wireshark/epan/dissectors/packet-selfm.c

3079 lines
155 KiB
C

/* packet-selfm.c
* Routines for Schweitzer Engineering Laboratories (SEL) Protocols Dissection
* By Chris Bontje (cbontje[AT]gmail.com
* Copyright 2012-2015,
*
************************************************************************************************
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
************************************************************************************************
* Schweitzer Engineering Labs ("SEL") manufactures and sells digital protective relay equipment
* for use in industrial high-voltage installations. SEL Protocol evolved over time as a
* (semi)proprietary method for auto-configuration of connected SEL devices for retrieval of
* analog and digital status data. The protocol itself supports embedded binary messages
* (which are what this dissector looks for) slip-streamed in the data stream with normal
* ASCII text data. A combination of both are used for full auto-configuration of devices,
* but a wealth of information can be extracted from the binary messages alone.
*
* 'SEL Protocol' encompasses several message types, including
* - Fast Meter
* - Fast Operate
* - Fast SER
* - Fast Message
*
* Documentation on Fast Meter and Fast Message standards available from www.selinc.com in
* SEL Application Guides AG95-10_20091109.pdf and AG_200214.pdf
************************************************************************************************
* Dissector Notes:
*
* 1) All SEL Protocol messages over TCP are normally tunneled via a Telnet connection. As Telnet
* has special handling for the 0xFF character ("IAC"), normally a pair of 0xFF's are inserted
* to represent an actual payload byte of 0xFF. A function from the packet-telnet.c dissector has
* been borrowed to automatically pre-process any Ethernet-based packet and remove these 'extra'
* 0xFF bytes. Wireshark Notes on Telnet 0xFF doubling are discussed here:
* http://www.wireshark.org/lists/wireshark-bugs/201204/msg00198.html
*
* 2) The auto-configuration process for Fast Meter will exchange several "configuration" messages
* that describe various data regions (METER, DEMAND, PEAK, etc) that will later have corresponding
* "data" messages. This dissector code will currently save and accurately retrieve the 3 sets
* of these exchanges:
* 0xA5C1, 0xA5D1, "METER" region
* 0xA5C2, 0xA5D2, "DEMAND" region
* 0xA5C3, 0xA5D3, "PEAK" region
* The configuration messages are stored in structs that are managed using the wmem library and
* the Wireshark conversation functionality.
*/
#include "config.h"
#include <epan/packet.h>
#include "packet-tcp.h"
#include <epan/prefs.h>
#include <epan/to_str.h>
#include <epan/reassemble.h>
#include <epan/expert.h>
#include <epan/crc16-tvb.h>
#include <epan/proto_data.h>
void proto_register_selfm(void);
/* Initialize the protocol and registered fields */
static int proto_selfm = -1;
static int hf_selfm_msgtype = -1;
static int hf_selfm_padbyte = -1;
static int hf_selfm_checksum = -1;
static int hf_selfm_relaydef_len = -1;
static int hf_selfm_relaydef_numproto = -1;
static int hf_selfm_relaydef_numfm = -1;
static int hf_selfm_relaydef_numflags = -1;
static int hf_selfm_relaydef_fmcfg_cmd = -1;
static int hf_selfm_relaydef_fmdata_cmd = -1;
static int hf_selfm_relaydef_statbit = -1;
static int hf_selfm_relaydef_statbit_cmd = -1;
static int hf_selfm_relaydef_proto = -1;
static int hf_selfm_fmconfig_len = -1;
static int hf_selfm_fmconfig_numflags = -1;
static int hf_selfm_fmconfig_loc_sf = -1;
static int hf_selfm_fmconfig_num_sf = -1;
static int hf_selfm_fmconfig_num_ai = -1;
static int hf_selfm_fmconfig_num_samp = -1;
static int hf_selfm_fmconfig_num_dig = -1;
static int hf_selfm_fmconfig_num_calc = -1;
static int hf_selfm_fmconfig_ofs_ai = -1;
static int hf_selfm_fmconfig_ofs_ts = -1;
static int hf_selfm_fmconfig_ofs_dig = -1;
static int hf_selfm_fmconfig_ai_type = -1;
static int hf_selfm_fmconfig_ai_sf_type = -1;
static int hf_selfm_fmconfig_ai_sf_ofs = -1;
static int hf_selfm_fmconfig_cblk_rot = -1;
static int hf_selfm_fmconfig_cblk_vconn = -1;
static int hf_selfm_fmconfig_cblk_iconn = -1;
static int hf_selfm_fmconfig_cblk_ctype = -1;
static int hf_selfm_fmconfig_cblk_deskew_ofs = -1;
static int hf_selfm_fmconfig_cblk_rs_ofs = -1;
static int hf_selfm_fmconfig_cblk_xs_ofs = -1;
static int hf_selfm_fmconfig_cblk_ia_idx = -1;
static int hf_selfm_fmconfig_cblk_ib_idx = -1;
static int hf_selfm_fmconfig_cblk_ic_idx = -1;
static int hf_selfm_fmconfig_cblk_va_idx = -1;
static int hf_selfm_fmconfig_cblk_vb_idx = -1;
static int hf_selfm_fmconfig_cblk_vc_idx = -1;
static int hf_selfm_fmconfig_ai_sf_float = -1;
static int hf_selfm_fmdata_len = -1;
static int hf_selfm_fmdata_flagbyte = -1;
static int hf_selfm_fmdata_dig_b0 = -1;
static int hf_selfm_fmdata_dig_b1 = -1;
static int hf_selfm_fmdata_dig_b2 = -1;
static int hf_selfm_fmdata_dig_b3 = -1;
static int hf_selfm_fmdata_dig_b4 = -1;
static int hf_selfm_fmdata_dig_b5 = -1;
static int hf_selfm_fmdata_dig_b6 = -1;
static int hf_selfm_fmdata_dig_b7 = -1;
static int hf_selfm_fmdata_ai_sf_fp = -1;
static int hf_selfm_foconfig_len = -1;
static int hf_selfm_foconfig_num_brkr = -1;
static int hf_selfm_foconfig_num_rb = -1;
static int hf_selfm_foconfig_prb_supp = -1;
static int hf_selfm_foconfig_reserved = -1;
static int hf_selfm_foconfig_brkr_open = -1;
static int hf_selfm_foconfig_brkr_close = -1;
static int hf_selfm_foconfig_rb_cmd = -1;
static int hf_selfm_fastop_len = -1;
static int hf_selfm_fastop_rb_code = -1;
static int hf_selfm_fastop_br_code = -1;
static int hf_selfm_fastop_valid = -1;
static int hf_selfm_alt_foconfig_len = -1;
static int hf_selfm_alt_foconfig_num_ports = -1;
static int hf_selfm_alt_foconfig_num_brkr = -1;
static int hf_selfm_alt_foconfig_num_rb = -1;
static int hf_selfm_alt_foconfig_funccode = -1;
static int hf_selfm_alt_fastop_len = -1;
static int hf_selfm_alt_fastop_code = -1;
static int hf_selfm_alt_fastop_valid = -1;
static int hf_selfm_fastmsg_len = -1;
static int hf_selfm_fastmsg_routing_addr = -1;
static int hf_selfm_fastmsg_status = -1;
static int hf_selfm_fastmsg_funccode = -1;
static int hf_selfm_fastmsg_seq = -1;
static int hf_selfm_fastmsg_seq_fir = -1;
static int hf_selfm_fastmsg_seq_fin = -1;
static int hf_selfm_fastmsg_seq_cnt = -1;
static int hf_selfm_fastmsg_resp_num = -1;
static int hf_selfm_fastmsg_crc16 = -1;
static int hf_selfm_fastmsg_def_route_sup = -1;
static int hf_selfm_fastmsg_def_rx_stat = -1;
static int hf_selfm_fastmsg_def_tx_stat = -1;
static int hf_selfm_fastmsg_def_rx_maxfr = -1;
static int hf_selfm_fastmsg_def_tx_maxfr = -1;
static int hf_selfm_fastmsg_def_rx_num_fc = -1;
static int hf_selfm_fastmsg_def_rx_fc = -1;
static int hf_selfm_fastmsg_def_tx_num_fc = -1;
static int hf_selfm_fastmsg_def_tx_fc = -1;
static int hf_selfm_fastmsg_uns_en_fc = -1;
static int hf_selfm_fastmsg_uns_en_fc_data = -1;
static int hf_selfm_fastmsg_uns_dis_fc = -1;
static int hf_selfm_fastmsg_uns_dis_fc_data = -1;
static int hf_selfm_fastmsg_baseaddr = -1;
static int hf_selfm_fastmsg_numwords = -1;
static int hf_selfm_fastmsg_flags = -1;
static int hf_selfm_fastmsg_datafmt_resp_numitem = -1;
static int hf_selfm_fastmsg_dataitem_qty = -1;
static int hf_selfm_fastmsg_dataitem_type = -1;
static int hf_selfm_fastmsg_dataitem_uint16 = -1;
static int hf_selfm_fastmsg_dataitem_int16 = -1;
static int hf_selfm_fastmsg_dataitem_uint32 = -1;
static int hf_selfm_fastmsg_dataitem_int32 = -1;
static int hf_selfm_fastmsg_dataitem_float = -1;
static int hf_selfm_fastmsg_devdesc_num_region = -1;
static int hf_selfm_fastmsg_devdesc_num_ctrl = -1;
static int hf_selfm_fastmsg_unsresp_orig = -1;
static int hf_selfm_fastmsg_unsresp_doy = -1;
static int hf_selfm_fastmsg_unsresp_year = -1;
static int hf_selfm_fastmsg_unsresp_todms = -1;
static int hf_selfm_fastmsg_unsresp_num_elmt = -1;
static int hf_selfm_fastmsg_unsresp_elmt_idx = -1;
static int hf_selfm_fastmsg_unsresp_elmt_ts_ofs = -1;
static int hf_selfm_fastmsg_unsresp_elmt_status = -1;
static int hf_selfm_fastmsg_unsresp_eor = -1;
static int hf_selfm_fastmsg_unsresp_elmt_statword = -1;
static int hf_selfm_fastmsg_unswrite_addr1 = -1;
static int hf_selfm_fastmsg_unswrite_addr2 = -1;
static int hf_selfm_fastmsg_unswrite_num_reg = -1;
static int hf_selfm_fastmsg_unswrite_reg_val = -1;
static int hf_selfm_fastmsg_soe_req_orig = -1;
static int hf_selfm_fastmsg_soe_resp_numblks = -1;
static int hf_selfm_fastmsg_soe_resp_orig = -1;
static int hf_selfm_fastmsg_soe_resp_numbits = -1;
static int hf_selfm_fastmsg_soe_resp_pad = -1;
static int hf_selfm_fastmsg_soe_resp_doy = -1;
static int hf_selfm_fastmsg_soe_resp_year = -1;
static int hf_selfm_fastmsg_soe_resp_tod = -1;
/* static int hf_selfm_fastmsg_soe_resp_data = -1; */
/* Generated from convert_proto_tree_add_text.pl */
static int hf_selfm_fmconfig_ai_channel = -1;
static int hf_selfm_fmdata_ai_value16 = -1;
static int hf_selfm_fmdata_ai_scale_factor = -1;
static int hf_selfm_fmdata_ai_value_float = -1;
static int hf_selfm_fmdata_ai_value_double = -1;
static int hf_selfm_fmdata_data_type = -1;
static int hf_selfm_fmdata_quantity = -1;
static int hf_selfm_fmdata_ai_value_string = -1;
static int hf_selfm_fastmsg_unsresp_elmt_ts_ofs_decoded = -1;
static int hf_selfm_fid = -1;
static int hf_selfm_rid = -1;
static int hf_selfm_fastmsg_data_region_name = -1;
static int hf_selfm_fmdata_timestamp = -1;
static int hf_selfm_fmdata_frame_data_format_reference = -1;
static int hf_selfm_fastmsg_bit_label_name = -1;
/* Initialize the subtree pointers */
static gint ett_selfm = -1;
static gint ett_selfm_relaydef = -1;
static gint ett_selfm_relaydef_fm = -1;
static gint ett_selfm_relaydef_proto = -1;
static gint ett_selfm_relaydef_flags = -1;
static gint ett_selfm_fmconfig = -1;
static gint ett_selfm_fmconfig_ai = -1;
static gint ett_selfm_fmconfig_calc = -1;
static gint ett_selfm_foconfig = -1;
static gint ett_selfm_foconfig_brkr = -1;
static gint ett_selfm_foconfig_rb = -1;
static gint ett_selfm_fastop = -1;
static gint ett_selfm_fmdata = -1;
static gint ett_selfm_fmdata_ai = -1;
static gint ett_selfm_fmdata_dig = -1;
static gint ett_selfm_fmdata_ai_ch = -1;
static gint ett_selfm_fmdata_dig_ch = -1;
static gint ett_selfm_fastmsg = -1;
static gint ett_selfm_fastmsg_seq = -1;
static gint ett_selfm_fastmsg_def_fc = -1;
static gint ett_selfm_fastmsg_datareg = -1;
static gint ett_selfm_fastmsg_tag = -1;
static gint ett_selfm_fastmsg_element_list = -1;
static gint ett_selfm_fastmsg_element = -1;
/* Expert fields */
static expert_field ei_selfm_crc16_incorrect = EI_INIT;
static dissector_handle_t selfm_handle;
#define PORT_SELFM 0
#define CMD_FAST_MSG 0xA546
#define CMD_CLEAR_STATBIT 0xA5B9
#define CMD_RELAY_DEF 0xA5C0
#define CMD_FM_CONFIG 0xA5C1
#define CMD_DFM_CONFIG 0xA5C2
#define CMD_PDFM_CONFIG 0xA5C3
#define CMD_FASTOP_RESETDEF 0xA5CD
#define CMD_FASTOP_CONFIG 0xA5CE
#define CMD_ALT_FASTOP_CONFIG 0xA5CF
#define CMD_FM_DATA 0xA5D1
#define CMD_DFM_DATA 0xA5D2
#define CMD_PDFM_DATA 0xA5D3
#define CMD_FASTOP_RB_CTRL 0xA5E0
#define CMD_FASTOP_BR_CTRL 0xA5E3
#define CMD_ALT_FASTOP_OPEN 0xA5E5
#define CMD_ALT_FASTOP_CLOSE 0xA5E6
#define CMD_ALT_FASTOP_SET 0xA5E7
#define CMD_ALT_FASTOP_CLEAR 0xA5E8
#define CMD_ALT_FASTOP_PULSE 0xA5E9
#define CMD_FASTOP_RESET 0xA5ED
#define FM_CONFIG_SF_LOC_FM 0
#define FM_CONFIG_SF_LOC_CFG 1
#define FM_CONFIG_ANA_CHNAME_LEN 6
#define FM_CONFIG_ANA_CHTYPE_INT16 0x00
#define FM_CONFIG_ANA_CHTYPE_FP 0x01
#define FM_CONFIG_ANA_CHTYPE_FPD 0x02
#define FM_CONFIG_ANA_CHTYPE_TS 0x03
#define FM_CONFIG_ANA_CHTYPE_TS_LEN 8
#define FM_CONFIG_ANA_SFTYPE_INT16 0x00
#define FM_CONFIG_ANA_SFTYPE_FP 0x01
#define FM_CONFIG_ANA_SFTYPE_FPD 0x02
#define FM_CONFIG_ANA_SFTYPE_TS 0x03
#define FM_CONFIG_ANA_SFTYPE_NONE 0xFF
/* Fast Message Function Codes, "response" or "ACK" messages are the same as the request, but have the MSB set */
#define FAST_MSG_CFG_BLOCK 0x00
#define FAST_MSG_EN_UNS_DATA 0x01
#define FAST_MSG_DIS_UNS_DATA 0x02
#define FAST_MSG_PING 0x05
#define FAST_MSG_READ_REQ 0x10
#define FAST_MSG_GEN_UNS_DATA 0x12
#define FAST_MSG_SOE_STATE_REQ 0x16
#define FAST_MSG_UNS_RESP 0x18
#define FAST_MSG_UNS_WRITE 0x20
#define FAST_MSG_UNS_WRITE_REQ 0x21
#define FAST_MSG_DEVDESC_REQ 0x30
#define FAST_MSG_DATAFMT_REQ 0x31
#define FAST_MSG_UNS_DATAFMT_RESP 0x32
#define FAST_MSG_BITLABEL_REQ 0x33
#define FAST_MSG_MGMT_REQ 0x40
#define FAST_MSG_CFG_BLOCK_RESP 0x80
#define FAST_MSG_EN_UNS_DATA_ACK 0x81
#define FAST_MSG_DIS_UNS_DATA_ACK 0x82
#define FAST_MSG_PING_ACK 0x85
#define FAST_MSG_READ_RESP 0x90
#define FAST_MSG_SOE_STATE_RESP 0x96
#define FAST_MSG_UNS_RESP_ACK 0x98
#define FAST_MSG_DEVDESC_RESP 0xB0
#define FAST_MSG_DATAFMT_RESP 0xB1
#define FAST_MSG_BITLABEL_RESP 0xB3
/* Fast Message Sequence Byte Masks */
#define FAST_MSG_SEQ_FIR 0x80
#define FAST_MSG_SEQ_FIN 0x40
#define FAST_MSG_SEQ_CNT 0x3f
/* Fast Message Tag Data Types */
#define FAST_MSG_TAGTYPE_CHAR8 0x0011 /* 1 x 8-bit character per item */
#define FAST_MSG_TAGTYPE_CHAR16 0x0012 /* 2 x 8-bit characters per item */
#define FAST_MSG_TAGTYPE_DIGWORD8_BL 0x0021 /* 8-bit binary item, with labels */
#define FAST_MSG_TAGTYPE_DIGWORD8 0x0022 /* 8-bit binary item, without labels */
#define FAST_MSG_TAGTYPE_DIGWORD16_BL 0x0023 /* 16-bit binary item, with labels */
#define FAST_MSG_TAGTYPE_DIGWORD16 0x0024 /* 16-bit binary item, without labels */
#define FAST_MSG_TAGTYPE_INT16 0x0031 /* 16-bit signed integer */
#define FAST_MSG_TAGTYPE_UINT16 0x0032 /* 16-bit unsigned integer */
#define FAST_MSG_TAGTYPE_INT32 0x0033 /* 32-bit signed integer */
#define FAST_MSG_TAGTYPE_UINT32 0x0034 /* 32-bit unsigned integer */
#define FAST_MSG_TAGTYPE_FLOAT 0x0041 /* 32-bit floating point */
/* Globals for SEL Protocol Preferences */
static gboolean selfm_desegment = TRUE;
static gboolean selfm_telnet_clean = TRUE;
static guint global_selfm_tcp_port = PORT_SELFM; /* Port 0, by default */
static gboolean selfm_crc16 = FALSE; /* Default CRC16 valdiation to false */
static const char *selfm_ser_list = NULL;
/***************************************************************************************/
/* Fast Meter Message structs */
/***************************************************************************************/
/* Holds Configuration Information required to decode a Fast Meter analog value */
typedef struct {
gchar name[FM_CONFIG_ANA_CHNAME_LEN+1]; /* Name of Analog Channel, 6 char + a null */
guint8 type; /* Analog Channel Type, Int, FP, etc */
guint8 sf_type; /* Analog Scale Factor Type, none, etc */
guint16 sf_offset; /* Analog Scale Factor Offset */
gfloat sf_fp; /* Scale factor, if present in Cfg message */
} fm_analog_info;
/* Holds Information from a single "Fast Meter Configuration" frame. Required to dissect subsequent "Data" frames. */
typedef struct {
guint32 fnum; /* frame number */
guint16 cfg_cmd; /* holds ID of config command, ie: 0xa5c1 */
guint8 num_flags; /* Number of Flag Bytes */
guint8 sf_loc; /* Scale Factor Location */
guint8 sf_num; /* Number of Scale Factors */
guint8 num_ai; /* Number of Analog Inputs */
guint8 num_ai_samples; /* Number samples per Analog Input */
guint16 offset_ai; /* Start Offset of Analog Inputs */
guint8 num_dig; /* Number of Digital Input Blocks */
guint16 offset_dig; /* Start Offset of Digital Inputs */
guint16 offset_ts; /* Start Offset of Time Stamp */
guint8 num_calc; /* Number of Calculations */
fm_analog_info *analogs; /* Array of fm_analog_infos */
} fm_config_frame;
/**************************************************************************************/
/* Fast Message Data Item struct */
/**************************************************************************************/
/* Holds Configuration Information required to decode a Fast Message Data Item */
/* Each data region format is returned as a sequential list of tags, w/o reference to */
