wireshark/epan/dissectors/packet-ssl.c

4277 lines
166 KiB
C

/* packet-ssl.c
* Routines for ssl dissection
* Copyright (c) 2000-2001, Scott Renfro <scott@renfro.org>
*
* Wireshark - Network traffic analyzer
* By Gerald Combs <gerald@wireshark.org>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* See
*
* http://www.mozilla.org/projects/security/pki/nss/ssl/draft02.html
*
* for SSL 2.0 specs.
*
* See
*
* http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
*
* for SSL 3.0 specs.
*
* See RFC 2246 for SSL 3.1/TLS 1.0 specs.
*
* See (among other places)
*
* http://www.graphcomp.com/info/specs/ms/pct.htm
*
* for PCT 1 draft specs.
*
* See
*
* http://research.sun.com/projects/crypto/draft-ietf-tls-ecc-05.txt
*
* for Elliptic Curve Cryptography cipher suites.
*
* See
*
* http://www.ietf.org/internet-drafts/draft-ietf-tls-camellia-04.txt
*
* for Camellia-based cipher suites.
*
* Notes:
*
* - Does not support dissection
* of frames that would require state maintained between frames
* (e.g., single ssl records spread across multiple tcp frames)
*
* - Identifies, but does not fully dissect the following messages:
*
* - SSLv3/TLS (These need more state from previous handshake msgs)
* - Certificate Verify
*
* - SSLv2 (These don't appear in the clear)
* - Error
* - Client Finished
* - Server Verify
* - Server Finished
* - Request Certificate
* - Client Certificate
*
* - Decryption needs to be performed 'sequentially', so it's done
* at packet reception time. This may cause a significant packet capture
* slow down. This also causes dissection of some ssl info that in previous
* dissector versions was dissected only when a proto_tree context was
* available
*
* We are at Packet reception if time pinfo->fd->flags.visited == 0
*
*/
#include "config.h"
#include <epan/packet.h>
#include <epan/reassemble.h>
#include <epan/asn1.h>
#include <epan/tap.h>
#include <epan/uat.h>
#include <epan/addr_resolv.h>
#include <epan/follow.h>
#include <epan/exported_pdu.h>
#include <epan/proto_data.h>
#include <epan/decode_as.h>
#include <wsutil/utf8_entities.h>
#include <wsutil/str_util.h>
#include "packet-tcp.h"
#include "packet-x509af.h"
#include "packet-ocsp.h"
#include "packet-ssl.h"
#include "packet-ssl-utils.h"
void proto_register_ssl(void);
static ssldecrypt_assoc_t *sslkeylist_uats = NULL;
static guint nssldecrypt = 0;
static gboolean ssl_desegment = TRUE;
static gboolean ssl_desegment_app_data = TRUE;
gboolean ssl_ignore_mac_failed = FALSE;
/*********************************************************************
*
* Protocol Constants, Variables, Data Structures
*
*********************************************************************/
/* Initialize the protocol and registered fields */
static gint ssl_tap = -1;
static gint exported_pdu_tap = -1;
static gint proto_ssl = -1;
static gint hf_ssl_record = -1;
static gint hf_ssl_record_content_type = -1;
static gint hf_ssl_record_version = -1;
static gint hf_ssl_record_length = -1;
static gint hf_ssl_record_appdata = -1;
static gint hf_ssl2_record = -1;
static gint hf_ssl2_record_is_escape = -1;
static gint hf_ssl2_record_padding_length = -1;
static gint hf_ssl2_msg_type = -1;
static gint hf_pct_msg_type = -1;
static gint hf_ssl_alert_message = -1;
static gint hf_ssl_alert_message_level = -1;
static gint hf_ssl_alert_message_description = -1;
static gint hf_ssl_handshake_protocol = -1;
static gint hf_ssl_handshake_type = -1;
static gint hf_ssl_handshake_length = -1;
static gint hf_ssl_handshake_cert_status = -1;
static gint hf_ssl_handshake_cert_status_type = -1;
static gint hf_ssl_handshake_cert_status_len = -1;
static gint hf_ssl_handshake_npn_selected_protocol_len = -1;
static gint hf_ssl_handshake_npn_selected_protocol = -1;
static gint hf_ssl_handshake_npn_padding_len = -1;
static gint hf_ssl_handshake_npn_padding = -1;
static gint hf_ssl2_handshake_cipher_spec_len = -1;
static gint hf_ssl2_handshake_session_id_len = -1;
static gint hf_ssl2_handshake_challenge_len = -1;
static gint hf_ssl2_handshake_cipher_spec = -1;
static gint hf_ssl2_handshake_challenge = -1;
static gint hf_ssl2_handshake_clear_key_len = -1;
static gint hf_ssl2_handshake_enc_key_len = -1;
static gint hf_ssl2_handshake_key_arg_len = -1;
