int hf_cip_node_data_valid = -1;
static int hf_cip_node_fault_reset = -1;
static int hf_cip_node_device_faulted = -1;
static int hf_cip_time_data_set = -1;
static int hf_cip_time_data_stamp = -1;
static int hf_cip_time_data_offset = -1;
static int hf_cip_time_data_diag = -1;
static int hf_cip_time_data_time_diag = -1;
static int hf_cip_cont_time_stamp = -1;
static int hf_cip_cont_time_offset = -1;
static int hf_cip_devc_time_stamp = -1;
static int hf_cip_devc_time_offset = -1;
static int hf_cip_lost_update = -1;
static int hf_cip_late_update = -1;
static int hf_cip_data_rx_time_stamp = -1;
static int hf_cip_data_tx_time_stamp = -1;
static int hf_cip_node_fltalarms = -1;
static int hf_cip_motor_cntrl = -1;
static int hf_cip_fdbk_config = -1;
static int hf_cip_axis_control = -1;
static int hf_cip_control_status = -1;
static int hf_cip_axis_response = -1;
static int hf_cip_axis_resp_stat = -1;
static int hf_cip_cmd_data_pos_cmd = -1;
static int hf_cip_cmd_data_vel_cmd = -1;
static int hf_cip_cmd_data_acc_cmd = -1;
static int hf_cip_cmd_data_trq_cmd = -1;
static int hf_cip_cmd_data_pos_trim_cmd = -1;
static int hf_cip_cmd_data_vel_trim_cmd = -1;
static int hf_cip_cmd_data_acc_trim_cmd = -1;
static int hf_cip_cmd_data_trq_trim_cmd = -1;
static int hf_cip_act_data_pos = -1;
static int hf_cip_act_data_vel = -1;
static int hf_cip_act_data_acc = -1;
static int hf_cip_act_data_trq = -1;
static int hf_cip_act_data_crnt = -1;
static int hf_cip_act_data_vltg = -1;
static int hf_cip_act_data_fqcy = -1;
static int hf_cip_sts_flt = -1;
static int hf_cip_sts_alrm = -1;
static int hf_cip_sts_sts = -1;
static int hf_cip_sts_iosts = -1;
static int hf_cip_sts_axis_safety = -1;
static int hf_cip_sts_drive_safety = -1;
static int hf_cip_intrp = -1;
static int hf_cip_position_data_type = -1;
static int hf_cip_axis_state = -1;
static int hf_cip_evnt_ctrl_reg1_pos = -1;
static int hf_cip_evnt_ctrl_reg1_neg = -1;
static int hf_cip_evnt_ctrl_reg2_pos = -1;
static int hf_cip_evnt_ctrl_reg2_neg = -1;
static int hf_cip_evnt_ctrl_reg1_posrearm = -1;
static int hf_cip_evnt_ctrl_reg1_negrearm = -1;
static int hf_cip_evnt_ctrl_reg2_posrearm = -1;
static int hf_cip_evnt_ctrl_reg2_negrearm = -1;
static int hf_cip_evnt_ctrl_marker_pos = -1;
static int hf_cip_evnt_ctrl_marker_neg = -1;
static int hf_cip_evnt_ctrl_home_pos = -1;
static int hf_cip_evnt_ctrl_home_neg = -1;
static int hf_cip_evnt_ctrl_home_pp = -1;
static int hf_cip_evnt_ctrl_home_pm = -1;
static int hf_cip_evnt_ctrl_home_mp = -1;
static int hf_cip_evnt_ctrl_home_mm = -1;
static int hf_cip_evnt_ctrl_acks = -1;
static int hf_cip_evnt_extend_format = -1;
static int hf_cip_evnt_sts_reg1_pos = -1;
static int hf_cip_evnt_sts_reg1_neg = -1;
static int hf_cip_evnt_sts_reg2_pos = -1;
static int hf_cip_evnt_sts_reg2_neg = -1;
static int hf_cip_evnt_sts_reg1_posrearm = -1;
static int hf_cip_evnt_sts_reg1_negrearm = -1;
static int hf_cip_evnt_sts_reg2_posrearm = -1;
static int hf_cip_evnt_sts_reg2_negrearm = -1;
static int hf_cip_evnt_sts_marker_pos = -1;
static int hf_cip_evnt_sts_marker_neg = -1;
static int hf_cip_evnt_sts_home_pos = -1;
static int hf_cip_evnt_sts_home_neg = -1;
static int hf_cip_evnt_sts_home_pp = -1;
static int hf_cip_evnt_sts_home_pm = -1;
static int hf_cip_evnt_sts_home_mp = -1;
static int hf_cip_evnt_sts_home_mm = -1;
static int hf_cip_evnt_sts_nfs = -1;
static int hf_cip_evnt_sts_stat = -1;
static int hf_cip_evnt_type = -1;
static int hf_cip_svc_code = -1;
static int hf_cip_svc_sts = -1;
static int hf_cip_svc_set_axis_attr_sts = -1;
static int hf_cip_svc_get_axis_attr_sts = -1;
static int hf_cip_svc_transction = -1;
static int hf_cip_svc_ext_status = -1;
static int hf_cip_svc_data = -1;
static int hf_cip_ptp_grandmaster = -1;
static int hf_cip_axis_alarm = -1;
static int hf_cip_axis_fault = -1;
static int hf_cip_axis_sts_local_ctrl = -1;
static int hf_cip_axis_sts_alarm = -1;
static int hf_cip_axis_sts_dc_bus = -1;
static int hf_cip_axis_sts_pwr_struct = -1;
static int hf_cip_axis_sts_tracking = -1;
static int hf_cip_axis_sts_pos_lock = -1;
static int hf_cip_axis_sts_vel_lock = -1;
static int hf_cip_axis_sts_vel_standstill = -1;
static int hf_cip_axis_sts_vel_threshold = -1;
static int hf_cip_axis_sts_vel_limit = -1;
static int hf_cip_axis_sts_acc_limit = -1;
static int hf_cip_axis_sts_dec_limit = -1;
static int hf_cip_axis_sts_torque_threshold = -1;
static int hf_cip_axis_sts_torque_limit = -1;
static int hf_cip_axis_sts_cur_limit = -1;
static int hf_cip_axis_sts_therm_limit = -1;
static int hf_cip_axis_sts_feedback_integ = -1;
static int hf_cip_axis_sts_shutdown = -1;
static int hf_cip_axis_sts_in_process = -1;
static int hf_cip_cyclic_wrt_data = -1;
static int hf_cip_cyclic_rd_data = -1;
static int hf_cip_cyclic_write_blk = -1;
static int hf_cip_cyclic_read_blk = -1;
static int hf_cip_cyclic_write_sts = -1;
static int hf_cip_cyclic_read_sts = -1;
static int hf_cip_attribute_data = -1;
static int hf_cip_event_checking = -1;
static int hf_cip_event_ack = -1;
static int hf_cip_event_status = -1;
static int hf_cip_event_id = -1;
static int hf_cip_event_pos = -1;
static int hf_cip_event_ts = -1;
static int hf_cip_pos_cmd = -1;
static int hf_cip_pos_cmd_int = -1;
static int hf_cip_vel_cmd = -1;
static int hf_cip_accel_cmd = -1;
static int hf_cip_trq_cmd = -1;
static int hf_cip_pos_trim = -1;
static int hf_cip_vel_trim = -1;
static int hf_cip_accel_trim = -1;
static int hf_cip_trq_trim = -1;
static int hf_cip_act_pos = -1;
static int hf_cip_act_vel = -1;
static int hf_cip_act_accel = -1;
static int hf_cip_act_trq = -1;
static int hf_cip_act_crnt = -1;
static int hf_cip_act_volts = -1;
static int hf_cip_act_freq = -1;
static int hf_cip_fault_type = -1;
static int hf_cip_fault_sub_code = -1;
static int hf_cip_fault_action = -1;
static int hf_cip_fault_time_stamp = -1;
static int hf_cip_alarm_type = -1;
static int hf_cip_alarm_sub_code = -1;
static int hf_cip_alarm_state = -1;
static int hf_cip_alarm_time_stamp = -1;
static int hf_cip_axis_status = -1;
static int hf_cip_axis_status_mfg = -1;
static int hf_cip_axis_io_status = -1;
static int hf_cip_axis_io_status_mfg = -1;
static int hf_cip_axis_safety_status = -1;
static int hf_cip_axis_safety_status_mfg = -1;
static int hf_cip_axis_safety_state = -1;
static int hf_cip_drive_safety_status = -1;
static int hf_cip_cmd_data_set = -1;
static int hf_cip_act_data_set = -1;
static int hf_cip_sts_data_set = -1;
static int hf_cip_group_sync = -1;
static int hf_cip_command_control = -1;
static int hf_get_axis_attr_list_attribute_cnt = -1;
static int hf_get_axis_attr_list_attribute_id = -1;
static int hf_get_axis_attr_list_dimension = -1;
static int hf_get_axis_attr_list_element_size = -1;
static int hf_get_axis_attr_list_start_index = -1;
static int hf_get_axis_attr_list_data_elements = -1;
static int hf_set_axis_attr_list_attribute_cnt = -1;
static int hf_set_axis_attr_list_attribute_id = -1;
static int hf_set_axis_attr_list_dimension = -1;
static int hf_set_axis_attr_list_element_size = -1;
static int hf_set_axis_attr_list_start_index = -1;
static int hf_set_axis_attr_list_data_elements = -1;
static int hf_var_devce_instance = -1;
static int hf_var_devce_instance_block_size = -1;
static int hf_var_devce_cyclic_block_size = -1;
static int hf_var_devce_cyclic_data_block_size = -1;
static int hf_var_devce_cyclic_rw_block_size = -1;
static int hf_var_devce_event_block_size = -1;
static int hf_var_devce_service_block_size = -1;
/* Subtree pointers for the dissection */
static gint ett_cipmotion = -1;
static gint ett_cont_dev_header = -1;
static gint ett_node_control = -1;
static gint ett_node_status = -1;
static gint ett_time_data_set = -1;
static gint ett_inst_data_header = -1;
static gint ett_cyclic_data_block = -1;
static gint ett_control_mode = -1;
static gint ett_feedback_config = -1;
static gint ett_command_data_set = -1;
static gint ett_actual_data_set = -1;
static gint ett_status_data_set = -1;
static gint ett_interp_control = -1;
static gint ett_cyclic_rd_wt = -1;
static gint ett_event = -1;
static gint ett_event_check_ctrl = -1;
static gint ett_event_check_sts = -1;
static gint ett_service = -1;
static gint ett_get_axis_attribute = -1;
static gint ett_set_axis_attribute = -1;
static gint ett_get_axis_attr_list = -1;
static gint ett_set_axis_attr_list = -1;
static gint ett_group_sync = -1;
static gint ett_axis_status_set = -1;
static gint ett_command_control = -1;
/* These are the BITMASKS for the Time Data Set header field */
#define TIME_DATA_SET_TIME_STAMP 0x1
#define TIME_DATA_SET_TIME_OFFSET 0x2
#define TIME_DATA_SET_UPDATE_DIAGNOSTICS 0x4
#define TIME_DATA_SET_TIME_DIAGNOSTICS 0x8
/* These are the BITMASKS for the Command Data Set cyclic field */
#define COMMAND_DATA_SET_POSITION 0x01
#define COMMAND_DATA_SET_VELOCITY 0x02
#define COMMAND_DATA_SET_ACCELERATION 0x04
#define COMMAND_DATA_SET_TORQUE 0x08
#define COMMAND_DATA_SET_POSITION_TRIM 0x10
#define COMMAND_DATA_SET_VELOCITY_TRIM 0x20
#define COMMAND_DATA_SET_ACCELERATION_TRIM 0x40
#define COMMAND_DATA_SET_TORQUE_TRIM 0x80
/* These are the BITMASKS for the Actual Data Set cyclic field */
#define ACTUAL_DATA_SET_POSITION 0x01
#define ACTUAL_DATA_SET_VELOCITY 0x02
#define ACTUAL_DATA_SET_ACCELERATION 0x04
#define ACTUAL_DATA_SET_TORQUE 0x08
#define ACTUAL_DATA_SET_CURRENT 0x10
#define ACTUAL_DATA_SET_VOLTAGE 0x20
#define ACTUAL_DATA_SET_FREQUENCY 0x40
/* These are the BITMASKS for the Status Data Set cyclic field */
#define STATUS_DATA_SET_AXIS_FAULT 0x01
#define STATUS_DATA_SET_AXIS_ALARM 0x02
#define STATUS_DATA_SET_AXIS_STATUS 0x04
#define STATUS_DATA_SET_AXIS_IO_STATUS 0x08
#define STATUS_DATA_SET_AXIS_SAFETY 0x10
#define STATUS_DATA_SET_DRIVE_SAFETY 0x80
/* These are the BITMASKS for the Command Control cyclic field */
#define COMMAND_CONTROL_TARGET_UPDATE 0x03
#define COMMAND_CONTROL_POSITION_DATA_TYPE 0x0C
/* These are the VALUES of the connection format header field of the
* CIP Motion protocol */
#define FORMAT_FIXED_CONTROL_TO_DEVICE 2
#define FORMAT_FIXED_DEVICE_TO_CONTROL 3
#define FORMAT_VAR_CONTROL_TO_DEVICE 6
#define FORMAT_VAR_DEVICE_TO_CONTROL 7
/* Translate function to string - connection format values */
static const value_string cip_con_format_vals[] = {
{ FORMAT_FIXED_CONTROL_TO_DEVICE, "Fixed Controller-to-Device" },
{ FORMAT_FIXED_DEVICE_TO_CONTROL, "Fixed Device-to-Controller" },
{ FORMAT_VAR_CONTROL_TO_DEVICE, "Variable Controller-to-Device" },
{ FORMAT_VAR_DEVICE_TO_CONTROL, "Variable Device-to-Controller" },
{ 0, NULL }
};
/* Translate function to string - motor control mode values */
static const value_string cip_motor_control_vals[] = {
{ 0, "No Control" },
{ 1, "Position Control" },
{ 2, "Velocity Control" },
{ 3, "Acceleration Control" },
{ 4, "Torque Control" },
{ 5, "Current Control" },
{ 0, NULL }
};
/* Translate function to string - feedback config values */
static const value_string cip_fdbk_config_vals[] = {
{ 0, "No Feedback" },
{ 1, "Master Feedback" },
{ 2, "Motor Feedback" },
{ 3, "Load Feedback" },
{ 4, "Dual Feedback" },
{ 0, NULL }
};
/* Translate function to string - axis control values */
static const value_string cip_axis_control_vals[] =
{
{ 0, "No Request" },
{ 1, "Enable Request" },
{ 2, "Disble Request" },
{ 3, "Shutdown Request" },
{ 4, "Shutdown Reset Request" },
{ 5, "Abort Request" },
{ 6, "Fault Reset Request" },
{ 7, "Stop Process" },
{ 8, "Change Actual Pos" },
{ 9, "Change Command Pos Ref" },
{ 127, "Cancel Request" },
{ 0, NULL }
};
/* Translate function to string - control status values */
static const value_string cip_control_status_vals[] =
{
{ 1, "Configuration Complete" },
{ 0, NULL }
};
/* Translate function to string - group sync Status */
static const value_string cip_sync_status_vals[] =
{
{ 0, "Synchronized" },
{ 1, "Not Synchronized" },
{ 2, "Wrong Grandmaster" },
{ 0, NULL }
};
/* Translate function to string - command target update */
static const value_string cip_interpolation_vals[] = {
{ 0, "Immediate" },
{ 1, "Extrapolate (+1)" },
{ 2, "Interpolate (+2)" },
{ 0, NULL }
};
/* These are the VALUES for the Command Position Data Type */
#define POSITION_DATA_LREAL 0x00
#define POSITION_DATA_DINT 0x01
/* Translate function to string - position data type */
static const value_string cip_pos_data_type_vals[] = {
{ POSITION_DATA_LREAL, "LREAL (64-bit Float)" },
{ POSITION_DATA_DINT, "DINT (32-bit Integer)" },
{ 0, NULL }
};
/* Translate function to string - axis response values */
static const value_string cip_axis_response_vals[] = {
{ 0, "No Acknowledge" },
{ 1, "Enable Acknowledge" },
{ 2, "Disable Acknowledge" },
{ 3, "Shutdown Acknowledge" },
{ 4, "Shutdown Reset Acknowledge" },
{ 5, "Abort Acknowledge" },
{ 6, "Fault Reset Acknowledge" },
{ 0, NULL }
};
/* Translate function to string - axis state values */
static const value_string cip_axis_state_vals[] = {
{ 0, "Initializing" },
{ 1, "Pre-charging" },
{ 2, "Stopped" },
{ 3, "Starting" },
{ 4, "Running" },
{ 5, "Testing" },
{ 6, "Stopping" },
{ 7, "Aborting" },
{ 8, "Major Faulted" },
{ 9, "Start Inhibited" },
{ 10, "Shutdown" },
{ 0, NULL }
};
/* Translate function to string - event type values */
static const value_string cip_event_type_vals[] = {
{ 0, "Registration 1 Positive Edge" },
{ 1, "Registration 1 Negative Edge" },
{ 2, "Registration 2 Positive Edge" },
{ 3, "Registration 2 Negative Edge" },
{ 4, "Marker Positive Edge" },
{ 5, "Marker Negative Edge" },
{ 6, "Home Switch Positive Edge" },
{ 7, "Home Switch Negative Edge" },
{ 8, "Home Switch Marker ++" },
{ 9, "Home Switch Marker +-" },
{ 10, "Home Switch Marker -+" },
{ 11, "Home Switch Marker --" },
{ 0, NULL }
};
#define SC_GET_AXIS_ATTRIBUTE_LIST 0x4B
#define SC_SET_AXIS_ATTRIBUTE_LIST 0x4C
#define SC_SET_CYCLIC_WRITE_LIST 0x4D
#define SC_SET_CYCLIC_READ_LIST 0x4E
#define SC_RUN_MOTOR_TEST 0x4F
#define SC_GET_MOTOR_TEST_DATA 0x50
#define SC_RUN_INERTIA_TEST 0x51
#define SC_GET_INERTIA_TEST_DATA 0x52
#define SC_RUN_HOOKUP_TEST 0x53
#define SC_GET_HOOKUP_TEST_DATA 0x53