/* an absolute address. The format information will consist of a name, a data type */
/* and a quantity of values contained within the data item. We will retrieve this */
/* format information later while attempting to dissect Read Response frames */
typedef struct {
guint32 fnum; /* frame number */
guint32 base_address; /* Base address of Data Item Region */
guint8 index_pos; /* Index Offset Position within data format message (1-16) */
gchar name[10+1]; /* Name of Data Item, 10 chars, null-terminated */
guint16 quantity; /* Quantity of values within Data Item */
guint16 data_type; /* Data Item Type, Char, Int, FP, etc */
} fastmsg_dataitem;
/**************************************************************************************/
/* Fast Message Data Region struct */
/**************************************************************************************/
/* Holds Configuration Information required to decode a Fast Message Data Region */
/* Each data region format is returned as a sequential list of tags, w/o reference to */
typedef struct {
gchar name[10+1]; /* Name of Data Region, 10 chars, null-terminated */
} fastmsg_dataregion;
/**************************************************************************************/
/* Fast Unsolicited SER Index Lookup */
/**************************************************************************************/
/* Holds user-configurable naming information for Unsolicited Fast SER word bits */
/* that will later be present in an 0xA546 msg with only an index position reference */
typedef struct {
gchar *name; /* Name of Word Bit, 8 chars, null-terminated */
} fastser_uns_wordbit;
/**************************************************************************************/
/* Fast Message Conversation struct */
/**************************************************************************************/
typedef struct {
wmem_list_t *fm_config_frames; /* List contains a fm_config_data struct for each Fast Meter configuration frame */
wmem_list_t *fastmsg_dataitems; /* List contains a fastmsg_dataitem struct for each Fast Message Data Item */
wmem_tree_t *fastmsg_dataregions; /* Tree contains a fastmsg_dataregion struct for each Fast Message Data Region */
wmem_tree_t *fastser_uns_wordbits; /* Tree contains a fastser_uns_wordbit struct for each comma-separated entry in the 'SER List' User Preference */
} fm_conversation;
static const value_string selfm_msgtype_vals[] = {
{ CMD_FAST_MSG, "Fast Message Block" }, /* 0xA546 */
{ CMD_CLEAR_STATBIT, "Clear Status Bits Command" }, /* 0xA5B9 */
{ CMD_RELAY_DEF, "Relay Definition Block" }, /* 0xA5C0 */
{ CMD_FM_CONFIG, "Fast Meter Configuration Block" }, /* 0xA5C1 */
{ CMD_DFM_CONFIG, "Demand Fast Meter Configuration Block" }, /* 0xA5C2 */
{ CMD_PDFM_CONFIG, "Peak Demand Fast Meter Configuration Block" }, /* 0xA5C3 */
{ CMD_FASTOP_RESETDEF, "Fast Operate Reset Definition" }, /* 0xA5CD */
{ CMD_FASTOP_CONFIG, "Fast Operate Configuration" }, /* 0xA5CE */
{ CMD_ALT_FASTOP_CONFIG, "Alternate Fast Operate Configuration" }, /* 0xA5CF */
{ CMD_FM_DATA, "Fast Meter Data Block" }, /* 0xA5D1 */
{ CMD_DFM_DATA, "Demand Fast Meter Data Block" }, /* 0xA5D2 */
{ CMD_PDFM_DATA, "Peak Demand Fast Meter Data Block" }, /* 0xA5D3 */
{ CMD_FASTOP_RB_CTRL, "Fast Operate Remote Bit Control" }, /* 0xA5E0 */
{ CMD_FASTOP_BR_CTRL, "Fast Operate Breaker Bit Control" }, /* 0xA5E3 */
{ CMD_ALT_FASTOP_OPEN, "Alternate Fast Operate Open Breaker Control" }, /* 0xA5E5 */
{ CMD_ALT_FASTOP_CLOSE, "Alternate Fast Operate Close Breaker Control" }, /* 0xA5E6 */
{ CMD_ALT_FASTOP_SET, "Alternate Fast Operate Set Remote Bit Control" }, /* 0xA5E7 */
{ CMD_ALT_FASTOP_CLEAR, "Alternate Fast Operate Clear Remote Bit Control" }, /* 0xA5E8 */
{ CMD_ALT_FASTOP_PULSE, "Alternate Fast Operate Pulse Remote Bit Control" }, /* 0xA5E9 */
{ CMD_FASTOP_RESET, "Fast Operate Reset" }, /* 0xA5ED */
{ 0, NULL }
};
static value_string_ext selfm_msgtype_vals_ext = VALUE_STRING_EXT_INIT(selfm_msgtype_vals);
static const value_string selfm_relaydef_proto_vals[] = {
{ 0x0000, "SEL Fast Meter" },
{ 0x0001, "SEL Limited Multidrop (LMD)" },
{ 0x0002, "Modbus" },
{ 0x0003, "SY/MAX" },
{ 0x0004, "SEL Relay-to-Relay" },
{ 0x0005, "DNP 3.0" },
{ 0x0006, "SEL Mirrored Bits" },
{ 0x0007, "IEEE 37.118 Synchrophasors" },
{ 0x0008, "IEC 61850" },
{ 0x0100, "SEL Fast Meter w/ Fast Operate" },
{ 0x0101, "SEL Limited Multidrop (LMD) w/ Fast Operate" },
{ 0x0200, "SEL Fast Meter w/ Fast Message" },
{ 0x0300, "SEL Fast Meter w/ Fast Operate and Fast Message" },
{ 0x0301, "SEL Limited Multidrop (LMD) w/ Fast Operate and Fast Message" },
{ 0, NULL }
};
static value_string_ext selfm_relaydef_proto_vals_ext = VALUE_STRING_EXT_INIT(selfm_relaydef_proto_vals);
static const value_string selfm_fmconfig_ai_chtype_vals[] = {
{ FM_CONFIG_ANA_CHTYPE_INT16, "16-Bit Integer" },
{ FM_CONFIG_ANA_CHTYPE_FP, "IEEE Floating Point" },
{ FM_CONFIG_ANA_CHTYPE_FPD, "IEEE Floating Point (Double)" },
{ FM_CONFIG_ANA_CHTYPE_TS, "8-byte Time Stamp" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_ai_sftype_vals[] = {
{ FM_CONFIG_ANA_SFTYPE_INT16, "16-Bit Integer" },
{ FM_CONFIG_ANA_SFTYPE_FP, "IEEE Floating Point" },
{ FM_CONFIG_ANA_SFTYPE_FPD, "IEEE Floating Point (Double)" },
{ FM_CONFIG_ANA_SFTYPE_TS, "8-byte Time Stamp" },
{ FM_CONFIG_ANA_SFTYPE_NONE, "None" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_sfloc_vals[] = {
{ FM_CONFIG_SF_LOC_FM, "In Fast Meter Message" },
{ FM_CONFIG_SF_LOC_CFG, "In Configuration Message" },
{ 0, NULL }
};
/* Depending on number of analog samples present in Fast Meter Messages, identification of data will change */
static const value_string selfm_fmconfig_numsamples1_vals[] = {
{ 1, "Magnitudes Only" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_numsamples2_vals[] = {
{ 1, "Imaginary Components" },
{ 2, "Real Components" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_numsamples4_vals[] = {
{ 1, "1st Quarter Cycle Data" },
{ 2, "2nd Quarter Cycle Data" },
{ 3, "5th Quarter-Cycle Data" },
{ 4, "6th Quarter-Cycle Data" },
{ 0, NULL }
};
/* Calculation Block lookup values */
static const value_string selfm_fmconfig_cblk_rot_vals[] = {
{ 0x00, "ABC Rotation" },
{ 0x01, "ACB Rotation" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_cblk_vconn_vals[] = {
{ 0x00, "Y-Connected" },
{ 0x01, "Delta-Connected (in seq. Vab, Vbc, Vca)" },
{ 0x02, "Delta-Connected (in seq. Vac, Vba, Vcb)" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_cblk_iconn_vals[] = {
{ 0x00, "Y-Connected" },
{ 0x01, "Delta-Connected (in seq. Iab, Ibc, Ica)" },
{ 0x02, "Delta-Connected (in seq. Iac, Iba, Icb)" },
{ 0, NULL }
};
static const value_string selfm_fmconfig_cblk_ctype_vals[] = {
{ 0, "Standard Power Calculations" },
{ 1, "2-1/2 Element Delta Power Calculation" },
{ 2, "Voltages-Only" },
{ 3, "Currents-Only" },
{ 4, "Single-Phase Ia and Va Only" },
{ 5, "Standard Power Calcs with 2 sets of Currents" },
{ 6, "2-1/2 Element Delta Power Calcs with 2 sets of Currents" },
{ 0, NULL }
};
/* Fast Operate Remote Bit 'Pulse Supported' Lookup */
static const value_string selfm_foconfig_prb_supp_vals[] = {
{ 0x00, "No" },
{ 0x01, "Yes" },
{ 0, NULL }
};
/* SER Status Value Lookup */
static const value_string selfm_ser_status_vals[] = {
{ 0x00, "Deasserted" },
{ 0x01, "Asserted" },
{ 0, NULL }
};
/* Fast Operate Remote Bit Lookup */
static const value_string selfm_fo_rb_vals[] = {
{ 0x00, "RB01 Clear" },
{ 0x01, "RB02 Clear" },
{ 0x02, "RB03 Clear" },
{ 0x03, "RB04 Clear" },
{ 0x04, "RB05 Clear" },
{ 0x05, "RB06 Clear" },
{ 0x06, "RB07 Clear" },
{ 0x07, "RB08 Clear" },
{ 0x08, "RB09 Clear" },
{ 0x09, "RB10 Clear" },
{ 0x0A, "RB11 Clear" },
{ 0x0B, "RB12 Clear" },
{ 0x0C, "RB13 Clear" },
{ 0x0D, "RB14 Clear" },
{ 0x0E, "RB15 Clear" },
{ 0x0F, "RB16 Clear" },
{ 0x10, "RB17 Clear" },
{ 0x11, "RB18 Clear" },
{ 0x12, "RB19 Clear" },
{ 0x13, "RB20 Clear" },
{ 0x14, "RB21 Clear" },
{ 0x15, "RB22 Clear" },
{ 0x16, "RB23 Clear" },
{ 0x17, "RB24 Clear" },
{ 0x18, "RB25 Clear" },
{ 0x19, "RB26 Clear" },
{ 0x1A, "RB27 Clear" },
{ 0x1B, "RB28 Clear" },
{ 0x1C, "RB29 Clear" },
{ 0x1D, "RB30 Clear" },
{ 0x1E, "RB31 Clear" },
{ 0x1F, "RB32 Clear" },
{ 0x20, "RB01 Set" },
{ 0x21, "RB02 Set" },
{ 0x22, "RB03 Set" },
{ 0x23, "RB04 Set" },
{ 0x24, "RB05 Set" },
{ 0x25, "RB06 Set" },
{ 0x26, "RB07 Set" },
{ 0x27, "RB08 Set" },
{ 0x28, "RB09 Set" },
{ 0x29, "RB10 Set" },
{ 0x2A, "RB11 Set" },
{ 0x2B, "RB12 Set" },
{ 0x2C, "RB13 Set" },
{ 0x2D, "RB14 Set" },
{ 0x2E, "RB15 Set" },
{ 0x2F, "RB16 Set" },
{ 0x30, "RB17 Set" },
{ 0x31, "RB18 Set" },
{ 0x32, "RB19 Set" },
{ 0x33, "RB20 Set" },
{ 0x34, "RB21 Set" },
{ 0x35, "RB22 Set" },
{ 0x36, "RB23 Set" },
{ 0x37, "RB24 Set" },
{ 0x38, "RB25 Set" },
{ 0x39, "RB26 Set" },
{ 0x3A, "RB27 Set" },
{ 0x3B, "RB28 Set" },
{ 0x3C, "RB29 Set" },
{ 0x3D, "RB30 Set" },
{ 0x3E, "RB31 Set" },
{ 0x3F, "RB32 Set" },
{ 0x40, "RB01 Pulse" },
{ 0x41, "RB02 Pulse" },
{ 0x42, "RB03 Pulse" },
{ 0x43, "RB04 Pulse" },
{ 0x44, "RB05 Pulse" },
{ 0x45, "RB06 Pulse" },
{ 0x46, "RB07 Pulse" },
{ 0x47, "RB08 Pulse" },
{ 0x48, "RB09 Pulse" },
{ 0x49, "RB10 Pulse" },
{ 0x4A, "RB11 Pulse" },
{ 0x4B, "RB12 Pulse" },
{ 0x4C, "RB13 Pulse" },
{ 0x4D, "RB14 Pulse" },
{ 0x4E, "RB15 Pulse" },
{ 0x4F, "RB16 Pulse" },
{ 0x50, "RB17 Pulse" },
{ 0x51, "RB18 Pulse" },
{ 0x52, "RB19 Pulse" },
{ 0x53, "RB20 Pulse" },
{ 0x54, "RB21 Pulse" },
{ 0x55, "RB22 Pulse" },
{ 0x56, "RB23 Pulse" },
{ 0x57, "RB24 Pulse" },
{ 0x58, "RB25 Pulse" },
{ 0x59, "RB26 Pulse" },
{ 0x5A, "RB27 Pulse" },
{ 0x5B, "RB28 Pulse" },
{ 0x5C, "RB29 Pulse" },
{ 0x5D, "RB30 Pulse" },
{ 0x5E, "RB31 Pulse" },
{ 0x5F, "RB32 Pulse" },
{ 0, NULL }
};
static value_string_ext selfm_fo_rb_vals_ext = VALUE_STRING_EXT_INIT(selfm_fo_rb_vals);
/* Fast Operate Breaker Bit Lookup */
static const value_string selfm_fo_br_vals[] = {
{ 0x11, "Breaker Bit 1 Close (CC/CC1)" },
{ 0x12, "Breaker Bit 2 Close (CC2)" },
{ 0x13, "Breaker Bit 3 Close (CC3)" },
{ 0x14, "Breaker Bit 4 Close (CC4)" },
{ 0x15, "Breaker Bit 5 Close (CC5)" },
{ 0x16, "Breaker Bit 6 Close (CC6)" },
{ 0x17, "Breaker Bit 7 Close (CC7)" },
{ 0x18, "Breaker Bit 8 Close (CC8)" },
{ 0x19, "Breaker Bit 9 Close (CC9)" },
{ 0x1A, "Breaker Bit 10 Close (CC10)" },
{ 0x1B, "Breaker Bit 11 Close (CC11)" },
{ 0x1C, "Breaker Bit 12 Close (CC12)" },
{ 0x1D, "Breaker Bit 13 Close (CC13)" },
{ 0x1E, "Breaker Bit 14 Close (CC14)" },
{ 0x1F, "Breaker Bit 15 Close (CC15)" },
{ 0x20, "Breaker Bit 16 Close (CC16)" },
{ 0x21, "Breaker Bit 17 Close (CC17)" },
{ 0x22, "Breaker Bit 18 Close (CC18)" },
{ 0x31, "Breaker Bit 1 Open (OC/OC1)" },
{ 0x32, "Breaker Bit 2 Open (OC2)" },
{ 0x33, "Breaker Bit 3 Open (OC3)" },
{ 0x34, "Breaker Bit 4 Open (OC4)" },
{ 0x35, "Breaker Bit 5 Open (OC5)" },
{ 0x36, "Breaker Bit 6 Open (OC6)" },
{ 0x37, "Breaker Bit 7 Open (OC7)" },
{ 0x38, "Breaker Bit 8 Open (OC8)" },
{ 0x39, "Breaker Bit 9 Open (OC9)" },
{ 0x3A, "Breaker Bit 10 Open (OC10)" },
{ 0x3B, "Breaker Bit 11 Open (OC11)" },
{ 0x3C, "Breaker Bit 12 Open (OC12)" },
{ 0x3D, "Breaker Bit 13 Open (OC13)" },
{ 0x3E, "Breaker Bit 14 Open (OC14)" },
{ 0x3F, "Breaker Bit 15 Open (OC15)" },
{ 0x40, "Breaker Bit 16 Open (OC16)" },
{ 0x41, "Breaker Bit 17 Open (OC17)" },
{ 0x42, "Breaker Bit 18 Open (OC18)" },
{ 0, NULL }
};
static value_string_ext selfm_fo_br_vals_ext = VALUE_STRING_EXT_INIT(selfm_fo_br_vals);
/* Alternate Fast Operate Function Code Lookup */
static const value_string selfm_foconfig_alt_funccode_vals[] = {
{ 0xE5, "Open Breaker Bit" },
{ 0xE6, "Close Breaker Bit" },
{ 0xE7, "Set Remote Bit" },
{ 0xE8, "Clear Remote Bit" },
{ 0xE9, "Pulse Remote Bit" },
{ 0x00, "Unsupported" },
{ 0, NULL }
};
/* Fast Message Function Codes */
static const value_string selfm_fastmsg_func_code_vals[] = {
{ FAST_MSG_CFG_BLOCK, "Fast Message Configuration Block Request" },
{ FAST_MSG_EN_UNS_DATA, "Enable Unsolicited Data" },
{ FAST_MSG_DIS_UNS_DATA, "Disable Unsolicited Data" },
{ FAST_MSG_PING, "Ping Message" },
{ FAST_MSG_READ_REQ, "Read Request" },
{ FAST_MSG_GEN_UNS_DATA, "Generic Unsolicited Data" },
{ FAST_MSG_SOE_STATE_REQ, "SOE Present State Request" },
{ FAST_MSG_UNS_RESP, "Unsolicited Fast SER Data Response" },
{ FAST_MSG_UNS_WRITE, "Unsolicited Write" },
{ FAST_MSG_UNS_WRITE_REQ, "Unsolicited Write Request" },
{ FAST_MSG_DEVDESC_REQ, "Device Description Request" },
{ FAST_MSG_DATAFMT_REQ, "Data Format Request" },
{ FAST_MSG_UNS_DATAFMT_RESP, "Unsolicited Data Format Response" },
{ FAST_MSG_BITLABEL_REQ, "Bit Label Request" },
{ FAST_MSG_MGMT_REQ, "Management Request" },
{ FAST_MSG_CFG_BLOCK_RESP, "Fast Message Configuration Block Response" },
{ FAST_MSG_EN_UNS_DATA_ACK, "Enable Unsolicited Data ACK" },
{ FAST_MSG_DIS_UNS_DATA_ACK, "Disable Unsolicited Data ACK" },
{ FAST_MSG_PING_ACK, "Ping Message ACK" },
{ FAST_MSG_READ_RESP, "Read Response" },
{ FAST_MSG_SOE_STATE_RESP, "SOE Present State Response" },
{ FAST_MSG_UNS_RESP_ACK, "Unsolicited Fast SER Data Response ACK" },
{ FAST_MSG_DEVDESC_RESP, "Device Description Response" },
{ FAST_MSG_DATAFMT_RESP, "Data Format Response" },
{ FAST_MSG_BITLABEL_RESP, "Bit Label Response" },
{ 0, NULL }
};
static value_string_ext selfm_fastmsg_func_code_vals_ext =
VALUE_STRING_EXT_INIT(selfm_fastmsg_func_code_vals);
static const value_string selfm_fastmsg_tagtype_vals[] = {
{ FAST_MSG_TAGTYPE_CHAR8, "1 x 8-bit character per item" },
{ FAST_MSG_TAGTYPE_CHAR16, "2 x 8-bit characters per item" },
{ FAST_MSG_TAGTYPE_DIGWORD8_BL, "8-bit binary item, with labels" },
{ FAST_MSG_TAGTYPE_DIGWORD8, "8-bit binary item, without labels" },
{ FAST_MSG_TAGTYPE_DIGWORD16_BL, "16-bit binary item, with labels" },
{ FAST_MSG_TAGTYPE_DIGWORD16, "16-bit binary item, without labels" },
{ FAST_MSG_TAGTYPE_INT16, "16-bit Signed Integer" },
{ FAST_MSG_TAGTYPE_UINT16, "16-bit Unsigned Integer" },
{ FAST_MSG_TAGTYPE_INT32, "32-bit Signed Integer" },
{ FAST_MSG_TAGTYPE_UINT32, "32-bit Unsigned Integer" },
{ FAST_MSG_TAGTYPE_FLOAT, "IEEE Floating Point" },
{ 0, NULL }
};
/* Fast Message Unsolicited Write COM Port Codes */
static const value_string selfm_fastmsg_unswrite_com_vals[] = {
{ 0x0100, "COM01" },
{ 0x0200, "COM02" },
{ 0x0300, "COM03" },
{ 0x0400, "COM04" },
{ 0x0500, "COM05" },
{ 0x0600, "COM06" },
{ 0x0700, "COM07" },
{ 0x0800, "COM08" },
{ 0x0900, "COM09" },
{ 0x0A00, "COM10" },
{ 0x0B00, "COM11" },
{ 0x0C00, "COM12" },
{ 0x0D00, "COM13" },
{ 0x0E00, "COM14" },
{ 0x0F00, "COM15" },
{ 0, NULL }
};
static value_string_ext selfm_fastmsg_unswrite_com_vals_ext =
VALUE_STRING_EXT_INIT(selfm_fastmsg_unswrite_com_vals);
/* Tables for reassembly of fragments. */
static reassembly_table selfm_reassembly_table;
/* ************************************************************************* */
/* Header values for reassembly */
/* ************************************************************************* */
static int hf_selfm_fragment = -1;
static int hf_selfm_fragments = -1;
static int hf_selfm_fragment_overlap = -1;
static int hf_selfm_fragment_overlap_conflict = -1;
static int hf_selfm_fragment_multiple_tails = -1;
static int hf_selfm_fragment_too_long_fragment = -1;
static int hf_selfm_fragment_error = -1;
static int hf_selfm_fragment_count = -1;
static int hf_selfm_fragment_reassembled_in = -1;
static int hf_selfm_fragment_reassembled_length = -1;
static gint ett_selfm_fragment = -1;
static gint ett_selfm_fragments = -1;
static const fragment_items selfm_frag_items = {
&ett_selfm_fragment,
&ett_selfm_fragments,
&hf_selfm_fragments,
&hf_selfm_fragment,
&hf_selfm_fragment_overlap,
&hf_selfm_fragment_overlap_conflict,
&hf_selfm_fragment_multiple_tails,
&hf_selfm_fragment_too_long_fragment,
&hf_selfm_fragment_error,
&hf_selfm_fragment_count,
&hf_selfm_fragment_reassembled_in,
&hf_selfm_fragment_reassembled_length,
