wireshark/epan/dissectors/packet-erf.c

1258 lines
50 KiB
C

/* packet-erf.c
* Routines for ERF encapsulation dissection
*
* $Id$
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <glib.h>
#include <epan/packet.h>
#include <epan/expert.h>
/*
#include "wiretap/atm.h"
*/
#include "wiretap/erf.h"
#include "epan/prefs.h"
#include "packet-erf.h"
/* Initialize the protocol and registered fields */
static int proto_erf = -1;
static int hf_erf_ts = -1;
static int hf_erf_types = -1;
static int hf_erf_type = -1;
static int hf_erf_ehdr = -1;
static int hf_erf_ehdr_t = -1;
static int hf_erf_flags = -1;
static int hf_erf_flags_cap = -1;
static int hf_erf_flags_vlen = -1;
static int hf_erf_flags_trunc = -1;
static int hf_erf_flags_rxe = -1;
static int hf_erf_flags_dse = -1;
static int hf_erf_flags_res = -1;
static int hf_erf_rlen = -1;
static int hf_erf_lctr = -1;
static int hf_erf_wlen = -1;
/* Classification extension header */
/* InterceptID extension header */
static int hf_erf_ehdr_int_res1 = -1;
static int hf_erf_ehdr_int_id = -1;
static int hf_erf_ehdr_int_res2 = -1;
/* Raw Link extension header */
static int hf_erf_ehdr_raw_link_res = -1;
static int hf_erf_ehdr_raw_link_seqnum = -1;
static int hf_erf_ehdr_raw_link_rate = -1;
static int hf_erf_ehdr_raw_link_type = -1;
/* Classification extension header */
static int hf_erf_ehdr_class_flags = -1;
static int hf_erf_ehdr_class_flags_sh = -1;
static int hf_erf_ehdr_class_flags_shm = -1;
static int hf_erf_ehdr_class_flags_res1 = -1;
static int hf_erf_ehdr_class_flags_user = -1;
static int hf_erf_ehdr_class_flags_res2 = -1;
static int hf_erf_ehdr_class_flags_drop = -1;
static int hf_erf_ehdr_class_flags_str = -1;
static int hf_erf_ehdr_class_seqnum = -1;
/* Unknown extension header */
static int hf_erf_ehdr_unk = -1;
/* MC HDLC Header */
static int hf_erf_mc_hdlc_cn = -1;
static int hf_erf_mc_hdlc_res1 = -1;
static int hf_erf_mc_hdlc_res2 = -1;
static int hf_erf_mc_hdlc_fcse = -1;
static int hf_erf_mc_hdlc_sre = -1;
static int hf_erf_mc_hdlc_lre = -1;
static int hf_erf_mc_hdlc_afe = -1;
static int hf_erf_mc_hdlc_oe = -1;
static int hf_erf_mc_hdlc_lbe = -1;
static int hf_erf_mc_hdlc_first = -1;
static int hf_erf_mc_hdlc_res3 = -1;
/* MC RAW Header */
static int hf_erf_mc_raw_int = -1;
static int hf_erf_mc_raw_res1 = -1;
static int hf_erf_mc_raw_res2 = -1;
static int hf_erf_mc_raw_res3 = -1;
static int hf_erf_mc_raw_sre = -1;
static int hf_erf_mc_raw_lre = -1;
static int hf_erf_mc_raw_res4 = -1;
static int hf_erf_mc_raw_lbe = -1;
static int hf_erf_mc_raw_first = -1;
static int hf_erf_mc_raw_res5 = -1;
/* MC ATM Header */
static int hf_erf_mc_atm_cn = -1;
static int hf_erf_mc_atm_res1 = -1;
static int hf_erf_mc_atm_mul = -1;
static int hf_erf_mc_atm_port = -1;
static int hf_erf_mc_atm_res2 = -1;
static int hf_erf_mc_atm_lbe = -1;
static int hf_erf_mc_atm_hec = -1;
static int hf_erf_mc_atm_crc10 = -1;
static int hf_erf_mc_atm_oamcell = -1;
static int hf_erf_mc_atm_first = -1;
static int hf_erf_mc_atm_res3 = -1;
/* MC Raw link Header */
static int hf_erf_mc_rawl_cn = -1;
static int hf_erf_mc_rawl_res1 = -1;
static int hf_erf_mc_rawl_res2 = -1;
static int hf_erf_mc_rawl_lbe = -1;
static int hf_erf_mc_rawl_first = -1;
static int hf_erf_mc_rawl_res3 = -1;
/* MC AAL5 Header */
static int hf_erf_mc_aal5_cn = -1;
static int hf_erf_mc_aal5_res1 = -1;
static int hf_erf_mc_aal5_port = -1;
static int hf_erf_mc_aal5_crcck = -1;
static int hf_erf_mc_aal5_crce = -1;
static int hf_erf_mc_aal5_lenck = -1;
static int hf_erf_mc_aal5_lene = -1;
static int hf_erf_mc_aal5_res2 = -1;
static int hf_erf_mc_aal5_first = -1;
static int hf_erf_mc_aal5_res3 = -1;
/* MC AAL2 Header */
static int hf_erf_mc_aal2_cn = -1;
static int hf_erf_mc_aal2_res1 = -1;
static int hf_erf_mc_aal2_res2 = -1;
static int hf_erf_mc_aal2_port = -1;
static int hf_erf_mc_aal2_res3 = -1;
static int hf_erf_mc_aal2_first = -1;
static int hf_erf_mc_aal2_maale = -1;
static int hf_erf_mc_aal2_lene = -1;
static int hf_erf_mc_aal2_cid = -1;
/* ERF Ethernet header/pad */
static int hf_erf_eth_off = -1;
static int hf_erf_eth_res1 = -1;
/* Initialize the subtree pointers */
static gint ett_erf = -1;
static gint ett_erf_pseudo_hdr = -1;
static gint ett_erf_types = -1;
static gint ett_erf_flags = -1;
static gint ett_erf_mc_hdlc = -1;
static gint ett_erf_mc_raw = -1;
static gint ett_erf_mc_atm = -1;
static gint ett_erf_mc_rawlink = -1;
static gint ett_erf_mc_aal5 = -1;
static gint ett_erf_mc_aal2 = -1;
static gint ett_erf_eth = -1;
/* Default subdissector, display raw hex data */
static dissector_handle_t data_handle;
/* IPv4 and IPv6 subdissectors */
static dissector_handle_t ipv4_handle;
static dissector_handle_t ipv6_handle;
static dissector_handle_t infiniband_handle;
typedef enum {
ERF_HDLC_CHDLC = 0,
ERF_HDLC_PPP = 1,
ERF_HDLC_FRELAY = 2,
ERF_HDLC_MTP2 = 3,
ERF_HDLC_GUESS = 4,
ERF_HDLC_MAX = 5
} erf_hdlc_type_vals;
static gint erf_hdlc_type = ERF_HDLC_GUESS;
static dissector_handle_t chdlc_handle, ppp_handle, frelay_handle, mtp2_handle;
static gboolean erf_rawcell_first = FALSE;
typedef enum {
ERF_AAL5_GUESS = 0,
ERF_AAL5_LLC = 1
} erf_aal5_type_val;
static gint erf_aal5_type = ERF_AAL5_GUESS;