static gint hf_ssl2_handshake_clear_key = -1;
static gint hf_ssl2_handshake_enc_key = -1;
static gint hf_ssl2_handshake_key_arg = -1;
static gint hf_ssl2_handshake_session_id_hit = -1;
static gint hf_ssl2_handshake_cert_type = -1;
static gint hf_ssl2_handshake_connection_id_len = -1;
static gint hf_ssl2_handshake_connection_id = -1;
static gint hf_pct_handshake_cipher_spec = -1;
static gint hf_pct_handshake_hash_spec = -1;
static gint hf_pct_handshake_cert_spec = -1;
static gint hf_pct_handshake_cert = -1;
static gint hf_pct_handshake_server_cert = -1;
static gint hf_pct_handshake_exch_spec = -1;
static gint hf_pct_handshake_hash = -1;
static gint hf_pct_handshake_cipher = -1;
static gint hf_pct_handshake_exch = -1;
static gint hf_pct_handshake_sig = -1;
static gint hf_pct_msg_error_type = -1;
/* Generated from convert_proto_tree_add_text.pl */
static int hf_ssl_pct_client_version = -1;
static int hf_ssl_pct_pad = -1;
static int hf_ssl_pct_client_session_id_data = -1;
static int hf_ssl_pct_challenge_data = -1;
static int hf_ssl_pct_ch_offset = -1;
static int hf_ssl_pct_cipher_specs_length = -1;
static int hf_ssl_pct_hash_specs_length = -1;
static int hf_ssl_pct_cert_specs_length = -1;
static int hf_ssl_pct_exch_specs_length = -1;
static int hf_ssl_pct_iv_length = -1;
static int hf_ssl_pct_encryption_key_length = -1;
static int hf_ssl_pct_mac_key_length_in_bits = -1;
static int hf_ssl_pct_iv_data = -1;
static int hf_ssl_pct_server_version = -1;
static int hf_ssl_pct_sh_restart_session_ok_flag = -1;
static int hf_ssl_pct_sh_client_auth_req_flag = -1;
static int hf_ssl_pct_connection_id_data = -1;
static int hf_ssl_pct_server_certificate_length = -1;
static int hf_ssl_pct_client_cert_specs_length = -1;
static int hf_ssl_pct_client_sig_specs_length = -1;
static int hf_ssl_pct_response_length = -1;
static int hf_ssl_pct_client_cert_specs = -1;
static int hf_ssl_pct_client_signature = -1;
static int hf_ssl_pct_server_response = -1;
static int hf_ssl_pct_clear_key_length = -1;
static int hf_ssl_pct_encrypted_key_length = -1;
static int hf_ssl_pct_verify_prelude_length = -1;
static int hf_ssl_pct_client_cert_length = -1;
static int hf_ssl_pct_clear_key_data = -1;
static int hf_ssl_pct_encrypted_key_data = -1;
static int hf_ssl_pct_verify_prelude_data = -1;
static int hf_ssl_pct_client_certificate_data = -1;
static int hf_ssl_pct_response_data = -1;
static int hf_ssl_pct_server_session_id_data = -1;
static int hf_ssl_pct_server_response_length = -1;
static int hf_ssl_pct_error_information_length = -1;
static int hf_ssl_pct_specs_mismatch_cipher = -1;
static int hf_ssl_pct_specs_mismatch_hash = -1;
static int hf_ssl_pct_specs_mismatch_cert = -1;
static int hf_ssl_pct_specs_mismatch_exch = -1;
static int hf_ssl_pct_specs_mismatch_client_cert = -1;
static int hf_ssl_pct_specs_mismatch_client_sig = -1;
static int hf_ssl_pct_error_information_data = -1;
static int hf_ssl_reassembled_in = -1;
static int hf_ssl_reassembled_length = -1;
static int hf_ssl_reassembled_data = -1;
static int hf_ssl_segments = -1;
static int hf_ssl_segment = -1;
static int hf_ssl_segment_overlap = -1;
static int hf_ssl_segment_overlap_conflict = -1;
static int hf_ssl_segment_multiple_tails = -1;
static int hf_ssl_segment_too_long_fragment = -1;
static int hf_ssl_segment_error = -1;
static int hf_ssl_segment_count = -1;
static int hf_ssl_segment_data = -1;
static gint hf_ssl_heartbeat_message = -1;
static gint hf_ssl_heartbeat_message_type = -1;
static gint hf_ssl_heartbeat_message_payload_length = -1;
static gint hf_ssl_heartbeat_message_payload = -1;
static gint hf_ssl_heartbeat_message_padding = -1;
static ssl_hfs_t ssl_hfs = { -1, -1 };
/* Initialize the subtree pointers */
static gint ett_ssl = -1;
static gint ett_ssl_record = -1;
static gint ett_ssl_alert = -1;
static gint ett_ssl_handshake = -1;
static gint ett_ssl_heartbeat = -1;
static gint ett_ssl_certs = -1;
static gint ett_ssl_cert_status = -1;
static gint ett_ssl_ocsp_resp = -1;
static gint ett_pct_cipher_suites = -1;
static gint ett_pct_hash_suites = -1;
static gint ett_pct_cert_suites = -1;
static gint ett_pct_exch_suites = -1;
static gint ett_ssl_segments = -1;
static gint ett_ssl_segment = -1;