/* Reassembled data field */
NULL,
"SEL Fast Message fragments"
};
/**********************************************************************************************************/
/* Clean all instances of 0xFFFF from Telnet payload to compensate for IAC control code (replace w/ 0xFF) */
/* Function Duplicated from packet-telnet.c (unescape_and_tvbuffify_telnet_option) */
/**********************************************************************************************************/
static tvbuff_t *
clean_telnet_iac(packet_info *pinfo, tvbuff_t *tvb, int offset, int len)
{
tvbuff_t *telnet_tvb;
guint8 *buf;
const guint8 *spos;
guint8 *dpos;
int skip_byte, len_remaining;
spos=tvb_get_ptr(tvb, offset, len);
buf=(guint8 *)wmem_alloc(pinfo->pool, len);
dpos=buf;
skip_byte = 0;
len_remaining = len;
while(len_remaining > 0){
/* Only analyze two sequential bytes of source tvb if we have at least two bytes left */
if (len_remaining > 1) {
/* If two sequential 0xFF's exist, increment skip_byte counter, decrement */
/* len_remaining by 2 and copy a single 0xFF to dest tvb. */
if((spos[0]==0xff) && (spos[1]==0xff)){
skip_byte++;
len_remaining -= 2;
*(dpos++)=0xff;
spos+=2;
continue;
}
}
/* If we only have a single byte left, or there were no sequential 0xFF's, copy byte from src tvb to dest tvb */
*(dpos++)=*(spos++);
len_remaining--;
}
telnet_tvb = tvb_new_child_real_data(tvb, buf, len-skip_byte, len-skip_byte);
add_new_data_source(pinfo, telnet_tvb, "Processed Telnet Data");
return telnet_tvb;
}
/******************************************************************************************************/
/* Execute dissection of Fast Meter configuration frames independent of any GUI access of said frames */
/* Load configuration information into fm_config_frame struct */
/******************************************************************************************************/
static fm_config_frame* fmconfig_frame_fast(tvbuff_t *tvb)
{
/* Set up structures needed to add the protocol subtree and manage it */
guint count, offset = 0;
fm_config_frame *frame;
/* get a new frame and initialize it */
frame = wmem_new(wmem_file_scope(), fm_config_frame);
/* Get data packet setup information from config message and copy into ai_info (if required) */
frame->cfg_cmd = tvb_get_ntohs(tvb, offset);
/* skip length byte, position offset+2 */
frame->num_flags = tvb_get_guint8(tvb, offset+3);
frame->sf_loc = tvb_get_guint8(tvb, offset+4);
frame->sf_num = tvb_get_guint8(tvb, offset+5);
frame->num_ai = tvb_get_guint8(tvb, offset+6);
frame->num_ai_samples = tvb_get_guint8(tvb, offset+7);
frame->num_dig = tvb_get_guint8(tvb, offset+8);
frame->num_calc = tvb_get_guint8(tvb, offset+9);
/* Update offset pointer */
offset += 10;
/* Get data packet analog/timestamp/digital offsets and copy into ai_info */
frame->offset_ai = tvb_get_ntohs(tvb, offset);
frame->offset_ts = tvb_get_ntohs(tvb, offset+2);
frame->offset_dig = tvb_get_ntohs(tvb, offset+4);
/* Update offset pointer */
offset += 6;
frame->analogs = (fm_analog_info *)wmem_alloc(wmem_file_scope(), frame->num_ai * sizeof(fm_analog_info));
/* Get AI Channel Details and copy into ai_info */
for (count = 0; count < frame->num_ai; count++) {
fm_analog_info *analog = &(frame->analogs[count]);
tvb_memcpy(tvb, analog->name, offset, FM_CONFIG_ANA_CHNAME_LEN);
analog->name[FM_CONFIG_ANA_CHNAME_LEN] = '\0'; /* Put a terminating null onto the end of the AI Channel name */
analog->type = tvb_get_guint8(tvb, offset+6);
analog->sf_type = tvb_get_guint8(tvb, offset+7);
analog->sf_offset = tvb_get_ntohs(tvb, offset+8);
/* If Scale Factors are present in the cfg message, retrieve and store them per analog */
/* Otherwise, default to Scale Factor of 1 for now */
if (frame->sf_loc == FM_CONFIG_SF_LOC_CFG) {
analog->sf_fp = tvb_get_ntohieee_float(tvb, analog->sf_offset);
}
else {
analog->sf_fp = 1;
}
offset += 10;
}
return frame;
}
/******************************************************************************************************/
/* Execute dissection of Data Item definition info before loading GUI tree */
/* Load configuration information into fastmsg_dataitem struct */
/******************************************************************************************************/
static fastmsg_dataitem* fastmsg_dataitem_save(tvbuff_t *tvb, int offset)
{
fastmsg_dataitem *dataitem;
/* get a new dataitem and initialize it */
dataitem = wmem_new(wmem_file_scope(), fastmsg_dataitem);
/* retrieve data item name and terminate with a null */
tvb_memcpy(tvb, dataitem->name, offset, 10);
dataitem->name[10] = '\0'; /* Put a terminating null onto the end of the string */
/* retrieve data item quantity and type */
dataitem->quantity = tvb_get_ntohs(tvb, offset+10);
dataitem->data_type = tvb_get_ntohs(tvb, offset+12);
return dataitem;
}
/******************************************************************************************************/
/* Execute dissection of Data Region definition info before loading GUI tree */
/* Load configuration information into fastmsg_dataregion struct */
/******************************************************************************************************/
static fastmsg_dataregion* fastmsg_dataregion_save(tvbuff_t *tvb, int offset)
{
fastmsg_dataregion *dataregion;
/* get a new dataregion and initialize it */
dataregion = wmem_new(wmem_file_scope(), fastmsg_dataregion);
/* retrieve data region name and terminate with a null */
tvb_memcpy(tvb, dataregion->name, offset, 10);
dataregion->name[10] = '\0'; /* Put a terminating null onto the end of the string */
return dataregion;
}
/********************************************************************************************************/
/* Lookup region name using current base address & saved conversation data. Return ptr to gchar string */
/********************************************************************************************************/
static const gchar*
region_lookup(packet_info *pinfo, guint32 base_addr)
{
fm_conversation *conv;
fastmsg_dataregion *dataregion = NULL;
conv = (fm_conversation *)p_get_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0);
if (conv) {
dataregion = (fastmsg_dataregion*)wmem_tree_lookup32(conv->fastmsg_dataregions, base_addr);
}
if (dataregion) {
return dataregion->name;
}
/* If we couldn't identify the region using the current base address, return a default string */
return "Unknown Region";
}
/***********************************************************************************************************/
/* Create Fast SER Unsolicited Word Bit item. Return item to calling function. 'index' parameter */
/* will be used to store 'name' parameter in lookup tree. Index 254 and 255 are special (hardcoded) cases */
/***********************************************************************************************************/
static fastser_uns_wordbit* fastser_uns_wordbit_save(guint8 idx, const char *name)
{
fastser_uns_wordbit *wordbit_item;
/* get a new wordbit_item and initialize it */
wordbit_item = wmem_new(wmem_file_scope(), fastser_uns_wordbit);
if (idx <= 253) {
wordbit_item->name = wmem_strdup(wmem_file_scope(), name);
}
if (idx == 254) {
wordbit_item->name = wmem_strdup(wmem_file_scope(), "POWER_UP");
}
if (idx == 255) {
wordbit_item->name = wmem_strdup(wmem_file_scope(), "SET_CHNG");
}
return wordbit_item;
}
/***************************************************************************************************************/
/* Lookup uns wordbit name using current index position & saved conversation data. Return ptr to gchar string */
/***************************************************************************************************************/
static const gchar*
fastser_uns_wordbit_lookup(packet_info *pinfo, guint8 idx)
{
fm_conversation *conv;
fastser_uns_wordbit *wordbit = NULL;
conv = (fm_conversation *)p_get_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0);
if (conv) {
wordbit = (fastser_uns_wordbit*)wmem_tree_lookup32(conv->fastser_uns_wordbits, idx);
}
if (wordbit) {
return wordbit->name;
}
/* If we couldn't identify the bit using the index, return a default string */
return "Unknown";
}
/******************************************************************************************************/
/* Code to Dissect Relay Definition Frames */
/******************************************************************************************************/
static int
dissect_relaydef_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *relaydef_fm_item, *relaydef_flags_item, *relaydef_proto_item;
proto_tree *relaydef_tree, *relaydef_fm_tree, *relaydef_flags_tree, *relaydef_proto_tree;
guint8 len, num_proto, num_fm, num_flags;
int count;
len = tvb_get_guint8(tvb, offset);
num_proto = tvb_get_guint8(tvb, offset+1);
num_fm = tvb_get_guint8(tvb, offset+2);
num_flags = tvb_get_guint8(tvb, offset+3);
/* Add items to protocol tree specific to Relay Definition Block */
relaydef_tree = proto_tree_add_subtree(tree, tvb, offset, len-2, ett_selfm_relaydef, NULL, "Relay Definition Block Details");
/* Reported length */
proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Reported Number of Protocols Supported */
relaydef_proto_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numproto, tvb, offset+1, 1, ENC_BIG_ENDIAN);
relaydef_proto_tree = proto_item_add_subtree(relaydef_proto_item, ett_selfm_relaydef_proto);
/* Reported Number of Fast Meter Commands Supported */
relaydef_fm_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numfm, tvb, offset+2, 1, ENC_BIG_ENDIAN);
relaydef_fm_tree = proto_item_add_subtree(relaydef_fm_item, ett_selfm_relaydef_fm);
/* Reported Number of Status Bit Flags Supported */
relaydef_flags_item = proto_tree_add_item(relaydef_tree, hf_selfm_relaydef_numflags, tvb, offset+3, 1, ENC_BIG_ENDIAN);
relaydef_flags_tree = proto_item_add_subtree(relaydef_flags_item, ett_selfm_relaydef_flags);
/* Get our offset up-to-date */
offset += 4;
/* Add each reported Fast Meter cfg/data message */
for (count = 1; count <= num_fm; count++) {
proto_tree_add_item(relaydef_fm_tree, hf_selfm_relaydef_fmcfg_cmd, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(relaydef_fm_tree, hf_selfm_relaydef_fmdata_cmd, tvb, offset+2, 2, ENC_BIG_ENDIAN);
offset += 4;
}
/* Add each reported status bit flag, along with corresponding response command */
for (count = 1; count <= num_flags; count++) {
proto_tree_add_item(relaydef_flags_tree, hf_selfm_relaydef_statbit, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(relaydef_flags_tree, hf_selfm_relaydef_statbit_cmd, tvb, offset+2, 6, ENC_NA);
offset += 8;
}
/* Add each supported protocol */
for (count = 1; count <= num_proto; count++) {
proto_tree_add_item(relaydef_proto_tree, hf_selfm_relaydef_proto, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
/* Add Pad byte (if present) and checksum */
if (tvb_reported_length_remaining(tvb, offset) > 1) {
proto_tree_add_item(relaydef_tree, hf_selfm_padbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
proto_tree_add_checksum(relaydef_tree, tvb, offset, hf_selfm_checksum, -1, NULL, NULL, 0, ENC_BIG_ENDIAN, PROTO_CHECKSUM_NO_FLAGS);
return tvb_reported_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect Fast Meter Configuration Frames */
/******************************************************************************************************/
static int
dissect_fmconfig_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_tree *fmconfig_tree, *fmconfig_ai_tree=NULL, *fmconfig_calc_tree=NULL;
guint count;
guint8 len, sf_loc, num_sf, num_ai, num_calc;
gchar* ai_name;
len = tvb_get_guint8(tvb, offset);
/* skip num_flags, position offset+1 */
sf_loc = tvb_get_guint8(tvb, offset+2);
num_sf = tvb_get_guint8(tvb, offset+3);
num_ai = tvb_get_guint8(tvb, offset+4);
/* skip num_samp, position offset+5 */
/* skip num_dig, position offset+6 */
num_calc = tvb_get_guint8(tvb, offset+7);
fmconfig_tree = proto_tree_add_subtree(tree, tvb, offset, len, ett_selfm_fmconfig, NULL, "Fast Meter Configuration Details");
/* Add items to protocol tree specific to Fast Meter Configuration Block */
/* Get Setup Information for FM Config Block */
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_numflags, tvb, offset+1, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_loc_sf, tvb, offset+2, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_sf, tvb, offset+3, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_ai, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_samp, tvb, offset+5, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_dig, tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_num_calc, tvb, offset+7, 1, ENC_BIG_ENDIAN);
/* Update offset pointer */
offset += 8;
/* Add data packet offsets to tree and update offset pointer */
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_ai, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_ts, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ofs_dig, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
/* Get AI Channel Details */
for (count = 0; count < num_ai; count++) {
ai_name = tvb_get_string_enc(wmem_packet_scope(), tvb, offset, 6, ENC_ASCII);
fmconfig_ai_tree = proto_tree_add_subtree_format(fmconfig_tree, tvb, offset, 10,
ett_selfm_fmconfig_ai, NULL, "Analog Channel: %s", ai_name);
/* Add Channel Name, Channel Data Type, Scale Factor Type and Scale Factor Offset to tree */
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_channel, tvb, offset, 6, ENC_ASCII|ENC_NA);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_type, tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_sf_type, tvb, offset+7, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_ai_tree, hf_selfm_fmconfig_ai_sf_ofs, tvb, offset+8, 2, ENC_BIG_ENDIAN);
/* Update Offset Pointer */
offset += 10;
}
/* 14-byte Calculation block instances based on num_calc */
for (count = 0; count < num_calc; count++) {
fmconfig_calc_tree = proto_tree_add_subtree_format(fmconfig_tree, tvb, offset, 14,
ett_selfm_fmconfig_calc, NULL, "Calculation Block: %d", count+1);
/* Rotation, Voltage Connection and Current Connection are all bit-masked on the same byte */
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_rot, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_vconn, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_iconn, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_ctype, tvb, offset+1, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_deskew_ofs, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_rs_ofs, tvb, offset+4, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_xs_ofs, tvb, offset+6, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_ia_idx, tvb, offset+8, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_ib_idx, tvb, offset+9, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_ic_idx, tvb, offset+10, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_va_idx, tvb, offset+11, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_vb_idx, tvb, offset+12, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmconfig_calc_tree, hf_selfm_fmconfig_cblk_vc_idx, tvb, offset+13, 1, ENC_BIG_ENDIAN);
offset += 14;
}
/* Add Config Message Scale Factor(s) (if present) */
if ((num_sf != 0) && (sf_loc == FM_CONFIG_SF_LOC_CFG)) {
for (count = 0; count < num_sf; count++) {
proto_tree_add_item(fmconfig_tree, hf_selfm_fmconfig_ai_sf_float, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
}
}
/* Add Pad byte (if present) and checksum */
if (tvb_reported_length_remaining(tvb, offset) > 1) {
proto_tree_add_item(fmconfig_tree, hf_selfm_padbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
proto_tree_add_checksum(fmconfig_tree, tvb, offset, hf_selfm_checksum, -1, NULL, NULL, 0, ENC_BIG_ENDIAN, PROTO_CHECKSUM_NO_FLAGS);
return tvb_reported_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect Fast Meter Data Frames */
