wireshark/epan/dissectors/packet-ieee80211-wlancap.c

681 lines
23 KiB
C

/* packet-ieee80211-wlancap.c
* Routines for AVS linux-wlan monitoring mode header dissection
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* Copied from README.developer
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "config.h"
#include <epan/packet.h>
#include <wiretap/wtap.h>
#include <wsutil/pint.h>
#include "packet-ieee80211.h"
void proto_register_ieee80211_wlancap(void);
void proto_reg_handoff_ieee80211_wlancap(void);
static dissector_handle_t ieee80211_handle;
static int proto_wlancap = -1;
/* AVS WLANCAP radio header */
static int hf_wlan_magic = -1;
static int hf_wlan_version = -1;
static int hf_wlan_length = -1;
static int hf_wlan_phytype = -1;
static int hf_wlan_antenna = -1;
static int hf_wlan_priority = -1;
static int hf_wlan_ssi_type = -1;
static int hf_wlan_preamble = -1;
static int hf_wlan_encoding = -1;
static int hf_wlan_sequence = -1;
static int hf_wlan_drops = -1;
static int hf_wlan_receiver_addr = -1;
static int hf_wlan_padding = -1;
static int hf_mactime = -1;
static int hf_hosttime = -1;
static int hf_channel_frequency = -1;
static int hf_data_rate = -1;
static int hf_channel = -1;
static int hf_dbm_antnoise = -1;
static int hf_rawrssi_antnoise = -1;
static int hf_normrssi_antnoise = -1;
static int hf_rawrssi_antsignal = -1;
static int hf_dbm_antsignal = -1;
static int hf_normrssi_antsignal = -1;
static gint ett_radio = -1;
static dissector_handle_t wlancap_handle;
void
capture_wlancap(const guchar *pd, int offset, int len, packet_counts *ld)
{
guint32 length;
if (!BYTES_ARE_IN_FRAME(offset, len, sizeof(guint32)*2)) {
ld->other++;
return;
}
length = pntoh32(pd+sizeof(guint32));
if (!BYTES_ARE_IN_FRAME(offset, len, length)) {
ld->other++;
return;
}
offset += length;
/* 802.11 header follows */
capture_ieee80211(pd, offset, len, ld);
}
/*
* AVS linux-wlan-based products use a new sniff header to replace the
* old Prism header. This one has additional fields, is designed to be
* non-hardware-specific, and more importantly, version and length fields
* so it can be extended later without breaking anything.
*
* Support by Solomon Peachy
*
* Description, from the capturefrm.txt file in the linux-wlan-ng 0.2.9
* release (linux-wlan-ng-0.2.9/doc/capturefrm.txt):
*
AVS Capture Frame Format
Version 2.1.1
1. Introduction
The original header format for "monitor mode" or capturing frames was
a considerable hack. The document covers a redesign of that format.
Any questions, corrections, or proposed changes go to info@linux-wlan.com
2. Frame Format
All sniff frames follow the same format:
Offset Name Size Description
--------------------------------------------------------------------
0 CaptureHeader AVS capture metadata header
64 802.11Header [10-30] 802.11 frame header
?? 802.11Payload [0-2312] 802.11 frame payload
?? 802.11FCS 4 802.11 frame check sequence
Note that the header and payload are variable length and the payload
may be empty.
If the hardware does not supply the FCS to the driver, then the frame shall
have a FCS of 0xFFFFFFFF.
3. Byte Order
All multibyte fields of the capture header are in "network" byte
order. The "host to network" and "network to host" functions should
work just fine. All the remaining multibyte fields are ordered
according to their respective standards.
4. Capture Header Format
The following fields make up the AVS capture header:
Offset Name Type
------------------------------
0 version uint32
4 length uint32
8 mactime uint64
16 hosttime uint64
24 phytype uint32
28 frequency uint32
32 datarate uint32
36 antenna uint32
40 priority uint32
44 ssi_type uint32
48 ssi_signal int32
52 ssi_noise int32
56 preamble uint32
60 encoding uint32
64 sequence uint32
68 drops uint32
72 receiver_addr uint8[6]
78 padding uint8[2]
------------------------------
80
The following subsections detail the fields of the capture header.
4.1 version
The version field identifies this type of frame as a subtype of
ETH_P_802111_CAPTURE as received by an ARPHRD_IEEE80211_PRISM or
an ARPHRD_IEEE80211_CAPTURE device. The value of this field shall be
0x80211002. As new revisions of this header are necessary, we can
increment the version appropriately.
4.2 length
The length field contains the length of the entire AVS capture header,
in bytes.
