wireshark/epan/dissectors/packet-aruba-erm.c

313 lines
11 KiB
C

/* packet-aruba-erm.c
* Routines for the disassembly of Aruba encapsulated remote mirroring frames
* (Adapted from packet-hp-erm.c and packet-cisco-erspan.c)
*
* Copyright 2010 Alexis La Goutte <alexis.lagoutte at gmail dot com>
*
* ERM Radio-Format added by Hadriel Kaplan
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* Format:
* Use the Header of Record (Packet) Header
*
* typedef struct pcaprec_hdr_s {
* guint32 ts_sec; timestamp seconds
* guint32 ts_usec; timestamp microseconds
* guint32 incl_len; number of octets of packet saved in file
* guint32 orig_len; actual length of packet
* } pcaprec_hdr_t;
*
* Following with 802.11 header
*/
/*
* Format:
* The ERM Radio-Format has the above header, plus more, like this:
*
* struct radio_pcap_hdr {
* struct timeval ts;
* __u32 capture_length;
* __u32 frame_length;
* __u16 rate_per_half_mhz;
* __u8 channel;
* __u8 signal_percent;
* } __attribute__ ((packed));
*
* Following with 802.11 header
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/expert.h>
#include <epan/prefs.h>
#define PROTO_SHORT_NAME "ARUBA_ERM"
#define PROTO_LONG_NAME "ARUBA encapsulated remote mirroring"
#define TYPE_PCAP 0
#define TYPE_PEEK 1
#define TYPE_AIRMAGNET 2
#define TYPE_PCAPPLUSRADIO 3
#define TYPE_PPI 4
static const value_string aruba_erm_type_vals[] = {
{ TYPE_PCAP, "pcap (type 0)" },
{ TYPE_PEEK, "peek (type 1)" },
{ TYPE_AIRMAGNET, "Airmagnet (type 2)" },
{ TYPE_PCAPPLUSRADIO, "pcap + radio (type 3)" },
{ TYPE_PPI, "ppi (type 4)" },
{ 0, NULL }
};
void proto_register_aruba_erm(void);
void proto_reg_handoff_aruba_erm(void);
void proto_reg_handoff_aruba_erm_radio(void);
static range_t *global_aruba_erm_port_range;
static gint aruba_erm_type = 0;
static int proto_aruba_erm = -1;
static int hf_aruba_erm_time = -1;
static int hf_aruba_erm_incl_len = -1;
static int hf_aruba_erm_orig_len = -1;
static int hf_aruba_erm_data_rate = -1;
static int hf_aruba_erm_data_rate_gen = -1;
static int hf_aruba_erm_channel = -1;
static int hf_aruba_erm_signal_strength = -1;
static gint ett_aruba_erm = -1;
static expert_field ei_aruba_erm_airmagnet = EI_INIT;
static dissector_handle_t aruba_erm_handle;
static dissector_handle_t ieee80211_handle;
static dissector_handle_t peek_handle;
static dissector_handle_t ppi_handle;
static dissector_handle_t data_handle;
static int
dissect_aruba_erm_pcap(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *aruba_erm_tree, gint offset)
{
nstime_t ts;
ts.secs = tvb_get_ntohl(tvb, 0);
ts.nsecs = tvb_get_ntohl(tvb,4)*1000;
proto_tree_add_time(aruba_erm_tree, hf_aruba_erm_time, tvb, offset, 8,&ts);
offset +=8;
proto_tree_add_item(aruba_erm_tree, hf_aruba_erm_incl_len, tvb, 8, 4, ENC_BIG_ENDIAN);
offset +=4;
proto_tree_add_item(aruba_erm_tree, hf_aruba_erm_orig_len, tvb, 12, 4, ENC_BIG_ENDIAN);
offset +=4;
return offset;
}
static int
dissect_aruba_erm_pcap_radio(tvbuff_t *tvb, packet_info *pinfo _U_, proto_tree *aruba_erm_tree, gint offset)
{
proto_item *ti_data_rate;
guint16 data_rate;
data_rate = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(aruba_erm_tree, hf_aruba_erm_data_rate, tvb, offset, 2, ENC_BIG_ENDIAN);
ti_data_rate = proto_tree_add_float_format(aruba_erm_tree, hf_aruba_erm_data_rate_gen,
tvb, 16, 2,
(float)data_rate / 2,
"Data Rate: %.1f Mb/s",
(float)data_rate / 2);
PROTO_ITEM_SET_GENERATED(ti_data_rate);
offset += 2;
proto_tree_add_item(aruba_erm_tree, hf_aruba_erm_channel, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
proto_tree_add_item(aruba_erm_tree, hf_aruba_erm_signal_strength, tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
return offset;
}
static void
dissect_aruba_erm(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_item *ti;
proto_tree *aruba_erm_tree;
tvbuff_t *eth_tvb;
int offset = 0 ;
col_set_str(pinfo->cinfo, COL_PROTOCOL, PROTO_SHORT_NAME);
col_set_str(pinfo->cinfo, COL_INFO, PROTO_SHORT_NAME);
ti = proto_tree_add_item(tree, proto_aruba_erm, tvb, 0, 0, ENC_NA);
proto_item_append_text(ti, ": %s", val_to_str(aruba_erm_type, aruba_erm_type_vals, "Unknown"));
aruba_erm_tree = proto_item_add_subtree(ti, ett_aruba_erm);
switch(aruba_erm_type){
case TYPE_PCAP:
offset = dissect_aruba_erm_pcap(tvb, pinfo, aruba_erm_tree, offset);
proto_item_set_len(ti, offset);