/* Formatting depends heavily on previously-encountered Configuration Frames so search array instances for them */
/******************************************************************************************************/
static int
dissect_fmdata_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset, guint16 config_cmd_match)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fmdata_item, *fmdata_dig_ch_item;
proto_item *fmdata_ai_sf_item;
proto_tree *fmdata_tree, *fmdata_ai_tree=NULL, *fmdata_dig_tree=NULL, *fmdata_ai_ch_tree=NULL, *fmdata_dig_ch_tree=NULL;
guint8 len, idx=0, j=0, ts_mon, ts_day, ts_year, ts_hour, ts_min, ts_sec;
guint16 config_cmd, ts_msec;
gint16 ai_int16val;
gint cnt = 0, ch_size=0;
gfloat ai_sf_fp;
gboolean config_found = FALSE;
fm_conversation *conv;
fm_config_frame *cfg_data = NULL;
len = tvb_get_guint8(tvb, offset);
fmdata_tree = proto_tree_add_subtree_format(tree, tvb, offset, len-2, ett_selfm_fmdata, &fmdata_item, "Fast Meter Data Details");
/* Reported length */
proto_tree_add_item(fmdata_tree, hf_selfm_fmdata_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Search for previously-encountered Configuration information to dissect the frame */
{
conv = (fm_conversation *)p_get_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0);
if (conv) {
wmem_list_frame_t *frame = wmem_list_head(conv->fm_config_frames);
/* Cycle through possible instances of multiple fm_config_data_blocks, looking for match */
while (frame && !config_found) {
cfg_data = (fm_config_frame *)wmem_list_frame_data(frame);
config_cmd = cfg_data->cfg_cmd;
/* If the stored config_cmd matches the expected one we are looking for, mark that the config data was found */
if (config_cmd == config_cmd_match) {
proto_item_append_text(fmdata_item, ", using frame number %"G_GUINT32_FORMAT" as Configuration Frame",
cfg_data->fnum);
config_found = TRUE;
}
frame = wmem_list_frame_next(frame);
}
if (config_found) {
/* Retrieve number of Status Flag bytes and setup tree */
if (cfg_data->num_flags == 1){
proto_tree_add_item(fmdata_tree, hf_selfm_fmdata_flagbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
/*offset += 1;*/
}
cnt = cfg_data->num_ai; /* actual number of analog values to available to dissect */
/* Update our current tvb offset to the actual AI offset saved from the Configuration message */
offset = cfg_data->offset_ai;
/* Check that we actually have analog data to dissect */
if (cnt > 0) {
/* Include decoding for each Sample provided for the Analog Channels */
for (j=0; j < cfg_data->num_ai_samples; j++) {
/* Use different lookup strings, depending on how many samples are available per Analog Channel */
if (cfg_data->num_ai_samples == 1) {
fmdata_ai_tree = proto_tree_add_subtree_format(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
ett_selfm_fmdata_ai, NULL, "Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples1_vals, "Unknown"));
}
else if (cfg_data->num_ai_samples == 2) {
fmdata_ai_tree = proto_tree_add_subtree_format(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
ett_selfm_fmdata_ai, NULL, "Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples2_vals, "Unknown"));
}
else if (cfg_data->num_ai_samples == 4) {
fmdata_ai_tree = proto_tree_add_subtree_format(fmdata_tree, tvb, offset, ((cfg_data->offset_ts - cfg_data->offset_ai)/cfg_data->num_ai_samples),
ett_selfm_fmdata_ai, NULL, "Analog Channels (%d), Sample: %d (%s)",
cfg_data->num_ai, j+1, val_to_str_const(j+1, selfm_fmconfig_numsamples4_vals, "Unknown"));
}
/* For each analog channel we encounter... */
for (idx = 0; idx < cnt; idx++) {
fm_analog_info *ai = &(cfg_data->analogs[idx]);
/* Channel size (in bytes) determined by data type */
switch (ai->type) {
case FM_CONFIG_ANA_CHTYPE_INT16:
ch_size = 2; /* 2 bytes */
break;
case FM_CONFIG_ANA_CHTYPE_FP:
ch_size = 4; /* 4 bytes */
break;
case FM_CONFIG_ANA_CHTYPE_FPD:
ch_size = 8; /* 8 bytes */
break;
default:
break;
}
/* Build sub-tree for each Analog Channel */
fmdata_ai_ch_tree = proto_tree_add_subtree_format(fmdata_ai_tree, tvb, offset, ch_size,
ett_selfm_fmdata_ai_ch, NULL, "Analog Channel %d: %s", idx+1, ai->name);
/* XXX - Need more decoding options here for different data types, but I need packet capture examples first */
/* Decode analog value appropriately, according to data type */
switch (ai->type) {
/* Channel type is 16-bit Integer */
case FM_CONFIG_ANA_CHTYPE_INT16:
ai_int16val = tvb_get_ntohs(tvb, offset);
/* If we've got a scale factor, apply it before printing the analog */
/* For scale factors present in the Fast Meter Data message... */
if ((ai->sf_offset != 0) && (ai->sf_type == FM_CONFIG_ANA_SFTYPE_FP) && (cfg_data->sf_loc == FM_CONFIG_SF_LOC_FM)) {
ai_sf_fp = tvb_get_ntohieee_float(tvb, ai->sf_offset);
proto_tree_add_float(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_sf_fp, tvb, ai->sf_offset, 4, ai_sf_fp);
}
/* For scale factors present in the Fast Meter Configuration Message... */
else if (cfg_data->sf_loc == FM_CONFIG_SF_LOC_CFG) {
ai_sf_fp = ai->sf_fp;
fmdata_ai_sf_item = proto_tree_add_float(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_sf_fp, tvb, offset, ch_size, ai_sf_fp);
PROTO_ITEM_SET_GENERATED(fmdata_ai_sf_item);
}
/* If there was no scale factor, default value to 1 */
else {
ai_sf_fp = 1;
}
proto_tree_add_uint(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_value16, tvb, offset, ch_size, ai_int16val);
proto_tree_add_float(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_scale_factor, tvb, offset, ch_size, ((gfloat)ai_int16val*ai_sf_fp));
offset += ch_size;
break;
/* Channel type is IEEE Floating point */
case FM_CONFIG_ANA_CHTYPE_FP:
proto_tree_add_item(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_value_float, tvb, offset, ch_size, ENC_BIG_ENDIAN);
offset += ch_size;
break;
/* Channel type is Double IEEE Floating point */
case FM_CONFIG_ANA_CHTYPE_FPD:
proto_tree_add_item(fmdata_ai_ch_tree, hf_selfm_fmdata_ai_value_double, tvb, offset, ch_size, ENC_BIG_ENDIAN);
offset += ch_size;
break;
} /* channel type */
} /* number of analog channels */
} /* number of samples */
} /* there were analogs */
/* Check if we have a time-stamp in this message */
if (cfg_data->offset_ts != 0xFFFF) {
/* Retrieve timestamp from 8-byte format */
/* Stored as: month, day, year (xx), hr, min, sec, msec (16-bit) */
ts_mon = tvb_get_guint8(tvb, offset);
ts_day = tvb_get_guint8(tvb, offset+1);
ts_year = tvb_get_guint8(tvb, offset+2);
ts_hour = tvb_get_guint8(tvb, offset+3);
ts_min = tvb_get_guint8(tvb, offset+4);
ts_sec = tvb_get_guint8(tvb, offset+5);
ts_msec = tvb_get_ntohs(tvb, offset+6);
proto_tree_add_bytes_format_value(fmdata_tree, hf_selfm_fmdata_timestamp, tvb, offset, 8, NULL,
"%.2d/%.2d/%.2d %.2d:%.2d:%.2d.%.3d", ts_mon, ts_day, ts_year, ts_hour, ts_min, ts_sec, ts_msec);
offset += 8;
}
/* Check that we actually have digital data */
if (cfg_data->num_dig > 0) {
fmdata_dig_tree = proto_tree_add_subtree_format(fmdata_tree, tvb, offset, cfg_data->num_dig,
ett_selfm_fmdata_dig, NULL, "Digital Channels (%d)", cfg_data->num_dig);
for (idx=0; idx < cfg_data->num_dig; idx++) {
fmdata_dig_ch_tree = proto_tree_add_subtree_format(fmdata_dig_tree, tvb, offset, 1, ett_selfm_fmdata_dig_ch, &fmdata_dig_ch_item, "Digital Word Bit Row: %2d", idx+1);
/* Display the bit pattern on the digital channel proto_item */
proto_item_append_text(fmdata_dig_ch_item, " [ %d %d %d %d %d %d %d %d ]",
((tvb_get_guint8(tvb, offset) & 0x80) >> 7), ((tvb_get_guint8(tvb, offset) & 0x40) >> 6),
((tvb_get_guint8(tvb, offset) & 0x20) >> 5), ((tvb_get_guint8(tvb, offset) & 0x10) >> 4),
((tvb_get_guint8(tvb, offset) & 0x08) >> 3), ((tvb_get_guint8(tvb, offset) & 0x04) >> 2),
((tvb_get_guint8(tvb, offset) & 0x02) >> 1), (tvb_get_guint8(tvb, offset) & 0x01));
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b0, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b1, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b2, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b3, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b4, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b5, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b6, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_ch_tree, hf_selfm_fmdata_dig_b7, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
} /* digital data was available */
/* Add Pad byte (if present) and checksum */
if (tvb_reported_length_remaining(tvb, offset) > 1) {
proto_tree_add_item(fmdata_tree, hf_selfm_padbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
proto_tree_add_checksum(fmdata_tree, tvb, offset, hf_selfm_checksum, -1, NULL, pinfo, 0, ENC_BIG_ENDIAN, PROTO_CHECKSUM_NO_FLAGS);
} /* matching config frame message was found */
} /* config data found */
if (!config_found) {
proto_item_append_text(fmdata_item, ", No Fast Meter Configuration frame found");
return 0;
}
}
return tvb_reported_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Fast Operate Configuration Frames */
/******************************************************************************************************/
static int
dissect_foconfig_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *foconfig_brkr_item, *foconfig_rb_item;
proto_tree *foconfig_tree, *foconfig_brkr_tree=NULL, *foconfig_rb_tree=NULL;
guint count;
guint8 len, num_brkr, prb_supp;
guint16 num_rb;
len = tvb_get_guint8(tvb, offset);
num_brkr = tvb_get_guint8(tvb, offset+1);
num_rb = tvb_get_ntohs(tvb, offset+2);
prb_supp = tvb_get_guint8(tvb, offset+4);
foconfig_tree = proto_tree_add_subtree(tree, tvb, offset, len-2, ett_selfm_foconfig, NULL, "Fast Operate Configuration Details");
/* Add items to protocol tree specific to Fast Operate Configuration Block */
/* Reported length */
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Supported Breaker Bits */
foconfig_brkr_item = proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_num_brkr, tvb, offset+1, 1, ENC_BIG_ENDIAN);
/* Supported Remote Bits */
foconfig_rb_item = proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_num_rb, tvb, offset+2, 2, ENC_BIG_ENDIAN);
/* Add "Remote Bit Pulse Supported?" and "Reserved Bit" to Tree */
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_prb_supp, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_foconfig_reserved, tvb, offset+5, 1, ENC_BIG_ENDIAN);
/* Update offset pointer */
offset += 6;
/* Get Breaker Bit Command Details */
for (count = 1; count <= num_brkr; count++) {
foconfig_brkr_tree = proto_item_add_subtree(foconfig_brkr_item, ett_selfm_foconfig_brkr);
/* Add Breaker Open/Close commands to tree */
proto_tree_add_item(foconfig_brkr_tree, hf_selfm_foconfig_brkr_open, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_brkr_tree, hf_selfm_foconfig_brkr_close, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
}
/* Get Remote Bit Command Details */
for (count = 1; count <= num_rb; count++) {
foconfig_rb_tree = proto_item_add_subtree(foconfig_rb_item, ett_selfm_foconfig_rb);
/* Add "Remote Bit Set" command to tree */
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Print "Remote Bit Clear" command to tree */
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset+1, 1, ENC_BIG_ENDIAN);
/* If Remote Bit "pulse" is supported, retrieve that command as well */
if (prb_supp) {
proto_tree_add_item(foconfig_rb_tree, hf_selfm_foconfig_rb_cmd, tvb, offset+2, 1, ENC_BIG_ENDIAN);
offset += 3;
}
else{
offset += 2;
}
}
/* Add Pad byte (if present) and checksum */
if (tvb_reported_length_remaining(tvb, offset) > 1) {
proto_tree_add_item(foconfig_tree, hf_selfm_padbyte, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
}
proto_tree_add_checksum(foconfig_tree, tvb, offset, hf_selfm_checksum, -1, NULL, NULL, 0, ENC_BIG_ENDIAN, PROTO_CHECKSUM_NO_FLAGS);
return tvb_reported_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Alternate Fast Operate (AFO) Configuration Frames */
/******************************************************************************************************/
static int
dissect_alt_fastop_config_frame(tvbuff_t *tvb, proto_tree *tree, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_tree *foconfig_tree;
guint8 len;
len = tvb_get_guint8(tvb, offset);
foconfig_tree = proto_tree_add_subtree(tree, tvb, offset, len-2,
ett_selfm_foconfig, NULL, "Alternate Fast Operate Configuration Details");
/* Add items to protocol tree specific to Fast Operate Configuration Block */
/* Reported length */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Number of Ports */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_num_ports, tvb, offset+1, 1, ENC_BIG_ENDIAN);
/* Number of Breaker Bits */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_num_brkr, tvb, offset+2, 1, ENC_BIG_ENDIAN);
/* Number of Remote Bits */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_num_rb, tvb, offset+3, 1, ENC_BIG_ENDIAN);
/* Function Code(s) Supported */
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+5, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+6, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+7, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(foconfig_tree, hf_selfm_alt_foconfig_funccode, tvb, offset+8, 1, ENC_BIG_ENDIAN);
return tvb_reported_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Fast Operate (Remote Bit or Breaker Bit) Frames */
/******************************************************************************************************/
static int
dissect_fastop_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_tree *fastop_tree;
guint8 len, opcode;
guint16 msg_type;
msg_type = tvb_get_ntohs(tvb, offset-2);
len = tvb_get_guint8(tvb, offset);
fastop_tree = proto_tree_add_subtree(tree, tvb, offset, len-2, ett_selfm_fastop, NULL, "Fast Operate Details");
/* Add Reported length to tree*/
proto_tree_add_item(fastop_tree, hf_selfm_fastop_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Operate Code */
opcode = tvb_get_guint8(tvb, offset);
/* Use different lookup table for different msg_type */
if (msg_type == CMD_FASTOP_RB_CTRL) {
proto_tree_add_item(fastop_tree, hf_selfm_fastop_rb_code, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Control Code Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_ext_const(opcode, &selfm_fo_rb_vals_ext, "Unknown Control Code"));
}
else if (msg_type == CMD_FASTOP_BR_CTRL) {
proto_tree_add_item(fastop_tree, hf_selfm_fastop_br_code, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Control Code Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_ext_const(opcode, &selfm_fo_br_vals_ext, "Unknown Control Code"));
}
offset += 1;
/* Operate Code Validation */
proto_tree_add_item(fastop_tree, hf_selfm_fastop_valid, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Add checksum */
proto_tree_add_checksum(fastop_tree, tvb, offset, hf_selfm_checksum, -1, NULL, pinfo, 0, ENC_BIG_ENDIAN, PROTO_CHECKSUM_NO_FLAGS);
return tvb_reported_length(tvb);
}
/******************************************************************************************************/
/* Code to Dissect Alternate Fast Operate (AFO) Command Frames */
/******************************************************************************************************/
static int
dissect_alt_fastop_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_tree *fastop_tree;
guint8 len;
guint16 opcode;
len = tvb_get_guint8(tvb, offset);
fastop_tree = proto_tree_add_subtree(tree, tvb, offset, len-2, ett_selfm_fastop, NULL, "Alternate Fast Operate Details");
/* Add Reported length to tree */
proto_tree_add_item(fastop_tree, hf_selfm_alt_fastop_len, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Operate Code */
opcode = tvb_get_ntohs(tvb, offset);
/* Append Column Info w/ Control Code Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", opcode);
proto_tree_add_item(fastop_tree, hf_selfm_alt_fastop_code, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Operate Code Validation */