4.3 mactime
Many WLAN devices supply a relatively high resolution frame reception
time value. This field contains the value supplied by the device. If
the device does not supply a receive time value, this field shall be
set to zero. The units for this field are microseconds.
If possible, this time value should be absolute, representing the number
of microseconds elapsed since the UNIX epoch.
4.4 hosttime
The hosttime field is set to the current value of the host maintained
clock variable when the frame is received by the host.
If possible, this time value should be absolute, representing the number
of microseconds elapsed since the UNIX epoch.
4.5 phytype
The phytype field identifies what type of PHY is employed by the WLAN
device used to capture this frame. The valid values are:
PhyType Value
-------------------------------------
phytype_fhss_dot11_97 1
phytype_dsss_dot11_97 2
phytype_irbaseband 3
phytype_dsss_dot11_b 4
phytype_pbcc_dot11_b 5
phytype_ofdm_dot11_g 6
phytype_pbcc_dot11_g 7
phytype_ofdm_dot11_a 8
phytype_dss_ofdm_dot11_g 9
4.6 frequency
This represents the frequency or channel number of the receiver at the
time the frame was received. It is interpreted as follows:
For frequency hopping radios, this field is broken in to the
following subfields:
Byte Subfield
------------------------
Byte0 Hop Set
Byte1 Hop Pattern
Byte2 Hop Index
Byte3 reserved
For non-hopping radios, the frequency is interpreted as follows:
Value Meaning
-----------------------------------------
< 256 Channel number (using externally-defined
channelization)
< 10000 Center frequency, in MHz
>= 10000 Center frequency, in KHz
4.7 datarate
The data rate field contains the rate at which the frame was received
in units of 100kbps.
4.8 antenna
For WLAN devices that indicate the receive antenna for each frame, the
antenna field shall contain an index value into the dot11AntennaList.
If the device does not indicate a receive antenna value, this field
shall be set to zero.
4.9 priority
The priority field indicates the receive priority of the frame. The
value is in the range [0-15] with the value 0 reserved to indicate
contention period and the value 6 reserved to indicate contention free
period.
4.10 ssi_type
The ssi_type field is used to indicate what type of signal strength
information is present: "None", "Normalized RSSI" or "dBm". "None"
indicates that the underlying WLAN device does not supply any signal
strength at all and the ssi_* values are unset. "Normalized RSSI"
values are integers in the range [0-1000] where higher numbers
indicate stronger signal. "dBm" values indicate an actual signal
strength measurement quantity and are usually in the range [-108 - 10].
The following values indicate the three types:
Value Description
---------------------------------------------
0 None
1 Normalized RSSI
2 dBm
3 Raw RSSI
4.11 ssi_signal
The ssi_signal field contains the signal strength value reported by
the WLAN device for this frame. Note that this is a signed quantity
and if the ssi_type value is "dBm" that the value may be negative.
4.12 ssi_noise
The ssi_noise field contains the noise or "silence" value reported by
the WLAN device. This value is commonly defined to be the "signal
strength reported immediately prior to the baseband processor lock on
the frame preamble". If the hardware does not provide noise data, this
shall equal 0xffffffff.
4.12 preamble
For PHYs that support variable preamble lengths, the preamble field
indicates the preamble type used for this frame. The values are:
Value Description
---------------------------------------------
0 Undefined
1 Short Preamble
2 Long Preamble
4.13 encoding
This specifies the encoding of the received packet. For PHYs that support
multiple encoding types, this will tell us which one was used.
Value Description
---------------------------------------------
0 Unknown
1 CCK
2 PBCC
3 OFDM
4 DSSS-OFDM
5 BPSK
6 QPSK
7 16QAM
8 64QAM
4.14 sequence
This is a receive frame sequence counter. The sniff host shall
increment this by one for every valid frame received off the medium.
By watching for gaps in the sequence numbers we can determine when
packets are lost due to unreliable transport, rather than a frame never
being received to begin with.
4.15 drops
This is a counter of the number of known frame drops that occurred. This
is particularly useful when the system or hardware cannot keep up with
the sniffer load.
4.16 receiver_addr
This specifies the MAC address of the receiver of this frame.
It is six octets in length. This field is followed by two octets of
padding to keep the structure 32-bit word aligned.
================================
Changes: v2->v2.1
* Added contact e-mail address to introduction
* Added sniffer_addr, drop count, and sequence fields, bringing total
length to 80 bytes
* Bumped version to 0x80211002
* Mactime is specified in microseconds, not nanoseconds
* Added 64QAM, 16QAM, BPSK, QPSK encodings
================================
Changes: v2.1->v2.1.1
* Renamed 'channel' to 'frequency'
* Clarified the interpretation of the frequency/channel field.
