wireshark/epan/dissectors/packet-gre.c

769 lines
29 KiB
C

/* packet-gre.c
* Routines for the Generic Routing Encapsulation (GRE) protocol
* Brad Robel-Forrest <brad.robel-forrest@watchguard.com>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/capture_dissectors.h>
#include <epan/etypes.h>
#include <epan/in_cksum.h>
#include <epan/expert.h>
#include <epan/ipproto.h>
#include <epan/llcsaps.h>
#include "packet-gre.h"
#include "packet-wccp.h"
void proto_register_gre(void);
void proto_reg_handoff_gre(void);
/*
* See RFC 1701 "Generic Routing Encapsulation (GRE)", RFC 1702
* "Generic Routing Encapsulation over IPv4 networks", RFC 2637
* "Point-to-Point Tunneling Protocol (PPTP)", RFC 2784 "Generic
* Routing Encapsulation (GRE)", RFC 2890 "Key and Sequence
* Number Extensions to GRE" and draft-ietf-mpls-in-ip-or-gre-07.txt
* "Encapsulating MPLS in IP or Generic Routing Encapsulation (GRE)".
*/
static int proto_gre = -1;
static int hf_gre_proto = -1;
static int hf_gre_flags_and_version = -1;
static int hf_gre_flags_checksum = -1;
static int hf_gre_flags_routing = -1;
static int hf_gre_flags_key = -1;
static int hf_gre_flags_sequence_number = -1;
static int hf_gre_flags_strict_source_route = -1;
static int hf_gre_flags_recursion_control = -1;
static int hf_gre_flags_ack = -1;
static int hf_gre_flags_reserved_ppp = -1;
static int hf_gre_flags_reserved = -1;
static int hf_gre_flags_version = -1;
static int hf_gre_checksum = -1;
static int hf_gre_offset = -1;
static int hf_gre_key = -1;
static int hf_gre_key_payload_length = -1;
static int hf_gre_key_call_id = -1;
static int hf_gre_sequence_number = -1;
static int hf_gre_ack_number = -1;
static int hf_gre_routing = -1;
static int hf_gre_routing_address_family = -1;
static int hf_gre_routing_sre_length = -1;
static int hf_gre_routing_sre_offset = -1;
static int hf_gre_routing_information = -1;
/* Ref 3GPP2 A.S0012-C v2.0 and A.S0008-A v1.0 */
static int hf_gre_3ggp2_attrib = -1;
static int hf_gre_3ggp2_attrib_id = -1;
static int hf_gre_3ggp2_attrib_length = -1;
static int hf_gre_3ggp2_sdi = -1;
static int hf_gre_3ggp2_fci = -1;
static int hf_gre_3ggp2_di = -1;
static int hf_gre_3ggp2_flow_disc = -1;
static int hf_gre_3ggp2_seg = -1;
static int hf_gre_wccp_redirect_header = -1;
static int hf_gre_wccp_dynamic_service = -1;
static int hf_gre_wccp_alternative_bucket_used = -1;
static int hf_gre_wccp_redirect_header_valid = -1;
static int hf_gre_wccp_service_id = -1;
static int hf_gre_wccp_alternative_bucket = -1;
static int hf_gre_wccp_primary_bucket = -1;
static gint ett_gre = -1;
static gint ett_gre_flags = -1;
static gint ett_gre_routing = -1;
static gint ett_gre_wccp2_redirect_header = -1;
static gint ett_3gpp2_attribs = -1;