static dissector_handle_t atm_untruncated_handle;
static gboolean erf_ethfcs = TRUE;
static dissector_handle_t ethwithfcs_handle, ethwithoutfcs_handle;
/* Classification */
#define EHDR_CLASS_SH_MASK 0x800000
#define EHDR_CLASS_SHM_MASK 0x400000
#define EHDR_CLASS_RES1_MASK 0x300000
#define EHDR_CLASS_USER_MASK 0x0FFFF0
#define EHDR_CLASS_RES2_MASK 0x08
#define EHDR_CLASS_DROP_MASK 0x04
#define EHDR_CLASS_STER_MASK 0x03
/* Header for ATM traffic identification */
#define ATM_HDR_LENGTH 4
/* Multi Channel HDLC */
#define MC_HDLC_CN_MASK 0x03ff
#define MC_HDLC_RES1_MASK 0xfc00
#define MC_HDLC_RES2_MASK 0xff
#define MC_HDLC_FCSE_MASK 0x01
#define MC_HDLC_SRE_MASK 0x02
#define MC_HDLC_LRE_MASK 0x04
#define MC_HDLC_AFE_MASK 0x08
#define MC_HDLC_OE_MASK 0x10
#define MC_HDLC_LBE_MASK 0x20
#define MC_HDLC_FIRST_MASK 0x40
#define MC_HDLC_RES3_MASK 0x80
/* Multi Channel RAW */
#define MC_RAW_INT_MASK 0x0f
#define MC_RAW_RES1_MASK 0xf0
#define MC_RAW_RES2_MASK 0xffff
#define MC_RAW_RES3_MASK 0x01
#define MC_RAW_SRE_MASK 0x02
#define MC_RAW_LRE_MASK 0x04
#define MC_RAW_RES4_MASK 0x18
#define MC_RAW_LBE_MASK 0x20
#define MC_RAW_FIRST_MASK 0x40
#define MC_RAW_RES5_MASK 0x80
/* Multi Channel ATM */
#define MC_ATM_CN_MASK 0x03ff
#define MC_ATM_RES1_MASK 0x7c00
#define MC_ATM_MUL_MASK 0x8000
#define MC_ATM_PORT_MASK 0x0f
#define MC_ATM_RES2_MASK 0xf0
#define MC_ATM_LBE_MASK 0x01
#define MC_ATM_HEC_MASK 0x02
#define MC_ATM_CRC10_MASK 0x04
#define MC_ATM_OAMCELL_MASK 0x08
#define MC_ATM_FIRST_MASK 0x10
#define MC_ATM_RES3_MASK 0xe0
/* Multi Channel RAW Link */
#define MC_RAWL_CN_MASK 0x03ff
#define MC_RAWL_RES1_MASK 0xfffc
#define MC_RAWL_RES2_MASK 0x1f
#define MC_RAWL_LBE_MASK 0x20
#define MC_RAWL_FIRST_MASK 0x40
#define MC_RAWL_RES3_MASK 0x80
/* Multi Channel AAL5 */
#define MC_AAL5_CN_MASK 0x03ff
#define MC_AAL5_RES1_MASK 0xfc00
#define MC_AAL5_PORT_MASK 0x0f
#define MC_AAL5_CRCCK_MASK 0x10
#define MC_AAL5_CRCE_MASK 0x20
#define MC_AAL5_LENCK_MASK 0x40
#define MC_AAL5_LENE_MASK 0x80
#define MC_AAL5_RES2_MASK 0x0f
#define MC_AAL5_FIRST_MASK 0x10
#define MC_AAL5_RES3_MASK 0xe0
/* Multi Channel AAL2 */
#define MC_AAL2_CN_MASK 0x03ff
#define MC_AAL2_RES1_MASK 0x1c00
#define MC_AAL2_RES2_MASK 0xe000
#define MC_AAL2_PORT_MASK 0x0f
#define MC_AAL2_RES3_MASK 0x10
#define MC_AAL2_FIRST_MASK 0x20
#define MC_AAL2_MAALE_MASK 0x40
#define MC_AAL2_LENE_MASK 0x80
#define MC_AAL2_CID_MASK 0xff
/* ETH */
#define ETH_OFF_MASK 0xff
#define ETH_RES1_MASK 0xff
/* Record type defines */
static const value_string erf_type_vals[] = {
{ ERF_TYPE_LEGACY,"LEGACY"},
{ ERF_TYPE_HDLC_POS,"HDLC_POS"},
{ ERF_TYPE_ETH,"ETH"},
{ ERF_TYPE_ATM,"ATM"},
{ ERF_TYPE_AAL5,"AAL5"},
{ ERF_TYPE_MC_HDLC,"MC_HDLC"},
{ ERF_TYPE_MC_RAW,"MC_RAW"},
{ ERF_TYPE_MC_ATM,"MC_ATM"},
{ ERF_TYPE_MC_RAW_CHANNEL,"MC_RAW_CHANNEL"},
{ ERF_TYPE_MC_AAL5,"MC_AAL5"},
{ ERF_TYPE_COLOR_HDLC_POS,"COLOR_HDLC_POS"},
{ ERF_TYPE_COLOR_ETH,"COLOR_ETH"},
{ ERF_TYPE_MC_AAL2,"MC_AAL2 "},
{ ERF_TYPE_IP_COUNTER,"IP_COUNTER"},
{ ERF_TYPE_TCP_FLOW_COUNTER,"TCP_FLOW_COUNTER"},
{ ERF_TYPE_DSM_COLOR_HDLC_POS,"DSM_COLOR_HDLC_POS"},
{ ERF_TYPE_DSM_COLOR_ETH,"DSM_COLOR_ETH "},
{ ERF_TYPE_COLOR_MC_HDLC_POS,"COLOR_MC_HDLC_POS"},
{ ERF_TYPE_AAL2,"AAL2"},
{ ERF_TYPE_PAD,"PAD"},
{ ERF_TYPE_INFINIBAND, "INFINIBAND"},
{ ERF_TYPE_IPV4, "IPV4"},
{ ERF_TYPE_IPV6, "IPV6"},
{ ERF_TYPE_RAW_LINK, "RAW_LINK"},
{0, NULL}
};
/* Extended headers type defines */
static const value_string ehdr_type_vals[] = {
{ EXT_HDR_TYPE_CLASSIFICATION, "Classification"},
{ EXT_HDR_TYPE_INTERCEPTID, "InterceptID"},
{ EXT_HDR_TYPE_RAW_LINK, "Raw Link"},
{ 0, NULL }
};
static const value_string raw_link_types[] = {
{ 0x00, "sonet"},
{ 0x01, "sdh"},
{ 0, NULL },
};
static const value_string raw_link_rates[] = {
{ 0x00, "reserved"},
{ 0x01, "oc3/stm1"},
{ 0x02, "oc12/stm4"},
{ 0x03, "oc48/stm16"},
{ 0x04, "oc192/stm64"},
{ 0, NULL },
};
/* Copy of atm_guess_traffic_type from atm.c in /wiretap */
static void
erf_atm_guess_lane_type(const guint8 *pd, guint len,
union wtap_pseudo_header *pseudo_header)
{
if (len >= 2) {
if (pd[0] == 0xff && pd[1] == 0x00) {
/*
* Looks like LE Control traffic.
*/
pseudo_header->atm.subtype = TRAF_ST_LANE_LE_CTRL;
} else {
/*
* XXX - Ethernet, or Token Ring?
* Assume Ethernet for now; if we see earlier
* LANE traffic, we may be able to figure out
* the traffic type from that, but there may
* still be situations where the user has to
* tell us.
*/
pseudo_header->atm.subtype = TRAF_ST_LANE_802_3;
}
}
}
static void
erf_atm_guess_traffic_type(const guint8 *pd, guint len,
union wtap_pseudo_header *pseudo_header)
{
/*
* Start out assuming nothing other than that it's AAL5.
*/
pseudo_header->atm.aal = AAL_5;
pseudo_header->atm.type = TRAF_UNKNOWN;
pseudo_header->atm.subtype = TRAF_ST_UNKNOWN;
if (pseudo_header->atm.vpi == 0) {
/*
* Traffic on some PVCs with a VPI of 0 and certain
* VCIs is of particular types.
*/
switch (pseudo_header->atm.vci) {
case 5:
/*
* Signalling AAL.
*/
pseudo_header->atm.aal = AAL_SIGNALLING;
return;
case 16:
/*
* ILMI.
*/
pseudo_header->atm.type = TRAF_ILMI;
return;
}
}
/*
* OK, we can't tell what it is based on the VPI/VCI; try
* guessing based on the contents, if we have enough data
* to guess.