/* Translate function to string - CIP Service codes */
static const value_string cip_sc_vals[] = {
GENERIC_SC_LIST
{ SC_GET_AXIS_ATTRIBUTE_LIST, "Get Axis Attribute List" },
{ SC_SET_AXIS_ATTRIBUTE_LIST, "Set Axis Attribute List" },
{ SC_SET_CYCLIC_WRITE_LIST, "Set Cyclic Write List" },
{ SC_SET_CYCLIC_READ_LIST, "Set Cyclic Read List" },
{ SC_RUN_MOTOR_TEST, "Run Motor Test" },
{ SC_GET_MOTOR_TEST_DATA, "Get Motor Test Data" },
{ SC_RUN_INERTIA_TEST, "Run Inertia Test" },
{ SC_GET_INERTIA_TEST_DATA, "Get Intertia Test Data" },
{ SC_RUN_HOOKUP_TEST, "Run Hookup Test" },
{ SC_GET_HOOKUP_TEST_DATA, "Get Hookup Test Data" },
{ 0, NULL }
};
/*
* Function name: dissect_cmd_data_set
*
* Purpose: Dissect the command data set field of the cyclic data block header and if any
* of the command value bits are set to retrieve and display those command values
*
* Returns: The number of bytes in the cyclic data used
*/
static guint32
dissect_cmd_data_set(guint32 cmd_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset, gboolean lreal_pos)
{
guint32 bytes_used = 0;
/* The order of these if statements is VERY important, this is the order the values will
* appear in the cyclic data */
if ( (cmd_data_set & COMMAND_DATA_SET_POSITION) == COMMAND_DATA_SET_POSITION )
{
/* Based on the Command Position Data Type value embedded in the Command Control
* header field the position is either 64-bit floating or 32-bit integer */
if (lreal_pos)
{
/* Display the command data set position command value */
proto_tree_add_item(tree, hf_cip_pos_cmd, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN );
bytes_used += 8;
}
else
{
/* Display the command data set position command value */
proto_tree_add_item(tree, hf_cip_pos_cmd_int, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
}
if ( (cmd_data_set & COMMAND_DATA_SET_VELOCITY) == COMMAND_DATA_SET_VELOCITY )
{
/* Display the command data set velocity command value */
proto_tree_add_item(tree, hf_cip_vel_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (cmd_data_set & COMMAND_DATA_SET_ACCELERATION) == COMMAND_DATA_SET_ACCELERATION )
{
/* Display the command data set acceleration command value */
proto_tree_add_item(tree, hf_cip_accel_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (cmd_data_set & COMMAND_DATA_SET_TORQUE) == COMMAND_DATA_SET_TORQUE )
{
/* Display the command data set torque command value */
proto_tree_add_item(tree, hf_cip_trq_cmd, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (cmd_data_set & COMMAND_DATA_SET_POSITION_TRIM) == COMMAND_DATA_SET_POSITION_TRIM )
{
/* Display the command data set position trim value */
proto_tree_add_item(tree, hf_cip_pos_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (cmd_data_set & COMMAND_DATA_SET_VELOCITY_TRIM) == COMMAND_DATA_SET_VELOCITY_TRIM )
{
/* Display the command data set velocity trim value */
proto_tree_add_item(tree, hf_cip_vel_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (cmd_data_set & COMMAND_DATA_SET_ACCELERATION_TRIM) == COMMAND_DATA_SET_ACCELERATION_TRIM )
{
/* Display the command data set acceleration trim value */
proto_tree_add_item(tree, hf_cip_accel_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (cmd_data_set & COMMAND_DATA_SET_TORQUE_TRIM) == COMMAND_DATA_SET_TORQUE_TRIM )
{
/* Display the command data set torque trim value */
proto_tree_add_item(tree, hf_cip_trq_trim, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
return bytes_used;
}
/*
* Function name: dissect_act_data_set
*
* Purpose: Dissect the actual data set field of the cyclic data block header and if any
* of the actual value bits are set to retrieve and display those feedback values
*
* Returns: The number of bytes in the cyclic data used
*/
static guint32
dissect_act_data_set(guint32 act_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset)
{
guint32 bytes_used = 0;
/* The order of these if statements is VERY important, this is the order the values will
* appear in the cyclic data */
if ( (act_data_set & ACTUAL_DATA_SET_POSITION) == ACTUAL_DATA_SET_POSITION )
{
/* Display the actual data set position feedback value */
proto_tree_add_item(tree, hf_cip_act_pos, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (act_data_set & ACTUAL_DATA_SET_VELOCITY) == ACTUAL_DATA_SET_VELOCITY )
{
/* Display the actual data set velocity feedback value */
proto_tree_add_item(tree, hf_cip_act_vel, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (act_data_set & ACTUAL_DATA_SET_ACCELERATION) == ACTUAL_DATA_SET_ACCELERATION )
{
/* Display the actual data set acceleration feedback value */
proto_tree_add_item(tree, hf_cip_act_accel, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (act_data_set & ACTUAL_DATA_SET_TORQUE) == ACTUAL_DATA_SET_TORQUE )
{
/* Display the actual data set torque feedback value */
proto_tree_add_item(tree, hf_cip_act_trq, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (act_data_set & ACTUAL_DATA_SET_CURRENT) == ACTUAL_DATA_SET_CURRENT )
{
/* Display the actual data set current feedback value */
proto_tree_add_item(tree, hf_cip_act_crnt, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (act_data_set & ACTUAL_DATA_SET_VOLTAGE) == ACTUAL_DATA_SET_VOLTAGE )
{
/* Display the actual data set voltage feedback value */
proto_tree_add_item(tree, hf_cip_act_volts, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
if ( (act_data_set & ACTUAL_DATA_SET_FREQUENCY) == ACTUAL_DATA_SET_FREQUENCY )
{
/* Display the actual data set frequency feedback value */
proto_tree_add_item(tree, hf_cip_act_freq, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
}
return bytes_used;
}
/*
* Function name: dissect_status_data_set
*
* Purpose: Dissect the status data set field of the cyclic data block header and if any
* of the status value bits are set to retrieve and display those status values
*
* Returns: The number of bytes in the cyclic data used
*/
static guint32
dissect_status_data_set(guint32 status_data_set, proto_tree* tree, tvbuff_t* tvb, guint32 offset)
{
guint32 bytes_used = 0;
proto_item *temp_proto_item;
proto_tree *temp_proto_tree;
/* The order of these if statements is VERY important, this is the order the values will
* appear in the cyclic data */
if ( (status_data_set & STATUS_DATA_SET_AXIS_FAULT) == STATUS_DATA_SET_AXIS_FAULT )
{
/* Display the various fault codes from the device */
proto_tree_add_item(tree, hf_cip_fault_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
proto_tree_add_item(tree, hf_cip_axis_fault, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
proto_tree_add_item(tree, hf_cip_fault_sub_code, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
proto_tree_add_item(tree, hf_cip_fault_action, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
proto_tree_add_item(tree, hf_cip_fault_time_stamp, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
bytes_used += 8;
}
if ( (status_data_set & STATUS_DATA_SET_AXIS_ALARM) == STATUS_DATA_SET_AXIS_ALARM )
{
/* Display the various alarm codes from the device */
proto_tree_add_item(tree, hf_cip_alarm_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
proto_tree_add_item(tree, hf_cip_axis_alarm, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
proto_tree_add_item(tree, hf_cip_alarm_sub_code, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
proto_tree_add_item(tree, hf_cip_alarm_state, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
proto_tree_add_item(tree, hf_cip_alarm_time_stamp, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
bytes_used += 8;
}
if ( (status_data_set & STATUS_DATA_SET_AXIS_STATUS) == STATUS_DATA_SET_AXIS_STATUS )
{
/* Display the various axis state values from the device */
temp_proto_item = proto_tree_add_item(tree, hf_cip_axis_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree( temp_proto_item, ett_axis_status_set );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_local_ctrl, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_alarm, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_dc_bus, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_pwr_struct, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_tracking, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_pos_lock, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_lock, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_standstill, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_threshold, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_vel_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_acc_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_dec_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_torque_threshold, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_torque_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_cur_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_therm_limit, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_feedback_integ, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_shutdown, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
proto_tree_add_item( temp_proto_tree, hf_cip_axis_sts_in_process, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN );
bytes_used += 4;
proto_tree_add_item(tree, hf_cip_axis_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
bytes_used += 4;
}
if ( (status_data_set & STATUS_DATA_SET_AXIS_IO_STATUS) == STATUS_DATA_SET_AXIS_IO_STATUS )
{
proto_tree_add_item(tree, hf_cip_axis_io_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
bytes_used += 4;
proto_tree_add_item(tree, hf_cip_axis_io_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
bytes_used += 4;
}
if ( (status_data_set & STATUS_DATA_SET_AXIS_SAFETY) == STATUS_DATA_SET_AXIS_SAFETY )
{
proto_tree_add_item(tree, hf_cip_axis_safety_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
bytes_used += 4;
proto_tree_add_item(tree, hf_cip_axis_safety_status_mfg, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
bytes_used += 4;
proto_tree_add_item(tree, hf_cip_axis_safety_state, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 4;
}
if ( (status_data_set & STATUS_DATA_SET_DRIVE_SAFETY) == STATUS_DATA_SET_DRIVE_SAFETY )
{
proto_tree_add_item(tree, hf_cip_drive_safety_status, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
bytes_used += 4;
}
return bytes_used;
}
/*
* Function name: dissect_cntr_cyclic
*
* Purpose: Dissect the cyclic data block of a controller to device format message
*
* Returns: The new offset into the message that follow on dissections should use
* as their starting offset
*/
static guint32
dissect_cntr_cyclic(guint32 con_format _U_, tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size, guint32 instance _U_)
{
proto_item *temp_proto_item;
proto_tree *header_tree, *temp_proto_tree;
guint32 temp_data;
gboolean lreal_pos;
guint32 bytes_used = 0;
/* Create the tree for the entire instance data header */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_data_block, NULL, "Cyclic Data Block");
/* Add the control mode header field to the tree */
proto_tree_add_item(header_tree, hf_cip_motor_cntrl, tvb, offset, 1, ENC_LITTLE_ENDIAN);
/* Add the feedback config header field to the tree */
proto_tree_add_item(header_tree, hf_cip_fdbk_config, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
/* Add the axis control field to the tree */
proto_tree_add_item(header_tree, hf_cip_axis_control, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
/* Add the control status to the tree */
proto_tree_add_item(header_tree, hf_cip_control_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
/* Read the command control header field from the packet into memory and determine if the dissector
* should be using an LREAL or DINT for position */
temp_data = tvb_get_guint8(tvb, offset + 7);
lreal_pos = ( (temp_data & COMMAND_CONTROL_POSITION_DATA_TYPE) == POSITION_DATA_LREAL );
/* Read the command data set header field from the packet into memory */
temp_data = tvb_get_guint8(tvb, offset + 4);
/* Create the tree for the command data set header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_cmd_data_set, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_command_data_set);
proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_pos_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_vel_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_acc_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_trq_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_pos_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_vel_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_acc_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_cmd_data_trq_trim_cmd, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
/* Display the command data values from the cyclic data payload within the command data set tree, the
* cyclic data starts immediately after the interpolation control field in the controller to device
* direction */
bytes_used += dissect_cmd_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used, lreal_pos);
/* Create the tree for the actual data set header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_act_data_set, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_actual_data_set);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_pos, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vel, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_acc, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_trq, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_crnt, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vltg, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_fqcy, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
/* Create the tree for the status data set header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_sts_data_set, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_status_data_set);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_flt, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_alrm, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_sts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_iosts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_axis_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_drive_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