proto_tree_add_item(fastop_tree, hf_selfm_alt_fastop_valid, tvb, offset, 2, ENC_BIG_ENDIAN);
return tvb_reported_length(tvb);
}
/************************************************************************************************************************/
/* Code to dissect Fast Message Read Response Messages */
/************************************************************************************************************************/
/* Each Read Response frame can have a maximum data size of 117 x 16-bit words (or 234 bytes) - this is due to the 20 */
/* bytes of overhead and 254 max frame size. In the event of a larger data payload than 234 bytes, the FIR and FIN */
/* bits will be used to indicate either the first frame, last frame, or a neither/middle frame. */
/* We can use the FIN bit to attempt a reassembly of the data payload since all messages will arrive sequentially. */
/************************************************************************************************************************/
static int
dissect_fastmsg_readresp_frame(tvbuff_t *tvb, proto_tree *fastmsg_tree, packet_info *pinfo, int offset, guint8 seq_byte)
{
proto_item *fastmsg_tag_value_item=NULL, *fmdata_dig_item=NULL;
proto_item *pi_baseaddr=NULL, *pi_fnum=NULL, *pi_type=NULL, *pi_qty=NULL;
proto_tree *fastmsg_tag_tree=NULL, *fmdata_dig_tree=NULL;
guint32 base_addr;
guint16 data_size, num_addr, cnt;
guint8 seq_cnt;
gboolean seq_fir, seq_fin, save_fragmented;
int payload_offset=0;
fm_conversation *conv;
fastmsg_dataitem *dataitem;
tvbuff_t *data_tvb, *payload_tvb;
/* Decode sequence byte components */
seq_cnt = seq_byte & FAST_MSG_SEQ_CNT;
seq_fir = ((seq_byte & FAST_MSG_SEQ_FIR) >> 7);
seq_fin = ((seq_byte & FAST_MSG_SEQ_FIN) >> 6);
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
num_addr = tvb_get_ntohs(tvb, offset+4); /* 16-bit field with number of 16-bit addresses to read */
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x [%s]", base_addr, region_lookup(pinfo, base_addr));
pi_baseaddr = proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(pi_baseaddr, " [%s]", region_lookup(pinfo, base_addr));
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_numwords, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
/* Setup a new tvb representing just the data payload of this particular message */
data_tvb = tvb_new_subset( tvb, offset, (tvb_reported_length_remaining(tvb, offset)-2), (tvb_reported_length_remaining(tvb, offset)-2));
save_fragmented = pinfo->fragmented;
/* Check for fragmented packet by looking at the FIR and FIN bits */
if (! (seq_fir && seq_fin)) {
fragment_head *frag_msg;
/* This is a fragmented packet, mark it as such */
pinfo->fragmented = TRUE;
frag_msg = fragment_add_seq_next(&selfm_reassembly_table,
data_tvb, 0, pinfo, 0, NULL,
tvb_reported_length(data_tvb),
!seq_fin);
payload_tvb = process_reassembled_data(data_tvb, 0, pinfo,
"Reassembled Data Response Payload", frag_msg, &selfm_frag_items,
NULL, fastmsg_tree);
if (payload_tvb) { /* Reassembled */
/* We have the complete payload */
col_append_sep_str(pinfo->cinfo, COL_INFO, NULL, "Reassembled Data Response");
}
else
{
/* We don't have the complete reassembled payload. */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Response Data Fragment %u" , seq_cnt);
}
}
/* No re-assembly required, setup the payload_tvb based on the single-frame data payload tvb */
else {
payload_tvb = data_tvb;
add_new_data_source(pinfo, payload_tvb, "Data Response Payload");
}
pinfo->fragmented = save_fragmented;
/* If we had no need to re-assemble or this is the final packet of a reassembly, let's attempt to dissect the */
/* data payload using any previously-captured data format information */
if (payload_tvb) {
/* Search for previously-encountered data format reference information to dissect the frame */
conv = (fm_conversation *)p_get_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0);
if (conv) {
/* Start at front of list and cycle through possible instances of multiple fastmsg_dataitem frames, looking for match */
wmem_list_frame_t *frame = wmem_list_head(conv->fastmsg_dataitems);
while (frame && (tvb_reported_length_remaining(payload_tvb, payload_offset) > 0)) {
dataitem = (fastmsg_dataitem *)wmem_list_frame_data(frame);
/* If the stored base address of the current data item matches the current base address of this response frame */
/* mark that the config data was found and attempt further dissection */
if (dataitem->base_address == base_addr) {
/* Data Item size (in bytes) determined by data type and quantity within item */
switch (dataitem->data_type) {
case FAST_MSG_TAGTYPE_CHAR8:
case FAST_MSG_TAGTYPE_DIGWORD8_BL:
case FAST_MSG_TAGTYPE_DIGWORD8:
data_size = 1 * dataitem->quantity; /* 1 byte per qty */
break;
case FAST_MSG_TAGTYPE_CHAR16:
case FAST_MSG_TAGTYPE_DIGWORD16_BL:
case FAST_MSG_TAGTYPE_DIGWORD16:
case FAST_MSG_TAGTYPE_INT16:
case FAST_MSG_TAGTYPE_UINT16:
data_size = 2 * dataitem->quantity; /* 2 bytes per qty */
break;
case FAST_MSG_TAGTYPE_INT32:
case FAST_MSG_TAGTYPE_UINT32:
case FAST_MSG_TAGTYPE_FLOAT:
data_size = 4 * dataitem->quantity; /* 4 bytes per qty */
break;
default:
data_size = 0;
break;
}
fastmsg_tag_tree = proto_tree_add_subtree_format(fastmsg_tree, payload_tvb, payload_offset, data_size,
ett_selfm_fastmsg_tag, NULL, "Data Item Name: %s", dataitem->name);
/* Load some information from the stored Data Format Response message into the tree for reference */
pi_fnum = proto_tree_add_uint_format(fastmsg_tag_tree, hf_selfm_fmdata_frame_data_format_reference, payload_tvb, payload_offset, data_size,
dataitem->fnum, "Using frame number %d (Index Pos: %d) as Data Format Reference",dataitem->fnum, dataitem->index_pos );
pi_type = proto_tree_add_uint(fastmsg_tag_tree, hf_selfm_fmdata_data_type, payload_tvb, payload_offset, 0, dataitem->data_type);
pi_qty = proto_tree_add_uint(fastmsg_tag_tree, hf_selfm_fmdata_quantity, payload_tvb, payload_offset, 0, dataitem->quantity );
PROTO_ITEM_SET_GENERATED(pi_fnum);
PROTO_ITEM_SET_GENERATED(pi_type);
proto_item_set_len(pi_type, data_size);
PROTO_ITEM_SET_GENERATED(pi_qty);
proto_item_set_len(pi_qty, data_size);
/* Data Item Type determines how to decode */
switch (dataitem->data_type) {
case FAST_MSG_TAGTYPE_DIGWORD8_BL:
case FAST_MSG_TAGTYPE_DIGWORD8:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fmdata_dig_tree = proto_tree_add_subtree_format(fastmsg_tag_tree, payload_tvb, payload_offset, 1,
ett_selfm_fmdata_dig, &fmdata_dig_item, "8-bit Binary Items (Row: %2d)", cnt);
/* Display the bit pattern on the digital channel proto_item */
proto_item_append_text(fmdata_dig_item, " [ %d %d %d %d %d %d %d %d ]",
((tvb_get_guint8(payload_tvb, payload_offset) & 0x80) >> 7), ((tvb_get_guint8(payload_tvb, payload_offset) & 0x40) >> 6),
((tvb_get_guint8(payload_tvb, payload_offset) & 0x20) >> 5), ((tvb_get_guint8(payload_tvb, payload_offset) & 0x10) >> 4),
((tvb_get_guint8(payload_tvb, payload_offset) & 0x08) >> 3), ((tvb_get_guint8(payload_tvb, payload_offset) & 0x04) >> 2),
((tvb_get_guint8(payload_tvb, payload_offset) & 0x02) >> 1), (tvb_get_guint8(payload_tvb, payload_offset) & 0x01));
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b0, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b1, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b2, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b3, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b4, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b5, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b6, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fmdata_dig_tree, hf_selfm_fmdata_dig_b7, payload_tvb, payload_offset, 1, ENC_BIG_ENDIAN);
payload_offset += 1;
}
break;
case FAST_MSG_TAGTYPE_CHAR8:
case FAST_MSG_TAGTYPE_CHAR16:
proto_tree_add_item(fastmsg_tag_tree, hf_selfm_fmdata_ai_value_string, payload_tvb, payload_offset, data_size, ENC_ASCII|ENC_NA);
payload_offset += data_size;
break;
case FAST_MSG_TAGTYPE_INT16:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastmsg_tag_value_item = proto_tree_add_item(fastmsg_tag_tree, hf_selfm_fastmsg_dataitem_int16, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastmsg_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
case FAST_MSG_TAGTYPE_UINT16:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastmsg_tag_value_item = proto_tree_add_item(fastmsg_tag_tree, hf_selfm_fastmsg_dataitem_uint16, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastmsg_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
case FAST_MSG_TAGTYPE_INT32:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastmsg_tag_value_item = proto_tree_add_item(fastmsg_tag_tree, hf_selfm_fastmsg_dataitem_int32, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastmsg_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
case FAST_MSG_TAGTYPE_UINT32:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastmsg_tag_value_item = proto_tree_add_item(fastmsg_tag_tree, hf_selfm_fastmsg_dataitem_uint32, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastmsg_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
case FAST_MSG_TAGTYPE_FLOAT:
for (cnt=1; cnt <= dataitem->quantity; cnt++) {
fastmsg_tag_value_item = proto_tree_add_item(fastmsg_tag_tree, hf_selfm_fastmsg_dataitem_float, payload_tvb, payload_offset, data_size/dataitem->quantity, ENC_BIG_ENDIAN);
proto_item_prepend_text(fastmsg_tag_value_item, "Value %d ", cnt);
payload_offset += data_size/dataitem->quantity;
}
break;
default:
break;
} /* data item type switch */
} /* base address is correct */
/* After processing this frame/data item, proceed to the next */
frame = wmem_list_frame_next(frame);
} /* while (frame) */
} /* if (conv) found */
} /* if payload_tvb */
/* Update the offset field before we leave this frame */
offset += num_addr*2;
return offset;
}
/******************************************************************************************************/
/* Code to dissect Fast Message Frames */
/******************************************************************************************************/
static int
dissect_fastmsg_frame(tvbuff_t *tvb, proto_tree *tree, packet_info *pinfo, int offset)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *fastmsg_def_fc_item, *fastmsg_elementlist_item;
proto_item *pi_baseaddr, *fastmsg_crc16_item;
proto_tree *fastmsg_tree, *fastmsg_def_fc_tree=NULL, *fastmsg_elementlist_tree=NULL;
proto_tree *fastmsg_element_tree=NULL, *fastmsg_datareg_tree=NULL, *fastmsg_tag_tree=NULL;
gint cnt, num_elements, elmt_status32_ofs=0, elmt_status, null_offset;
guint8 len, funccode, seq, rx_num_fc, tx_num_fc;
guint8 seq_cnt, elmt_idx, fc_enable;
guint8 *tag_name_ptr;
guint16 base_addr, num_addr, num_reg, addr1, addr2, crc16, crc16_calc;
guint32 tod_ms, elmt_status32, elmt_ts_offset;
static const int * seq_fields[] = {
&hf_selfm_fastmsg_seq_fir,
&hf_selfm_fastmsg_seq_fin,
&hf_selfm_fastmsg_seq_cnt,
NULL
};
len = tvb_get_guint8(tvb, offset);
fastmsg_tree = proto_tree_add_subtree(tree, tvb, offset, len-2, ett_selfm_fastmsg, NULL, "Fast Message Details");
/* Reported length */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_len, tvb, offset, 1, ENC_BIG_ENDIAN);
/* 5-byte Future Routing Address */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_routing_addr, tvb, offset+1, 5, ENC_NA);
offset += 6;
/* Add Status Byte to tree */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_status, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Get Function Code, add to tree */
funccode = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_funccode, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%s", val_to_str_ext_const(funccode, &selfm_fastmsg_func_code_vals_ext, "Unknown Function Code"));
offset += 1;
/* Get Sequence Byte, add to Tree */
seq = tvb_get_guint8(tvb, offset);
seq_cnt = seq & FAST_MSG_SEQ_CNT;
proto_tree_add_bitmask_with_flags(fastmsg_tree, tvb, offset, hf_selfm_fastmsg_seq, ett_selfm_fastmsg_seq,
seq_fields, ENC_NA, BMT_NO_APPEND);
offset += 1;
/* Add Response Number to tree */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_resp_num, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* Depending on Function Code used, remaining section of packet will be handled differently. */
switch (funccode) {
case FAST_MSG_EN_UNS_DATA: /* 0x01 - Enabled Unsolicited Data Transfers */
/* Function code to enable */
fc_enable = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_uns_en_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ "Enable" Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Function to Enable (%#x)", fc_enable);
/* 3-byte Function Code data */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_uns_en_fc_data, tvb, offset+1, 3, ENC_NA);
offset += 4;
break;
case FAST_MSG_DIS_UNS_DATA: /* 0x02 - Disable Unsolicited Data Transfers */
/* Function code to disable */
fc_enable = tvb_get_guint8(tvb, offset);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_uns_dis_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
/* Append Column Info w/ "Disable" Function Code */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "Function to Disable (%#x)", fc_enable);
/* 1-byte Function Code data */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_uns_dis_fc_data, tvb, offset+1, 1, ENC_NA);
offset += 2;
break;
case FAST_MSG_READ_REQ: /* 0x10 - Read Request */
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x [%s]", base_addr, region_lookup(pinfo, base_addr));
pi_baseaddr = proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(pi_baseaddr, " [%s]", region_lookup(pinfo, base_addr));
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_numwords, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
break;
case FAST_MSG_GEN_UNS_DATA: /* 0x12 - Generic Unsolicited Data */
num_addr = len - 14; /* 12 header bytes + 2-byte CRC, whatever is left is the data portion of this message */
num_reg = num_addr / 2;
/* For the number of registers, step through and retrieve/print each 16-bit component */
for (cnt=0; cnt < num_reg; cnt++) {
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unswrite_reg_val, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
break;
case FAST_MSG_SOE_STATE_REQ: /* 0x16 - SOE Present State Request */
/* 4 bytes - "Origination Path" */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_req_orig, tvb, offset, 4, ENC_NA);
offset += 4;
break;
case FAST_MSG_UNS_RESP: /* 0x18 - Unsolicited Fast SER Data Response */
/* 4 bytes - "Origination Path" */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unsresp_orig, tvb, offset, 4, ENC_NA);
offset += 4;
/* Timestamp: 2-byte day-of-year, 2-byte year, 4-byte time-of-day in milliseconds */
/* XXX - We can use a built-in function to convert the tod_ms to a readable time format, is there anything for day_of_year? */
tod_ms = tvb_get_ntohl(tvb, offset+4);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unsresp_doy, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unsresp_year, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_uint_format_value(fastmsg_tree, hf_selfm_fastmsg_unsresp_todms, tvb, offset+4, 4,
tod_ms, "%s", signed_time_msecs_to_str(wmem_packet_scope(), tod_ms));
offset += 8;
/* Build element tree */
/* Determine the number of elements returned in this unsolicited message */
/* The general formula is: (Length - 34) / 4 */
num_elements = (len-34) / 4;
fastmsg_elementlist_item = proto_tree_add_uint(fastmsg_tree, hf_selfm_fastmsg_unsresp_num_elmt, tvb, offset, (4*num_elements), num_elements);
fastmsg_elementlist_tree = proto_item_add_subtree(fastmsg_elementlist_item, ett_selfm_fastmsg_element_list);
/* "Reported New Status" word for up to 32 index elements is following the upcoming 0xFFFFFFFE End-of-record indicator
Search for that indicator and use the detected tvb offset+4 to retrieve the proper 32-bit status word.