eth_tvb = tvb_new_subset_remaining(tvb, offset);
call_dissector(ieee80211_handle, eth_tvb, pinfo, tree);
break;
case TYPE_PEEK:
call_dissector(peek_handle, tvb, pinfo, tree);
break;
case TYPE_AIRMAGNET:
/* Not (yet) supported launch data dissector */
proto_tree_add_expert(tree, pinfo, &ei_aruba_erm_airmagnet, tvb, offset, -1);
call_dissector(data_handle, tvb, pinfo, tree);
break;
case TYPE_PCAPPLUSRADIO:
offset = dissect_aruba_erm_pcap(tvb, pinfo, aruba_erm_tree, offset);
offset = dissect_aruba_erm_pcap_radio(tvb, pinfo, aruba_erm_tree, offset);
proto_item_set_len(ti, offset);
eth_tvb = tvb_new_subset_remaining(tvb, offset);
call_dissector(ieee80211_handle, eth_tvb, pinfo, tree);
break;
case TYPE_PPI:
call_dissector(ppi_handle, tvb, pinfo, tree);
break;
default:
break;
}
}
void
proto_register_aruba_erm(void)
{
static hf_register_info hf[] = {
{ &hf_aruba_erm_time,
{ "Packet Capture Timestamp", "aruba_erm.time", FT_ABSOLUTE_TIME, ABSOLUTE_TIME_LOCAL, NULL,
0x00, NULL, HFILL }},
{ &hf_aruba_erm_incl_len,
{ "Packet Captured Length", "aruba_erm.incl_len", FT_UINT32, BASE_DEC, NULL,
0x00, NULL, HFILL }},
{ &hf_aruba_erm_orig_len,
{ "Packet Length", "aruba_erm.orig_len", FT_UINT32, BASE_DEC, NULL,
0x00, NULL, HFILL }},
{ &hf_aruba_erm_data_rate,
{ "Data Rate", "aruba_erm.data_rate", FT_UINT16, BASE_DEC, NULL,
0x00, "Data rate (1/2 Mb/s)", HFILL }},
{ &hf_aruba_erm_data_rate_gen,
{ "Data Rate", "aruba_erm.data_rate_gen", FT_FLOAT, BASE_NONE, NULL,
0x00, "Data rate (1/2 Mb/s)", HFILL }},
{ &hf_aruba_erm_channel,
{ "Channel", "aruba_erm.channel", FT_UINT8, BASE_DEC, NULL,
0x00, "802.11 channel number that this frame was sent/received on", HFILL }},
{ &hf_aruba_erm_signal_strength,
{ "Signal Strength [percent]", "aruba_erm.signal_strength", FT_UINT8, BASE_DEC, NULL,
0x00, "Signal strength (Percentage)", HFILL }},
};
/* both formats share the same tree */
static gint *ett[] = {
&ett_aruba_erm,
};
static ei_register_info ei[] = {
{ &ei_aruba_erm_airmagnet, { "aruba_erm.airmagnet", PI_UNDECODED, PI_ERROR, "Airmagnet (type 2) is no yet supported (Please use other type)", EXPFILL }}
};
static const enum_val_t aruba_erm_types[] = {
{ "pcap_type_0", "pcap (type 0)", TYPE_PCAP},
{ "peek_type_1", "peek (type1)", TYPE_PEEK},
{ "airmagnet_type_2", "airmagnet (type 2)", TYPE_AIRMAGNET},
{ "pcapplusradio_type_3", "pcap+radio header (type 3)", TYPE_PCAPPLUSRADIO},
{ "ppi_type_4", "ppi (type 4)", TYPE_PPI},
{ NULL, NULL, -1}
};
module_t *aruba_erm_module;
expert_module_t* expert_aruba_erm;
proto_aruba_erm = proto_register_protocol(PROTO_LONG_NAME, PROTO_SHORT_NAME, "aruba_erm");
range_convert_str (&global_aruba_erm_port_range, "0", MAX_UDP_PORT);
aruba_erm_module = prefs_register_protocol(proto_aruba_erm, proto_reg_handoff_aruba_erm);
prefs_register_range_preference(aruba_erm_module, "udp.ports", "ARUBA_ERM UDP Port numbers",
"Set the UDP port numbers (typically the range 5555 to 5560) used for ARUBA"
" encapsulated remote mirroring frames;\n"
"0 (default) means that the ARUBA_ERM dissector is not active\n",
&global_aruba_erm_port_range, MAX_UDP_PORT);
prefs_register_enum_preference(aruba_erm_module, "type.captured",
"Type of formats for captured packets",
"Type of formats for captured packets",
&aruba_erm_type, aruba_erm_types, FALSE);
proto_register_field_array(proto_aruba_erm, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_aruba_erm = expert_register_protocol(proto_aruba_erm);
expert_register_field_array(expert_aruba_erm, ei, array_length(ei));
}
void
proto_reg_handoff_aruba_erm(void)
{
static range_t *aruba_erm_port_range;
static range_t *aruba_erm_radio_port_range;
static gboolean initialized = FALSE;
if (!initialized) {
ieee80211_handle = find_dissector("wlan_withoutfcs");
ppi_handle = find_dissector("ppi");
peek_handle = find_dissector("peekremote");
data_handle = find_dissector("data");
aruba_erm_handle = create_dissector_handle(dissect_aruba_erm, proto_aruba_erm);
initialized = TRUE;
} else {
dissector_delete_uint_range("udp.port", aruba_erm_port_range, aruba_erm_handle);
g_free(aruba_erm_port_range);
g_free(aruba_erm_radio_port_range);
}
aruba_erm_port_range = range_copy(global_aruba_erm_port_range);
dissector_add_uint_range("udp.port", aruba_erm_port_range, aruba_erm_handle);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/