static gint ett_3gpp2_attr = -1;
static expert_field ei_gre_checksum_incorrect = EI_INIT;
static dissector_table_t gre_dissector_table;
/* bit positions for flags in header */
#define GRE_CHECKSUM 0x8000
#define GRE_ROUTING 0x4000
#define GRE_KEY 0x2000
#define GRE_SEQUENCE 0x1000
#define GRE_STRICTSOURCE 0x0800
#define GRE_RECURSION 0x0700
#define GRE_ACK 0x0080 /* only in special PPTPized GRE header */
#define GRE_RESERVED_PPP 0x0078 /* only in special PPTPized GRE header */
#define GRE_RESERVED 0x00F8
#define GRE_VERSION 0x0007
const value_string gre_version[] = {
{ 0, "GRE" }, /* [RFC2784] */
{ 1, "Enhanced GRE" }, /* [RFC2637] */
{ 0, NULL}
};
const value_string gre_typevals[] = {
{ GRE_KEEPALIVE, "Possible GRE keepalive packet" },
{ ETHERTYPE_PPP, "PPP" },
{ ETHERTYPE_IP, "IP" },
{ ETHERTYPE_ARP, "ARP" },
{ SAP_OSINL5, "OSI"},
{ GRE_WCCP, "WCCP"},
{ GRE_NHRP, "NHRP"},
{ GRE_ERSPAN_88BE, "ERSPAN"},
{ GRE_ERSPAN_22EB, "ERSPAN"},
{ GRE_MIKROTIK_EOIP, "MIKROTIK EoIP"},
{ GRE_AIROHIVE, "AIROHIVE AP AP"},
{ ETHERTYPE_IPX, "IPX"},
{ ETHERTYPE_ETHBRIDGE, "Transparent Ethernet bridging" },
{ ETHERTYPE_RAW_FR, "Frame Relay"},
{ ETHERTYPE_IPv6, "IPv6" },
{ ETHERTYPE_MPLS, "MPLS label switched packet" },
{ ETHERTYPE_NSH, "Network Service Header" },
{ ETHERTYPE_CDMA2000_A10_UBS,"CDMA2000 A10 Unstructured byte stream" },
{ ETHERTYPE_3GPP2, "CDMA2000 A10 3GPP2 Packet" },
{ GRE_ARUBA_8200, "ARUBA WLAN" },
{ GRE_ARUBA_8210, "ARUBA WLAN" },
{ GRE_ARUBA_8220, "ARUBA WLAN" },
{ GRE_ARUBA_8230, "ARUBA WLAN" },
{ GRE_ARUBA_8240, "ARUBA WLAN" },
{ GRE_ARUBA_8250, "ARUBA WLAN" },
{ GRE_ARUBA_8260, "ARUBA WLAN" },
{ GRE_ARUBA_8270, "ARUBA WLAN" },
{ GRE_ARUBA_8280, "ARUBA WLAN" },
{ GRE_ARUBA_8290, "ARUBA WLAN" },
{ GRE_ARUBA_82A0, "ARUBA WLAN" },
{ GRE_ARUBA_82B0, "ARUBA WLAN" },
{ GRE_ARUBA_82C0, "ARUBA WLAN" },
{ GRE_ARUBA_82D0, "ARUBA WLAN" },
{ GRE_ARUBA_82E0, "ARUBA WLAN" },
{ GRE_ARUBA_82F0, "ARUBA WLAN" },
{ GRE_ARUBA_8300, "ARUBA WLAN" },
{ GRE_ARUBA_8310, "ARUBA WLAN" },
{ GRE_ARUBA_8320, "ARUBA WLAN" },
{ GRE_ARUBA_8330, "ARUBA WLAN" },
{ GRE_ARUBA_8340, "ARUBA WLAN" },
{ GRE_ARUBA_8350, "ARUBA WLAN" },
{ GRE_ARUBA_8360, "ARUBA WLAN" },
{ GRE_ARUBA_8370, "ARUBA WLAN" },
{ GRE_ARUBA_9000, "ARUBA WLAN" },
{ 0, NULL }
};
#define ID_3GPP2_SDI_FLAG 1
#define ID_3GPP2_FLOW_CTRL 2
#define ID_3GPP2_FLOW_DISCRIMINATOR 3
#define ID_3GPP2_SEG 4
static const value_string gre_3ggp2_seg_vals[] = {
{ 0x00, "Packet Started" },
{ 0x01, "Packet continued" },
{ 0x02, "Packet Ended" },
{ 0, NULL }
};
/* 3GPP2 A.S0012-C v2.0
* 2.6.1 GRE Attributes
*/
static const value_string gre_3ggp2_attrib_id_vals[] = {
{ 0x01, "1x SDB/HRPD DOS Indicator" },
{ 0x02, "Flow Control Indication" },
/* A.S0008-A v1.0 */
{ 0x03, "IP Flow Discriminator" },