Save this word for use in the element index printing but don't print the word itself until the end of the tree dissection */
for (cnt = offset; cnt < len; cnt++) {
if (tvb_memeql(tvb, cnt, "\xFF\xFF\xFF\xFE", 4) == 0) {
elmt_status32_ofs = cnt+4;
}
}
elmt_status32 = tvb_get_ntohl(tvb, elmt_status32_ofs );
/* Cycle through each element we have detected that exists in the SER record */
for (cnt=0; cnt<num_elements; cnt++) {
/* Get Element Index and Timestamp Offset (in uSec) */
elmt_idx = tvb_get_guint8(tvb, offset);
elmt_ts_offset = (guint32)((tvb_get_guint8(tvb, offset+1) << 16) | (tvb_get_guint8(tvb, offset+2) << 8) | (tvb_get_guint8(tvb, offset+3)));
/* Bit shift the appropriate element from the 32-bit elmt_status word to position 0 and get the bit state for use in the tree */
elmt_status = ((elmt_status32 >> cnt) & 0x01);
/* Build the tree */
fastmsg_element_tree = proto_tree_add_subtree_format(fastmsg_elementlist_tree, tvb, offset, 4, ett_selfm_fastmsg_element, NULL,
"Reported Event %d (Index: %d [%s], New State: %s)", cnt+1, elmt_idx, fastser_uns_wordbit_lookup(pinfo, elmt_idx),
val_to_str_const(elmt_status, selfm_ser_status_vals, "Unknown"));
/* Add Index Number and Timestamp offset to tree */
proto_tree_add_item(fastmsg_element_tree, hf_selfm_fastmsg_unsresp_elmt_idx, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_element_tree, hf_selfm_fastmsg_unsresp_elmt_ts_ofs, tvb, offset+1, 3, ENC_BIG_ENDIAN);
proto_tree_add_uint_format_value(fastmsg_element_tree, hf_selfm_fastmsg_unsresp_elmt_ts_ofs_decoded, tvb, offset+1, 3,
tod_ms + (elmt_ts_offset/1000), "%s", signed_time_msecs_to_str(wmem_packet_scope(), tod_ms + (elmt_ts_offset/1000)));
proto_tree_add_uint(fastmsg_element_tree, hf_selfm_fastmsg_unsresp_elmt_status, tvb, elmt_status32_ofs, 4, elmt_status);
offset += 4;
}
/* 4-byte End-of-Record Terminator 0xFFFFFFFE */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unsresp_eor, tvb, offset, 4, ENC_NA);
offset += 4;
/* 4-byte Element Status word */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unsresp_elmt_statword, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
break;
case FAST_MSG_UNS_WRITE: /* 0x20 - Unsolicited Write */
/* Write Address Region #1 and #2, along with number of 16-bit registers */
addr1 = tvb_get_ntohs(tvb, offset);
addr2 = tvb_get_ntohs(tvb, offset+2);
num_reg = tvb_get_ntohs(tvb, offset+4);
/* Append Column Info w/ Address Information */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x, %#x", addr1, addr2);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unswrite_addr1, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unswrite_addr2, tvb, offset+2, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unswrite_num_reg, tvb, offset+4, 2, ENC_BIG_ENDIAN);
offset += 6;
/* For the number of registers, step through and retrieve/print each 16-bit component */
for (cnt=0; cnt < num_reg; cnt++) {
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_unswrite_reg_val, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
break;
case FAST_MSG_DATAFMT_REQ: /* 0x31 - Data Format Request */
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x [%s]", base_addr, region_lookup(pinfo, base_addr));
/* Add Base Address to Tree */
pi_baseaddr = proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(pi_baseaddr, " [%s]", region_lookup(pinfo, base_addr));
offset += 4;
break;
case FAST_MSG_BITLABEL_REQ: /* 0x33 - Bit Label Request */
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x", base_addr);
break;
case FAST_MSG_CFG_BLOCK_RESP: /* 0x80 (resp to 0x00) - Fast Message Configuration Block Response */
/* Routing Support */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_def_route_sup, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* RX / TX Status */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_def_rx_stat, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_def_tx_stat, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
/* Max Frames RX/TX */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_def_rx_maxfr, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_def_tx_maxfr, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
/* 6 bytes of reserved space */
offset += 6;
/* Number of Supported RX Function Codes */
rx_num_fc = tvb_get_guint8(tvb, offset);
fastmsg_def_fc_item = proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_def_rx_num_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
fastmsg_def_fc_tree = proto_item_add_subtree(fastmsg_def_fc_item, ett_selfm_fastmsg_def_fc);
offset += 1;
/* Add Supported RX Function Codes to tree */
for (cnt=0; cnt<rx_num_fc; cnt++) {
proto_tree_add_item(fastmsg_def_fc_tree, hf_selfm_fastmsg_def_rx_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 2;
}
/* Number of Supported TX Function Codes */
tx_num_fc = tvb_get_guint8(tvb, offset);
fastmsg_def_fc_item = proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_def_tx_num_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
fastmsg_def_fc_tree = proto_item_add_subtree(fastmsg_def_fc_item, ett_selfm_fastmsg_def_fc);
offset += 1;
/* Add Supported TX Function Codes to tree */
for (cnt=0; cnt<tx_num_fc; cnt++) {
proto_tree_add_item(fastmsg_def_fc_tree, hf_selfm_fastmsg_def_tx_fc, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 2;
}
break;
case FAST_MSG_READ_RESP: /* 0x90 (resp to 0x10) - Read Response */
offset = dissect_fastmsg_readresp_frame( tvb, fastmsg_tree, pinfo, offset, seq);
break;
case FAST_MSG_SOE_STATE_RESP: /* 0x96 - (resp to 0x16) SOE Present State Response */
/* 16-bit field with number of blocks of present state data */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_resp_numblks, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* XXX - With examples, need to loop through each one of these items based on the num_blocks */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_resp_orig, tvb, offset, 4, ENC_NA);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_resp_numbits, tvb, offset+4, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_resp_pad, tvb, offset+5, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_resp_doy, tvb, offset+6, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_resp_year, tvb, offset+8, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_resp_tod, tvb, offset+10, 4, ENC_BIG_ENDIAN);
/* proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_soe_resp_data, tvb, offset+14, 2, ENC_BIG_ENDIAN); */
offset += 14;
break;
case FAST_MSG_DEVDESC_RESP: /* 0xB0 (resp to 0x30) - Device Description Response */
/* Add FID / RID ASCII data to tree */
proto_tree_add_item(fastmsg_tree, hf_selfm_fid, tvb, offset, 50, ENC_ASCII|ENC_NA);
proto_tree_add_item(fastmsg_tree, hf_selfm_rid, tvb, offset+50, 40, ENC_ASCII|ENC_NA);
offset += 90;
/* 16-bit field with number of data areas */
num_reg = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_devdesc_num_region, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Maximum size of 7 regions per message, check the seq_cnt to determine if we have stepped into
the next sequential message where the remaining regions would be described */
if ((num_reg >= 8) && (seq_cnt == 0)) {
num_reg = 7;
}
else{
num_reg = num_reg - (seq_cnt * 7);
}
/* 16-bit field with number of control areas */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_devdesc_num_ctrl, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Each 18-byte data area description has a 10 byte region name, followed by 32-bit base, */
/* 16-bit message word count and 16-bit flag field */
for (cnt=0; cnt<num_reg; cnt++) {
fastmsg_datareg_tree = proto_tree_add_subtree_format(fastmsg_tree, tvb, offset, 18,
ett_selfm_fastmsg_datareg, NULL, "Fast Message Data Region #%d", cnt+1);
/* 10-Byte Region description */
proto_tree_add_item(fastmsg_datareg_tree, hf_selfm_fastmsg_data_region_name, tvb, offset, 10, ENC_ASCII|ENC_NA);
offset += 10;
/* 32-bit field with base address of data region */
proto_tree_add_item(fastmsg_datareg_tree, hf_selfm_fastmsg_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
/* 16-bit field with number of 16-bit words in region */
proto_tree_add_item(fastmsg_datareg_tree, hf_selfm_fastmsg_numwords, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* 16-bit flag field */
proto_tree_add_item(fastmsg_datareg_tree, hf_selfm_fastmsg_flags, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
/* Some relays (4xx) don't follow the standard here and include an 8-byte sequence of all 0x00's to represent */
/* 'reserved' space for the control regions. Detect these and skip if they are present */
for (cnt = offset; cnt < len; cnt++) {
if (tvb_memeql(tvb, cnt, "\x00\x00\x00\x00\x00\x00\x00\x00", 8) == 0) {
offset = cnt+8;
}
}
break;
case FAST_MSG_DATAFMT_RESP: /* 0xB1 (resp to 0x31) - Data Format Response */
base_addr = tvb_get_ntohl(tvb, offset); /* 32-bit field with base address to read */
/* Add Base Address to Tree */
pi_baseaddr = proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_baseaddr, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_item_append_text(pi_baseaddr, " [%s]", region_lookup(pinfo, base_addr));
offset += 4;
/* Append Column Info w/ Base Address */
col_append_sep_fstr(pinfo->cinfo, COL_INFO, NULL, "%#x [%s]", base_addr, region_lookup(pinfo, base_addr));
/* 16-bit field with number of data items to follow */
proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_datafmt_resp_numitem, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
while ((tvb_reported_length_remaining(tvb, offset)) > 2) {
/* Data Item record name 10 bytes */
tag_name_ptr = tvb_get_string_enc(wmem_packet_scope(), tvb, offset, 10, ENC_ASCII);
fastmsg_tag_tree = proto_tree_add_subtree_format(fastmsg_tree, tvb, offset, 14, ett_selfm_fastmsg_tag, NULL, "Data Item Record Name: %s", tag_name_ptr);
/* Data item qty and type */
proto_tree_add_item(fastmsg_tag_tree, hf_selfm_fastmsg_dataitem_qty, tvb, offset+10, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fastmsg_tag_tree, hf_selfm_fastmsg_dataitem_type, tvb, offset+12, 2, ENC_BIG_ENDIAN);
offset += 14;
}
break;
case FAST_MSG_BITLABEL_RESP: /* 0xB3 (resp to 0x33) - Bit Label Response */
/* The data in this response is a variable length string containing the names of 8 digital bits. */
/* Each name is max 8 chars and each is null-seperated */
cnt=1;
/* find the null separators and add the bit label text strings to the tree */
for (null_offset = offset; null_offset < len; null_offset++) {
if ((tvb_memeql(tvb, null_offset, "\x00", 1) == 0) && (tvb_reported_length_remaining(tvb, offset) > 2)) {
gchar* str = tvb_format_text(tvb, offset, (null_offset-offset));
proto_tree_add_string_format(fastmsg_tree, hf_selfm_fastmsg_bit_label_name, tvb, offset, (null_offset-offset), str,
"Bit Label #%d Name: %s", cnt, str);
offset = null_offset+1; /* skip the null */
cnt++;
}
}
break;
default:
break;
} /* func_code */
/* Add CRC16 to Tree */
fastmsg_crc16_item = proto_tree_add_item(fastmsg_tree, hf_selfm_fastmsg_crc16, tvb, offset, 2, ENC_BIG_ENDIAN);
crc16 = tvb_get_ntohs(tvb, offset);
/* If option is enabled, validate the CRC16 */
if (selfm_crc16) {
crc16_calc = crc16_plain_tvb_offset_seed(tvb, 0, len-2, 0xFFFF);
if (crc16_calc != crc16) {
expert_add_info_format(pinfo, fastmsg_crc16_item, &ei_selfm_crc16_incorrect, "Incorrect CRC - should be 0x%04x", crc16_calc);
}
else {
proto_item_append_text(fastmsg_crc16_item, " [OK]");
}
}
return tvb_reported_length(tvb);
}
/******************************************************************************************************/
/* Code to dissect SEL Fast Message Protocol packets */
/* Will call other sub-dissectors, as needed */
/******************************************************************************************************/
static int
dissect_selfm(tvbuff_t *selfm_tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
/* Set up structures needed to add the protocol subtree and manage it */
proto_item *selfm_item=NULL;
proto_tree *selfm_tree=NULL;
int offset=0, cnt=0;
guint32 base_addr;
guint16 msg_type, len, num_items;
guint8 seq, seq_cnt;
gchar **uns_ser_split_str;
/* Make entries in Protocol column on summary display */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SEL Protocol");
col_clear(pinfo->cinfo, COL_INFO);
len = tvb_reported_length(selfm_tvb);
msg_type = tvb_get_ntohs(selfm_tvb, offset);
/* On first pass through the packets we have 4 tasks to complete - they are each noted below */
if (!pinfo->fd->flags.visited) {
conversation_t *conversation;
fm_conversation *fm_conv_data;
/* Find a conversation, create a new if no one exists */
conversation = find_or_create_conversation(pinfo);
fm_conv_data = (fm_conversation *)conversation_get_proto_data(conversation, proto_selfm);
if (fm_conv_data == NULL) {
fm_conv_data = wmem_new(wmem_file_scope(), fm_conversation);
fm_conv_data->fm_config_frames = wmem_list_new(wmem_file_scope());
fm_conv_data->fastmsg_dataitems = wmem_list_new(wmem_file_scope());
fm_conv_data->fastmsg_dataregions = wmem_tree_new(wmem_file_scope());
fm_conv_data->fastser_uns_wordbits = wmem_tree_new(wmem_file_scope());
conversation_add_proto_data(conversation, proto_selfm, (void *)fm_conv_data);
uns_ser_split_str = wmem_strsplit(wmem_packet_scope(), selfm_ser_list, ",", -1);
for (cnt = 0; (uns_ser_split_str[cnt] != NULL); cnt++) {
fastser_uns_wordbit *wordbit_ptr = fastser_uns_wordbit_save(cnt, uns_ser_split_str[cnt]);
wmem_tree_insert32(fm_conv_data->fastser_uns_wordbits, cnt, wordbit_ptr);
}
/* Power Up (254) and Settings Changed (255) Indexes */
for (cnt = 254; (cnt <= 255); cnt++) {
fastser_uns_wordbit *wordbit_ptr = fastser_uns_wordbit_save(cnt, "unused");
wmem_tree_insert32(fm_conv_data->fastser_uns_wordbits, cnt, wordbit_ptr);
}
}
p_add_proto_data(wmem_file_scope(), pinfo, proto_selfm, 0, fm_conv_data);
/* 1. Configuration frames (0xA5C1, 0xA5C2, 0xA5C3) need special treatment during the first run */
/* For each Fast Meter Configuration frame (0xA5Cx), a 'fm_config_frame' struct is created to hold the */
/* information necessary to decode subsequent matching Fast Meter Data frames (0xA5Dx). A pointer to */
/* this struct is saved in the conversation and is copied to the per-packet information if a */
/* Fast Meter Data frame is dissected. */
if ((CMD_FM_CONFIG == msg_type) || (CMD_DFM_CONFIG == msg_type) || (CMD_PDFM_CONFIG == msg_type)) {
/* Fill the fm_config_frame */
fm_config_frame *frame_ptr = fmconfig_frame_fast(selfm_tvb);
frame_ptr->fnum = pinfo->num;
wmem_list_prepend(fm_conv_data->fm_config_frames, frame_ptr);
}
/* 2. Fill conversation data array with Fast Msg Data Item info from Data Format Response Messages. */
/* These format definitions will later be retrieved to decode Read Response messages. */
if ((CMD_FAST_MSG == msg_type) && (tvb_get_guint8(selfm_tvb, offset+9) == FAST_MSG_DATAFMT_RESP)) {
seq = tvb_get_guint8(selfm_tvb, offset+10);
seq_cnt = seq & FAST_MSG_SEQ_CNT;
base_addr = tvb_get_ntohl(selfm_tvb, offset+12); /* 32-bit field with base address to read */
num_items = tvb_get_ntohs(selfm_tvb, offset+16);
/* When dealing with Data Format Response messages, there are a maximum of 16 items per frame */
/* Use the sequence count if we have more 16 items to determine how many to expect in each frame */
if ((num_items > 16) && (seq_cnt == 0)) {
num_items = 16;
}
else {
num_items = num_items - (seq_cnt * 16);
}
/* Set offset to start of data items */
offset = 18;
/* Enter the single frame multiple times, retrieving a single dataitem per entry */
for (cnt = 1; (cnt <= num_items); cnt++) {
fastmsg_dataitem *dataitem_ptr = fastmsg_dataitem_save(selfm_tvb, offset);
dataitem_ptr->fnum = pinfo->num;
dataitem_ptr->base_address = base_addr;
dataitem_ptr->index_pos = cnt;
/* Store the data item configuration info in the fastmsg_dataitems list */
wmem_list_append(fm_conv_data->fastmsg_dataitems, dataitem_ptr);
offset += 14;