* Renamed 'sniffer address' to 'receiver address'
* Clarified timestamp fields.
*/
/*
* Signal/noise strength type values.
*/
#define SSI_NONE 0 /* no SSI information */
#define SSI_NORM_RSSI 1 /* normalized RSSI - 0-1000 */
#define SSI_DBM 2 /* dBm */
#define SSI_RAW_RSSI 3 /* raw RSSI from the hardware */
static void
dissect_wlancap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree *wlan_tree = NULL;
proto_item *ti;
tvbuff_t *next_tvb;
int offset;
guint32 version;
guint32 length;
guint32 channel;
guint32 datarate;
guint32 ssi_type;
guint32 antnoise;
col_set_str(pinfo->cinfo, COL_PROTOCOL, "WLAN");
col_clear(pinfo->cinfo, COL_INFO);
offset = 0;
version = tvb_get_ntohl(tvb, offset) - WLANCAP_MAGIC_COOKIE_BASE;
length = tvb_get_ntohl(tvb, offset+4);
col_add_fstr(pinfo->cinfo, COL_INFO, "AVS WLAN Capture v%x, Length %d",version, length);
if (version > 2) {
goto skip;
}
/* Dissect the AVS header */
if (tree) {
ti = proto_tree_add_item(tree, proto_wlancap, tvb, 0, length, ENC_NA);
wlan_tree = proto_item_add_subtree(ti, ett_radio);
proto_tree_add_item(wlan_tree, hf_wlan_magic, tvb, offset, 4, ENC_BIG_ENDIAN);
proto_tree_add_item(wlan_tree, hf_wlan_version, tvb, offset, 4, ENC_BIG_ENDIAN);
}
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_length, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_mactime, tvb, offset, 8, ENC_BIG_ENDIAN);
offset+=8;
if (tree)
proto_tree_add_item(wlan_tree, hf_hosttime, tvb, offset, 8, ENC_BIG_ENDIAN);
offset+=8;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_phytype, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
/* XXX cook channel (fh uses different numbers) */
channel = tvb_get_ntohl(tvb, offset);
if (channel < 256) {
col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u", channel);
if (tree)
proto_tree_add_uint(wlan_tree, hf_channel, tvb, offset, 4, channel);
} else if (channel < 10000) {
col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u MHz", channel);
if (tree)
proto_tree_add_uint_format(wlan_tree, hf_channel_frequency, tvb, offset,
4, channel, "Frequency: %u MHz", channel);
} else {
col_add_fstr(pinfo->cinfo, COL_FREQ_CHAN, "%u KHz", channel);
if (tree)
proto_tree_add_uint_format(wlan_tree, hf_channel_frequency, tvb, offset,
4, channel, "Frequency: %u KHz", channel);
}
offset+=4;
datarate = tvb_get_ntohl(tvb, offset);
if (datarate < 100000) {
/* In units of 100 Kb/s; convert to b/s */
datarate *= 100000;
}
col_add_fstr(pinfo->cinfo, COL_TX_RATE, "%u.%u",
datarate / 1000000,
((datarate % 1000000) > 500000) ? 5 : 0);
if (tree) {
proto_tree_add_uint64_format_value(wlan_tree, hf_data_rate, tvb, offset, 4,
datarate,
"%u.%u Mb/s",
datarate/1000000,
((datarate % 1000000) > 500000) ? 5 : 0);
}
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_antenna, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_priority, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
ssi_type = tvb_get_ntohl(tvb, offset);
if (tree)
proto_tree_add_uint(wlan_tree, hf_wlan_ssi_type, tvb, offset, 4, ssi_type);
offset+=4;
switch (ssi_type) {
case SSI_NONE:
default:
/* either there is no SSI information, or we don't know what type it is */
break;
case SSI_NORM_RSSI:
/* Normalized RSSI */
col_add_fstr(pinfo->cinfo, COL_RSSI, "%u (norm)", tvb_get_ntohl(tvb, offset));
if (tree)
proto_tree_add_item(wlan_tree, hf_normrssi_antsignal, tvb, offset, 4, ENC_BIG_ENDIAN);
break;
case SSI_DBM:
/* dBm */