*/
if (len >= 3) {
if (pd[0] == 0xaa && pd[1] == 0xaa && pd[2] == 0x03) {
/*
* Looks like a SNAP header; assume it's LLC
* multiplexed RFC 1483 traffic.
*/
pseudo_header->atm.type = TRAF_LLCMX;
} else if ((pseudo_header->atm.aal5t_len &&
pseudo_header->atm.aal5t_len < 16) || len<16) {
/*
* As this cannot be a LANE Ethernet frame (less
* than 2 bytes of LANE header + 14 bytes of
* Ethernet header) we can try it as a SSCOP frame.
*/
pseudo_header->atm.aal = AAL_SIGNALLING;
} else if (pd[0] == 0x83 || pd[0] == 0x81) {
/*
* MTP3b headers often encapsulate
* a SCCP or MTN in the 3G network.
* This should cause 0x83 or 0x81
* in the first byte.
*/
pseudo_header->atm.aal = AAL_SIGNALLING;
} else {
/*
* Assume it's LANE.
*/
pseudo_header->atm.type = TRAF_LANE;
erf_atm_guess_lane_type(pd, len, pseudo_header);
}
} else {
/*
* Not only VCI 5 is used for signaling. It might be
* one of these VCIs.
*/
pseudo_header->atm.aal = AAL_SIGNALLING;
}
}
static void
dissect_classification_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *pseudo_hdr_tree, int idx)
{
proto_item *int_item= NULL, *flags_item = NULL;
proto_tree *int_tree = NULL, *flags_tree = NULL;
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
guint32 value = (guint32)(hdr >> 32);
if (pseudo_hdr_tree){
int_item = proto_tree_add_text(pseudo_hdr_tree, tvb, 0, 0, "Classification");
int_tree = proto_item_add_subtree(int_item, ett_erf_pseudo_hdr);
PROTO_ITEM_SET_GENERATED(int_item);
proto_tree_add_uint(int_tree, hf_erf_ehdr_t , tvb, 0, 0, (guint8)((hdr >> 56) & 0x7F));
flags_item=proto_tree_add_uint(int_tree, hf_erf_ehdr_class_flags, tvb, 0, 0, value & 0xFFFFFF);
flags_tree = proto_item_add_subtree(flags_item, hf_erf_ehdr_class_flags);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_sh, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_shm, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_res1, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_user, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_res2, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_drop, tvb, 0, 0, value);
proto_tree_add_uint(flags_tree, hf_erf_ehdr_class_flags_str, tvb, 0, 0, value);
proto_tree_add_uint(int_tree, hf_erf_ehdr_class_seqnum, tvb, 0, 0, (guint32)hdr);
}
}
static void
dissect_intercept_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *pseudo_hdr_tree, int idx)
{
proto_item *int_item= NULL;
proto_tree *int_tree = NULL;
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
if (pseudo_hdr_tree){
int_item = proto_tree_add_text(pseudo_hdr_tree, tvb, 0, 0, "InterceptID");
int_tree = proto_item_add_subtree(int_item, ett_erf_pseudo_hdr);
PROTO_ITEM_SET_GENERATED(int_item);
proto_tree_add_uint(int_tree, hf_erf_ehdr_t , tvb, 0, 0, (guint8)((hdr >> 56) & 0x7F));
proto_tree_add_uint(int_tree, hf_erf_ehdr_int_res1, tvb, 0, 0, (guint8)((hdr >> 48) & 0xFF));
proto_tree_add_uint(int_tree, hf_erf_ehdr_int_id, tvb, 0, 0, (guint16)((hdr >> 32 ) & 0xFFFF));
proto_tree_add_uint(int_tree, hf_erf_ehdr_int_res2, tvb, 0, 0, (guint32)hdr);
}
}
static void
dissect_raw_link_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *pseudo_hdr_tree, int idx)
{
proto_item *int_item= NULL;
proto_tree *int_tree = NULL;
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
if (pseudo_hdr_tree){
int_item = proto_tree_add_text(pseudo_hdr_tree, tvb, 0, 0, "Raw Link");
int_tree = proto_item_add_subtree(int_item, ett_erf_pseudo_hdr);
PROTO_ITEM_SET_GENERATED(int_item);
proto_tree_add_uint(int_tree, hf_erf_ehdr_t , tvb, 0, 0, (guint8)((hdr >> 56) & 0x7F));
proto_tree_add_uint(int_tree, hf_erf_ehdr_raw_link_res , tvb, 0, 0, (guint32)((hdr >> 32) & 0xFFFFFF));
proto_tree_add_uint(int_tree, hf_erf_ehdr_raw_link_seqnum , tvb, 0, 0, (guint32)((hdr >> 16) & 0xffff));
proto_tree_add_uint(int_tree, hf_erf_ehdr_raw_link_rate, tvb, 0, 0, (guint32)((hdr >> 8) & 0x00ff));
proto_tree_add_uint(int_tree, hf_erf_ehdr_raw_link_type, tvb, 0, 0, (guint32)(hdr & 0x00ff));
}
}
static void
dissect_unknown_ex_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *pseudo_hdr_tree, int idx)
{
proto_item *unk_item= NULL;
proto_tree *unk_tree = NULL;
guint64 hdr = pinfo->pseudo_header->erf.ehdr_list[idx].ehdr;
if (pseudo_hdr_tree){
unk_item = proto_tree_add_text(pseudo_hdr_tree, tvb, 0, 0, "Unknown");
unk_tree = proto_item_add_subtree(unk_item, ett_erf_pseudo_hdr);
PROTO_ITEM_SET_GENERATED(unk_item);
proto_tree_add_uint(unk_tree, hf_erf_ehdr_t , tvb, 0, 0, (guint8)((hdr >> 56) & 0x7F));
proto_tree_add_uint64(unk_tree, hf_erf_ehdr_unk, tvb, 0, 0, hdr);
}
}
static void
dissect_mc_hdlc_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_hdlc_item = NULL;
proto_tree *mc_hdlc_tree = NULL;
struct erf_mc_hdlc_hdrx * mc_hdlc;
if (tree) {
mc_hdlc_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel HDLC Header");
mc_hdlc_tree = proto_item_add_subtree(mc_hdlc_item, ett_erf_mc_hdlc);
PROTO_ITEM_SET_GENERATED(mc_hdlc_item);
mc_hdlc = (struct erf_mc_hdlc_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_cn, tvb, 0, 0, mc_hdlc->byte01);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res1, tvb, 0, 0, mc_hdlc->byte01);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res2, tvb, 0, 0, mc_hdlc->byte2);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_fcse, tvb, 0, 0, mc_hdlc->byte3);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_sre, tvb, 0, 0, mc_hdlc->byte3);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_lre, tvb, 0, 0, mc_hdlc->byte3);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_afe, tvb, 0, 0, mc_hdlc->byte3);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_oe, tvb, 0, 0, mc_hdlc->byte3);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_lbe, tvb, 0, 0, mc_hdlc->byte3);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_first, tvb, 0, 0, mc_hdlc->byte3);
proto_tree_add_uint(mc_hdlc_tree, hf_erf_mc_hdlc_res3, tvb, 0, 0, mc_hdlc->byte3);
}
}
static void
dissect_mc_raw_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_raw_item = NULL;
proto_tree *mc_raw_tree = NULL;
struct erf_mc_raw_hdrx * mc_raw;
if (tree) {
mc_raw_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel RAW Header");
