wireshark/reassemble.c
Guy Harris ac16b7463b Assorted changes from Ronnie Sahlberg:
Add a few small functions to reassemble.c to cope with protocols
	where the total length of defragmented PDUs are specified in the
	first fragment (all previous uses of reassembly has been for
	PDUs where the last fragment is signalled by a flag in the
	header for the last fragment).

	Add a few small functions to reassemble.c to abort-and-delete
	defragmentation of PDUs and also detect IF a PDU is currently
	being defragmented.  (Useful for PDUs where the "unique"
	identifier is rather ununique, or may be reused often enough so
	it can be a problem for Ethereal.)

	Change where NT Cancel presents its Cancelation-to output, and
	makes the three trans secondary requests also output similar
	information.

svn path=/trunk/; revision=4255
2001-11-24 09:36:40 +00:00

485 lines
13 KiB
C

/* reassemble.c
* Routines for {fragment,segment} reassembly
*
* $Id: reassemble.c,v 1.5 2001/11/24 09:36:40 guy Exp $
*
* Ethereal - Network traffic analyzer
* By Gerald Combs <gerald@ethereal.com>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include "packet.h"
#include "reassemble.h"
typedef struct _fragment_key {
address src;
address dst;
guint32 id;
} fragment_key;
static GMemChunk *fragment_key_chunk = NULL;
static GMemChunk *fragment_data_chunk = NULL;
static int fragment_init_count = 200;
#define LINK_FRAG(fd_head,fd) \
{ fragment_data *fd_i; \
/* add fragment to list, keep list sorted */ \
for(fd_i=fd_head;fd_i->next;fd_i=fd_i->next){ \
if( (fd->offset) < (fd_i->next->offset) ) \
break; \
} \
fd->next=fd_i->next; \
fd_i->next=fd; \
}
static gint
fragment_equal(gconstpointer k1, gconstpointer k2)
{
fragment_key* key1 = (fragment_key*) k1;
fragment_key* key2 = (fragment_key*) k2;
/*key.id is the first item to compare since item is most
likely to differ between sessions, thus shortcircuiting
the comparasion of addresses.
*/
return ( ( (key1->id == key2->id) &&
(ADDRESSES_EQUAL(&key1->src, &key2->src)) &&
(ADDRESSES_EQUAL(&key1->dst, &key2->dst))
) ?
TRUE : FALSE);
}
static guint
fragment_hash(gconstpointer k)
{
fragment_key* key = (fragment_key*) k;
guint hash_val;
/*
int i;
*/
hash_val = 0;
/* More than likely: in most captures src and dst addresses are the
same, and would hash the same.
We only use id as the hash as an optimization.
for (i = 0; i < key->src.len; i++)
hash_val += key->src.data[i];
for (i = 0; i < key->dst.len; i++)
hash_val += key->dst.data[i];
*/
hash_val += key->id;
return hash_val;
}
/*
* For a hash table entry, free the address data to which the key refers
* and the fragment data to which the value refers.
* (The actual key and value structures get freed by "reassemble_init()".)
*/
static gboolean
free_all_fragments(gpointer key_arg, gpointer value, gpointer user_data)
{
fragment_key *key = key_arg;
fragment_data *fd_head;
/*
* Grr. I guess the theory here is that freeing
* something sure as heck modifies it, so you
* want to ban attempts to free it, but, alas,
* if we make the "data" field of an "address"
* structure not a "const", the compiler whines if
* we try to make it point into the data for a packet,
* as that's a "const" array (and should be, as dissectors
* shouldn't trash it).
*
* So we cast the complaint into oblivion, and rely on
* the fact that these addresses are known to have had
* their data mallocated, i.e. they don't point into,
* say, the middle of the data for a packet.
*/
g_free((gpointer)key->src.data);
g_free((gpointer)key->dst.data);
for (fd_head = value; fd_head != NULL; fd_head = fd_head->next) {
if (fd_head->data)
g_free(fd_head->data);
}
return TRUE;
}
/*
* Initialize a fragment table.
*/
void
fragment_table_init(GHashTable **fragment_table)
{
if (*fragment_table != NULL) {
/*
* The fragment hash table exists.
*
* Remove all entries and free fragment data for
* each entry. (The key and value data is freed
* by "reassemble_init()".)
*/
g_hash_table_foreach_remove(*fragment_table,
free_all_fragments, NULL);
} else {
/* The fragment table does not exist. Create it */
*fragment_table = g_hash_table_new(fragment_hash,
fragment_equal);
}
}
/*