/* Create the tree for the command control header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_command_control, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_command_control);
/* Display the interpolation control and position format fields */
proto_tree_add_item(temp_proto_tree, hf_cip_intrp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_position_data_type, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
/* Return the offset to the next byte in the message */
return offset + 8 + bytes_used;
}
/*
* Function name: dissect_devce_cyclic
*
* Purpose: Dissect the cyclic data block of a device to controller format message
*
* Returns: The new offset into the message that follow on dissections should use
* as their starting offset
*/
static guint32
dissect_devce_cyclic(guint32 con_format _U_, tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size, guint32 instance _U_)
{
proto_item *temp_proto_item;
proto_tree *header_tree, *temp_proto_tree;
guint32 temp_data;
guint32 bytes_used = 0;
/* Create the tree for the entire instance data header */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_data_block, NULL, "Cyclic Data Block");
/* Add the control mode header field to the tree */
proto_tree_add_item(header_tree, hf_cip_motor_cntrl, tvb, offset, 1, ENC_LITTLE_ENDIAN);
/* Add the feedback config header field to the tree */
proto_tree_add_item(header_tree, hf_cip_fdbk_config, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
/* Add the axis response field to the tree */
proto_tree_add_item(header_tree, hf_cip_axis_response, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
/* Add the axis response status to the tree */
proto_tree_add_item(header_tree, hf_cip_axis_resp_stat, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
/* Read the actual data set header field from the packet into memory */
temp_data = tvb_get_guint8(tvb, offset + 5);
/* Create the tree for the actual data set header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_act_data_set, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_actual_data_set);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_pos, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vel, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_acc, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_trq, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_crnt, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_vltg, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_act_data_fqcy, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
/* Display the actual data values from the cyclic data payload within the command data set tree, the
* cyclic data starts immediately after the interpolation control field in the controller to device
* direction and the actual data starts immediately after the cyclic data */
bytes_used += dissect_act_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used);
/* Read the status data set header field from the packet into memory */
temp_data = tvb_get_guint8(tvb, offset + 6);
/* Create the tree for the status data set header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_sts_data_set, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_status_data_set);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_flt, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_alrm, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_sts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_iosts, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_axis_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_sts_drive_safety, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
/* Display the status data values from the cyclic data payload within the status data set tree, the
* cyclic data starts immediately after the axis state field in the device to controller
* direction and the status data starts immediately after the cyclic data */
bytes_used += dissect_status_data_set(temp_data, temp_proto_tree, tvb, offset + 8 + bytes_used);
/* Display the axis state control field */
proto_tree_add_item(header_tree, hf_cip_axis_state, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
/* Return the offset to the next byte in the message */
return offset + 8 + bytes_used;
}
/*
* Function name: dissect_cyclic_wt
*
* Purpose: Dissect the cyclic write data block in a controller to device message
*
* Returns: The new offset into the message that follow on dissections should use
* as their starting offset
*/
static guint32
dissect_cyclic_wt(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_tree *header_tree;
/* Create the tree for the entire cyclic write data block */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_rd_wt, NULL, "Cyclic Write Data Block");
/* Display the cyclic write block id value */
proto_tree_add_item(header_tree, hf_cip_cyclic_write_blk, tvb, offset, 1, ENC_LITTLE_ENDIAN);
/* Display the cyclic read block id value */
proto_tree_add_item(header_tree, hf_cip_cyclic_read_blk, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
/* Display the remainder of the cyclic write data if there is any */
if ( (size - 4) > 0 )
{
proto_tree_add_item(header_tree, hf_cip_cyclic_wrt_data, tvb, offset + 4, size - 4, ENC_NA);
}
return offset + size;
}
/*
* Function name: dissect_cyclic_rd
*
* Purpose: Dissect the cyclic read data block in a device to controller message
*
* Returns: The new offset into the message that follow on dissections should use
* as their starting offset
*/
static guint32
dissect_cyclic_rd(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_tree *header_tree;
/* Create the tree for the entire cyclic write data block */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_cyclic_rd_wt, NULL, "Cyclic Read Data Block");
/* Display the cyclic write block id value */
proto_tree_add_item(header_tree, hf_cip_cyclic_write_blk, tvb, offset, 1, ENC_LITTLE_ENDIAN);
/* Display the cyclic write status value */
proto_tree_add_item(header_tree, hf_cip_cyclic_write_sts, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
/* Display the cyclic read block id value */
proto_tree_add_item(header_tree, hf_cip_cyclic_read_blk, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
/* Display the cyclic read status value */
proto_tree_add_item(header_tree, hf_cip_cyclic_read_sts, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
/* Display the remainder of the cyclic read data if there is any*/
if ( (size - 4) > 0 )
{
proto_tree_add_item(header_tree, hf_cip_cyclic_rd_data, tvb, offset + 4, size - 4, ENC_NA);
}
return offset + size;
}
/*
* Function name: dissect_cntr_event
*
* Purpose: Dissect the event data block in a controller to device message
*
* Returns: The new offset into the message that follow on dissections should use
* as their starting offset
*/
static guint32
dissect_cntr_event(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_item *temp_proto_item;
proto_tree *header_tree, *temp_proto_tree;
guint32 temp_data;
guint32 acks, cur_ack;
guint32 bytes_used = 0;
/* Create the tree for the entire cyclic write data block */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_event, NULL, "Event Data Block");
/* Read the event checking control header field from the packet into memory */
temp_data = tvb_get_letohl(tvb, offset);
/* Create the tree for the event checking control header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_event_checking, tvb, offset, 4, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_event_check_ctrl);
/* Add the individual elements of the event checking control */
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg1_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_reg2_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_marker_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_marker_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pp, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_pm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_mp, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_home_mm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_ctrl_acks, tvb, offset, 4, ENC_LITTLE_ENDIAN);
/* The dissector will indicate if the protocol is requesting an extended event format but will not dissect it,
* to date no products actually support this format */
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_extend_format, tvb, offset, 4, ENC_LITTLE_ENDIAN);
/* The event checking control value is 4 bytes long */
bytes_used = 4;
/* The final 4 bits of the event checking control value are the number of acknowledgements in the message */
acks = (temp_data >> 28) & 0x0F;
/* Each acknowledgement contains and id and a status value */
for (cur_ack = 0; cur_ack < acks; cur_ack++)
{
/* Display the current acknowledgement id */
proto_tree_add_item(header_tree, hf_cip_event_ack, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
/* Display the current event status */
proto_tree_add_item(header_tree, hf_cip_evnt_sts_stat, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
}
return offset + size;
}
/*
* Function name: dissect_devce_event
*
* Purpose: Dissect the event data block in a device to controller message
*
* Returns: The new offset into the message that follow on dissections should use
* as their starting offset
*/
static guint32
dissect_devce_event(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_item *temp_proto_item;
proto_tree *header_tree, *temp_proto_tree;
guint64 temp_data;
guint64 nots, cur_not;
guint32 bytes_used = 0;
/* Create the tree for the entire cyclic write data block */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_event, NULL, "Event Data Block");
/* Read the event checking control header field from the packet into memory */
temp_data = tvb_get_letohl(tvb, offset);
/* Create the tree for the event checking control header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_event_status, tvb, offset, 4, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_event_check_sts);
/* Add the individual elements of the event checking control */
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg1_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_posrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_reg2_negrearm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_marker_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_marker_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pos, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_neg, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pp, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_pm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_mp, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_home_mm, tvb, offset, 4, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_sts_nfs, tvb, offset, 4, ENC_LITTLE_ENDIAN);
/* The dissector will indicate if the protocol is requesting an extended event format but will not dissect it,
* to date no products actually support this format */
proto_tree_add_item(temp_proto_tree, hf_cip_evnt_extend_format, tvb, offset, 4, ENC_LITTLE_ENDIAN);
/* The event status control value is 4 bytes long */
bytes_used = 4;
/* The final 4 bits of the event status control value are the number of notifications in the message */
nots = (temp_data >> 28) & 0x0F;
/* Each notification contains and id, status value, event type, position and time stamp */
for (cur_not = 0; cur_not < nots; cur_not++)
{
/* Display the current event id */
proto_tree_add_item(header_tree, hf_cip_event_id, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
/* Display the current event status */
proto_tree_add_item(header_tree, hf_cip_evnt_sts_stat, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 1;
/* Display the current event type */
proto_tree_add_item(header_tree, hf_cip_evnt_type, tvb, offset + bytes_used, 1, ENC_LITTLE_ENDIAN);
bytes_used += 2; /* Increment by 2 to jump the reserved byte */
/* Display the event position value */
proto_tree_add_item(header_tree, hf_cip_event_pos, tvb, offset + bytes_used, 4, ENC_LITTLE_ENDIAN);
bytes_used += 4;
/* Display the event time stamp value */
proto_tree_add_item(header_tree, hf_cip_event_ts, tvb, offset + bytes_used, 8, ENC_LITTLE_ENDIAN);
bytes_used += 8;
}
return size + offset;
}
/*
* Function name: dissect_get_axis_attr_list_request
*
* Purpose: Dissect the get axis attribute list service request
*
* Returns: None
*/
static void
dissect_get_axis_attr_list_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_item *attr_item;
proto_tree *header_tree, *attr_tree;
guint16 attribute, attribute_cnt;
guint32 local_offset;
guint8 increment_size, dimension;
/* Create the tree for the get axis attribute list request */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Get Axis Attribute List Request");
/* Read the number of attributes that are contained within the request */
attribute_cnt = tvb_get_letohs(tvb, offset);
proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
/* Start the attribute loop at the beginning of the first attribute in the list */
local_offset = offset + 4;
/* For each attribute display the associated fields */
for (attribute = 0; attribute < attribute_cnt; attribute++)
{
/* At a minimum the local offset needs will need to be incremented by 4 bytes to reach the next attribute */
increment_size = 4;
/* Pull the fields for this attribute from the payload, all fields are needed to make some calculations before
* properly displaying of the attribute is possible */
dimension = tvb_get_guint8(tvb, local_offset + 2);
/* Create the tree for this attribute within the request */
attr_item = proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN);
attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