mc_raw_tree = proto_item_add_subtree(mc_raw_item, ett_erf_mc_raw);
PROTO_ITEM_SET_GENERATED(mc_raw_item);
mc_raw = (struct erf_mc_raw_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_int, tvb, 0, 0, mc_raw->byte0);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res1, tvb, 0, 0, mc_raw->byte0);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res2, tvb, 0, 0, mc_raw->byte12);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res3, tvb, 0, 0, mc_raw->byte3);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_sre, tvb, 0, 0, mc_raw->byte3);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_lre, tvb, 0, 0, mc_raw->byte3);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res4, tvb, 0, 0, mc_raw->byte3);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_lbe, tvb, 0, 0, mc_raw->byte3);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_first, tvb, 0, 0, mc_raw->byte3);
proto_tree_add_uint(mc_raw_tree, hf_erf_mc_raw_res5, tvb, 0, 0, mc_raw->byte3);
}
}
static void
dissect_mc_atm_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_atm_item = NULL;
proto_tree *mc_atm_tree = NULL;
struct erf_mc_atm_hdrx * mc_atm;
if (tree) {
mc_atm_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel ATM Header");
mc_atm_tree = proto_item_add_subtree(mc_atm_item, ett_erf_mc_atm);
PROTO_ITEM_SET_GENERATED(mc_atm_item);
mc_atm = (struct erf_mc_atm_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_cn, tvb, 0, 0, mc_atm->byte01);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res1, tvb, 0, 0, mc_atm->byte01);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_mul, tvb, 0, 0, mc_atm->byte01);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_port, tvb, 0, 0, mc_atm->byte2);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res2, tvb, 0, 0, mc_atm->byte2);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_lbe, tvb, 0, 0, mc_atm->byte3);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_hec, tvb, 0, 0, mc_atm->byte3);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_crc10, tvb, 0, 0, mc_atm->byte3);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_oamcell, tvb, 0, 0, mc_atm->byte3);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_first, tvb, 0, 0, mc_atm->byte3);
proto_tree_add_uint(mc_atm_tree, hf_erf_mc_atm_res3, tvb, 0, 0, mc_atm->byte3);
}
}
static void
dissect_mc_rawlink_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_rawl_item = NULL;
proto_tree *mc_rawl_tree = NULL;
struct erf_mc_rawl_hdrx * mc_rawl;
if (tree) {
mc_rawl_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel RAW Link Header");
mc_rawl_tree = proto_item_add_subtree(mc_rawl_item, ett_erf_mc_rawlink);
PROTO_ITEM_SET_GENERATED(mc_rawl_item);
mc_rawl = (struct erf_mc_rawl_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_cn, tvb, 0, 0, mc_rawl->byte01);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_res2, tvb, 0, 0, mc_rawl->byte3);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_lbe, tvb, 0, 0, mc_rawl->byte3);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_first, tvb, 0, 0, mc_rawl->byte3);
proto_tree_add_uint(mc_rawl_tree, hf_erf_mc_rawl_res3, tvb, 0, 0, mc_rawl->byte3);
}
}
static void
dissect_mc_aal5_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_aal5_item = NULL;
proto_tree *mc_aal5_tree = NULL;
struct erf_mc_aal5_hdrx * mc_aal5;
if (tree) {
mc_aal5_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel AAL5 Header");
mc_aal5_tree = proto_item_add_subtree(mc_aal5_item, ett_erf_mc_aal5);
PROTO_ITEM_SET_GENERATED(mc_aal5_item);
mc_aal5 = (struct erf_mc_aal5_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_cn, tvb, 0, 0, mc_aal5->byte01);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res1, tvb, 0, 0, mc_aal5->byte01);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_port, tvb, 0, 0, mc_aal5->byte2);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_crcck, tvb, 0, 0, mc_aal5->byte2);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_crce, tvb, 0, 0, mc_aal5->byte2);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_lenck, tvb, 0, 0, mc_aal5->byte2);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_lene, tvb, 0, 0, mc_aal5->byte2);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res2, tvb, 0, 0, mc_aal5->byte3);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_first, tvb, 0, 0, mc_aal5->byte3);
proto_tree_add_uint(mc_aal5_tree, hf_erf_mc_aal5_res3, tvb, 0, 0, mc_aal5->byte3);
}
}
static void
dissect_mc_aal2_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *mc_aal2_item = NULL;
proto_tree *mc_aal2_tree = NULL;
struct erf_mc_aal2_hdrx * mc_aal2;
if (tree) {
mc_aal2_item = proto_tree_add_text(tree, tvb, 0, 0, "Multi Channel AAL2 Header");
mc_aal2_tree = proto_item_add_subtree(mc_aal2_item, ett_erf_mc_aal2);
PROTO_ITEM_SET_GENERATED(mc_aal2_item);
mc_aal2 = (struct erf_mc_aal2_hdrx *) (&pinfo->pseudo_header->erf.subhdr.mc_hdr);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_cn, tvb, 0, 0, mc_aal2->byte01);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res1, tvb, 0, 0, mc_aal2->byte01);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res2, tvb, 0, 0, mc_aal2->byte01);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_port, tvb, 0, 0, mc_aal2->byte2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_res3, tvb, 0, 0, mc_aal2->byte2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_first, tvb, 0, 0, mc_aal2->byte2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_maale, tvb, 0, 0, mc_aal2->byte2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_lene, tvb, 0, 0, mc_aal2->byte2);
proto_tree_add_uint(mc_aal2_tree, hf_erf_mc_aal2_cid, tvb, 0, 0, mc_aal2->byte3);
}
}
static void
dissect_eth_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *eth_item = NULL;
proto_tree *eth_tree = NULL;
struct erf_eth_hdrx * eth_hdr;
if (tree) {
eth_item = proto_tree_add_text(tree, tvb, 0, 0, "Ethernet Header");
eth_tree = proto_item_add_subtree(eth_item, ett_erf_eth);
PROTO_ITEM_SET_GENERATED(eth_item);
eth_hdr = (struct erf_eth_hdrx *) (&pinfo->pseudo_header->erf.subhdr.eth_hdr);
proto_tree_add_uint(eth_tree, hf_erf_eth_off, tvb, 0, 0, eth_hdr->byte0);