}
}
/* 3. Attempt re-assembly during first pass with Read Response Messages data payloads that span multiple */
/* packets. The final data payload will be assembled on the packet with the seq_fin bit set. */
if ((CMD_FAST_MSG == msg_type) && (tvb_get_guint8(selfm_tvb, offset+9) == FAST_MSG_READ_RESP)) {
seq = tvb_get_guint8(selfm_tvb, offset+10);
/* Set offset to where the dissect_fastmsg_readresp_frame function would normally be called, */
/* right before base address & num_items */
offset = 12;
/* Call the same read response function that will be called during GUI dissection */
offset = dissect_fastmsg_readresp_frame( selfm_tvb, tree, pinfo, offset, seq);
}
/* 4. Fill conversation data array with Fast Message Data Region info from Device Desc Response Messages. This */
/* will retrieve a data region name (associated to an address) that can later be displayed in the tree. */
if ((CMD_FAST_MSG == msg_type) && (tvb_get_guint8(selfm_tvb, offset+9) == FAST_MSG_DEVDESC_RESP)) {
seq = tvb_get_guint8(selfm_tvb, offset+10);
seq_cnt = seq & FAST_MSG_SEQ_CNT;
num_items = tvb_get_ntohs(selfm_tvb, offset+102);
/* When dealing with Device Description Response messages, there are a maximum of 7 regions per frame */
/* Use the sequence count if we have more 7 items to determine how many to expect in each frame */
if ((num_items >= 8) && (seq_cnt == 0)) {
num_items = 7;
}
else{
num_items = num_items - (seq_cnt * 7);
}
/* Set offset to start of data regions */
offset = 106;
/* Enter the single frame multiple times, retrieving a single data region per entry */
for (cnt = 1; (cnt <= num_items); cnt++) {
guint32 base_address = tvb_get_ntohl(selfm_tvb, offset+10);
fastmsg_dataregion *dataregion_ptr = fastmsg_dataregion_save(selfm_tvb, offset);
/* Store the data region info in the fastmsg_dataregions tree */
wmem_tree_insert32(fm_conv_data->fastmsg_dataregions, base_address, dataregion_ptr);
offset += 18;
}
}
} /* if (!visited) */
if (tree) {
selfm_item = proto_tree_add_protocol_format(tree, proto_selfm, selfm_tvb, 0, len, "SEL Protocol");
selfm_tree = proto_item_add_subtree(selfm_item, ett_selfm);
/* Set INFO column with SEL Protocol Message Type */
col_add_fstr(pinfo->cinfo, COL_INFO, "%s", val_to_str_ext_const(msg_type, &selfm_msgtype_vals_ext, "Unknown Message Type"));
/* Add Message Type to Protocol Tree */
proto_tree_add_item(selfm_tree, hf_selfm_msgtype, selfm_tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* Determine correct message type and call appropriate dissector */
if (tvb_reported_length_remaining(selfm_tvb, offset) > 0) {
switch (msg_type) {
case CMD_RELAY_DEF:
dissect_relaydef_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FM_CONFIG:
case CMD_DFM_CONFIG:
case CMD_PDFM_CONFIG:
dissect_fmconfig_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_FM_CONFIG);
break;
case CMD_DFM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_DFM_CONFIG);
break;
case CMD_PDFM_DATA:
dissect_fmdata_frame(selfm_tvb, selfm_tree, pinfo, offset, CMD_PDFM_CONFIG);
break;
case CMD_FASTOP_CONFIG:
dissect_foconfig_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_FAST_MSG:
dissect_fastmsg_frame(selfm_tvb, selfm_tree, pinfo, offset);
break;
case CMD_FASTOP_RB_CTRL:
case CMD_FASTOP_BR_CTRL:
dissect_fastop_frame(selfm_tvb, selfm_tree, pinfo, offset);
break;
case CMD_ALT_FASTOP_CONFIG:
dissect_alt_fastop_config_frame(selfm_tvb, selfm_tree, offset);
break;
case CMD_ALT_FASTOP_OPEN:
case CMD_ALT_FASTOP_CLOSE:
case CMD_ALT_FASTOP_SET:
case CMD_ALT_FASTOP_CLEAR:
case CMD_ALT_FASTOP_PULSE:
dissect_alt_fastop_frame(selfm_tvb, selfm_tree, pinfo, offset);
break;
default:
break;
} /* msg_type */
} /* remaining length > 0 */
} /* tree */
return tvb_reported_length(selfm_tvb);
}
/******************************************************************************************************/
/* Return length of SEL Protocol over TCP message (used for re-assembly) */
/* SEL Protocol "Scan" messages are generally 2-bytes in length and only include a 16-bit message type */
/* SEL Protocol "Response" messages include a "length" byte in offset 2 of each response message */
/******************************************************************************************************/
static guint
get_selfm_len(packet_info *pinfo _U_, tvbuff_t *tvb, int offset _U_, void *data _U_)
{
guint message_len=0; /* message length, inclusive of header, data, crc */
/* Get length byte from message */
if (tvb_reported_length(tvb) > 2) {
message_len = tvb_get_guint8(tvb, offset+2);
}
/* for 2-byte poll messages, set the length to 2 */
else if (tvb_reported_length(tvb) == 2) {
message_len = 2;
}
return message_len;
}
/******************************************************************************************************/
/* Dissect (and possibly Re-assemble) SEL protocol payload data */
/******************************************************************************************************/
static int
dissect_selfm_tcp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data)
{
tvbuff_t *selfm_tvb;
gint length = tvb_reported_length(tvb);
/* Check for a SEL Protocol packet. It should begin with 0xA5 */
if(length < 2 || tvb_get_guint8(tvb, 0) != 0xA5) {
/* Not a SEL Protocol packet, just happened to use the same port */
return 0;
}
/* If this is a Telnet-encapsulated Ethernet packet, let's clean out the IAC 0xFF instances */
/* before we attempt any kind of re-assembly of the message */
if ((pinfo->srcport) && selfm_telnet_clean) {
selfm_tvb = clean_telnet_iac(pinfo, tvb, 0, length);
}
else {
selfm_tvb = tvb_new_subset_length( tvb, 0, length);
}
tcp_dissect_pdus(selfm_tvb, pinfo, tree, selfm_desegment, 2,
get_selfm_len, dissect_selfm, data);
return length;
}
/******************************************************************************************************/
/* SEL Fast Message Dissector initialization */
/******************************************************************************************************/
static void
selfm_init(void)
{
reassembly_table_init(&selfm_reassembly_table,
&addresses_reassembly_table_functions);
}
static void
selfm_cleanup(void)
{
reassembly_table_destroy(&selfm_reassembly_table);
}
/******************************************************************************************************/
/* Register the protocol with Wireshark */
/******************************************************************************************************/
void proto_reg_handoff_selfm(void);
void
proto_register_selfm(void)
{
/* SEL Protocol header fields */
static hf_register_info selfm_hf[] = {
{ &hf_selfm_msgtype,
{ "Message Type", "selfm.msgtype", FT_UINT16, BASE_HEX|BASE_EXT_STRING, &selfm_msgtype_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_padbyte,
{ "Pad Byte", "selfm.padbyte", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_checksum,
{ "Checksum", "selfm.checksum", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
/* "Relay Definition" specific fields */
{ &hf_selfm_relaydef_len,
{ "Length", "selfm.relaydef.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numproto,
{ "Number of Protocols", "selfm.relaydef.numproto", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numfm,
{ "Number of Fast Meter Messages", "selfm.relaydef.numfm", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_numflags,
{ "Number of Status Flags", "selfm.relaydef.numflags", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_fmcfg_cmd,
{ "Fast Meter Config Command", "selfm.relaydef.fmcfg_cmd", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_fmdata_cmd,
{ "Fast Meter Data Command", "selfm.relaydef.fmdata_cmd", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_statbit,
{ "Status Flag Bit", "selfm.relaydef.status_bit", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_statbit_cmd,
{ "Status Flag Bit Response Command", "selfm.relaydef.status_bit_cmd", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_relaydef_proto,
{ "Supported Protocol", "selfm.relaydef.proto", FT_UINT16, BASE_HEX|BASE_EXT_STRING, &selfm_relaydef_proto_vals_ext, 0x0, NULL, HFILL }},
/* "Fast Meter Configuration" specific fields */
{ &hf_selfm_fmconfig_len,
{ "Length", "selfm.fmconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_numflags,
{ "Number of Status Flags", "selfm.fmconfig.numflags", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_loc_sf,
{ "Location of Scale Factor", "selfm.fmconfig.loc_sf", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_sfloc_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_sf,
{ "Number of Scale Factors", "selfm.fmconfig.num_sf", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_ai,
{ "Number of Analog Input Channels", "selfm.fmconfig.num_ai", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_samp,
{ "Number of Samples per AI Channel", "selfm.fmconfig.num_samp", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_dig,
{ "Number of Digital Banks", "selfm.fmconfig.num_dig", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_num_calc,
{ "Number of Calculation Blocks", "selfm.fmconfig.num_calc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_ai,
{ "First Analog Channel Offset", "selfm.fmconfig.ofs_ai", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_ts,
{ "Timestamp Offset", "selfm.fmconfig.ofs_ts", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ofs_dig,
{ "First Digital Bank Offset", "selfm.fmconfig.ofs_dig", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_type,
{ "Analog Channel Type", "selfm.fmconfig.ai_type", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_ai_chtype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_sf_type,
{ "Analog Channel Scale Factor Type", "selfm.fmconfig.ai_sf_type", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_ai_sftype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_sf_ofs,
{ "Analog Channel Scale Factor Offset", "selfm.fmconfig.ai_sf_ofs", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_rot,
{ "Rotation", "selfm.fmconfig.cblk_rot", FT_UINT8, BASE_HEX, VALS(selfm_fmconfig_cblk_rot_vals), 0x01, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_vconn,
{ "Voltage Connection", "selfm.fmconfig.cblk_vconn", FT_UINT8, BASE_HEX, VALS(selfm_fmconfig_cblk_vconn_vals), 0x06, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_iconn,
{ "Current Connection", "selfm.fmconfig.cblk_iconn", FT_UINT8, BASE_HEX, VALS(selfm_fmconfig_cblk_iconn_vals), 0x18, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_ctype,
{ "Calculation Type", "selfm.fmconfig.cblk_ctype", FT_UINT8, BASE_DEC, VALS(selfm_fmconfig_cblk_ctype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_deskew_ofs,
{ "Skew Correction Offset", "selfm.fmconfig.cblk_deskew_ofs", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_rs_ofs,
{ "Rs Offset", "selfm.fmconfig.cblk_rs_ofs", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_xs_ofs,
{ "Xs Offset", "selfm.fmconfig.cblk_xs_ofs", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_ia_idx,
{ "Analog Record Ia Index Position", "selfm.fmconfig.cblk_ia_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_ib_idx,
{ "Analog Record Ib Index Position", "selfm.fmconfig.cblk_ib_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_ic_idx,
{ "Analog Record Ic Index Position", "selfm.fmconfig.cblk_ic_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_va_idx,
{ "Analog Record Va/Vab Index Position", "selfm.fmconfig.cblk_va_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_vb_idx,
{ "Analog Record Vb/Vbc Index Position", "selfm.fmconfig.cblk_vb_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_cblk_vc_idx,
{ "Analog Record Vc/Vca Index Position", "selfm.fmconfig.cblk_vc_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmconfig_ai_sf_float,
{ "AI Scale Factor (float)", "selfm.fmconfig.ai_sf_float", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }},
/* "Fast Meter Data" specific fields */
{ &hf_selfm_fmdata_len,
{ "Length", "selfm.fmdata.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_flagbyte,
{ "Status Flags Byte", "selfm.fmdata.flagbyte", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_ai_sf_fp,
{ "Using IEEE FP Format Scale Factor", "selfm.fmdata.ai.sf_fp",FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b0,
{ "Bit 0", "selfm.fmdata.dig_b0", FT_BOOLEAN, 8, NULL, 0x01, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b1,
{ "Bit 1", "selfm.fmdata.dig_b1", FT_BOOLEAN, 8, NULL, 0x02, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b2,
{ "Bit 2", "selfm.fmdata.dig_b2", FT_BOOLEAN, 8, NULL, 0x04, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b3,
{ "Bit 3", "selfm.fmdata.dig_b3", FT_BOOLEAN, 8, NULL, 0x08, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b4,
{ "Bit 4", "selfm.fmdata.dig_b4", FT_BOOLEAN, 8, NULL, 0x10, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b5,
{ "Bit 5", "selfm.fmdata.dig_b5", FT_BOOLEAN, 8, NULL, 0x20, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b6,
{ "Bit 6", "selfm.fmdata.dig_b6", FT_BOOLEAN, 8, NULL, 0x40, NULL, HFILL }},
{ &hf_selfm_fmdata_dig_b7,
{ "Bit 7", "selfm.fmdata.dig_b7", FT_BOOLEAN, 8, NULL, 0x80, NULL, HFILL }},
/* "Fast Operate Configuration" specific fields */
{ &hf_selfm_foconfig_len,
{ "Length", "selfm.foconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_num_brkr,
{ "Number of Breaker Bits", "selfm.foconfig.num_brkr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_num_rb,
{ "Number of Remote Bits", "selfm.foconfig.num_rb", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_prb_supp,
{ "Remote Bit Pulse Supported", "selfm.foconfig.prb_supp", FT_UINT8, BASE_DEC, VALS(selfm_foconfig_prb_supp_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_reserved,
{ "Reserved Bit (Future)", "selfm.foconfig.reserved", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_brkr_open,
{ "Breaker Bit Open Command", "selfm.foconfig.brkr_open", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fo_br_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_brkr_close,
{ "Breaker Bit Close Command", "selfm.foconfig.brkr_close", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fo_br_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_foconfig_rb_cmd,
{ "Remote Bit Command", "selfm.foconfig.rb_cmd", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fo_rb_vals_ext, 0x0, NULL, HFILL }},
/* "Alternate Fast Operate Configuration" specific fields */
{ &hf_selfm_alt_foconfig_len,
{ "Length", "selfm.alt_foconfig.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_foconfig_num_ports,
{ "Number of Ports Available", "selfm.alt_foconfig.num_ports", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_foconfig_num_brkr,
{ "Number of Breaker Bits per Port", "selfm.alt_foconfig.num_brkr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_foconfig_num_rb,
{ "Number of Remote Bits per Port", "selfm.alt_foconfig.num_rb", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_foconfig_funccode,
{ "Supported Function Code", "selfm.alt_foconfig.funccode", FT_UINT8, BASE_HEX, VALS(selfm_foconfig_alt_funccode_vals), 0x0, NULL, HFILL }},
/* "Fast Operate Command" specific fields */
{ &hf_selfm_fastop_len,
{ "Length", "selfm.fastop.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_rb_code,
{ "Remote Bit Operate Code", "selfm.fastop.rb_code", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fo_rb_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_br_code,
{ "Breaker Bit Operate Code", "selfm.fastop.br_code", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fo_br_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_fastop_valid,
{ "Operate Code Validation", "selfm.fastop.valid", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
/* "Alternate Fast Operate Command" specific fields */
{ &hf_selfm_alt_fastop_len,
{ "Length", "selfm.alt_fastop.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_fastop_code,