proto_tree_add_item(attr_tree, hf_get_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(attr_tree, hf_get_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
if (dimension == 1)
{
/* Display the start index and start index from the request if this is an array request */
proto_tree_add_item(attr_tree, hf_get_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(attr_tree, hf_get_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN);
/* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
increment_size += 4;
}
/* Move the local offset to the next attribute */
local_offset += increment_size;
}
}
/*
* Function name: dissect_set_axis_attr_list_request
*
* Purpose: Dissect the set axis attribute list service request
*
* Returns: None
*/
static void
dissect_set_axis_attr_list_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_item *attr_item;
proto_tree *header_tree, *attr_tree;
guint16 attribute, attribute_cnt, data_elements;
guint32 local_offset;
guint32 attribute_size;
guint8 dimension, attribute_start, increment_size;
/* Create the tree for the set axis attribute list request */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_set_axis_attribute, NULL, "Set Axis Attribute List Request");
/* Read the number of attributes that are contained within the request */
attribute_cnt = tvb_get_letohs(tvb, offset);
proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
/* Start the attribute loop at the beginning of the first attribute in the list */
local_offset = offset + 4;
/* For each attribute display the associated fields */
for (attribute = 0; attribute < attribute_cnt; attribute++)
{
/* At a minimum the local offset needs to be incremented by 4 bytes to reach the next attribute */
increment_size = 4;
/* Pull the fields for this attribute from the payload, all fields are needed to make some calculations before
* properly displaying of the attribute is possible */
dimension = tvb_get_guint8(tvb, local_offset + 2);
attribute_size = tvb_get_guint8(tvb, local_offset + 3);
attribute_start = 4;
if (dimension == 1)
{
data_elements = tvb_get_letohs(tvb, local_offset + 6);
/* Modify the size of the attribute data by the number of elements if the request is an array request */
attribute_size *= data_elements;
/* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
increment_size += 4;
attribute_start += 4;
}
/* Create the tree for this attribute in the get axis attribute list request */
attr_item = proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN);
attr_tree = proto_item_add_subtree(attr_item, ett_set_axis_attr_list);
proto_tree_add_item(attr_tree, hf_set_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(attr_tree, hf_set_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
if (dimension == 1)
{
/* Display the start index and start index from the request if the request is an array */
proto_tree_add_item(attr_tree, hf_set_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(attr_tree, hf_set_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN);
}
/* Display the value of this attribute */
proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, local_offset + attribute_start, attribute_size, ENC_NA);
/* Round the attribute size up so the next attribute lines up on a 32-bit boundary */
if (attribute_size % 4 != 0)
{
attribute_size = attribute_size + (4 - (attribute_size % 4));
}
/* Move the local offset to the next attribute */
local_offset += (attribute_size + increment_size);
}
}
/*
* Function name: dissect_group_sync_request
*
* Purpose: Dissect the group sync service request
*
* Returns: None
*/
static void
dissect_group_sync_request (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_tree *header_tree;
/* Create the tree for the group sync request */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_group_sync, NULL, "Group Sync Request");
/* Read the grandmaster id from the payload */
proto_tree_add_item(header_tree, hf_cip_ptp_grandmaster, tvb, offset, 8, ENC_LITTLE_ENDIAN);
}
/*
* Function name: dissect_cntr_service
*
* Purpose: Dissect the service data block in a controller to device message
*
* Returns: The new offset into the message that follow on dissections should use
* as their starting offset
*/
static guint32
dissect_cntr_service(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_tree *header_tree;
guint8 service;
/* Create the tree for the entire service data block */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_service, NULL, "Service Data Block");
/* Display the transaction id value */
proto_tree_add_item(header_tree, hf_cip_svc_transction, tvb, offset, 1, ENC_LITTLE_ENDIAN);
/* Display the service code */
service = tvb_get_guint8(tvb, offset + 1);
proto_tree_add_item(header_tree, hf_cip_svc_code, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
/* If the service is a set axis, get axis attribute or group sync request dissect it as well */
switch(service)
{
case SC_GET_AXIS_ATTRIBUTE_LIST:
dissect_get_axis_attr_list_request(tvb, header_tree, offset + 4, size);
break;
case SC_SET_AXIS_ATTRIBUTE_LIST:
dissect_set_axis_attr_list_request(tvb, header_tree, offset + 4, size);
break;
case SC_GROUP_SYNC:
dissect_group_sync_request(tvb, header_tree, offset + 4, size);
break;
default:
/* Display the remainder of the service channel data */
proto_tree_add_item(header_tree, hf_cip_svc_data, tvb, offset + 4, size - 4, ENC_NA);
}
return offset + size;
}
/*
* Function name: dissect_set_axis_attr_list_response
*
* Purpose: Dissect the set axis attribute list service response
*
* Returns: None
*/
static void
dissect_set_axis_attr_list_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_item *attr_item;
proto_tree *header_tree, *attr_tree;
guint16 attribute, attribute_cnt;
guint32 local_offset;
/* Create the tree for the set axis attribute list response */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Set Axis Attribute List Response");
/* Read the number of attributes that are contained within the response */
attribute_cnt = tvb_get_letohs(tvb, offset);
proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
/* Start the attribute loop at the beginning of the first attribute in the list */
local_offset = offset + 4;
/* For each attribute display the associated fields */
for (attribute = 0; attribute < attribute_cnt; attribute++)
{
/* Create the tree for the current attribute in the set axis attribute list response */
attr_item = proto_tree_add_item(header_tree, hf_set_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN);
attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
/* Add the response status to the tree */
proto_tree_add_item(attr_tree, hf_cip_svc_set_axis_attr_sts, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
/* Move the local offset to the next attribute */
local_offset += 4;
}
}
/*
* Function name: dissect_get_axis_attr_list_response
*
* Purpose: Dissect the get axis attribute list service response
*
* Returns: None
*/
static void
dissect_get_axis_attr_list_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_item *attr_item;
proto_tree *header_tree, *attr_tree;
guint16 attribute, attribute_cnt, data_elements;
guint32 attribute_size;
guint8 dimension, attribute_start, increment_size;
guint32 local_offset;
/* Create the tree for the get axis attribute list response */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_get_axis_attribute, NULL, "Get Axis Attribute List Response");
/* Read the number of attributes that are contained within the request */
attribute_cnt = tvb_get_letohs(tvb, offset);
proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_cnt, tvb, offset, 2, ENC_LITTLE_ENDIAN);
/* Start the attribute loop at the beginning of the first attribute in the list */
local_offset = offset + 4;
/* For each attribute display the associated fields */
for (attribute = 0; attribute < attribute_cnt; attribute++)
{
/* At a minimum the local offset needs to be incremented by 4 bytes to reach the next attribute */
increment_size = 4;
/* Pull the fields for this attribute from the payload, all fields are need to make some calculations before
* properly displaying of the attribute is possible */
dimension = tvb_get_guint8(tvb, local_offset + 2);
attribute_size = tvb_get_guint8(tvb, local_offset + 3);
attribute_start = 4;
if (dimension == 1)
{
data_elements = tvb_get_letohs(tvb, local_offset + 6);
/* Modify the size of the attribute data by the number of elements if the request is an array request */
attribute_size *= data_elements;
/* Modify the amount to update the local offset by and the start of the data to include the index and elements field */
increment_size += 4;
attribute_start += 4;
}
/* Display the fields associated with the get axis attribute list response */
attr_item = proto_tree_add_item(header_tree, hf_get_axis_attr_list_attribute_id, tvb, local_offset, 2, ENC_LITTLE_ENDIAN);
attr_tree = proto_item_add_subtree(attr_item, ett_get_axis_attr_list);
if (dimension == 0xFF)
{
/* Display the element size as an error code if the dimension field indicates an error */
proto_tree_add_item(attr_tree, hf_cip_svc_get_axis_attr_sts, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
/* No attribute data so no attribute size */
attribute_size = 0;
}
else
{
proto_tree_add_item(attr_tree, hf_get_axis_attr_list_dimension, tvb, local_offset + 2, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(attr_tree, hf_get_axis_attr_list_element_size, tvb, local_offset + 3, 1, ENC_LITTLE_ENDIAN);
if (dimension == 1)
{
/* Display the start index and start indexfrom the request */
proto_tree_add_item(attr_tree, hf_get_axis_attr_list_start_index, tvb, local_offset + 4, 2, ENC_LITTLE_ENDIAN);
proto_tree_add_item(attr_tree, hf_get_axis_attr_list_data_elements, tvb, local_offset + 6, 2, ENC_LITTLE_ENDIAN);
}
/* Display the remainder of the service channel data */
proto_tree_add_item(attr_tree, hf_cip_attribute_data, tvb, offset + attribute_start, attribute_size, ENC_NA);
/* Round the attribute size up so the next attribute lines up on a 32-bit boundary */
if (attribute_size % 4 != 0)
{
attribute_size = attribute_size + (4 - (attribute_size % 4));
}
}
/* Move the local offset to the next attribute */
local_offset += (attribute_size + increment_size);
}
}
/*
* Function name: dissect_group_sync_response
*
* Purpose: Dissect the group sync service response
*
* Returns: None
*/
static void
dissect_group_sync_response (tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size _U_)
{
proto_tree_add_item(tree, hf_cip_group_sync, tvb, offset, 1, ENC_LITTLE_ENDIAN);
}
/*
* Function name: dissect_devce_service
*
* Purpose: Dissect the service data block in a device to controller message
*
* Returns: The new offset into the message that follow on dissections should use
* as their starting offset
*/
static guint32
dissect_devce_service(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint32 size)
{
proto_tree *header_tree;
/* Create the tree for the entire service data block */
header_tree = proto_tree_add_subtree(tree, tvb, offset, size, ett_service, NULL, "Service Data Block");
/* Display the transaction id value */
proto_tree_add_item(header_tree, hf_cip_svc_transction, tvb, offset, 1, ENC_LITTLE_ENDIAN);
/* Display the service code */
proto_tree_add_item(header_tree, hf_cip_svc_code, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
/* Display the general status code */
proto_tree_add_item(header_tree, hf_cip_svc_sts, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
/* Display the extended status code */
proto_tree_add_item(header_tree, hf_cip_svc_ext_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
/* If the service is a set axis, get axis attribute response or group sync dissect it as well */
switch(tvb_get_guint8(tvb, offset + 1))
{
case SC_GET_AXIS_ATTRIBUTE_LIST:
dissect_get_axis_attr_list_response(tvb, header_tree, offset + 4, size);
break;
case SC_SET_AXIS_ATTRIBUTE_LIST:
dissect_set_axis_attr_list_response(tvb, header_tree, offset + 4, size);
break;
case SC_GROUP_SYNC:
dissect_group_sync_response(tvb, header_tree, offset + 4, size);
break;
default:
/* Display the remainder of the service channel data */
proto_tree_add_item(header_tree, hf_cip_svc_data, tvb, offset + 4, size - 4, ENC_NA);
}
return offset + size;
}
/*
* Function name: dissect_var_inst_header
*
* Purpose: Dissect the instance data header of a variable controller to device or
* device to controller message
*
* Returns: void
*/
static void
dissect_var_inst_header(tvbuff_t* tvb, proto_tree* tree, guint32 offset, guint8* inst_number, guint32* cyc_size,
guint32* cyc_blk_size, guint32* evnt_size, guint32* servc_size)
{
guint8 temp_data;
proto_tree *header_tree;
/* Create the tree for the entire instance data header */
*inst_number = tvb_get_guint8(tvb, offset);
header_tree = proto_tree_add_subtree_format(tree, tvb, offset, 8, ett_inst_data_header, NULL,
"Instance Data Header - Instance: %d", *inst_number);
/* Read the instance number field from the instance data header */
proto_tree_add_item(header_tree, hf_var_devce_instance, tvb, offset, 1, ENC_LITTLE_ENDIAN);
/* The "size" fields in the instance data block header are all stored as number of 32-bit words the
* block uses since all blocks should pad up to 32-bits so to convert to bytes each is mulitplied by 4 */
/* Read the instance block size field in bytes from the instance data header */
temp_data = tvb_get_guint8(tvb, offset + 2);
proto_tree_add_uint_format_value(header_tree, hf_var_devce_instance_block_size,
tvb, offset + 2, 1, temp_data, "%d words", temp_data);
/* Read the cyclic block size field in bytes from the instance data header */
temp_data = tvb_get_guint8(tvb, offset + 3);
proto_tree_add_uint_format_value(header_tree, hf_var_devce_cyclic_block_size,
tvb, offset + 3, 1, temp_data, "%d words", temp_data);
/* Read the cyclic command block size field in bytes from the instance data header */
*cyc_size = (tvb_get_guint8(tvb, offset + 4) * 4);
proto_tree_add_uint_format_value(header_tree, hf_var_devce_cyclic_data_block_size,