proto_tree_add_uint(eth_tree, hf_erf_eth_res1, tvb, 0, 0, eth_hdr->byte1);
}
}
static void
dissect_erf_pseudo_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *pi;
proto_item *pseudo_hdr_item = NULL, *flags_item = NULL, *types_item = NULL;
proto_tree *pseudo_hdr_tree = NULL, *flags_tree = NULL, *types_tree = NULL;
pseudo_hdr_item = proto_tree_add_text(tree, tvb, 0, 0, "ERF Header");
pseudo_hdr_tree = proto_item_add_subtree(pseudo_hdr_item, ett_erf_pseudo_hdr);
PROTO_ITEM_SET_GENERATED( pseudo_hdr_item);
pi=proto_tree_add_uint64(pseudo_hdr_tree, hf_erf_ts, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.ts);
types_item = proto_tree_add_text(pseudo_hdr_tree, tvb, 0, 0, "Header type");
PROTO_ITEM_SET_GENERATED(types_item);
types_tree = proto_item_add_subtree(types_item, ett_erf_types);
pi=proto_tree_add_uint(types_tree, hf_erf_type, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.type);
pi=proto_tree_add_uint(types_tree, hf_erf_ehdr, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.type);
flags_item=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_flags, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
flags_tree = proto_item_add_subtree(flags_item, ett_erf_flags);
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_cap, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_vlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_trunc, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_rxe, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_dse, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
pi=proto_tree_add_uint(flags_tree, hf_erf_flags_res, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.flags);
pi=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_rlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.rlen);
pi=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_lctr, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.lctr);
if (pinfo->pseudo_header->erf.phdr.lctr > 0)
expert_add_info_format(pinfo, pi, PI_SEQUENCE, PI_WARN, "Packet loss occurred between previous and current packet");
pi=proto_tree_add_uint(pseudo_hdr_tree, hf_erf_wlen, tvb, 0, 0, pinfo->pseudo_header->erf.phdr.wlen);
}
static void
dissect_erf_pseudo_extension_header(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *pi;
proto_item *pseudo_hdr_item = NULL;
proto_tree *pseudo_hdr_tree = NULL;
guint8 type;
guint8 has_more = pinfo->pseudo_header->erf.phdr.type & 0x80;
int i = 0;
int max = sizeof(pinfo->pseudo_header->erf.ehdr_list)/sizeof(struct erf_ehdr);
pseudo_hdr_item = proto_tree_add_text(tree, tvb, 0, 0, "ERF Extension Headers");
pseudo_hdr_tree = proto_item_add_subtree(pseudo_hdr_item, ett_erf_pseudo_hdr);
PROTO_ITEM_SET_GENERATED(pseudo_hdr_item);
while(has_more && i < max){
type = (guint8) (pinfo->pseudo_header->erf.ehdr_list[i].ehdr >> 56);
switch(type & 0x7f){
case EXT_HDR_TYPE_CLASSIFICATION:
dissect_classification_ex_header(tvb, pinfo, pseudo_hdr_tree, i);
break;
case EXT_HDR_TYPE_INTERCEPTID:
dissect_intercept_ex_header(tvb, pinfo, pseudo_hdr_tree, i);
break;
case EXT_HDR_TYPE_RAW_LINK:
dissect_raw_link_ex_header(tvb, pinfo, pseudo_hdr_tree, i);
break;
default:
dissect_unknown_ex_header(tvb, pinfo, pseudo_hdr_tree, i);
break;
}
has_more = type & 0x80;
i++;
}
if (has_more){
pi = proto_tree_add_text(pseudo_hdr_tree, tvb, 0, 0, "More extension header present");
expert_add_info_format(pinfo, pi, PI_SEQUENCE, PI_WARN, "Some of the extension headers are not shown");
}
}
static void
dissect_erf(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
guint8 flags;
guint8 erf_type;
guint32 atm_hdr=0;
proto_item *erf_item = NULL;
proto_tree *erf_tree = NULL;
guint atm_pdu_caplen;
const guint8 *atm_pdu;
erf_hdlc_type_vals hdlc_type;
guint8 first_byte;
tvbuff_t *new_tvb;
erf_type=pinfo->pseudo_header->erf.phdr.type & 0x7F;
if (check_col(pinfo->cinfo, COL_PROTOCOL))
col_set_str(pinfo->cinfo, COL_PROTOCOL, "ERF");
if (check_col(pinfo->cinfo, COL_INFO)) {
col_add_fstr(pinfo->cinfo, COL_INFO, "%s",
val_to_str(erf_type, erf_type_vals, "Unknown type %u"));
}
if (tree) {
erf_item = proto_tree_add_item(tree, proto_erf, tvb, 0, -1, FALSE);
erf_tree = proto_item_add_subtree(erf_item, ett_erf);
dissect_erf_pseudo_header(tvb, pinfo, erf_tree);
if (pinfo->pseudo_header->erf.phdr.type & 0x80){
dissect_erf_pseudo_extension_header(tvb, pinfo, erf_tree);
}
}
flags = pinfo->pseudo_header->erf.phdr.flags;
/*
* Set if frame is Received or Sent.
* XXX - this is really testing the low-order bit of the capture
* interface number, so interface 0 is assumed to be capturing
* in one direction on a bi-directional link, interface 1 is
* assumed to be capturing in the other direction on that link,
* and interfaces 2 and 3 are assumed to be capturing in two
* different directions on another link. We don't distinguish
* between the two links.
*/
pinfo->p2p_dir = ( (flags & 0x01) ? P2P_DIR_RECV : P2P_DIR_SENT);
switch(erf_type) {
case ERF_TYPE_RAW_LINK:
call_dissector(data_handle, tvb, pinfo, erf_tree);
break;
case ERF_TYPE_IPV4:
if (ipv4_handle)
call_dissector(ipv4_handle, tvb, pinfo, erf_tree);
else
call_dissector(data_handle, tvb, pinfo, erf_tree);
break;
case ERF_TYPE_IPV6:
if (ipv6_handle)
call_dissector(ipv6_handle, tvb, pinfo, erf_tree);
else
call_dissector(data_handle, tvb, pinfo, erf_tree);
break;
case ERF_TYPE_INFINIBAND:
if (infiniband_handle)
call_dissector(infiniband_handle, tvb, pinfo, erf_tree);
else
call_dissector(data_handle, tvb, pinfo, erf_tree);
break;
case ERF_TYPE_LEGACY:
case ERF_TYPE_IP_COUNTER:
case ERF_TYPE_TCP_FLOW_COUNTER:
/* undefined */
break;
case ERF_TYPE_PAD:
/* Nothing to do */
break;
case ERF_TYPE_MC_RAW:
dissect_mc_raw_header(tvb, pinfo, erf_tree);
if (data_handle)
call_dissector(data_handle, tvb, pinfo, tree);
break;
case ERF_TYPE_MC_RAW_CHANNEL:
dissect_mc_rawlink_header(tvb, pinfo, erf_tree);
if (data_handle)
call_dissector(data_handle, tvb, pinfo, tree);
break;
case ERF_TYPE_MC_ATM:
dissect_mc_atm_header(tvb, pinfo, erf_tree);
/* continue with type ATM */
case ERF_TYPE_ATM:
memset(&pinfo->pseudo_header->atm, 0, sizeof(pinfo->pseudo_header->atm));
atm_hdr = tvb_get_ntohl(tvb, 0);
pinfo->pseudo_header->atm.vpi = ((atm_hdr & 0x0ff00000) >> 20);