{ 0x04, "Segmentation Indication" },
{ 0, NULL }
};
static const true_false_string gre_3ggp2_sdi_val = {
"Packet suitable for 1x SDB or HRPD DOS transmission",
"Reserved"
};
static const true_false_string gre_3ggp2_fci_val = {
"XOFF",
"XON"
};
static const true_false_string gre_3ggp2_di_val = {
"INDEFINITE:",
"TEMPORARY"
};
static const true_false_string gre_wccp_dynamic_service_val = {
"Dynamic service",
"Well-known service"
};
static const true_false_string gre_wccp_alternative_bucket_used_val = {
"Alternative bucket used",
"Primary bucket used",
};
static const true_false_string gre_wccp_redirect_header_valid_val = {
"Header is present, but ignore contents",
"Header contents are valid",
};
static int
dissect_gre_3gpp2_attribs(tvbuff_t *tvb, int offset, proto_tree *tree)
{
gboolean last_attrib = FALSE;
proto_item *attr_item;
proto_tree *attr_tree;
guint8 value;
int start_offset = offset;
proto_item *ti = proto_tree_add_item(tree, hf_gre_3ggp2_attrib, tvb, offset, 0, ENC_NA);
proto_tree *atree = proto_item_add_subtree(ti, ett_3gpp2_attribs);
while(last_attrib != TRUE)
{
guint8 attrib_id = tvb_get_guint8(tvb, offset);
guint8 attrib_length = tvb_get_guint8(tvb, offset + 1);
attr_tree = proto_tree_add_subtree(atree, tvb, offset, attrib_length + 1 + 1, ett_3gpp2_attr, &attr_item,
val_to_str((attrib_id&0x7f), gre_3ggp2_attrib_id_vals, "%u (Unknown)"));
proto_tree_add_item(attr_tree, hf_gre_3ggp2_attrib_id, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(attr_tree, hf_gre_3ggp2_attrib_length, tvb, offset+1, 1, ENC_BIG_ENDIAN);
offset += 2;
last_attrib = (attrib_id & 0x80)?TRUE:FALSE;
attrib_id &= 0x7F;
switch(attrib_id)
{
case ID_3GPP2_FLOW_DISCRIMINATOR:
{
value = tvb_get_guint8(tvb,offset);
proto_tree_add_item(attr_tree, hf_gre_3ggp2_flow_disc, tvb, offset, attrib_length, ENC_NA);
proto_item_append_text(attr_item," - 0x%x",value);
}
break;
case ID_3GPP2_SDI_FLAG:
{
value = tvb_get_guint8(tvb,offset);
proto_tree_add_item(attr_tree, hf_gre_3ggp2_sdi, tvb, offset, attrib_length, ENC_BIG_ENDIAN);
proto_item_append_text(attr_item," - %s",
(value & 0x80) ? "Packet suitable for 1x SDB or HRPD DOS transmission" : "Reserved");
}
break;
case ID_3GPP2_SEG:
{
value = tvb_get_guint8(tvb,offset) >>6;
proto_tree_add_item(attr_tree, hf_gre_3ggp2_seg, tvb, offset, attrib_length, ENC_BIG_ENDIAN);
proto_item_append_text(attr_item," - %s",val_to_str(value, gre_3ggp2_seg_vals, "0x%02X - Unknown"));
}
break;
case ID_3GPP2_FLOW_CTRL:
{
value = tvb_get_guint8(tvb,offset);
proto_tree_add_item(attr_tree, hf_gre_3ggp2_fci, tvb, offset, attrib_length, ENC_BIG_ENDIAN);
proto_item_append_text(attr_item," - %s",
(value & 0x80) ? "XON" : "XOFF");
proto_tree_add_item(attr_tree, hf_gre_3ggp2_di, tvb, offset, attrib_length, ENC_BIG_ENDIAN);