tvb, offset + 4, 1, (*cyc_size)/4, "%d words", (*cyc_size)/4);
/* Read the cyclic write block size field in bytes from the instance data header */
*cyc_blk_size = (tvb_get_guint8(tvb, offset + 5) * 4);
proto_tree_add_uint_format_value(header_tree, hf_var_devce_cyclic_rw_block_size,
tvb, offset + 5, 1, (*cyc_blk_size)/4, "%d words", (*cyc_blk_size)/4);
/* Read the event block size in bytes from the instance data header */
*evnt_size = (tvb_get_guint8(tvb, offset + 6) * 4);
proto_tree_add_uint_format_value(header_tree, hf_var_devce_event_block_size,
tvb, offset + 6, 1, (*evnt_size)/4, "%d words", (*evnt_size)/4);
/* Read the service block size in bytes from the instance data header */
*servc_size = (tvb_get_guint8(tvb, offset + 7) * 4);
proto_tree_add_uint_format_value(header_tree, hf_var_devce_service_block_size,
tvb, offset + 7, 1, (*servc_size)/4, "%d words", (*servc_size)/4);
}
/*
* Function name: dissect_var_cont_conn_header
*
* Purpose: Dissect the connection header of a variable controller to device message
*
* Returns: Offset to the start of the instance data block
*/
static guint32
dissect_var_cont_conn_header(tvbuff_t* tvb, proto_tree* tree, guint32* inst_count, guint32 offset)
{
guint32 header_size;
guint32 temp_data;
proto_item *temp_proto_item;
proto_tree *header_tree, *temp_proto_tree;
/* Calculate the header size, start with the basic header size */
header_size = 8;
temp_data = tvb_get_guint8(tvb, offset + 7);
/* Check the time data set field for enabled bits. If either update period or
* update time stamp fields are set, bump the header size by the appropriate size */
if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
{
header_size += 8;
}
if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
{
header_size += 8;
}
/* Create the tree for the entire connection header */
header_tree = proto_tree_add_subtree(tree, tvb, offset, header_size, ett_cont_dev_header, NULL, "Connection Header");
/* Add the connection header fields that are common to all types of messages */
proto_tree_add_item(header_tree, hf_cip_format, tvb, offset, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(header_tree, hf_cip_revision, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(header_tree, hf_cip_updateid, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
/* Create the tree for the node control header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_node_control, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_node_control);
/* Add the individual data elements to the node control tree */
proto_tree_add_item(temp_proto_tree, hf_cip_node_control_remote, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_node_control_sync, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_node_data_valid, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_node_fault_reset, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
/* Read the instance count field from the packet into memory, this gets passed back out of the method */
*inst_count = tvb_get_guint8(tvb, offset + 4);
/* Add the instance count and last update id to the connection header tree */
proto_tree_add_item(header_tree, hf_cip_instance_cnt, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(header_tree, hf_cip_last_update, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
/* Read the time data set from the packet into memory */
temp_data = tvb_get_guint8(tvb, offset + 7);
/* Create the tree for the time data set field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_time_data_set, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_time_data_set);
/* Add the individual data elements to the time data set header field */
proto_tree_add_item(temp_proto_tree, hf_cip_time_data_stamp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_time_data_offset, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_time_data_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_time_data_time_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
/* Move the offset to the byte just beyond the time data set field */
offset = (offset + 7 + 1);
/* Add the time values if they are present in the time data set header field */
if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
{
proto_tree_add_item(header_tree, hf_cip_cont_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
offset = (offset + 8);
}
if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
{
proto_tree_add_item(header_tree, hf_cip_cont_time_offset, tvb, offset, 8, ENC_LITTLE_ENDIAN);
offset = (offset + 8);
}
/* Return the number of bytes used so it can be used as an offset in the following dissections */
return offset;
}
/*
* Function name: dissect_var_devce_conn_header
*
* Purpose: Dissect the connection header of a variable device to controller message
*
* Returns: Offset to the start of the instance data block
*/
static guint32
dissect_var_devce_conn_header(tvbuff_t* tvb, proto_tree* tree, guint32* inst_count, guint32 offset)
{
guint32 header_size;
guint32 temp_data;
proto_item *temp_proto_item;
proto_tree *header_tree, *temp_proto_tree;
/* Calculate the header size, start with the basic header size */
header_size = 8;
temp_data = tvb_get_guint8(tvb, offset + 7);
if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
{
header_size += 8;
}
if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
{
header_size += 8;
}
if ( (temp_data & TIME_DATA_SET_UPDATE_DIAGNOSTICS) == TIME_DATA_SET_UPDATE_DIAGNOSTICS )
{
header_size += 4;
}
if ( (temp_data & TIME_DATA_SET_TIME_DIAGNOSTICS) == TIME_DATA_SET_TIME_DIAGNOSTICS )
{
header_size += 16;
}
/* Create the tree for the entire connection header */
header_tree = proto_tree_add_subtree(tree, tvb, offset, header_size, ett_cont_dev_header, NULL, "Connection Header");
/* Add the connection header fields that are common to all types of messages */
proto_tree_add_item(header_tree, hf_cip_format, tvb, offset, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(header_tree, hf_cip_revision, tvb, offset + 1, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(header_tree, hf_cip_updateid, tvb, offset + 2, 1, ENC_LITTLE_ENDIAN);
/* Create the tree for the node status header field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_node_status, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_node_status);
/* Add the individual data elements to the node control tree */
proto_tree_add_item(temp_proto_tree, hf_cip_node_control_remote, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_node_control_sync, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_node_data_valid, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_node_device_faulted, tvb, offset + 3, 1, ENC_LITTLE_ENDIAN);
/* Read the instance count field from the packet into memory, this gets passed back out of the method */
*inst_count = tvb_get_guint8(tvb, offset + 4);
/* Add the instance count to the connection header tree */
proto_tree_add_item(header_tree, hf_cip_instance_cnt, tvb, offset + 4, 1, ENC_LITTLE_ENDIAN);
/* The device to controller header contains the node alarms and node faults fields as well. */
proto_tree_add_item(header_tree, hf_cip_node_fltalarms, tvb, offset + 5, 1, ENC_LITTLE_ENDIAN);
/* Add the last update id to the connection header tree */
proto_tree_add_item(header_tree, hf_cip_last_update, tvb, offset + 6, 1, ENC_LITTLE_ENDIAN);
/* Read the time data set from the packet into memory */
temp_data = tvb_get_guint8(tvb, offset + 7);
/* Create the tree for the time data set field */
temp_proto_item = proto_tree_add_item(header_tree, hf_cip_time_data_set, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
temp_proto_tree = proto_item_add_subtree(temp_proto_item, ett_time_data_set);
/* Add the individual data elements to the time data set header field */
proto_tree_add_item(temp_proto_tree, hf_cip_time_data_stamp, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_time_data_offset, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_time_data_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
proto_tree_add_item(temp_proto_tree, hf_cip_time_data_time_diag, tvb, offset + 7, 1, ENC_LITTLE_ENDIAN);
/* Move the offset to the byte just beyond the time data set field */
offset = (offset + 7 + 1);
/* Add the time values if they are present in the time data set header field */
if ( (temp_data & TIME_DATA_SET_TIME_STAMP) == TIME_DATA_SET_TIME_STAMP )
{
proto_tree_add_item(header_tree, hf_cip_devc_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
offset = (offset + 8);
}
if ( (temp_data & TIME_DATA_SET_TIME_OFFSET) == TIME_DATA_SET_TIME_OFFSET )
{
proto_tree_add_item(header_tree, hf_cip_devc_time_offset, tvb, offset, 8, ENC_LITTLE_ENDIAN);
offset = (offset + 8);
}
if ( (temp_data & TIME_DATA_SET_UPDATE_DIAGNOSTICS) == TIME_DATA_SET_UPDATE_DIAGNOSTICS )
{
/* If the time diagnostic bit is set then the header contains the count of lost updates, late updates, data
* received time stamp and data transmit time stamp */
proto_tree_add_item(header_tree, hf_cip_lost_update, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset = (offset + 1);
/* Add the reserved bytes to the offset after adding the late updates to the display */
proto_tree_add_item(header_tree, hf_cip_late_update, tvb, offset, 1, ENC_LITTLE_ENDIAN);
offset = (offset + 3);
}
if ( (temp_data & TIME_DATA_SET_TIME_DIAGNOSTICS) == TIME_DATA_SET_TIME_DIAGNOSTICS )
{
proto_tree_add_item(header_tree, hf_cip_data_rx_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
offset += 8;
proto_tree_add_item(header_tree, hf_cip_data_tx_time_stamp, tvb, offset, 8, ENC_LITTLE_ENDIAN);
offset += 8;
}
/* Return the number of bytes used so it can be used as an offset in the following dissections */
return offset;
}
/*
* Function name: dissect_cipmotion
*
* Purpose: Perform the top level dissection of the CIP Motion datagram, it is called by
* Wireshark when the dissection rule registered in proto_reg_handoff_cipmotion is fired
*
* Returns: void
*/
static int
dissect_cipmotion(tvbuff_t* tvb, packet_info* pinfo, proto_tree* tree, void* data _U_)
{
guint32 con_format;
/* guint32 seq_number; */
guint32 update_id;
proto_item *proto_item_top;
proto_tree *proto_tree_top;
guint32 offset = 0;
/* Pull the CIP class 1 sequence number from the incoming message */
/* seq_number = tvb_get_letohs(tvb, offset); */
offset = (offset + 2);
/* Pull the actual values for the connection format and update id from the
* incoming message to be used in the column info */
con_format = tvb_get_guint8(tvb, offset);
update_id = tvb_get_guint8(tvb, offset + 2);
/* Make entries in Protocol column and Info column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "Motion");
/* Add connection format and update number to the info column */
col_add_fstr( pinfo->cinfo, COL_INFO, "%s, Update Id: %d",
val_to_str(con_format, cip_con_format_vals, "Unknown connection format (%x)"), update_id );
/* If tree is not NULL then Wireshark is requesting that the dissection
* panel be updated with the dissected packet, if tree is NULL then only
* the summary protocol and info columns need to be updated */
if ( tree )
{
/* Create display subtree for the protocol by creating an item and then
* creating a subtree from the item, the subtree must have been registered
* in proto_register_cipmotion already */
proto_item_top = proto_tree_add_item( tree, proto_cipmotion, tvb, 0, -1, ENC_NA );
proto_tree_top = proto_item_add_subtree( proto_item_top, ett_cipmotion );
/* Add the CIP class 1 sequence number to the tree */
proto_tree_add_item( proto_tree_top, hf_cip_class1_seqnum, tvb, 0, 2, ENC_LITTLE_ENDIAN );
/* Attempt to classify the incoming header */
if (( con_format == FORMAT_VAR_CONTROL_TO_DEVICE ) ||
( con_format == FORMAT_VAR_DEVICE_TO_CONTROL ))
{
/* Sizes of the individual channels within the connection */
guint32 cyc_size, cyc_blk_size, evnt_size, servc_size;
guint32 inst_count = 0, inst;
/* Dissect the header fields */
switch(con_format)
{
case FORMAT_VAR_CONTROL_TO_DEVICE:
offset = dissect_var_cont_conn_header(tvb, proto_tree_top, &inst_count, offset);
break;
case FORMAT_VAR_DEVICE_TO_CONTROL:
offset = dissect_var_devce_conn_header(tvb, proto_tree_top, &inst_count, offset);
break;
}
/* Repeat the following dissections for each instance within the payload */
for( inst = 0; inst < inst_count; inst++ )
{
/* Actual instance number from header field */
guint8 instance;
/* Dissect the instance data header */
dissect_var_inst_header( tvb, proto_tree_top, offset, &instance,
&cyc_size, &cyc_blk_size, &evnt_size, &servc_size );
/* Increment the offset to just beyond the instance header */
offset += 8;
/* Dissect the cyclic command (actual) data if any exists */
/* Dissect the cyclic write (read) data if any exists */
/* Dissect the event data block if there is any event data */
switch(con_format)
{
case FORMAT_VAR_CONTROL_TO_DEVICE:
if ( cyc_size > 0 )
offset = dissect_cntr_cyclic( con_format, tvb, proto_tree_top, offset, cyc_size, instance );
if ( cyc_blk_size > 0 )
offset = dissect_cyclic_wt(tvb, proto_tree_top, offset, cyc_blk_size);
if ( evnt_size > 0 )
offset = dissect_cntr_event(tvb, proto_tree_top, offset, evnt_size);
if ( servc_size > 0 )
offset = dissect_cntr_service(tvb, proto_tree_top, offset, servc_size);
break;
case FORMAT_VAR_DEVICE_TO_CONTROL:
if ( cyc_size > 0 )
offset = dissect_devce_cyclic( con_format, tvb, proto_tree_top, offset, cyc_size, instance );
if ( cyc_blk_size > 0 )
offset = dissect_cyclic_rd( tvb, proto_tree_top, offset, cyc_blk_size );
if ( evnt_size > 0 )
offset = dissect_devce_event(tvb, proto_tree_top, offset, evnt_size);
if ( servc_size > 0 )
offset = dissect_devce_service(tvb, proto_tree_top, offset, servc_size);
break;
}
} /* End of instance for( ) loop */
}
}
return tvb_captured_length(tvb);
}
/*
* Function name: proto_register_cipmotion
*
* Purpose: Register the protocol with Wireshark, a script will add this protocol
* to the list of protocols during the build process. This function is where the
* header fields and subtree identifiers are registered.