pinfo->pseudo_header->atm.vci = ((atm_hdr & 0x000ffff0) >> 4);
pinfo->pseudo_header->atm.channel = (flags & 0x03);
new_tvb = tvb_new_subset(tvb, ATM_HDR_LENGTH, -1, -1);
/* Work around to have decoding working */
if (erf_rawcell_first) {
/* Treat this as a (short) ATM AAL5 PDU */
pinfo->pseudo_header->atm.aal = AAL_5;
switch (erf_aal5_type) {
case ERF_AAL5_GUESS:
pinfo->pseudo_header->atm.type = TRAF_UNKNOWN;
pinfo->pseudo_header->atm.subtype = TRAF_ST_UNKNOWN;
/* Try to guess the type according to the first bytes */
atm_pdu_caplen = tvb_length(new_tvb);
atm_pdu = tvb_get_ptr(new_tvb, 0, atm_pdu_caplen);
erf_atm_guess_traffic_type(atm_pdu, atm_pdu_caplen, pinfo->pseudo_header);
break;
case ERF_AAL5_LLC:
pinfo->pseudo_header->atm.type = TRAF_LLCMX;
pinfo->pseudo_header->atm.subtype = TRAF_ST_UNKNOWN;
break;
}
call_dissector(atm_untruncated_handle, new_tvb, pinfo, tree);
} else {
/* Treat this as a raw cell */
pinfo->pseudo_header->atm.flags |= ATM_RAW_CELL;
pinfo->pseudo_header->atm.aal = AAL_UNKNOWN;
call_dissector(data_handle, new_tvb, pinfo, tree);
}
break;
case ERF_TYPE_MC_AAL5:
dissect_mc_aal5_header(tvb, pinfo, erf_tree);
/* continue with type AAL5 */
case ERF_TYPE_AAL5:
atm_hdr = tvb_get_ntohl(tvb, 0);
memset(&pinfo->pseudo_header->atm, 0, sizeof(pinfo->pseudo_header->atm));
pinfo->pseudo_header->atm.vpi = ((atm_hdr & 0x0ff00000) >> 20);
pinfo->pseudo_header->atm.vci = ((atm_hdr & 0x000ffff0) >> 4);
pinfo->pseudo_header->atm.channel = (flags & 0x03);
new_tvb = tvb_new_subset(tvb, ATM_HDR_LENGTH, -1, -1);
/* Work around to have decoding working */
pinfo->pseudo_header->atm.aal = AAL_5;
switch (erf_aal5_type) {
case ERF_AAL5_GUESS:
pinfo->pseudo_header->atm.type = TRAF_UNKNOWN;
pinfo->pseudo_header->atm.subtype = TRAF_ST_UNKNOWN;
/* Try to guess the type according to the first bytes */
atm_pdu_caplen = tvb_length(new_tvb);
atm_pdu = tvb_get_ptr(new_tvb, 0, atm_pdu_caplen);
erf_atm_guess_traffic_type(atm_pdu, atm_pdu_caplen, pinfo->pseudo_header);
break;
case ERF_AAL5_LLC:
pinfo->pseudo_header->atm.type = TRAF_LLCMX;
pinfo->pseudo_header->atm.subtype = TRAF_ST_UNKNOWN;
break;
}
call_dissector(atm_untruncated_handle, new_tvb, pinfo, tree);
break;
case ERF_TYPE_MC_AAL2:
dissect_mc_aal2_header(tvb, pinfo, erf_tree);
/* continue with type AAL2 */
case ERF_TYPE_AAL2:
atm_hdr = tvb_get_ntohl(tvb, 0);
memset(&pinfo->pseudo_header->atm, 0, sizeof(pinfo->pseudo_header->atm));
pinfo->pseudo_header->atm.vpi = ((atm_hdr & 0x0ff00000) >> 20);
pinfo->pseudo_header->atm.vci = ((atm_hdr & 0x000ffff0) >> 4);
pinfo->pseudo_header->atm.channel = (flags & 0x03);
/* Work around to have decoding working */
pinfo->pseudo_header->atm.aal = AAL_2;
pinfo->pseudo_header->atm.type = TRAF_UNKNOWN;
pinfo->pseudo_header->atm.subtype = TRAF_ST_UNKNOWN;
new_tvb = tvb_new_subset(tvb, ATM_HDR_LENGTH, -1, -1);
call_dissector(atm_untruncated_handle, new_tvb, pinfo, tree);
break;
case ERF_TYPE_ETH:
case ERF_TYPE_COLOR_ETH:
case ERF_TYPE_DSM_COLOR_ETH:
dissect_eth_header(tvb, pinfo, erf_tree);
if (erf_ethfcs)
call_dissector(ethwithfcs_handle, tvb, pinfo, tree);
else
call_dissector(ethwithoutfcs_handle, tvb, pinfo, tree);
break;
case ERF_TYPE_MC_HDLC:
dissect_mc_hdlc_header(tvb, pinfo, erf_tree);
/* continue with type HDLC */
case ERF_TYPE_HDLC_POS:
case ERF_TYPE_COLOR_HDLC_POS:
case ERF_TYPE_DSM_COLOR_HDLC_POS:
case ERF_TYPE_COLOR_MC_HDLC_POS:
hdlc_type = erf_hdlc_type;
if (hdlc_type == ERF_HDLC_GUESS) {
/* Try to guess the type. */
first_byte = tvb_get_guint8(tvb, 0);
if (first_byte == 0x0f || first_byte == 0x8f)
hdlc_type = ERF_HDLC_CHDLC;
else {
/* Anything to check for to recognize Frame Relay or MTP2?
Should we require PPP packets to beging with FF 03? */
hdlc_type = ERF_HDLC_PPP;
}
}
/* Clean the pseudo header (if used in subdissector) and call the
appropriate subdissector. */
switch (hdlc_type) {
case ERF_HDLC_CHDLC:
call_dissector(chdlc_handle, tvb, pinfo, tree);
break;
case ERF_HDLC_PPP:
call_dissector(ppp_handle, tvb, pinfo, tree);
break;
case ERF_HDLC_FRELAY:
memset(&pinfo->pseudo_header->x25, 0, sizeof(pinfo->pseudo_header->x25));
call_dissector(frelay_handle, tvb, pinfo, tree);
break;
case ERF_HDLC_MTP2:
/* not used, but .. */
memset(&pinfo->pseudo_header->mtp2, 0, sizeof(pinfo->pseudo_header->mtp2));
call_dissector(mtp2_handle, tvb, pinfo, tree);
break;
default:
break;
}
break;
default:
break;
} /* erf type */
}
void
proto_register_erf(void)
{
static hf_register_info hf[] = {
/* ERF Header */
{ &hf_erf_ts, { "Timestamp", "erf.ts", FT_UINT64, BASE_HEX, NULL, 0x0, "", HFILL } },
{ &hf_erf_types, { "types", "erf.types", FT_UINT8, BASE_DEC, NULL, 0xFF, "", HFILL } },
{ &hf_erf_type, { "type", "erf.types.type", FT_UINT8, BASE_DEC, VALS(erf_type_vals), 0x7F, "", HFILL } },
{ &hf_erf_ehdr, { "Extension header present", "erf.types.ext_header", FT_UINT8, BASE_DEC, NULL, 0x80, "", HFILL } },
{ &hf_erf_flags,{ "flags", "erf.flags", FT_UINT8, BASE_DEC, NULL, 0xFF, "", HFILL } },
{ &hf_erf_flags_cap,{ "capture interface", "erf.flags.cap", FT_UINT8, BASE_DEC, NULL, 0x03, "", HFILL } },
{ &hf_erf_flags_vlen,{ "varying record length", "erf.flags.vlen", FT_UINT8, BASE_DEC, NULL, 0x04, "", HFILL } },
{ &hf_erf_flags_trunc,{ "truncated", "erf.flags.trunc", FT_UINT8, BASE_DEC, NULL, 0x08, "", HFILL } },
{ &hf_erf_flags_rxe,{ "rx error", "erf.flags.rxe", FT_UINT8, BASE_DEC, NULL, 0x10, "", HFILL } },
{ &hf_erf_flags_dse,{ "ds error", "erf.flags.dse", FT_UINT8, BASE_DEC, NULL, 0x20, "", HFILL } },
{ &hf_erf_flags_res,{ "reserved", "erf.flags.res", FT_UINT8, BASE_DEC, NULL, 0xC0, "", HFILL } },
{ &hf_erf_rlen, { "record length", "erf.rlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL } },
{ &hf_erf_lctr, { "loss counter", "erf.lctr", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL } },
{ &hf_erf_wlen, { "wire length", "erf.wlen", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL } },
{ &hf_erf_ehdr_t, { "Extension Type", "erf.ehdr.types", FT_UINT8, BASE_DEC, VALS(ehdr_type_vals), 0x0, "", HFILL } },
/* Intercept ID Extension Header */
{ &hf_erf_ehdr_int_res1, { "Reserved", "erf.ehdr.int.res1", FT_UINT8, BASE_DEC, NULL, 0x0, "", HFILL } },