proto_item_append_text(attr_item,"/%s",
(value & 0x40) ? "INDEFINITE" : "TEMPORARY");
}
break;
}
offset += attrib_length;
}
proto_item_set_len(ti, offset - start_offset);
return offset;
}
static void
dissect_gre_wccp2_redirect_header(tvbuff_t *tvb, int offset, proto_tree *tree)
{
proto_item *ti;
proto_tree *rh_tree;
ti = proto_tree_add_item(tree, hf_gre_wccp_redirect_header, tvb, offset, 4, ENC_NA);
rh_tree = proto_item_add_subtree(ti, ett_gre_wccp2_redirect_header);
proto_tree_add_item(rh_tree, hf_gre_wccp_dynamic_service, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(rh_tree, hf_gre_wccp_alternative_bucket_used, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(rh_tree, hf_gre_wccp_redirect_header_valid, tvb, offset, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(rh_tree, hf_gre_wccp_service_id, tvb, offset +1, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(rh_tree, hf_gre_wccp_alternative_bucket, tvb, offset +2, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(rh_tree, hf_gre_wccp_primary_bucket, tvb, offset +3, 1, ENC_BIG_ENDIAN);
}
static gboolean
capture_gre(const guchar *pd _U_, int offset _U_, int len _U_, capture_packet_info_t *cpinfo, const union wtap_pseudo_header *pseudo_header _U_)
{
capture_dissector_increment_count(cpinfo, proto_gre);
return TRUE;
}
static int
dissect_gre(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void* data _U_)
{
int offset = 0;
guint16 flags_and_ver;
guint16 type;
gboolean is_ppp = FALSE;
gboolean is_wccp2 = FALSE;
proto_item *ti, *it_flags;
proto_tree *gre_tree, *fv_tree = NULL;
guint16 sre_af;
guint8 sre_length;
tvbuff_t *next_tvb;
flags_and_ver = tvb_get_ntohs(tvb, offset);
type = tvb_get_ntohs(tvb, offset + 2);
col_set_str(pinfo->cinfo, COL_PROTOCOL, "GRE");
col_add_fstr(pinfo->cinfo, COL_INFO, "Encapsulated %s", val_to_str(type, gre_typevals, "0x%04X (unknown)"));
switch (type) {
case ETHERTYPE_PPP:
if (flags_and_ver & GRE_VERSION)
is_ppp = TRUE;
break;
case ETHERTYPE_3GPP2:
case ETHERTYPE_CDMA2000_A10_UBS:
is_ppp = TRUE;
break;
case GRE_WCCP:
/* WCCP2 puts an extra 4 octets into the header, but uses the same
encapsulation type; if it looks as if the first octet of the packet
isn't the beginning of an IPv4 header, assume it's WCCP2. */
if ((tvb_get_guint8(tvb, offset + 2 + 2) & 0xF0) != 0x40) {
is_wccp2 = TRUE;
}
break;
}
/* Per README.developer, section 1.2, we must call subdissectors regardless
* of whether "tree" is NULL or not. That is done below using
* call_dissector(), but since the next_tvb must begin at the correct offset,
* it's easier and more readable to always enter this block in order to
* compute the correct offset to pass to tvb_new_subset_remaining().