* Free up all space allocated for fragment keys and data.
*/
void
reassemble_init(void)
{
if (fragment_key_chunk != NULL)
g_mem_chunk_destroy(fragment_key_chunk);
if (fragment_data_chunk != NULL)
g_mem_chunk_destroy(fragment_data_chunk);
fragment_key_chunk = g_mem_chunk_new("fragment_key_chunk",
sizeof(fragment_key),
fragment_init_count * sizeof(fragment_key),
G_ALLOC_ONLY);
fragment_data_chunk = g_mem_chunk_new("fragment_data_chunk",
sizeof(fragment_data),
fragment_init_count * sizeof(fragment_data),
G_ALLOC_ONLY);
}
/* This function cleans up the stored state and removes the reassembly data and
* (with one exception) all allocated memory for matching reassembly.
*
* The exception is :
* If the PDU was already completely reassembled, then the buffer containing the
* reassembled data WILL NOT be free()d, and the pointer to that buffer will be
* returned.
* Othervise the function will return NULL.
*
* So, if you call fragment_delete and it returns non-NULL, YOU are responsible to
* g_free() that buffer.
*/
unsigned char *
fragment_delete(packet_info *pinfo, guint32 id, GHashTable *fragment_table)
{
fragment_data *fd_head, *fd;
fragment_key key;
unsigned char *data=NULL;
/* create key to search hash with */
key.src = pinfo->src;
key.dst = pinfo->dst;
key.id = id;
fd_head = g_hash_table_lookup(fragment_table, &key);
if(fd_head==NULL){
/* We do not recognize this as a PDU we have seen before. return*/
return NULL;
}
data=fd_head->data;
/* loop over all partial fragments and free any buffers */
for(fd=fd_head->next;fd;){
fragment_data *tmp_fd;
tmp_fd=fd->next;
g_free(fd->data);
g_mem_chunk_free(fragment_data_chunk, fd);
fd=tmp_fd;
}
g_mem_chunk_free(fragment_data_chunk, fd_head);
g_hash_table_remove(fragment_table, &key);
return data;
}
/* This function is used to check if there is partial or completed reassembly state
* matching this packet. I.e. Are there reassembly going on or not for this packet?
*/
fragment_data *
fragment_get(packet_info *pinfo, guint32 id, GHashTable *fragment_table)
{
fragment_data *fd_head;
fragment_key key;
/* create key to search hash with */
key.src = pinfo->src;
key.dst = pinfo->dst;
key.id = id;
fd_head = g_hash_table_lookup(fragment_table, &key);
return fd_head;
}
/* This function can be used to explicitely set the total length (if known)
* for reassembly of a PDU.
* This is useful for reassembly of PDUs where one may have the total length specified
* in the first fragment instead of as for, say, IPv4 where a flag indicates which
* is the last fragment.
*
* Such protocols might fragment_add with a more_frags==TRUE for every fragment
* and just tell the reassembly engine the expected total length of the reassembled data
* using fragment_set_tot_len immediately after doing fragment_add for the first packet.
*/
void
fragment_set_tot_len(packet_info *pinfo, guint32 id, GHashTable *fragment_table,
guint32 tot_len)
{
fragment_data *fd_head;
fragment_key key;
/* create key to search hash with */
key.src = pinfo->src;
key.dst = pinfo->dst;
key.id = id;
fd_head = g_hash_table_lookup(fragment_table, &key);
if(fd_head){
fd_head->datalen = tot_len;
}
return;
}
/*
* This function adds a new fragment to the fragment hash table.
* If this is the first fragment seen for this datagram, a new entry
* is created in the hash table, otherwise this fragment is just added
* to the linked list of fragments for this packet.
* The list of fragments for a specific datagram is kept sorted for
* easier handling.
*
* Returns a pointer to the head of the fragment data list if we have all the
* fragments, NULL otherwise.
*
*/
fragment_data *
fragment_add(tvbuff_t *tvb, int offset, packet_info *pinfo, guint32 id,
GHashTable *fragment_table, guint32 frag_offset,
guint32 frag_data_len, gboolean more_frags)
{
fragment_key key, *new_key;
fragment_data *fd_head;
fragment_data *fd;
fragment_data *fd_i;
guint32 max, dfpos;
/* create key to search hash with */
key.src = pinfo->src;
key.dst = pinfo->dst;
key.id = id;
fd_head = g_hash_table_lookup(fragment_table, &key);
/* have we already seen this frame ?*/
if (pinfo->fd->flags.visited) {
if (fd_head != NULL && fd_head->flags & FD_DEFRAGMENTED) {
return fd_head;