col_add_fstr(pinfo->cinfo, COL_RSSI, "%d dBm", tvb_get_ntohl(tvb, offset));
if (tree)
proto_tree_add_item(wlan_tree, hf_dbm_antsignal, tvb, offset, 4, ENC_BIG_ENDIAN);
break;
case SSI_RAW_RSSI:
/* Raw RSSI */
col_add_fstr(pinfo->cinfo, COL_RSSI, "%u (raw)", tvb_get_ntohl(tvb, offset));
if (tree)
proto_tree_add_item(wlan_tree, hf_rawrssi_antsignal, tvb, offset, 4, ENC_BIG_ENDIAN);
break;
}
offset+=4;
antnoise = tvb_get_ntohl(tvb, offset);
/* 0xffffffff means "hardware does not provide noise data" */
if (antnoise != 0xffffffff) {
switch (ssi_type) {
case SSI_NONE:
default:
/* either there is no SSI information, or we don't know what type it is */
break;
case SSI_NORM_RSSI:
/* Normalized RSSI */
if (tree)
proto_tree_add_uint(wlan_tree, hf_normrssi_antnoise, tvb, offset, 4, antnoise);
break;
case SSI_DBM:
/* dBm */
if (tree)
proto_tree_add_int(wlan_tree, hf_dbm_antnoise, tvb, offset, 4, antnoise);
break;
case SSI_RAW_RSSI:
/* Raw RSSI */
if (tree)
proto_tree_add_uint(wlan_tree, hf_rawrssi_antnoise, tvb, offset, 4, antnoise);
break;
}
}
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_preamble, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_encoding, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (version > 1) {
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_sequence, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_drops, tvb, offset, 4, ENC_BIG_ENDIAN);
offset+=4;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_receiver_addr, tvb, offset, 6, ENC_NA);
offset+=6;
if (tree)
proto_tree_add_item(wlan_tree, hf_wlan_padding, tvb, offset, 2, ENC_NA);
/*offset+=2;*/
}
skip:
offset = length;
/* dissect the 802.11 header next */
next_tvb = tvb_new_subset_remaining(tvb, offset);
call_dissector(ieee80211_handle, next_tvb, pinfo, tree);
}
static const value_string phy_type[] = {
{ 0, "Unknown" },
{ 1, "FHSS 802.11 '97" },
{ 2, "DSSS 802.11 '97" },
{ 3, "IR Baseband" },
{ 4, "DSSS 802.11b" },
{ 5, "PBCC 802.11b" },
{ 6, "OFDM 802.11g" },
{ 7, "PBCC 802.11g" },
{ 8, "OFDM 802.11a" },
{ 0, NULL }
};
static const value_string encoding_type[] = {
{ 0, "Unknown" },
{ 1, "CCK" },
{ 2, "PBCC" },
{ 3, "OFDM" },
{ 4, "DSS-OFDM" },
{ 5, "BPSK" },
{ 6, "QPSK" },
{ 7, "16QAM" },
{ 8, "64QAM" },
{ 0, NULL }
};
static const value_string ssi_type[] = {
{ SSI_NONE, "None" },
{ SSI_NORM_RSSI, "Normalized RSSI" },
{ SSI_DBM, "dBm" },
{ SSI_RAW_RSSI, "Raw RSSI" },
{ 0, NULL }
};
static const value_string preamble_type[] = {
{ 0, "Unknown" },
{ 1, "Short" },
{ 2, "Long" },
{ 0, NULL }
};
static hf_register_info hf_wlancap[] = {
{&hf_mactime,
{"MAC timestamp", "wlan.mactime", FT_UINT64, BASE_DEC, NULL, 0x0,
"Value in microseconds of the MAC's Time Synchronization Function timer when the first bit of the MPDU arrived at the MAC", HFILL }},
{&hf_hosttime,
{"Host timestamp", "wlan.hosttime", FT_UINT64, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{&hf_channel_frequency,
{"Channel frequency", "wlan.channel_frequency", FT_UINT32, BASE_DEC, NULL, 0x0,
"Channel frequency in megahertz that this frame was sent/received on", HFILL }},
{&hf_data_rate,
{"Data Rate", "wlan.data_rate", FT_UINT64, BASE_DEC, NULL, 0,
"Data rate (b/s)", HFILL }},
{&hf_channel,
{"Channel", "wlan.channel", FT_UINT8, BASE_DEC, NULL, 0,
"802.11 channel number that this frame was sent/received on", HFILL }},
{&hf_wlan_antenna,
{"Antenna", "wlan.antenna", FT_UINT32, BASE_DEC, NULL, 0x0,
"Antenna number this frame was sent/received over (starting at 0)", HFILL } },