*/
if (1) {
ti = proto_tree_add_protocol_format(tree, proto_gre, tvb, offset, -1, "Generic Routing Encapsulation (%s)",
val_to_str(type, gre_typevals, "0x%04X - unknown"));
gre_tree = proto_item_add_subtree(ti, ett_gre);
it_flags = proto_tree_add_item(gre_tree, hf_gre_flags_and_version, tvb, offset, 2, ENC_BIG_ENDIAN);
fv_tree = proto_item_add_subtree(it_flags, ett_gre_flags);
proto_tree_add_item(fv_tree, hf_gre_flags_checksum, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fv_tree, hf_gre_flags_routing, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fv_tree, hf_gre_flags_key, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fv_tree, hf_gre_flags_sequence_number, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fv_tree, hf_gre_flags_strict_source_route, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fv_tree, hf_gre_flags_recursion_control, tvb, offset, 2, ENC_BIG_ENDIAN);
/* RFC2637 Section 4.1 : Enhanced GRE Header */
if (is_ppp) {
proto_tree_add_item(fv_tree, hf_gre_flags_ack, tvb, offset, 2, ENC_BIG_ENDIAN);
proto_tree_add_item(fv_tree, hf_gre_flags_reserved_ppp, tvb, offset, 2, ENC_BIG_ENDIAN);
}
else {
proto_tree_add_item(fv_tree, hf_gre_flags_reserved, tvb, offset, 2, ENC_BIG_ENDIAN);
}
proto_tree_add_item(fv_tree, hf_gre_flags_version, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(gre_tree, hf_gre_proto, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
if (flags_and_ver & GRE_CHECKSUM || flags_and_ver & GRE_ROUTING) {
guint length, reported_length;
vec_t cksum_vec[1];
/* Checksum check !... */
length = tvb_captured_length(tvb);
reported_length = tvb_reported_length(tvb);
/* The Checksum Present bit is set, and the packet isn't part of a
fragmented datagram and isn't truncated, so we can checksum it. */
if ((flags_and_ver & GRE_CHECKSUM) && !pinfo->fragmented && length >= reported_length) {
SET_CKSUM_VEC_TVB(cksum_vec[0], tvb, 0, reported_length);
proto_tree_add_checksum(gre_tree, tvb, offset, hf_gre_checksum, -1, &ei_gre_checksum_incorrect, pinfo, in_cksum(cksum_vec, 1),
ENC_BIG_ENDIAN, PROTO_CHECKSUM_VERIFY|PROTO_CHECKSUM_IN_CKSUM);
} else {
proto_tree_add_checksum(gre_tree, tvb, offset, hf_gre_checksum, -1, &ei_gre_checksum_incorrect, pinfo, 0,
ENC_BIG_ENDIAN, PROTO_CHECKSUM_NO_FLAGS);
}
offset += 2;
proto_tree_add_item(gre_tree, hf_gre_offset, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
if (flags_and_ver & GRE_KEY) {
/* RFC2637 Section 4.1 : Enhanced GRE Header */
if (is_ppp && type!=ETHERTYPE_CDMA2000_A10_UBS) {
proto_tree_add_item(gre_tree, hf_gre_key_payload_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(gre_tree, hf_gre_key_call_id, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
else {
proto_tree_add_item(gre_tree, hf_gre_key, tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
}
}
if (flags_and_ver & GRE_SEQUENCE) {
proto_tree_add_item(gre_tree, hf_gre_sequence_number , tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
}
if (is_ppp && (flags_and_ver & GRE_ACK)) {
proto_tree_add_item(gre_tree, hf_gre_ack_number , tvb, offset, 4, ENC_BIG_ENDIAN);
offset += 4;
}
if (flags_and_ver & GRE_ROUTING) {
proto_item *it_routing;
proto_tree *r_tree;
for (;;) {
it_routing = proto_tree_add_item(gre_tree, hf_gre_routing, tvb, offset, -1, ENC_NA);
r_tree = proto_item_add_subtree(ti, ett_gre_routing);
sre_af = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(r_tree, hf_gre_routing_address_family , tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(r_tree, hf_gre_routing_sre_offset , tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
sre_length = tvb_get_guint8(tvb, offset);
proto_tree_add_item(r_tree, hf_gre_routing_sre_length , tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
proto_item_set_len(it_routing, 2 + 1 +1 + sre_length);
if (sre_af == 0 && sre_length == 0)
break;
proto_tree_add_item(r_tree, hf_gre_routing_information , tvb, offset, sre_length, ENC_NA);
offset += sre_length;
}
}
if (type == GRE_WCCP && is_wccp2) {
dissect_gre_wccp2_redirect_header(tvb, offset, gre_tree);
offset += 4;
}
if (type == ETHERTYPE_3GPP2) {
offset = dissect_gre_3gpp2_attribs(tvb, offset, gre_tree);
}
proto_item_set_len(ti, offset);
/* If the S bit is not set, this packet might not have a payload, so
check whether there's any data left, first.