} else {
return NULL;
}
}
if (fd_head==NULL){
/* not found, this must be the first snooped fragment for this
* packet. Create list-head.
*/
fd_head=g_mem_chunk_alloc(fragment_data_chunk);
/* head/first structure in list only holds no other data than
* 'datalen' then we don't have to change the head of the list
* even if we want to keep it sorted
*/
fd_head->next=NULL;
fd_head->datalen=0;
fd_head->offset=0;
fd_head->len=0;
fd_head->flags=0;
fd_head->data=NULL;
/*
* We're going to use the key to insert the fragment,
* so allocate a structure for it, and copy the
* addresses, allocating new buffers for the address
* data.
*/
new_key = g_mem_chunk_alloc(fragment_key_chunk);
COPY_ADDRESS(&new_key->src, &key.src);
COPY_ADDRESS(&new_key->dst, &key.dst);
new_key->id = key.id;
g_hash_table_insert(fragment_table, new_key, fd_head);
}
/* create new fd describing this fragment */
fd = g_mem_chunk_alloc(fragment_data_chunk);
fd->next = NULL;
fd->flags = 0;
fd->frame = pinfo->fd->num;
fd->offset = frag_offset;
fd->len = frag_data_len;
fd->data = NULL;
if (!more_frags) {
/*
* This is the tail fragment in the sequence.
*/
if (fd_head->datalen) {
/* ok we have already seen other tails for this packet
* it might be a duplicate.
*/
if (fd_head->datalen != (fd->offset + fd->len) ){
/* Oops, this tail indicates a different packet
* len than the previous ones. Somethings wrong
*/
fd->flags |= FD_MULTIPLETAILS;
fd_head->flags |= FD_MULTIPLETAILS;
}
} else {
/* this was the first tail fragment, now we know the
* length of the packet
*/
fd_head->datalen = fd->offset + fd->len;
}
}
/* If the packet is already defragmented, this MUST be an overlap.
* The entire defragmented packet is in fd_head->data
* Even if we have previously defragmented this packet, we still check
* check it. Someone might play overlap and TTL games.
*/
if (fd_head->flags & FD_DEFRAGMENTED) {
fd->flags |= FD_OVERLAP;
fd_head->flags |= FD_OVERLAP;
/* make sure its not too long */
if (fd->offset + fd->len > fd_head->datalen) {
fd->flags |= FD_TOOLONGFRAGMENT;
fd_head->flags |= FD_TOOLONGFRAGMENT;
LINK_FRAG(fd_head,fd);
return (fd_head);
}
/* make sure it doesnt conflict with previous data */
if ( memcmp(fd_head->data+fd->offset,
tvb_get_ptr(tvb,offset,fd->len),fd->len) ){
fd->flags |= FD_OVERLAPCONFLICT;
fd_head->flags |= FD_OVERLAPCONFLICT;
LINK_FRAG(fd_head,fd);
return (fd_head);
}
/* it was just an overlap, link it and return */
LINK_FRAG(fd_head,fd);
return (fd_head);
}
/* If we have reached this point, the packet is not defragmented yet.
* Save all payload in a buffer until we can defragment.
* XXX - what if we didn't capture the entire fragment due
* to a too-short snapshot length?
*/
fd->data = g_malloc(fd->len);
tvb_memcpy(tvb, fd->data, offset, fd->len);
LINK_FRAG(fd_head,fd);
if( !(fd_head->datalen) ){
/* if we dont know the datalen, there are still missing
* packets. Cheaper than the check below.
*/
return NULL;
}
/* check if we have received the entire fragment
* this is easy since the list is sorted and the head is faked.
*/
max = 0;
for (fd_i=fd_head->next;fd_i;fd_i=fd_i->next) {
if ( ((fd_i->offset)<=max) &&
((fd_i->offset+fd_i->len)>max) ){
max = fd_i->offset+fd_i->len;
}
}
if (max < (fd_head->datalen)) {
/* we have not received all packets yet */
return NULL;
}
if (max > (fd_head->datalen)) {
/* oops, too long fragment detected */
fd->flags |= FD_TOOLONGFRAGMENT;
fd_head->flags |= FD_TOOLONGFRAGMENT;
}
/* we have received an entire packet, defragment it and
* free all fragments
*/
fd_head->data = g_malloc(max);
/* add all data fragments */
for (dfpos=0,fd_i=fd_head;fd_i;fd_i=fd_i->next) {
if (fd_i->len) {
if (fd_i->offset < dfpos) {
fd_i->flags |= FD_OVERLAP;
fd_head->flags |= FD_OVERLAP;
if ( memcmp(fd_head->data+fd_i->offset,
fd_i->data,
MIN(fd_i->len,(dfpos-fd_i->offset))
) ){
fd_i->flags |= FD_OVERLAPCONFLICT;
fd_head->flags |= FD_OVERLAPCONFLICT;
}
}
memcpy(fd_head->data+fd_i->offset,fd_i->data,fd_i->len);
g_free(fd_i->data);
fd_i->data=NULL;
dfpos=MAX(dfpos,(fd_i->offset+fd_i->len));
}
}
/* mark this packet as defragmented.
allows us to skip any trailing fragments */
fd_head->flags |= FD_DEFRAGMENTED;
return fd_head;
}