{ "Operate Code", "selfm.alt_fastop.code", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_alt_fastop_valid,
{ "Operate Code Validation", "selfm.alt_fastop.valid", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
/* "Fast Message" specific fields */
{ &hf_selfm_fastmsg_len,
{ "Length", "selfm.fastmsg.len", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_routing_addr,
{ "Routing Address (future)", "selfm.fastmsg.routing_addr", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_status,
{ "Status Byte", "selfm.fastmsg.status", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_funccode,
{ "Function Code", "selfm.fastmsg.funccode", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fastmsg_func_code_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_seq,
{ "Sequence Byte", "selfm.fastmsg.seq", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_seq_fir,
{ "FIR", "selfm.fastmsg.seq_fir", FT_BOOLEAN, 8, NULL, FAST_MSG_SEQ_FIR, NULL, HFILL }},
{ &hf_selfm_fastmsg_seq_fin,
{ "FIN", "selfm.fastmsg.seq_fin", FT_BOOLEAN, 8, NULL, FAST_MSG_SEQ_FIN, NULL, HFILL }},
{ &hf_selfm_fastmsg_seq_cnt,
{ "Count", "selfm.fastmsg.seq_cnt", FT_UINT8, BASE_DEC, NULL, FAST_MSG_SEQ_CNT, "Frame Count Number", HFILL }},
{ &hf_selfm_fastmsg_resp_num,
{ "Response Number", "selfm.fastmsg.resp_num", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_crc16,
{ "CRC-16", "selfm.fastmsg.crc16", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_route_sup,
{ "Routing Support", "selfm.fastmsg.def_route_sup", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_rx_stat,
{ "Status RX", "selfm.fastmsg.def_rx_stat", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_tx_stat,
{ "Status TX", "selfm.fastmsg.def_tx_stat", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_rx_maxfr,
{ "Max Frames RX", "selfm.fastmsg.def_rx_maxfr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_tx_maxfr,
{ "Max Frames TX", "selfm.fastmsg.def_tx_maxfr", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_rx_num_fc,
{ "Number of Supported RX Function Codes", "selfm.fastmsg.def_rx_num_fc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_rx_fc,
{ "Receive Function Code", "selfm.fastmsg.def_rx_fc", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fastmsg_func_code_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_tx_num_fc,
{ "Number of Supported TX Function Codes", "selfm.fastmsg.def_tx_num_fc", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_def_tx_fc,
{ "Transmit Function Code", "selfm.fastmsg.def_tx_fc", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fastmsg_func_code_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_uns_en_fc,
{ "Function Code to Enable", "selfm.fastmsg.uns_en_fc", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fastmsg_func_code_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_uns_en_fc_data,
{ "Function Code Data", "selfm.fastmsg.uns_en_fc_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_uns_dis_fc,
{ "Function Code to Disable", "selfm.fastmsg.uns_dis_fc", FT_UINT8, BASE_HEX | BASE_EXT_STRING, &selfm_fastmsg_func_code_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_uns_dis_fc_data,
{ "Function Code Data", "selfm.fastmsg.uns_dis_fc_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_orig,
{ "Origination path", "selfm.fastmsg.unsresp_orig", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_doy,
{ "Day of Year", "selfm.fastmsg.unsresp_doy", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_year,
{ "Year", "selfm.fastmsg.unsresp_year", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_todms,
{ "Time of Day (in ms)", "selfm.fastmsg.unsresp_todms", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_num_elmt,
{ "Number of SER Elements", "selfm.fastmsg.unsresp_num_elmt", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_elmt_idx,
{ "SER Element Index", "selfm.fastmsg.unsresp_elmt_idx", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_elmt_ts_ofs,
{ "SER Element Timestamp Offset (us)", "selfm.fastmsg.unsresp_elmt_ts_ofs", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_elmt_status,
{ "SER Element Status", "selfm.fastmsg.unsresp_elmt_status", FT_UINT8, BASE_DEC, VALS(selfm_ser_status_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_eor,
{ "End of Record Indicator", "selfm.fastmsg.unsresp_eor", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_elmt_statword,
{ "SER Element Status Word", "selfm.fastmsg.unsresp_elmt_statword", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unswrite_addr1,
{ "Write Address Region #1", "selfm.fastmsg.unswrite_addr1", FT_UINT16, BASE_HEX | BASE_EXT_STRING, &selfm_fastmsg_unswrite_com_vals_ext, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unswrite_addr2,
{ "Write Address Region #2", "selfm.fastmsg.unswrite_addr2", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unswrite_num_reg,
{ "Number of Registers", "selfm.fastmsg.unswrite_num_reg", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unswrite_reg_val,
{ "Register Value", "selfm.fastmsg.unswrite_reg_val", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_baseaddr,
{ "Base Address", "selfm.fastmsg.baseaddr", FT_UINT32, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_numwords,
{ "Number of 16-bit Words", "selfm.fastmsg.numwords", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_flags,
{ "Flag Word", "selfm.fastmsg.flags", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_datafmt_resp_numitem,
{ "Number of Data Items Records", "selfm.fastmsg.datafmt_resp_numitem", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_dataitem_qty,
{ "Data Item Quantity", "selfm.fastmsg.dataitem_qty", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_dataitem_type,
{ "Data Item Type", "selfm.fastmsg.dataitem_type", FT_UINT16, BASE_HEX, VALS(selfm_fastmsg_tagtype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_dataitem_uint16,
{ "(uint16)", "selfm.fastmsg.dataitem_uint16", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_dataitem_int16,
{ "(int16)", "selfm.fastmsg.dataitem_int16", FT_INT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_dataitem_uint32,
{ "(uint32)", "selfm.fastmsg.dataitem_uint32", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_dataitem_int32,
{ "(int32)", "selfm.fastmsg.dataitem_int32", FT_INT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_dataitem_float,
{ "(float)", "selfm.fastmsg.dataitem_float", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_devdesc_num_region,
{ "Number of Data Regions", "selfm.fastmsg.devdesc_num_region", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_devdesc_num_ctrl,
{ "Number of Control Regions", "selfm.fastmsg.devdesc_num_ctrl", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_soe_req_orig,
{ "Origination path", "selfm.fastmsg.soe_req_orig", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_soe_resp_numblks,
{ "Number of Blocks", "selfm.fastmsg.soe_resp_numblks", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_soe_resp_orig,
{ "Origination path", "selfm.fastmsg.soe_resp_orig", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_soe_resp_numbits,
{ "Number of Bits", "selfm.fastmsg.soe_resp_numbits", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_soe_resp_pad,
{ "Pad Byte", "selfm.fastmsg.soe_resp_pad", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_soe_resp_doy,
{ "Day of Year", "selfm.fastmsg.soe_resp_doy", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_soe_resp_year,
{ "Year", "selfm.fastmsg.soe_resp_year", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_soe_resp_tod,
{ "Time of Day (ms)", "selfm.fastmsg.soe_resp_tod", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
/* { &hf_selfm_fastmsg_soe_resp_data,
{ "Packed Binary State Data", "selfm.fastmsg.soe_resp_data", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }}, */
/* "Fast Message" Re-assembly header fields */
{ &hf_selfm_fragment,
{ "SEL Fast Msg Response Data Fragment", "selfm.respdata.fragment", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "SEL Fast Message Response Data Fragment", HFILL }},
{ &hf_selfm_fragments,
{ "SEL Fast Msg Response Data Fragments", "selfm.respdata.fragments", FT_NONE, BASE_NONE, NULL, 0x0, "SEL Fast Message Response Data Fragments", HFILL }},
{ &hf_selfm_fragment_overlap,
{ "Fragment overlap", "selfm.respdata.fragment.overlap", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Fragment overlaps with other fragments", HFILL }},
{ &hf_selfm_fragment_overlap_conflict,
{ "Conflicting data in fragment overlap", "selfm.respdata.fragment.overlap.conflict", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Overlapping fragments contained conflicting data", HFILL }},
{ &hf_selfm_fragment_multiple_tails,
{ "Multiple tail fragments found", "selfm.respdata.fragment.multipletails", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Several tails were found when defragmenting the packet", HFILL }},
{ &hf_selfm_fragment_too_long_fragment,
{ "Fragment too long", "selfm.respdata.fragment.toolongfragment", FT_BOOLEAN, BASE_NONE, NULL, 0x0, "Fragment contained data past end of packet", HFILL }},
{ &hf_selfm_fragment_error,
{ "Defragmentation error", "selfm.respdata.fragment.error", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "Defragmentation error due to illegal fragments", HFILL }},
{ &hf_selfm_fragment_count,
{ "Fragment count", "selfm.respdata.fragment.count", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fragment_reassembled_in,
{ "Reassembled PDU In Frame", "selfm.respdata.fragment.reassembled_in", FT_FRAMENUM, BASE_NONE, NULL, 0x0, "This PDU is reassembled in this frame", HFILL }},
{ &hf_selfm_fragment_reassembled_length,
{ "Reassembled SEL Fast Msg length", "selfm.respdata.fragment.reassembled.length", FT_UINT32, BASE_DEC, NULL, 0x0, "The total length of the reassembled payload", HFILL }},
/* Generated from convert_proto_tree_add_text.pl */
{ &hf_selfm_fmconfig_ai_channel, { "Analog Channel Name", "selfm.fmconfig.ai_channel", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_ai_value16, { "Value (Raw)", "selfm.fmdata.ai.value16", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_ai_scale_factor, { "Value (w/ Scale Factor)", "selfm.fmdata.ai.value_scale_factor", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_ai_value_float, { "Value", "selfm.fmdata.ai.value_float", FT_FLOAT, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_ai_value_double, { "Value", "selfm.fmdata.ai.value_double", FT_DOUBLE, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_data_type, { "Data_Type", "selfm.fmdata.data_type", FT_UINT32, BASE_DEC, VALS(selfm_fastmsg_tagtype_vals), 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_quantity, { "Quantity", "selfm.fmdata.quantity", FT_UINT32, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_ai_value_string, { "Value", "selfm.fmdata.ai.value_string", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_unsresp_elmt_ts_ofs_decoded, { "SER Element Timestamp Offset (decoded)", "selfm.fastmsg.unsresp_elmt_ts_ofs.decoded", FT_UINT24, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fid, { "FID", "selfm.fid", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_rid, { "RID", "selfm.rid", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_data_region_name, { "Data Region Name", "selfm.fastmsg.data_region_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_timestamp, { "Timestamp", "selfm.fmdata.timestamp", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fmdata_frame_data_format_reference, { "Frame Data Format Reference", "selfm.fmdata.frame_data_format_reference", FT_FRAMENUM, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_selfm_fastmsg_bit_label_name, { "Bit Label Name", "selfm.fastmsg.bit_label_name", FT_STRING, BASE_NONE, NULL, 0x0, NULL, HFILL }},
};
/* Register expert fields */
static ei_register_info selfm_ei[] = {
{ &ei_selfm_crc16_incorrect, { "selfm.crc16.incorrect", PI_CHECKSUM, PI_WARN, "Incorrect CRC", EXPFILL }}
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_selfm,
&ett_selfm_relaydef,
&ett_selfm_relaydef_fm,
&ett_selfm_relaydef_proto,
&ett_selfm_relaydef_flags,
&ett_selfm_fmconfig,
&ett_selfm_fmconfig_ai,
&ett_selfm_fmconfig_calc,
&ett_selfm_foconfig,
&ett_selfm_foconfig_brkr,
&ett_selfm_foconfig_rb,
&ett_selfm_fastop,
&ett_selfm_fmdata,
&ett_selfm_fmdata_ai,
&ett_selfm_fmdata_dig,
&ett_selfm_fmdata_ai_ch,
&ett_selfm_fmdata_dig_ch,
&ett_selfm_fastmsg,
&ett_selfm_fastmsg_seq,
&ett_selfm_fastmsg_def_fc,
&ett_selfm_fastmsg_tag,
&ett_selfm_fastmsg_element_list,
&ett_selfm_fastmsg_element,
&ett_selfm_fastmsg_datareg,
&ett_selfm_fragment,
&ett_selfm_fragments
};
module_t *selfm_module;
expert_module_t* expert_selfm;
/* Register protocol init routine */
register_init_routine(&selfm_init);
register_cleanup_routine(&selfm_cleanup);
/* Register the protocol name and description */
proto_selfm = proto_register_protocol("SEL Protocol", "SEL Protocol", "selfm");
/* Registering protocol to be called by another dissector */
selfm_handle = register_dissector("selfm", dissect_selfm_tcp, proto_selfm);
/* Required function calls to register the header fields and subtrees used */
proto_register_field_array(proto_selfm, selfm_hf, array_length(selfm_hf));
proto_register_subtree_array(ett, array_length(ett));
expert_selfm = expert_register_protocol(proto_selfm);
expert_register_field_array(expert_selfm, selfm_ei, array_length(selfm_ei));
/* Register required preferences for SEL Protocol register decoding */
selfm_module = prefs_register_protocol(proto_selfm, proto_reg_handoff_selfm);
/* SEL Protocol - Desegmentmentation; defaults to TRUE for TCP desegmentation*/
prefs_register_bool_preference(selfm_module, "desegment",
"Desegment packets spanning multiple TCP segments",
"Whether the SEL Protocol dissector should desegment all messages spanning multiple TCP segments",
&selfm_desegment);
/* SEL Protocol - Telnet protocol IAC (0xFF) processing; defaults to TRUE to allow Telnet Encapsulated Data */
prefs_register_bool_preference(selfm_module, "telnetclean",
"Remove extra 0xFF (Telnet IAC) bytes",
"Whether the SEL Protocol dissector should automatically pre-process Telnet data to remove duplicate 0xFF IAC bytes",
&selfm_telnet_clean);
/* SEL Protocol Preference - Default TCP Port, allows for "user" port either than 0. */
prefs_register_uint_preference(selfm_module, "tcp.port", "SEL Protocol Port",
"Set the TCP port for SEL FM Protocol packets (if other than the default of 0)",
10, &global_selfm_tcp_port);
/* SEL Protocol Preference - Disable/Enable CRC verification, */
prefs_register_bool_preference(selfm_module, "crc_verification", "Validate Fast Message CRC16",
"Perform CRC16 validation on Fast Messages",
&selfm_crc16);
prefs_register_string_preference(selfm_module, "ser_list",
"SER Index List", "List of word bits contained in SER equations (Comma-separated, no Quotes or Checksums)", &selfm_ser_list);
}
/******************************************************************************************************/
/* If this dissector uses sub-dissector registration add a registration routine.
This format is required because a script is used to find these routines and
create the code that calls these routines.
*/
/******************************************************************************************************/
void
proto_reg_handoff_selfm(void)
{
static int selfm_prefs_initialized = FALSE;
static unsigned int selfm_port;
/* Make sure to use SEL FM Protocol Preferences field to determine default TCP port */
if (! selfm_prefs_initialized) {
selfm_prefs_initialized = TRUE;
}
else {
dissector_delete_uint("tcp.port", selfm_port, selfm_handle);
}
selfm_port = global_selfm_tcp_port;
dissector_add_uint("tcp.port", selfm_port, selfm_handle);
dissector_add_for_decode_as("rtacser.data", selfm_handle);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/