XXX - the S bit isn't in RFC 2784, which deprecates that bit
and some other bits in RFC 1701 and says that they should be
zero for RFC 2784-compliant GRE; as such, the absence of the
S bit doesn't necessarily mean there's no payload. */
if (!(flags_and_ver & GRE_SEQUENCE)) {
if (tvb_reported_length_remaining(tvb, offset) <= 0)
return offset; /* no payload */
}
next_tvb = tvb_new_subset_remaining(tvb, offset);
pinfo->flags.in_gre_pkt = TRUE;
if (!dissector_try_uint(gre_dissector_table, type, next_tvb, pinfo, tree))
call_data_dissector(next_tvb, pinfo, gre_tree);
}
return tvb_captured_length(tvb);
}
void
proto_register_gre(void)
{
static hf_register_info hf[] = {
{ &hf_gre_proto,
{ "Protocol Type", "gre.proto",
FT_UINT16, BASE_HEX, VALS(gre_typevals), 0x0,
"The protocol that is GRE encapsulated", HFILL }
},
{ &hf_gre_flags_and_version,
{ "Flags and Version", "gre.flags_and_version",
FT_UINT16, BASE_HEX, NULL, 0x0,
"The GRE flags are encoded in the first two octets", HFILL }
},
{ &hf_gre_flags_checksum,
{ "Checksum Bit", "gre.flags.checksum",
FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_CHECKSUM,
"Indicates if the Checksum field is present", HFILL }
},
{ &hf_gre_flags_routing,
{ "Routing Bit", "gre.flags.routing",
FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_ROUTING,
"Indicates if the Routing and Checksum/Offset field are present", HFILL }
},
{ &hf_gre_flags_key,
{ "Key Bit", "gre.flags.key",
FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_KEY,
"Indicates if the Key field is present", HFILL }
},
{ &hf_gre_flags_sequence_number,
{ "Sequence Number Bit", "gre.flags.sequence_number",
FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_SEQUENCE,
"Indicates if the Sequence Number field is present", HFILL }
},
{ &hf_gre_flags_strict_source_route,
{ "Strict Source Route Bit", "gre.flags.strict_source_route",
FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_STRICTSOURCE,
NULL, HFILL }
},
{ &hf_gre_flags_recursion_control,
{ "Recursion control", "gre.flags.recursion_control",
FT_UINT16, BASE_DEC, NULL, GRE_RECURSION,
NULL, HFILL }
},
{ &hf_gre_flags_ack,
{ "Acknowledgment", "gre.flags.ack",
FT_BOOLEAN, 16, TFS(&tfs_yes_no), GRE_ACK,
"Indicates if the packet packet contains Acknowledgment Number to be used for acknowledging previously transmitted data", HFILL }
},
{ &hf_gre_flags_reserved,
{ "Flags (Reserved)", "gre.flags.reserved",
FT_UINT16, BASE_DEC, NULL, GRE_RESERVED,
NULL, HFILL }
},
{ &hf_gre_flags_reserved_ppp,
{ "Flags (Reserved)", "gre.flags.reserved",
FT_UINT16, BASE_DEC, NULL, GRE_RESERVED_PPP,
NULL, HFILL }
},
{ &hf_gre_flags_version,
{ "Version", "gre.flags.version",
FT_UINT16, BASE_DEC, VALS(gre_version), GRE_VERSION,
NULL, HFILL }
},
{ &hf_gre_checksum,
{ "Checksum", "gre.checksum",
FT_UINT16, BASE_HEX, NULL, 0x0,
"The Checksum field contains the IP (one's complement) checksum of the GRE header and the payload packet", HFILL }