{&hf_rawrssi_antnoise,
{"Raw RSSI Noise", "wlan.rawrssi_antnoise", FT_UINT32, BASE_DEC, NULL, 0x0,
"RF noise power at the antenna, reported as RSSI by the adapter", HFILL }},
{&hf_dbm_antnoise,
{"SSI Noise (dBm)", "wlan.dbm_antnoise", FT_INT32, BASE_DEC, NULL, 0x0,
"RF noise power at the antenna from a fixed, arbitrary value in decibels per one milliwatt", HFILL }},
{&hf_normrssi_antnoise,
{"Normalized RSSI Noise", "wlan.normrssi_antnoise", FT_UINT32, BASE_DEC, NULL, 0x0,
"RF noise power at the antenna, normalized to the range 0-1000", HFILL }},
{&hf_rawrssi_antsignal,
{"Raw RSSI Signal", "wlan.rawrssi_antsignal", FT_UINT32, BASE_DEC, NULL, 0x0,
"RF signal power at the antenna, reported as RSSI by the adapter", HFILL }},
{&hf_dbm_antsignal,
{"SSI Signal (dBm)", "wlan.dbm_antsignal", FT_INT32, BASE_DEC, NULL, 0x0,
"RF signal power at the antenna from a fixed, arbitrary value in decibels from one milliwatt", HFILL }},
{&hf_normrssi_antsignal,
{"Normalized RSSI Signal", "wlan.normrssi_antsignal", FT_UINT32, BASE_DEC, NULL, 0x0,
"RF signal power at the antenna, normalized to the range 0-1000", HFILL }},
/* AVS-specific header fields.
XXX - make as many of these generic as possible. */
{&hf_wlan_magic,
{"Header magic", "wlancap.magic", FT_UINT32, BASE_HEX, NULL, 0xFFFFFFF0, NULL, HFILL } },
{ &hf_wlan_version, { "Header revision", "wlancap.version", FT_UINT32,
BASE_DEC, NULL, 0xF, NULL, HFILL } },
{ &hf_wlan_length, { "Header length", "wlancap.length", FT_UINT32,
BASE_DEC, NULL, 0x0, NULL, HFILL } },
{&hf_wlan_phytype,
{"PHY type", "wlan.phytype", FT_UINT32, BASE_DEC, VALS(phy_type), 0x0,
NULL, HFILL } },
{ &hf_wlan_priority, { "Priority", "wlancap.priority", FT_UINT32, BASE_DEC,
NULL, 0x0, NULL, HFILL } },
{ &hf_wlan_ssi_type, { "SSI Type", "wlancap.ssi_type", FT_UINT32, BASE_DEC,
VALS(ssi_type), 0x0, NULL, HFILL } },
{ &hf_wlan_preamble, { "Preamble", "wlancap.preamble", FT_UINT32,
BASE_DEC, VALS(preamble_type), 0x0, NULL, HFILL } },
{ &hf_wlan_encoding, { "Encoding Type", "wlancap.encoding", FT_UINT32,
BASE_DEC, VALS(encoding_type), 0x0, NULL, HFILL } },
{ &hf_wlan_sequence, { "Receive sequence", "wlancap.sequence", FT_UINT32,
BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_wlan_drops, { "Known Dropped Frames", "wlancap.drops", FT_UINT32,
BASE_DEC, NULL, 0x0, NULL, HFILL } },
{ &hf_wlan_receiver_addr, { "Receiver Address", "wlancap.receiver_addr", FT_ETHER,
BASE_NONE, NULL, 0x0, "Receiver Hardware Address", HFILL } },
{ &hf_wlan_padding, { "Padding", "wlancap.padding", FT_BYTES,
BASE_NONE, NULL, 0x0, NULL, HFILL } }
};
static gint *tree_array[] = {
&ett_radio
};
void proto_register_ieee80211_wlancap(void)
{
proto_wlancap = proto_register_protocol("AVS WLAN Capture header",
"AVS WLANCAP", "wlancap");
proto_register_field_array(proto_wlancap, hf_wlancap,
array_length(hf_wlancap));
register_dissector("wlancap", dissect_wlancap, proto_wlancap);
wlancap_handle = create_dissector_handle(dissect_wlancap, proto_wlancap);
dissector_add_uint("wtap_encap", WTAP_ENCAP_IEEE_802_11_AVS,
wlancap_handle);
proto_register_subtree_array(tree_array, array_length(tree_array));
}
void proto_reg_handoff_ieee80211_wlancap(void)
{
ieee80211_handle = find_dissector("wlan");
}
/*
* Editor modelines
*
* Local Variables:
* c-basic-offset: 2
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* ex: set shiftwidth=2 tabstop=8 expandtab:
* :indentSize=2:tabSize=8:noTabs=true:
*/