*
* Returns: void
*/
void
proto_register_cipmotion(void)
{
/* This is a list of header fields that can be used in the dissection or
* to use in a filter expression */
static hf_register_info hf[] =
{
/* Connection format header field, the first byte in the message which
* determines if the message is fixed or variable, controller to device,
* device to controller, etc. */
{ &hf_cip_format,
{ "Connection Format", "cipm.format",
FT_UINT8, BASE_DEC, VALS(cip_con_format_vals), 0,
"Message connection format", HFILL }
},
/* Connection format revision header field */
{ &hf_cip_revision,
{ "Format Revision", "cipm.revision",
FT_UINT8, BASE_DEC, NULL, 0,
"Message format revision", HFILL }
},
{ &hf_cip_class1_seqnum,
{ "CIP Class 1 Sequence Number", "cipm.class1seqnum",
FT_UINT16, BASE_DEC, NULL, 0,
NULL, HFILL }
},
{ &hf_cip_updateid,
{ "Update Id", "cipm.updateid",
FT_UINT8, BASE_DEC, NULL, 0,
"Cyclic Transaction Number", HFILL }
},
{ &hf_cip_instance_cnt,
{ "Instance Count", "cipm.instancecount",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }
},
{ &hf_cip_last_update,
{ "Last Update Id", "cipm.lastupdate",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }
},
{ &hf_cip_node_status,
{ "Node Status", "cipm.nodestatus",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_node_control,
{ "Node Control", "cipm.nodecontrol",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_node_control_remote,
{ "Remote Control", "cipm.remote",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x01,
"Node Control: Remote Control", HFILL}
},
{ &hf_cip_node_control_sync,
{ "Sync Control", "cipm.sync",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x02,
"Node Control: Synchronous Operation", HFILL}
},
{ &hf_cip_node_data_valid,
{ "Data Valid", "cipm.valid",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x04,
"Node Control: Data Valid", HFILL}
},
{ &hf_cip_node_fault_reset,
{ "Fault Reset", "cipm.fltrst",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x08,
"Node Control: Device Fault Reset", HFILL}
},
{ &hf_cip_node_device_faulted,
{ "Faulted", "cipm.flt",
FT_BOOLEAN, 8, TFS(&tfs_true_false), 0x08,
"Node Control: Device Faulted", HFILL}
},
{ &hf_cip_node_fltalarms,
{ "Node Faults and Alarms", "cipm.fltalarms",
FT_UINT8, BASE_DEC, NULL, 0,
NULL, HFILL }
},
{ &hf_cip_time_data_set,
{ "Time Data Set", "cipm.timedataset",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_time_data_stamp,
{ "Time Stamp", "cipm.time.stamp",
FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_STAMP,
"Time Data Set: Time Stamp", HFILL}
},
{ &hf_cip_time_data_offset,
{ "Time Offset", "cipm.time.offset",
FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_OFFSET,
"Time Data Set: Time Offset", HFILL}
},
{ &hf_cip_time_data_diag,
{ "Time Update Diagnostics", "cipm.time.update",
FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_UPDATE_DIAGNOSTICS,
"Time Data Set: Time Update Diagnostics", HFILL}
},
{ &hf_cip_time_data_time_diag,
{ "Time Diagnostics", "cipm.time.diag",
FT_BOOLEAN, 8, TFS(&tfs_true_false), TIME_DATA_SET_TIME_DIAGNOSTICS,
"Time Data Set: Time Diagnostics", HFILL}
},
{ &hf_cip_cont_time_stamp,
{ "Controller Time Stamp", "cipm.ctrltimestamp",
FT_UINT64, BASE_DEC, NULL, 0,
"Time Data Set: Controller Time Stamp", HFILL}
},
{ &hf_cip_cont_time_offset,
{ "Controller Time Offset", "cipm.ctrltimeoffser",
FT_UINT64, BASE_DEC, NULL, 0,
"Time Data Set: Controller Time Offset", HFILL}
},
{ &hf_cip_data_rx_time_stamp,
{ "Data Received Time Stamp", "cipm.rxtimestamp",
FT_UINT64, BASE_DEC, NULL, 0,
"Time Data Set: Data Received Time Stamp", HFILL}
},
{ &hf_cip_data_tx_time_stamp,
{ "Data Transmit Time Stamp", "cipm.txtimestamp",
FT_UINT64, BASE_DEC, NULL, 0,
"Time Data Set: Data Transmit Time Offset", HFILL}
},
{ &hf_cip_devc_time_stamp,
{ "Device Time Stamp", "cipm.devctimestamp",
FT_UINT64, BASE_DEC, NULL, 0,
"Time Data Set: Device Time Stamp", HFILL}
},
{ &hf_cip_devc_time_offset,
{ "Device Time Offset", "cipm.devctimeoffser",
FT_UINT64, BASE_DEC, NULL, 0,
"Time Data Set: Device Time Offset", HFILL}
},
{ &hf_cip_lost_update,
{ "Lost Updates", "cipm.lostupdates",
FT_UINT8, BASE_DEC, NULL, 0,
"Time Data Set: Lost Updates", HFILL}
},
{ &hf_cip_late_update,
{ "Lost Updates", "cipm.lateupdates",
FT_UINT8, BASE_DEC, NULL, 0,
"Time Data Set: Late Updates", HFILL}
},
{ &hf_cip_motor_cntrl,
{ "Control Mode", "cipm.ctrlmode",
FT_UINT8, BASE_DEC, VALS(cip_motor_control_vals), 0,
"Cyclic Data Block: Motor Control Mode", HFILL }
},
{ &hf_cip_fdbk_config,
{ "Feedback Config", "cipm.fdbkcfg",
FT_UINT8, BASE_DEC, VALS(cip_fdbk_config_vals), 0,
"Cyclic Data Block: Feedback Configuration", HFILL }
},
{ &hf_cip_axis_control,
{ "Axis Control", "cipm.axisctrl",
FT_UINT8, BASE_DEC, VALS(cip_axis_control_vals), 0,
"Cyclic Data Block: Axis Control", HFILL }
},
{ &hf_cip_control_status,
{ "Control Status", "cipm.csts",
FT_UINT8, BASE_DEC, VALS(cip_control_status_vals), 0,
"Cyclic Data Block: Axis Control Status", HFILL }
},
{ &hf_cip_axis_response,
{ "Axis Response", "cipm.axisresp",
FT_UINT8, BASE_DEC, VALS(cip_axis_response_vals), 0,
"Cyclic Data Block: Axis Response", HFILL }
},
{ &hf_cip_axis_resp_stat,
{ "Response Status", "cipm.respstat",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
"Cyclic Data Block: Axis Response Status", HFILL }
},
{ &hf_cip_group_sync,
{ "Group Sync Status", "cipm.syncstatus",
FT_UINT8, BASE_HEX, VALS(cip_sync_status_vals), 0,
NULL, HFILL }
},
{ &hf_cip_cmd_data_set,
{ "Command Data Set", "cipm.cmdset",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_act_data_set,
{ "Actual Data Set", "cipm.actset",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_sts_data_set,
{ "Status Data Set", "cipm.stsset",
FT_UINT8, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_cmd_data_pos_cmd,
{ "Command Position", "cipm.cmd.pos",
FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_POSITION,
"Command Data Set: Command Position", HFILL}
},
{ &hf_cip_cmd_data_vel_cmd,
{ "Command Velocity", "cipm.cmd.vel",
FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_VELOCITY,
"Command Data Set: Command Velocity", HFILL}
},
{ &hf_cip_cmd_data_acc_cmd,
{ "Command Acceleration", "cipm.cmd.acc",
FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_ACCELERATION,
"Command Data Set: Command Acceleration", HFILL}
},
{ &hf_cip_cmd_data_trq_cmd,
{ "Command Torque", "cipm.cmd.trq",
FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_TORQUE,
"Command Data Set: Command Torque", HFILL}
},
{ &hf_cip_cmd_data_pos_trim_cmd,
{ "Position Trim", "cipm.cmd.postrm",
FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_POSITION_TRIM,
"Command Data Set: Position Trim", HFILL}
},
{ &hf_cip_cmd_data_vel_trim_cmd,
{ "Velocity Trim", "cipm.cmd.veltrm",
FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_VELOCITY_TRIM,
"Command Data Set: Velocity Trim", HFILL}
},
{ &hf_cip_cmd_data_acc_trim_cmd,
{ "Acceleration Trim", "cipm.cmd.acctrm",
FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_ACCELERATION_TRIM,
"Command Data Set: Acceleration Trim", HFILL}
},
{ &hf_cip_cmd_data_trq_trim_cmd,
{ "Torque Trim", "cipm.cmd.trqtrm",
FT_BOOLEAN, 8, TFS(&tfs_true_false), COMMAND_DATA_SET_TORQUE_TRIM,
"Command Data Set: Torque Trim", HFILL}
},
{ &hf_cip_act_data_pos,
{ "Actual Position", "cipm.act.pos",
FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_POSITION,
"Acutal Data Set: Actual Position", HFILL}
},
{ &hf_cip_act_data_vel,
{ "Actual Velocity", "cipm.act.vel",
FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_VELOCITY,
"Actual Data Set: Actual Velocity", HFILL}
},
{ &hf_cip_act_data_acc,
{ "Actual Acceleration", "cipm.act.acc",
FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_ACCELERATION,
"Actual Data Set: Actual Acceleration", HFILL}
},
{ &hf_cip_act_data_trq,
{ "Actual Torque", "cipm.act.trq",
FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_TORQUE,
"Actual Data Set: Actual Torque", HFILL}
},
{ &hf_cip_act_data_crnt,
{ "Actual Current", "cipm.act.crnt",
FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_CURRENT,
"Actual Data Set: Actual Current", HFILL}
},
{ &hf_cip_act_data_vltg,
{ "Actual Voltage", "cipm.act.vltg",
FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_VOLTAGE,
"Actual Data Set: Actual Voltage", HFILL}
},
{ &hf_cip_act_data_fqcy,
{ "Actual Frequency", "cipm.act.fqcy",
FT_BOOLEAN, 8, TFS(&tfs_true_false), ACTUAL_DATA_SET_FREQUENCY,
"Actual Data Set: Actual Frequency", HFILL}
},
{ &hf_cip_axis_fault,
{ "Axis Fault Code", "cipm.fault.code",
FT_UINT8, BASE_DEC, NULL, 0,
"Status Data Set: Fault Code", HFILL }
},
{ &hf_cip_fault_type,
{ "Axis Fault Type", "cipm.flttype",
FT_UINT8, BASE_DEC, NULL, 0,
"Axis Status: Axis Fault Type", HFILL}
},
{ &hf_cip_fault_sub_code,
{ "Axis Fault Sub Code", "cipm.fltsubcode",
FT_UINT8, BASE_DEC, NULL, 0,
"Axis Status: Axis Fault Sub Code", HFILL}
},
{ &hf_cip_fault_action,
{ "Axis Fault Action", "cipm.fltaction",
FT_UINT8, BASE_DEC, NULL, 0,
"Axis Status: Axis Fault Action", HFILL}
},
{ &hf_cip_fault_time_stamp,
{ "Axis Fault Time Stamp", "cipm.flttimestamp",
FT_UINT64, BASE_DEC, NULL, 0,
"Axis Status: Axis Fault Time Stamp", HFILL}
},
{ &hf_cip_alarm_type,
{ "Axis Fault Type", "cipm.alarmtype",
FT_UINT8, BASE_DEC, NULL, 0,
"Axis Status: Axis Alarm Type", HFILL}
},
{ &hf_cip_alarm_sub_code,
{ "Axis Alarm Sub Code", "cipm.alarmsubcode",
FT_UINT8, BASE_DEC, NULL, 0,
"Axis Status: Axis Alarm Sub Code", HFILL}
},
{ &hf_cip_alarm_state,
{ "Axis Alarm State", "cipm.alarmstate",
FT_UINT8, BASE_DEC, NULL, 0,
"Axis Status: Axis Alarm State", HFILL }
},
{ &hf_cip_alarm_time_stamp,
{ "Axis Fault Time Stamp", "cipm.alarmtimestamp",
FT_UINT64, BASE_DEC, NULL, 0,
"Axis Status: Axis Alarm Time Stamp", HFILL}
},
{ &hf_cip_axis_status,
{ "Axis Status", "cipm.axisstatus",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_axis_status_mfg,
{ "Axis Status Mfg", "cipm.axisstatusmfg",
FT_UINT32, BASE_HEX, NULL, 0,
"Axis Status, Manufacturer Specific", HFILL}
},
{ &hf_cip_axis_io_status,
{ "Axis I/O Status", "cipm.axisiostatus",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_axis_io_status_mfg,
{ "Axis I/O Status Mfg", "cipm.axisiostatusmfg",
FT_UINT32, BASE_HEX, NULL, 0,
"Axis I/O Status, Manufacturer Specific", HFILL}
},
{ &hf_cip_axis_safety_status,
{ "Axis Safety Status", "cipm.safetystatus",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_axis_safety_status_mfg,
{ "Axis Safety Status Mfg", "cipm.safetystatusmfg",
FT_UINT32, BASE_HEX, NULL, 0,
"Axis Safety Status, Manufacturer Specific", HFILL}
},
{ &hf_cip_axis_safety_state,
{ "Axis Safety State", "cipm.safetystate",
FT_UINT8, BASE_HEX, NULL, 0,
"Axis Safety Sate", HFILL}
},
{ &hf_cip_drive_safety_status,
{ "Drive Safety Status", "cipm.drivesafetystatus",
FT_UINT32, BASE_HEX, NULL, 0,
NULL, HFILL}
},
{ &hf_cip_sts_flt,
{ "Axis Fault Codes", "cipm.sts.flt",
FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_FAULT,
"Status Data Set: Axis Fault Codes", HFILL}
},
{ &hf_cip_sts_alrm,
{ "Axis Alarm Codes", "cipm.sts.alarm",
FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_ALARM,
"Status Data Set: Axis Alarm Codes", HFILL}
},
{ &hf_cip_sts_sts,
{ "Axis Status", "cipm.sts.sts",
FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_STATUS,
"Status Data Set: Axis Status", HFILL}
},
{ &hf_cip_sts_iosts,
{ "Axis I/O Status", "cipm.sts.iosts",
FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_IO_STATUS,
"Status Data Set: Axis I/O Status", HFILL}
},
{ &hf_cip_sts_axis_safety,
{ "Axis Safety Status", "cipm.sts.safety",
FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_AXIS_SAFETY,
"Status Data Set: Axis Safety Status", HFILL}
},
{ &hf_cip_sts_drive_safety,
{ "Drive Safety Status", "cipm.sts.safety",
FT_BOOLEAN, 8, TFS(&tfs_true_false), STATUS_DATA_SET_DRIVE_SAFETY,
"Status Data Set: Drive Safety Status", HFILL}
},
{ &hf_cip_intrp,
{ "Interpolation Control", "cipm.intrp",
FT_UINT8, BASE_DEC, VALS(cip_interpolation_vals), COMMAND_CONTROL_TARGET_UPDATE,
"Cyclic Data Block: Interpolation Control", HFILL}
},
{ &hf_cip_position_data_type,
{ "Position Data Type", "cipm.posdatatype",
FT_UINT8, BASE_DEC, VALS(cip_pos_data_type_vals), COMMAND_CONTROL_POSITION_DATA_TYPE,
"Cyclic Data Block: Position Data Type", HFILL }
},
{ &hf_cip_axis_state,
{ "Axis State", "cipm.axste",
FT_UINT8, BASE_DEC, VALS(cip_axis_state_vals), 0,
"Cyclic Data Block: Axis State", HFILL}
},
{ &hf_cip_command_control,
{ "Command Control", "cipm.cmdcontrol",
FT_UINT8, BASE_DEC, NULL, 0,
"Cyclic Data Block: Command Control", HFILL }
},
{ &hf_cip_cyclic_wrt_data,
{ "Write Data", "cipm.writedata",
FT_BYTES, BASE_NONE, NULL, 0,
"Cyclic Write: Data", HFILL }
},
{ &hf_cip_cyclic_rd_data,
{ "Read Data", "cipm.readdata",
FT_BYTES, BASE_NONE, NULL, 0,
"Cyclic Read: Data", HFILL }
},
{ &hf_cip_cyclic_write_blk,
{ "Write Block", "cipm.writeblk",
FT_UINT8, BASE_DEC, NULL, 0,
"Cyclic Data Block: Write Block Id", HFILL }
},
{ &hf_cip_cyclic_read_blk,
{ "Read Block", "cipm.readblk",
FT_UINT8, BASE_DEC, NULL, 0,
"Cyclic Data Block: Read Block Id", HFILL}
},
{ &hf_cip_cyclic_write_sts,
{ "Write Status", "cipm.writests",
FT_UINT8, BASE_DEC, NULL, 0,
"Cyclic Data Block: Write Status", HFILL }
},
{ &hf_cip_cyclic_read_sts,
{ "Read Status", "cipm.readsts",
FT_UINT8, BASE_DEC, NULL, 0,
"Cyclic Data Block: Read Status", HFILL }
},
{ &hf_cip_event_checking,
{ "Event Control", "cipm.evntchkcontrol",
FT_UINT32, BASE_HEX, NULL, 0,
"Event Channel: Event Checking Control", HFILL}
},
{ &hf_cip_event_ack,
{ "Event Acknowledgement", "cipm.evntack",
FT_UINT8, BASE_DEC, NULL, 0,
"Event Channel: Event Acknowledgement", HFILL}
},
{ &hf_cip_event_status,
{ "Event Status", "cipm.evntchkstatus",
FT_UINT32, BASE_HEX, NULL, 0,
"Event Channel: Event Checking Status", HFILL}
},
{ &hf_cip_event_id,
{ "Event Id", "cipm.evntack",
FT_UINT8, BASE_DEC, NULL, 0,
"Event Channel: Event Id", HFILL }
},
{ &hf_cip_event_pos,
{ "Event Position", "cipm.evntpos",
FT_INT32, BASE_DEC, NULL, 0,
"Event Channel: Event Position", HFILL}
},
{ &hf_cip_event_ts,
{ "Event Time Stamp", "cipm.evntimestamp",
FT_UINT64, BASE_DEC, NULL, 0,
"Event Channel: Time Stamp", HFILL}
},
{ &hf_cip_evnt_ctrl_reg1_pos,
{ "Reg 1 Pos Edge", "cipm.evnt.ctrl.reg1posedge",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001,
"Event Checking Control: Reg 1 Pos Edge", HFILL}
},
{ &hf_cip_evnt_ctrl_reg1_neg,
{ "Reg 1 Neg Edge", "cipm.evnt.ctrl.reg1negedge",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002,
"Event Checking Control: Reg 1 Neg Edge", HFILL}
},
{ &hf_cip_evnt_ctrl_reg2_pos,
{ "Reg 2 Pos Edge", "cipm.evnt.ctrl.reg2posedge",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004,
"Event Checking Control: Reg 2 Pos Edge", HFILL}
},
{ &hf_cip_evnt_ctrl_reg2_neg,
{ "Reg 2 Neg Edge", "cipm.evnt.ctrl.reg2negedge",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008,
"Event Checking Control: Reg 2 Neg Edge", HFILL}
},
{ &hf_cip_evnt_ctrl_reg1_posrearm,
{ "Reg 1 Pos Rearm", "cipm.evnt.ctrl.reg1posrearm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100,
"Event Checking Control: Reg 1 Pos Rearm", HFILL}
},
{ &hf_cip_evnt_ctrl_reg1_negrearm,
{ "Reg 1 Neg Rearm", "cipm.evnt.ctrl.reg1negrearm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200,
"Event Checking Control: Reg 1 Neg Rearm", HFILL}
},
{ &hf_cip_evnt_ctrl_reg2_posrearm,
{ "Reg 2 Pos Rearm", "cipm.evnt.ctrl.reg2posrearm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400,
"Event Checking Control: Reg 2 Pos Rearm", HFILL}
},
{ &hf_cip_evnt_ctrl_reg2_negrearm,
{ "Reg 2 Neg Rearm", "cipm.evnt.ctrl.reg2negrearm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800,
"Event Checking Control: Reg 2 Neg Rearm", HFILL}
},
{ &hf_cip_evnt_ctrl_marker_pos,
{ "Marker Pos Edge", "cipm.evnt.ctrl.mrkrpos",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000,
"Event Checking Control: Marker Pos Edge", HFILL}
},
{ &hf_cip_evnt_ctrl_marker_neg,
{ "Marker Neg Edge", "cipm.evnt.ctrl.mrkrneg",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000,
"Event Checking Control: Marker Neg Edge", HFILL}
},
{ &hf_cip_evnt_ctrl_home_pos,
{ "Home Pos Edge", "cipm.evnt.ctrl.homepos",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000,
"Event Checking Control: Home Pos Edge", HFILL}
},
{ &hf_cip_evnt_ctrl_home_neg,
{ "Home Neg Edge", "cipm.evnt.ctrl.homeneg",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000,
"Event Checking Control: Home Neg Edge", HFILL}
},
{ &hf_cip_evnt_ctrl_home_pp,
{ "Home-Switch-Marker Plus Plus", "cipm.evnt.ctrl.homepp",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00100000,
"Event Checking Control: Home-Switch-Marker Plus Plus", HFILL}
},
{ &hf_cip_evnt_ctrl_home_pm,
{ "Home-Switch-Marker Plus Minus", "cipm.evnt.ctrl.homepm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00200000,
"Event Checking Control: Home-Switch-Marker Plus Minus", HFILL}
},
{ &hf_cip_evnt_ctrl_home_mp,
{ "Home-Switch-Marker Minus Plus", "cipm.evnt.ctrl.homemp",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00400000,
"Event Checking Control: Home-Switch-Marker Minus Plus", HFILL}
},
{ &hf_cip_evnt_ctrl_home_mm,
{ "Home-Switch-Marker Minus Minus", "cipm.evnt.ctrl.homemm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00800000,
"Event Checking Control: Home-Switch-Marker Minus Minus", HFILL}
},
{ &hf_cip_evnt_ctrl_acks,
{ "Event Acknowledge Blocks", "cipm.evnt.ctrl.acks",
FT_UINT32, BASE_DEC, NULL, 0x70000000,
"Event Checking Control: Event Acknowledge Blocks", HFILL}
},
{ &hf_cip_evnt_extend_format,
{ "Extended Event Format", "cipm.evnt.extend",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x80000000,
"Event Checking Control: Extended Event Format", HFILL}
},
{ &hf_cip_evnt_sts_reg1_pos,
{ "Reg 1 Pos Edge", "cipm.evnt.sts.reg1posedge",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001,
"Event Checking Status: Reg 1 Pos Edge", HFILL}
},
{ &hf_cip_evnt_sts_reg1_neg,
{ "Reg 1 Neg Edge", "cipm.evnt.sts.reg1negedge",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002,
"Event Checking Status: Reg 1 Neg Edge", HFILL }
},
{ &hf_cip_evnt_sts_reg2_pos,
{ "Reg 2 Pos Edge", "cipm.evnt.sts.reg2posedge",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004,
"Event Checking Status: Reg 2 Pos Edge", HFILL}
},
{ &hf_cip_evnt_sts_reg2_neg,
{ "Reg 2 Neg Edge", "cipm.evnt.sts.reg2negedge",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008,
"Event Checking Status: Reg 2 Neg Edge", HFILL}
},
{ &hf_cip_evnt_sts_reg1_posrearm,
{ "Reg 1 Pos Rearm", "cipm.evnt.sts.reg1posrearm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100,
"Event Checking Status: Reg 1 Pos Rearm", HFILL}
},
{ &hf_cip_evnt_sts_reg1_negrearm,
{ "Reg 1 Neg Rearm", "cipm.evnt.sts.reg1negrearm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200,
"Event Checking Status: Reg 1 Neg Rearm", HFILL}
},
{ &hf_cip_evnt_sts_reg2_posrearm,
{ "Reg 2 Pos Rearm", "cipm.evnt.sts.reg2posrearm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400,
"Event Checking Status: Reg 2 Pos Rearm", HFILL}
},
{ &hf_cip_evnt_sts_reg2_negrearm,
{ "Reg 2 Neg Rearm", "cipm.evnt.sts.reg2negrearm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800,
"Event Checking Status: Reg 2 Neg Rearm", HFILL}
},
{ &hf_cip_evnt_sts_marker_pos,
{ "Marker Pos Edge", "cipm.evnt.sts.mrkrpos",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000,
"Event Checking Status: Marker Pos Edge", HFILL}
},
{ &hf_cip_evnt_sts_marker_neg,
{ "Marker Neg Edge", "cipm.evnt.sts.mrkrneg",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000,
"Event Checking Status: Marker Neg Edge", HFILL }
},
{ &hf_cip_evnt_sts_home_pos,
{ "Home Pos Edge", "cipm.evnt.sts.homepos",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000,
"Event Checking Status: Home Pos Edge", HFILL}
},
{ &hf_cip_evnt_sts_home_neg,
{ "Home Neg Edge", "cipm.evnt.sts.homeneg",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000,
"Event Checking Status: Home Neg Edge", HFILL }
},
{ &hf_cip_evnt_sts_home_pp,
{ "Home-Switch-Marker Plus Plus", "cipm.evnt.sts.homepp",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00100000,
"Event Checking Status: Home-Switch-Marker Plus Plus", HFILL}
},
{ &hf_cip_evnt_sts_home_pm,
{ "Home-Switch-Marker Plus Minus", "cipm.evnt.sts.homepm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00200000,
"Event Checking Status: Home-Switch-Marker Plus Minus", HFILL}
},
{ &hf_cip_evnt_sts_home_mp,
{ "Home-Switch-Marker Minus Plus", "cipm.evnt.sts.homemp",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00400000,
"Event Checking Status: Home-Switch-Marker Minus Plus", HFILL}
},
{ &hf_cip_evnt_sts_home_mm,
{ "Home-Switch-Marker Minus Minus", "cipm.evnt.sts.homemm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00800000,
"Event Checking Status: Home-Switch-Marker Minus Minus", HFILL}
},
{ &hf_cip_evnt_sts_nfs,
{ "Event Notification Blocks", "cipm.evnt.sts.nfs",
FT_UINT32, BASE_DEC, NULL, 0x70000000,
"Event Checking Status: Event Notification Blocks", HFILL}
},
{ &hf_cip_evnt_sts_stat,
{ "Event Status", "cipm.evnt.stat",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
"Event Data Block: Event Status", HFILL }
},
{ &hf_cip_evnt_type,
{ "Event Type", "cipm.evnt.type",
FT_UINT8, BASE_DEC, VALS(cip_event_type_vals), 0,
"Event Data Block: Event Type", HFILL}
},
{ &hf_cip_svc_code,
{ "Service Code", "cipm.svc.code",
FT_UINT8, BASE_DEC, VALS(cip_sc_vals), 0,
"Service Data Block: Service Code", HFILL}
},
{ &hf_cip_svc_sts,
{ "General Status", "cipm.svc.sts",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
"Service Data Block: General Status", HFILL }
},
{ &hf_cip_svc_transction,
{ "Transaction Id", "cipm.svc.tranid",
FT_UINT8, BASE_DEC, NULL, 0,
"Service Data Block: Transaction Id", HFILL }
},
{ &hf_cip_svc_ext_status,
{ "Extended Status", "cipm.svc.extstatus",
FT_UINT8, BASE_DEC, NULL, 0,
"Service Data Block: Extended Status", HFILL }
},
{ &hf_cip_svc_data,
{ "Service Data", "cipm.svc.data",
FT_BYTES, BASE_NONE, NULL, 0,
"Service Data Block: Data", HFILL }
},
{ &hf_cip_attribute_data,
{ "Attribute Data", "cipm.attrdata",
FT_BYTES, BASE_NONE, NULL, 0,
"Attribute Service: Data", HFILL }
},
{ &hf_cip_ptp_grandmaster,
{ "Grandmaster", "cipm.grandmaster",
FT_UINT64, BASE_HEX, NULL, 0,
"Group Sync: Grandmaster Id", HFILL}
},
{ &hf_cip_svc_get_axis_attr_sts,
{ "Attribute Status", "cipm.getaxisattr.sts",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