},
{ &hf_gre_offset,
{ "Offset", "gre.offset",
FT_UINT16, BASE_DEC, NULL, 0x0,
"The offset field indicates the octet offset from the start of the Routing field to the first octet of the active Source Route Entry to be examined", HFILL }
},
{ &hf_gre_key,
{ "Key", "gre.key",
FT_UINT32, BASE_HEX, NULL, 0x0,
"The Key field contains a four octet number which was inserted by the encapsulator", HFILL }
},
{ &hf_gre_key_payload_length,
{ "Payload Length", "gre.key.payload_length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Size of the payload, not including the GRE header", HFILL }
},
{ &hf_gre_key_call_id,
{ "Call ID", "gre.key.call_id",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Contains the Peer's Call ID for the session to which this packet belongs.", HFILL }
},
{ &hf_gre_sequence_number,
{ "Sequence Number", "gre.sequence_number",
FT_UINT32, BASE_DEC, NULL, 0x0,
"The Sequence Number field contains an unsigned 32 bit integer which is inserted by the encapsulator", HFILL }
},
{ &hf_gre_ack_number,
{ "Acknowledgment Number", "gre.ack_number",
FT_UINT32, BASE_DEC, NULL, 0x0,
"Contains the sequence number of the highest numbered GRE packet received by the sending peer for this user session", HFILL }
},
{ &hf_gre_routing,
{ "Routing", "gre.routing",
FT_NONE, BASE_NONE, NULL, 0x0,
"The Routing field is a list of Source Route Entries (SREs)", HFILL }
},
{ &hf_gre_routing_address_family,
{ "Address Family", "gre.routing.address_family",
FT_UINT16, BASE_DEC, NULL, 0x0,
"The Address Family field contains a two octet value which indicates the syntax and semantics of the Routing Information field", HFILL }
},
{ &hf_gre_routing_sre_offset,
{ "SRE Offset", "gre.routing.sre_offset",
FT_UINT8, BASE_DEC, NULL, 0x0,
"The Address Family field contains a two octet value which indicates the syntax and semantics of the Routing Information field", HFILL }
},
{ &hf_gre_routing_sre_length,
{ "SRE Length", "gre.routing.src_length",
FT_UINT8, BASE_DEC, NULL, 0x0,
"The SRE Length field contains the number of octets in the SRE", HFILL }
},
{ &hf_gre_routing_information,
{ "Routing Information", "gre.routing.information",
FT_BYTES, BASE_NONE, NULL, 0x0,
"The Routing Information field contains data which may be used in routing this packet", HFILL }
},
{ &hf_gre_3ggp2_attrib,
{ "3GGP2 Attributes", "gre.ggp2_attrib",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_gre_3ggp2_attrib_id,
{ "Type", "gre.ggp2_attrib_id",
FT_UINT8, BASE_HEX, VALS(gre_3ggp2_attrib_id_vals), 0x7f,
NULL, HFILL }
},
{ &hf_gre_3ggp2_attrib_length,
{ "Length", "gre.ggp2_attrib_length",
FT_UINT8, BASE_HEX, NULL, 0x0,
NULL, HFILL }
},
{ &hf_gre_3ggp2_sdi,
{ "SDI/DOS", "gre.3ggp2_sdi",
FT_BOOLEAN, 16, TFS(&gre_3ggp2_sdi_val), 0x8000,
"Short Data Indicator(SDI)/Data Over Signaling (DOS)", HFILL }
},
{ &hf_gre_3ggp2_fci,