{ &hf_erf_ehdr_int_id, { "Intercept ID", "erf.ehdr.int.intid", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL } },
{ &hf_erf_ehdr_int_res2, { "Reserved", "erf.ehdr.int.res2", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL } },
/* Raw Link Extension Header */
{ &hf_erf_ehdr_raw_link_res, { "Reserved", "erf.ehdr.raw.res", FT_UINT32, BASE_HEX, NULL, 0x0, "", HFILL } },
{ &hf_erf_ehdr_raw_link_seqnum, { "Sequence number", "erf.ehdr.raw.seqnum", FT_UINT16, BASE_DEC, NULL, 0x0, "", HFILL } },
{ &hf_erf_ehdr_raw_link_rate, { "Rate", "erf.ehdr.raw.rate", FT_UINT8, BASE_DEC, VALS(raw_link_rates), 0x0, "", HFILL } },
{ &hf_erf_ehdr_raw_link_type, { "Link Type", "erf.ehdr.raw.link_type", FT_UINT8, BASE_DEC, VALS(raw_link_types), 0x0, "", HFILL } },
/* Classification Extension Header */
{ &hf_erf_ehdr_class_flags, { "Flags", "erf.ehdr.class.flags", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL } },
{ &hf_erf_ehdr_class_flags_sh, { "Search hit", "erf.ehdr.class.flags.sh", FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_SH_MASK, "", HFILL } },
{ &hf_erf_ehdr_class_flags_shm, { "Multiple search hits", "erf.ehdr.class.flags.shm", FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_SHM_MASK, "", HFILL } },
{ &hf_erf_ehdr_class_flags_res1, { "Reserved", "erf.ehdr.class.flags.res1", FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_RES1_MASK, "", HFILL } },
{ &hf_erf_ehdr_class_flags_user, { "User classification", "erf.ehdr.class.flags.user", FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_USER_MASK, "", HFILL } },
{ &hf_erf_ehdr_class_flags_res2, { "Reserved", "erf.ehdr.class.flags.res2", FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_RES2_MASK, "", HFILL } },
{ &hf_erf_ehdr_class_flags_drop, { "Drop Steering Bit", "erf.ehdr.class.flags.drop", FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_DROP_MASK, "", HFILL } },
{ &hf_erf_ehdr_class_flags_str, { "Stream Steering Bits", "erf.ehdr.class.flags.str", FT_UINT32, BASE_DEC, NULL, EHDR_CLASS_STER_MASK, "", HFILL } },
{ &hf_erf_ehdr_class_seqnum, { "Sequence number", "erf.ehdr.class.seqnum", FT_UINT32, BASE_DEC, NULL, 0x0, "", HFILL } },
/* Unknown Extension Header */
{ &hf_erf_ehdr_unk, { "Data", "erf.ehdr.unknown.data", FT_UINT64, BASE_HEX, NULL, 0x0, "", HFILL } },
/* MC HDLC Header */
{ &hf_erf_mc_hdlc_cn, { "connection number", "erf.mchdlc.cn", FT_UINT16, BASE_DEC, NULL, MC_HDLC_CN_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_res1, { "reserved", "erf.mchdlc.res1", FT_UINT16, BASE_DEC, NULL, MC_HDLC_RES1_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_res2, { "reserved", "erf.mchdlc.res2", FT_UINT8, BASE_DEC, NULL, MC_HDLC_RES2_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_fcse, { "FCS error", "erf.mchdlc.fcse", FT_UINT8, BASE_DEC, NULL, MC_HDLC_FCSE_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_sre, { "Short record error", "erf.mchdlc.sre", FT_UINT8, BASE_DEC, NULL, MC_HDLC_SRE_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_lre, { "Long record error", "erf.mchdlc.lre", FT_UINT8, BASE_DEC, NULL, MC_HDLC_LRE_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_afe, { "Aborted frame error", "erf.mchdlc.afe", FT_UINT8, BASE_DEC, NULL, MC_HDLC_AFE_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_oe, { "Octet error", "erf.mchdlc.oe", FT_UINT8, BASE_DEC, NULL, MC_HDLC_OE_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_lbe, { "Lost byte error", "erf.mchdlc.lbe", FT_UINT8, BASE_DEC, NULL, MC_HDLC_LBE_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_first, { "First record", "erf.mchdlc.first", FT_UINT8, BASE_DEC, NULL, MC_HDLC_FIRST_MASK, "", HFILL } },
{ &hf_erf_mc_hdlc_res3, { "reserved", "erf.mchdlc.res3", FT_UINT8, BASE_DEC, NULL, MC_HDLC_RES3_MASK, "", HFILL } },
/* MC RAW Header */
{ &hf_erf_mc_raw_int, { "physical interface", "erf.mcraw.int", FT_UINT8, BASE_DEC, NULL, MC_RAW_INT_MASK, "", HFILL } },
{ &hf_erf_mc_raw_res1, { "reserved", "erf.mcraw.res1", FT_UINT8, BASE_DEC, NULL, MC_RAW_RES1_MASK, "", HFILL } },
{ &hf_erf_mc_raw_res2, { "reserved", "erf.mcraw.res2", FT_UINT16, BASE_DEC, NULL, MC_RAW_RES2_MASK, "", HFILL } },
{ &hf_erf_mc_raw_res3, { "reserved", "erf.mcraw.res3", FT_UINT8, BASE_DEC, NULL, MC_RAW_RES3_MASK, "", HFILL } },
{ &hf_erf_mc_raw_sre, { "Short record error", "erf.mcraw.sre", FT_UINT8, BASE_DEC, NULL, MC_RAW_SRE_MASK, "", HFILL } },
{ &hf_erf_mc_raw_lre, { "Long record error", "erf.mcraw.lre", FT_UINT8, BASE_DEC, NULL, MC_RAW_LRE_MASK, "", HFILL } },
{ &hf_erf_mc_raw_res4, { "reserved", "erf.mcraw.res4", FT_UINT8, BASE_DEC, NULL, MC_RAW_RES4_MASK, "", HFILL } },
{ &hf_erf_mc_raw_lbe, { "Lost byte error", "erf.mcraw.lbe", FT_UINT8, BASE_DEC, NULL, MC_RAW_LBE_MASK, "", HFILL } },
{ &hf_erf_mc_raw_first, { "First record", "erf.mcraw.first", FT_UINT8, BASE_DEC, NULL, MC_RAW_FIRST_MASK, "", HFILL } },
{ &hf_erf_mc_raw_res5, { "reserved", "erf.mcraw.res5", FT_UINT8, BASE_DEC, NULL, MC_RAW_RES5_MASK, "", HFILL } },
/* MC ATM Header */
{ &hf_erf_mc_atm_cn, { "connection number", "erf.mcatm.cn", FT_UINT16, BASE_DEC, NULL, MC_ATM_CN_MASK, "", HFILL } },
{ &hf_erf_mc_atm_res1, { "reserved", "erf.mcatm.res1", FT_UINT16, BASE_DEC, NULL, MC_ATM_RES1_MASK, "", HFILL } },
{ &hf_erf_mc_atm_mul, { "multiplexed", "erf.mcatm.mul", FT_UINT16, BASE_DEC, NULL, MC_ATM_MUL_MASK, "", HFILL } },
{ &hf_erf_mc_atm_port, { "physical port", "erf.mcatm.port", FT_UINT8, BASE_DEC, NULL, MC_ATM_PORT_MASK, "", HFILL } },
{ &hf_erf_mc_atm_res2, { "reserved", "erf.mcatm.res2", FT_UINT8, BASE_DEC, NULL, MC_ATM_RES2_MASK, "", HFILL } },
{ &hf_erf_mc_atm_lbe, { "Lost Byte Error", "erf.mcatm.lbe", FT_UINT8, BASE_DEC, NULL, MC_ATM_LBE_MASK, "", HFILL } },
{ &hf_erf_mc_atm_hec, { "HEC corrected", "erf.mcatm.hec", FT_UINT8, BASE_DEC, NULL, MC_ATM_HEC_MASK, "", HFILL } },
{ &hf_erf_mc_atm_crc10, { "OAM Cell CRC10 Error (not implemented)", "erf.mcatm.crc10", FT_UINT8, BASE_DEC, NULL, MC_ATM_CRC10_MASK, "", HFILL } },
{ &hf_erf_mc_atm_oamcell, { "OAM Cell", "erf.mcatm.oamcell", FT_UINT8, BASE_DEC, NULL, MC_ATM_OAMCELL_MASK, "", HFILL } },
{ &hf_erf_mc_atm_first, { "First record", "erf.mcatm.first", FT_UINT8, BASE_DEC, NULL, MC_ATM_FIRST_MASK, "", HFILL } },