"Service Channel: Get Axis Attribute List Response Status", HFILL }
},
{ &hf_get_axis_attr_list_attribute_cnt,
{ "Number of attributes", "cipm.getaxisattr.cnt",
FT_UINT16, BASE_DEC, NULL, 0,
"Service Channel: Get Axis Attribute List Attribute Count", HFILL}
},
{ &hf_get_axis_attr_list_attribute_id,
{ "Attribute ID", "cipm.getaxisattr.id",
FT_UINT16, BASE_DEC, NULL, 0,
"Service Channel: Get Axis Attribute List Attribute ID", HFILL}
},
{ &hf_get_axis_attr_list_dimension,
{ "Dimension", "cipm.getaxisattr.dimension",
FT_UINT8, BASE_DEC, NULL, 0,
"Service Channel: Get Axis Attribute List Dimension", HFILL}
},
{ &hf_get_axis_attr_list_element_size,
{ "Element size", "cipm.getaxisattr.element_size",
FT_UINT8, BASE_DEC, NULL, 0,
"Service Channel: Get Axis Attribute List Element Size", HFILL}
},
{ &hf_get_axis_attr_list_start_index,
{ "Start index", "cipm.getaxisattr.start_index",
FT_UINT16, BASE_DEC, NULL, 0,
"Service Channel: Get Axis Attribute List Start index", HFILL}
},
{ &hf_get_axis_attr_list_data_elements,
{ "Data elements", "cipm.getaxisattr.data_elements",
FT_UINT16, BASE_DEC, NULL, 0,
"Service Channel: Get Axis Attribute List Data elements", HFILL}
},
{ &hf_cip_svc_set_axis_attr_sts,
{ "Attribute Status", "cipm.setaxisattr.sts",
FT_UINT8, BASE_DEC|BASE_EXT_STRING, &cip_gs_vals_ext, 0,
"Service Channel: Set Axis Attribute List Response Status", HFILL }
},
{ &hf_set_axis_attr_list_attribute_cnt,
{ "Number of attributes", "cipm.setaxisattr.cnt",
FT_UINT16, BASE_DEC, NULL, 0,
"Service Channel: Set Axis Attribute List Attribute Count", HFILL}
},
{ &hf_set_axis_attr_list_attribute_id,
{ "Attribute ID", "cipm.setaxisattr.id",
FT_UINT16, BASE_DEC, NULL, 0,
"Service Channel: Set Axis Attribute List Attribute ID", HFILL}
},
{ &hf_set_axis_attr_list_dimension,
{ "Dimension", "cipm.setaxisattr.dimension",
FT_UINT8, BASE_DEC, NULL, 0,
"Service Channel: Set Axis Attribute List Dimension", HFILL}
},
{ &hf_set_axis_attr_list_element_size,
{ "Element size", "cipm.setaxisattr.element_size",
FT_UINT8, BASE_DEC, NULL, 0,
"Service Channel: Set Axis Attribute List Element Size", HFILL}
},
{ &hf_set_axis_attr_list_start_index,
{ "Start index", "cipm.setaxisattr.start_index",
FT_UINT16, BASE_DEC, NULL, 0,
"Service Channel: Set Axis Attribute List Start index", HFILL}
},
{ &hf_set_axis_attr_list_data_elements,
{ "Data elements", "cipm.setaxisattr.data_elements",
FT_UINT16, BASE_DEC, NULL, 0,
"Service Channel: Set Axis Attribute List Data elements", HFILL}
},
{ &hf_var_devce_instance,
{ "Instance Number", "cipm.var_devce.header.instance",
FT_UINT8, BASE_DEC, NULL, 0,
"Variable Device Header: Instance Number", HFILL}
},
{ &hf_var_devce_instance_block_size,
{ "Instance Block Size", "cipm.var_devce.header.instance_block_size",
FT_UINT8, BASE_DEC, NULL, 0,
"Variable Device Header: Instance Block Size", HFILL}
},
{ &hf_var_devce_cyclic_block_size,
{ "Cyclic Block Size", "cipm.var_devce.header.cyclic_block_size",
FT_UINT8, BASE_DEC, NULL, 0,
"Variable Device Header: Cyclic Block Size", HFILL}
},
{ &hf_var_devce_cyclic_data_block_size,
{ "Cyclic Data Block Size", "cipm.var_devce.header.cyclic_data_block_size",
FT_UINT8, BASE_DEC, NULL, 0,
"Variable Device Header: Cyclic Data Block Size", HFILL}
},
{ &hf_var_devce_cyclic_rw_block_size,
{ "Cyclic Read/Write Block Size", "cipm.var_devce.header.cyclic_rw_block_size",
FT_UINT8, BASE_DEC, NULL, 0,
"Variable Device Header: Cyclic Read/Write Block Size", HFILL}
},
{ &hf_var_devce_event_block_size,
{ "Event Block Size", "cipm.var_devce.header.event_block_size",
FT_UINT8, BASE_DEC, NULL, 0,
"Variable Device Header: Event Block Size", HFILL}
},
{ &hf_var_devce_service_block_size,
{ "Service Block Size", "cipm.var_devce.header.service_block_size",
FT_UINT8, BASE_DEC, NULL, 0,
"Variable Device Header: Service Block Size", HFILL}
},
{ &hf_cip_axis_alarm,
{ "Axis Alarm Code", "cipm.alarm.code",
FT_UINT8, BASE_DEC, NULL, 0,
"Status Data Set: Alarm Code", HFILL }
},
{ &hf_cip_axis_sts_local_ctrl,
{ "Local Control", "cipm.axis.local",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000001,
"Axis Status Data Set: Local Contol", HFILL }
},
{ &hf_cip_axis_sts_alarm,
{ "Alarm", "cipm.axis.alarm",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000002,
"Axis Status Data Set: Alarm", HFILL }
},
{ &hf_cip_axis_sts_dc_bus,
{ "DC Bus", "cipm.axis.bus",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000004,
"Axis Status Data Set: DC Bus", HFILL }
},
{ &hf_cip_axis_sts_pwr_struct,
{ "Power Struct", "cipm.axis.pwr",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000008,
"Axis Status Data Set: Power Struct", HFILL }
},
{ &hf_cip_axis_sts_tracking,
{ "Tracking", "cipm.axis.track",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000020,
"Axis Status Data Set: Tracking", HFILL }
},
{ &hf_cip_axis_sts_pos_lock,
{ "Pos Lock", "cipm.axis.poslock",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000040,
"Axis Status Data Set: Pos Lock", HFILL }
},
{ &hf_cip_axis_sts_vel_lock,
{ "Vel Lock", "cipm.axis.vellock",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000080,
"Axis Status Data Set: Vel Lock", HFILL }
},
{ &hf_cip_axis_sts_vel_standstill,
{ "Standstill", "cipm.axis.nomo",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000100,
"Axis Status Data Set: Standstill", HFILL }
},
{ &hf_cip_axis_sts_vel_threshold,
{ "Vel Threshold", "cipm.axis.vthresh",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000200,
"Axis Status Data Set: Vel Threshold", HFILL }
},
{ &hf_cip_axis_sts_vel_limit,
{ "Vel Limit", "cipm.axis.vlim",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000400,
"Axis Status Data Set: Vel Limit", HFILL }
},
{ &hf_cip_axis_sts_acc_limit,
{ "Acc Limit", "cipm.axis.alim",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00000800,
"Axis Status Data Set: Acc Limit", HFILL }
},
{ &hf_cip_axis_sts_dec_limit,
{ "Dec Limit", "cipm.axis.dlim",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00001000,
"Axis Status Data Set: Dec Limit", HFILL }
},
{ &hf_cip_axis_sts_torque_threshold,
{ "Torque Threshold", "cipm.axis.tthresh",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00002000,
"Axis Status Data Set: Torque Threshold", HFILL }
},
{ &hf_cip_axis_sts_torque_limit,
{ "Torque Limit", "cipm.axis.tlim",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00004000,
"Axis Status Data Set: Torque Limit", HFILL }
},
{ &hf_cip_axis_sts_cur_limit,
{ "Current Limit", "cipm.axis.ilim",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00008000,
"Axis Status Data Set: Current Limit", HFILL }
},
{ &hf_cip_axis_sts_therm_limit,
{ "Thermal Limit", "cipm.axis.hot",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00010000,
"Axis Status Data Set: Thermal Limit", HFILL }
},
{ &hf_cip_axis_sts_feedback_integ,
{ "Feedback Integrity", "cipm.axis.fgood",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00020000,
"Axis Status Data Set: Feedback Integrity", HFILL }
},
{ &hf_cip_axis_sts_shutdown,
{ "Shutdown", "cipm.axis.sdwn",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00040000,
"Axis Status Data Set: Shutdown", HFILL }
},
{ &hf_cip_axis_sts_in_process,
{ "In Process", "cipm.axis.inp",
FT_BOOLEAN, 32, TFS(&tfs_true_false), 0x00080000,
"Axis Status Data Set: In Process", HFILL }
},
{ &hf_cip_act_pos,
{ "Actual Position", "cipm.actpos",
FT_INT32, BASE_DEC, NULL, 0,
"Cyclic Data Set: Actual Position", HFILL }
},
{ &hf_cip_act_vel,
{ "Actual Velocity", "cipm.actvel",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Actual Velocity", HFILL }
},
{ &hf_cip_act_accel,
{ "Actual Acceleration", "cipm.actaccel",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Actual Acceleration", HFILL }
},
{ &hf_cip_act_trq,
{ "Actual Torque", "cipm.acttrq",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Actual Torque", HFILL }
},
{ &hf_cip_act_crnt,
{ "Actual Current", "cipm.actcrnt",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Actual Current", HFILL }
},
{ &hf_cip_act_volts,
{ "Actual Volts", "cipm.actvolts",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Actual Volts", HFILL }
},
{ &hf_cip_act_freq,
{ "Actual Frequency", "cipm.actfreq",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Actual Frequency", HFILL }
},
{ &hf_cip_pos_cmd,
{ "Position Command", "cipm.posfcmd",
FT_DOUBLE, BASE_NONE, NULL, 0,
"Cyclic Data Set: Position Command (LREAL)", HFILL }
},
{ &hf_cip_pos_cmd_int,
{ "Position Command", "cipm.posicmd",
FT_INT32, BASE_DEC, NULL, 0,
"Cyclic Data Set: Position Command (DINT)", HFILL }
},
{ &hf_cip_vel_cmd,
{ "Velocity Command", "cipm.velcmd",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Velocity Command", HFILL }
},
{ &hf_cip_accel_cmd,
{ "Acceleration Command", "cipm.accelcmd",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Acceleration Command", HFILL }
},
{ &hf_cip_trq_cmd,
{ "Torque Command", "cipm.torquecmd",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Torque Command", HFILL }
},
{ &hf_cip_pos_trim,
{ "Position Trim", "cipm.postrim",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Position Trim", HFILL }
},
{ &hf_cip_vel_trim,
{ "Velocity Trim", "cipm.veltrim",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Velocity Trim", HFILL }
},
{ &hf_cip_accel_trim,
{ "Acceleration Trim", "cipm.acceltrim",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Acceleration Trim", HFILL }
},
{ &hf_cip_trq_trim,
{ "Torque Trim", "cipm.trqtrim",
FT_FLOAT, BASE_NONE, NULL, 0,
"Cyclic Data Set: Torque Trim", HFILL }
}
};
/* Setup protocol subtree array, these will help Wireshark remember
* if the subtree should be expanded as the user moves through packets */
static gint *cip_subtree[] = {
&ett_cipmotion,
&ett_cont_dev_header,
&ett_node_control,
&ett_node_status,
&ett_time_data_set,
&ett_inst_data_header,
&ett_cyclic_data_block,
&ett_control_mode,
&ett_feedback_config,
&ett_command_data_set,
&ett_actual_data_set,
&ett_status_data_set,
&ett_interp_control,
&ett_cyclic_rd_wt,
&ett_event,
&ett_event_check_ctrl,
&ett_event_check_sts,
&ett_service,
&ett_get_axis_attribute,
&ett_set_axis_attribute,
&ett_get_axis_attr_list,
&ett_set_axis_attr_list,
&ett_group_sync,
&ett_axis_status_set,
&ett_command_control
};
/* Create a CIP Motion protocol handle */
proto_cipmotion = proto_register_protocol(
"Common Industrial Protocol, Motion", /* Full name of protocol */
"CIP Motion", /* Short name of protocol */
"cipm"); /* Abbreviated name of protocol */
;
/* Register the header fields with the protocol */
proto_register_field_array(proto_cipmotion, hf, array_length(hf));
/* Register the subtrees for the protocol dissection */
proto_register_subtree_array(cip_subtree, array_length(cip_subtree));
register_dissector( "cipmotion", dissect_cipmotion, proto_cipmotion);
}
void proto_reg_handoff_cipmotion(void)
{
dissector_handle_t cipmotion_handle;
/* Create and register dissector for I/O data handling */
cipmotion_handle = create_dissector_handle( dissect_cipmotion, proto_cipmotion );
dissector_add_for_decode_as("enip.io", cipmotion_handle );
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 3
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=3 tabstop=8 expandtab:
* :indentSize=3:tabSize=8:noTabs=true:
*/