{ "Flow Control Indicator", "gre.3ggp2_fci",
FT_BOOLEAN, 16, TFS(&gre_3ggp2_fci_val), 0x8000,
NULL, HFILL }
},
{ &hf_gre_3ggp2_di,
{ "Duration Indicator", "gre.3ggp2_di",
FT_BOOLEAN, 16, TFS(&gre_3ggp2_di_val), 0x4000,
NULL, HFILL }
},
{ &hf_gre_3ggp2_flow_disc,
{ "Flow ID", "gre.ggp2_flow_disc",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_gre_3ggp2_seg,
{ "Type", "gre.ggp2_3ggp2_seg",
FT_UINT16, BASE_HEX, VALS(gre_3ggp2_seg_vals), 0xc000,
NULL, HFILL }
},
{ &hf_gre_wccp_redirect_header,
{ "Redirect Header", "gre.wccp.redirect_header",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_gre_wccp_dynamic_service,
{ "Dynamic Service", "gre.wccp.dynamic_service",
FT_BOOLEAN, 8, TFS(&gre_wccp_dynamic_service_val), 0x01,
NULL, HFILL }
},
{ &hf_gre_wccp_alternative_bucket_used,
{ "Alternative bucket used", "gre.wccp.alternative_bucket_used",
FT_BOOLEAN, 8, TFS(&gre_wccp_alternative_bucket_used_val), 0x02,
NULL, HFILL }
},
{ &hf_gre_wccp_redirect_header_valid,
{ "WCCP Redirect header is valid", "gre.wccp.redirect_header_valid",
FT_BOOLEAN, 8, TFS(&gre_wccp_redirect_header_valid_val), 0x04,
NULL, HFILL }
},
{ &hf_gre_wccp_service_id,
{ "Service ID", "gre.wccp.service_id",
FT_UINT8, BASE_DEC, VALS(service_id_vals), 0x00,
"Service Group identifier", HFILL }
},
{ &hf_gre_wccp_alternative_bucket,
{ "Alternative Bucket", "gre.wccp.alternative_bucket",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Alternative bucket index used to redirect the packet.", HFILL }
},
{ &hf_gre_wccp_primary_bucket,
{ "Primary Bucket", "gre.wccp.primary_bucket",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Primary bucket index used to redirect the packet.", HFILL }
},
};
static gint *ett[] = {
&ett_gre,
&ett_gre_flags,
&ett_gre_routing,
&ett_gre_wccp2_redirect_header,
&ett_3gpp2_attribs,
&ett_3gpp2_attr,
};
static ei_register_info ei[] = {
{ &ei_gre_checksum_incorrect, { "gre.checksum.incorrect", PI_PROTOCOL, PI_WARN, "Incorrect GRE Checksum", EXPFILL }},
};
expert_module_t* expert_gre;
proto_gre = proto_register_protocol("Generic Routing Encapsulation",
"GRE", "gre");
proto_register_field_array(proto_gre, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_gre = expert_register_protocol(proto_gre);
expert_register_field_array(expert_gre, ei, array_length(ei));
/* subdissector code */
gre_dissector_table = register_dissector_table("gre.proto",
"GRE protocol type", proto_gre, FT_UINT16, BASE_HEX, DISSECTOR_TABLE_ALLOW_DUPLICATE);
}
void
proto_reg_handoff_gre(void)
{
dissector_handle_t gre_handle;
gre_handle = create_dissector_handle(dissect_gre, proto_gre);
dissector_add_uint("ip.proto", IP_PROTO_GRE, gre_handle);
register_capture_dissector("ip.proto", IP_PROTO_GRE, capture_gre, proto_gre);
register_capture_dissector("ipv6.nxt", IP_PROTO_GRE, capture_gre, proto_gre);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/