{ &hf_erf_mc_atm_res3, { "reserved", "erf.mcatm.res3", FT_UINT8, BASE_DEC, NULL, MC_ATM_RES3_MASK, "", HFILL } },
/* MC RAW Link Header */
{ &hf_erf_mc_rawl_cn, { "connection number", "erf.mcrawl.cn", FT_UINT8, BASE_DEC, NULL, MC_RAWL_CN_MASK, "", HFILL } },
{ &hf_erf_mc_rawl_res1, { "reserved", "erf.mcrawl.res1", FT_UINT16, BASE_DEC, NULL, MC_RAWL_RES1_MASK, "", HFILL } },
{ &hf_erf_mc_rawl_res2, { "reserved", "erf.mcrawl.res2", FT_UINT8, BASE_DEC, NULL, MC_RAWL_RES2_MASK, "", HFILL } },
{ &hf_erf_mc_rawl_lbe, { "Lost byte error", "erf.mcrawl.lbe", FT_UINT8, BASE_DEC, NULL, MC_RAWL_LBE_MASK, "", HFILL } },
{ &hf_erf_mc_rawl_first, { "First record", "erf.mcrawl.first", FT_UINT8, BASE_DEC, NULL, MC_RAWL_FIRST_MASK, "", HFILL } },
{ &hf_erf_mc_rawl_res3, { "reserved", "erf.mcrawl.res5", FT_UINT8, BASE_DEC, NULL, MC_RAWL_RES3_MASK, "", HFILL } },
/* MC AAL5 Header */
{ &hf_erf_mc_aal5_cn, { "connection number", "erf.mcaal5.cn", FT_UINT16, BASE_DEC, NULL, MC_AAL5_CN_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_res1, { "reserved", "erf.mcaal5.res1", FT_UINT16, BASE_DEC, NULL, MC_AAL5_RES1_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_port, { "physical port", "erf.mcaal5.port", FT_UINT8, BASE_DEC, NULL, MC_AAL5_PORT_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_crcck, { "CRC checked", "erf.mcaal5.crcck", FT_UINT8, BASE_DEC, NULL, MC_AAL5_CRCCK_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_crce, { "CRC error", "erf.mcaal5.crce", FT_UINT8, BASE_DEC, NULL, MC_AAL5_CRCE_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_lenck, { "Length checked", "erf.mcaal5.lenck", FT_UINT8, BASE_DEC, NULL, MC_AAL5_LENCK_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_lene, { "Length error", "erf.mcaal5.lene", FT_UINT8, BASE_DEC, NULL, MC_AAL5_LENE_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_res2, { "reserved", "erf.mcaal5.res2", FT_UINT8, BASE_DEC, NULL, MC_AAL5_RES2_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_first, { "First record", "erf.mcaal5.first", FT_UINT8, BASE_DEC, NULL, MC_AAL5_FIRST_MASK, "", HFILL } },
{ &hf_erf_mc_aal5_res3, { "reserved", "erf.mcaal5.res3", FT_UINT8, BASE_DEC, NULL, MC_AAL5_RES3_MASK, "", HFILL } },
/* MC AAL2 Header */
{ &hf_erf_mc_aal2_cn, { "connection number", "erf.mcaal2.cn", FT_UINT16, BASE_DEC, NULL, MC_AAL2_CN_MASK, "", HFILL } },
{ &hf_erf_mc_aal2_res1, { "reserved for extra connection", "erf.mcaal2.res1", FT_UINT16, BASE_DEC, NULL, MC_AAL2_RES1_MASK, "", HFILL } },
{ &hf_erf_mc_aal2_res2, { "reserved for type", "erf.mcaal2.mul", FT_UINT16, BASE_DEC, NULL, MC_AAL2_RES2_MASK, "", HFILL } },
{ &hf_erf_mc_aal2_port, { "physical port", "erf.mcaal2.port", FT_UINT8, BASE_DEC, NULL, MC_AAL2_PORT_MASK, "", HFILL } },
{ &hf_erf_mc_aal2_res3, { "reserved", "erf.mcaal2.res2", FT_UINT8, BASE_DEC, NULL, MC_AAL2_RES3_MASK, "", HFILL } },
{ &hf_erf_mc_aal2_first, { "first cell received", "erf.mcaal2.lbe", FT_UINT8, BASE_DEC, NULL, MC_AAL2_FIRST_MASK, "", HFILL } },
{ &hf_erf_mc_aal2_maale, { "MAAL error", "erf.mcaal2.hec", FT_UINT8, BASE_DEC, NULL, MC_AAL2_MAALE_MASK, "", HFILL } },
{ &hf_erf_mc_aal2_lene, { "Length error", "erf.mcaal2.crc10", FT_UINT8, BASE_DEC, NULL, MC_AAL2_LENE_MASK, "", HFILL } },
{ &hf_erf_mc_aal2_cid, { "Channel Identification Number", "erf.mcaal2.cid", FT_UINT8, BASE_DEC, NULL, MC_AAL2_CID_MASK, "", HFILL } },
/* ETH Header */
{ &hf_erf_eth_off, { "offset", "erf.eth.off", FT_UINT8, BASE_DEC, NULL, ETH_OFF_MASK, "", HFILL } },
{ &hf_erf_eth_res1, { "reserved", "erf.eth.res1", FT_UINT8, BASE_DEC, NULL, ETH_RES1_MASK, "", HFILL } },
};
static gint *ett[] = {
&ett_erf,
&ett_erf_pseudo_hdr,
&ett_erf_types,
&ett_erf_flags,
&ett_erf_mc_hdlc,
&ett_erf_mc_raw,
&ett_erf_mc_atm,
&ett_erf_mc_rawlink,
&ett_erf_mc_aal5,
&ett_erf_mc_aal2,
&ett_erf_eth
};
static enum_val_t erf_hdlc_options[] = {
{ "chdlc", "Cisco HDLC", ERF_HDLC_CHDLC },
{ "ppp", "PPP serial", ERF_HDLC_PPP },
{ "frelay", "Frame Relay", ERF_HDLC_FRELAY },
{ "mtp2", "SS7 MTP2", ERF_HDLC_MTP2 },
{ "guess", "Attempt to guess", ERF_HDLC_GUESS },
{ NULL, NULL, 0 }
};
static enum_val_t erf_aal5_options[] = {
{ "guess", "Attempt to guess", ERF_AAL5_GUESS },
{ "llc", "LLC multiplexed", ERF_AAL5_LLC },
{ NULL, NULL, 0 }
};
module_t *erf_module;
proto_erf = proto_register_protocol("Extensible Record Format", "ERF", "erf");
register_dissector("erf", dissect_erf, proto_erf);
proto_register_field_array(proto_erf, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
erf_module = prefs_register_protocol(proto_erf, NULL);
prefs_register_enum_preference(erf_module, "hdlc_type", "ERF_HDLC Layer 2",
"Protocol encapsulated in HDLC records",
&erf_hdlc_type, erf_hdlc_options, FALSE);
prefs_register_bool_preference(erf_module, "rawcell_first",
"Raw ATM cells are first cell of AAL5 PDU",
"Whether raw ATM cells should be treated as "
"the first cell of an AAL5 PDU",
&erf_rawcell_first);
prefs_register_enum_preference(erf_module, "aal5_type",
"ATM AAL5 packet type",
"Protocol encapsulated in ATM AAL5 packets",
&erf_aal5_type, erf_aal5_options, FALSE);
prefs_register_bool_preference(erf_module, "ethfcs",
"Ethernet packets have FCS",
"Whether the FCS is present in Ethernet packets",
&erf_ethfcs);
}
void
proto_reg_handoff_erf(void)
{
dissector_handle_t erf_handle;
erf_handle = find_dissector("erf");
dissector_add("wtap_encap", WTAP_ENCAP_ERF, erf_handle);
/* Dissector called to dump raw data, or unknown protocol */
data_handle = find_dissector("data");
/* Get handle for IP dissectors) */
ipv4_handle = find_dissector("ip");
ipv6_handle = find_dissector("ipv6");
/* Get handle for Infiniband dissector */
infiniband_handle = find_dissector("infiniband");
/* Get handles for serial line protocols */
chdlc_handle = find_dissector("chdlc");
ppp_handle = find_dissector("ppp_hdlc");
frelay_handle = find_dissector("fr");
mtp2_handle = find_dissector("mtp2");
/* Get handle for ATM dissector */
atm_untruncated_handle = find_dissector("atm_untruncated");
/* Get handles for Ethernet dissectors */
ethwithfcs_handle = find_dissector("eth_withfcs");
ethwithoutfcs_handle = find_dissector("eth_withoutfcs");
}