static expert_field ei_ssl2_handshake_session_id_len_error = EI_INIT;
static expert_field ei_ssl3_heartbeat_payload_length = EI_INIT;
/* Generated from convert_proto_tree_add_text.pl */
static expert_field ei_ssl_pct_ch_offset = EI_INIT;
static expert_field ei_ssl_pct_server_version = EI_INIT;
static expert_field ei_ssl_ignored_unknown_record = EI_INIT;
static expert_field ei_ssl_pct_client_version = EI_INIT;
/* not all of the hf_fields below make sense for SSL but we have to provide
them anyways to comply with the api (which was aimed for ip fragment
reassembly) */
static const fragment_items ssl_segment_items = {
&ett_ssl_segment,
&ett_ssl_segments,
&hf_ssl_segments,
&hf_ssl_segment,
&hf_ssl_segment_overlap,
&hf_ssl_segment_overlap_conflict,
&hf_ssl_segment_multiple_tails,
&hf_ssl_segment_too_long_fragment,
&hf_ssl_segment_error,
&hf_ssl_segment_count,
&hf_ssl_reassembled_in,
&hf_ssl_reassembled_length,
&hf_ssl_reassembled_data,
"Segments"
};
static SSL_COMMON_LIST_T(dissect_ssl3_hf);
static void
ssl_proto_tree_add_segment_data(
proto_tree *tree,
tvbuff_t *tvb,
gint offset,
gint length,
const gchar *prefix)
{
proto_tree_add_bytes_format(
tree,
hf_ssl_segment_data,
tvb,
offset,
length,
NULL,
"%sSSL segment data (%u %s)",
prefix != NULL ? prefix : "",
length,
plurality(length, "byte", "bytes"));
}
static ssl_master_key_map_t ssl_master_key_map;
/* used by "Export SSL Session Keys" */
GHashTable *ssl_session_hash;
GHashTable *ssl_crandom_hash;
static GHashTable *ssl_key_hash = NULL;
static wmem_stack_t *key_list_stack = NULL;
static dissector_table_t ssl_associations = NULL;
static dissector_handle_t ssl_handle = NULL;
static StringInfo ssl_compressed_data = {NULL, 0};
static StringInfo ssl_decrypted_data = {NULL, 0};
static gint ssl_decrypted_data_avail = 0;
static FILE *ssl_keylog_file = NULL;
static uat_t *ssldecrypt_uat = NULL;
static const gchar *ssl_keys_list = NULL;
static ssl_common_options_t ssl_options = { NULL, NULL};
/* List of dissectors to call for SSL data */
static heur_dissector_list_t ssl_heur_subdissector_list;
#ifdef HAVE_LIBGCRYPT
static const gchar *ssl_debug_file_name = NULL;
#endif
/* Forward declaration we need below */
void proto_reg_handoff_ssl(void);
/* Desegmentation of SSL streams */
/* table to hold defragmented SSL streams */
static reassembly_table ssl_reassembly_table;
/* initialize/reset per capture state data (ssl sessions cache) */
static void
ssl_init(void)
{
module_t *ssl_module = prefs_find_module("ssl");
pref_t *keys_list_pref;
ssl_common_init(&ssl_master_key_map,
&ssl_decrypted_data, &ssl_compressed_data);
reassembly_table_init(&ssl_reassembly_table,
&addresses_ports_reassembly_table_functions);
ssl_debug_flush();
/* for "Export SSL Session Keys" */
ssl_session_hash = ssl_master_key_map.session;
ssl_crandom_hash = ssl_master_key_map.crandom;
/* We should have loaded "keys_list" by now. Mark it obsolete */
if (ssl_module) {
keys_list_pref = prefs_find_preference(ssl_module, "keys_list");
if (! prefs_get_preference_obsolete(keys_list_pref)) {
prefs_set_preference_obsolete(keys_list_pref);
}
}
}
static void
ssl_cleanup(void)
{
if (key_list_stack != NULL) {
wmem_destroy_stack(key_list_stack);
key_list_stack = NULL;
}
reassembly_table_destroy(&ssl_reassembly_table);
ssl_common_cleanup(&ssl_master_key_map, &ssl_keylog_file,
&ssl_decrypted_data, &ssl_compressed_data);
/* should not be needed since the UI code prevents this from being accessed
* when no file is open. Clear it anyway just to be sure. */
ssl_session_hash = NULL;
ssl_crandom_hash = NULL;
}
/* parse ssl related preferences (private keys and ports association strings) */
static void
ssl_parse_uat(void)
{
guint i, port;
dissector_handle_t handle;
ssl_set_debug(ssl_debug_file_name);
if (ssl_key_hash)
{
g_hash_table_destroy(ssl_key_hash);
}
/* remove only associations created from key list */
if (key_list_stack != NULL) {
while (wmem_stack_count(key_list_stack) > 0) {
port = GPOINTER_TO_UINT(wmem_stack_pop(key_list_stack));
handle = dissector_get_uint_handle(ssl_associations, port);
if (handle != NULL)
ssl_association_remove("ssl.port", ssl_handle, handle, port, FALSE);
}
}
/* parse private keys string, load available keys and put them in key hash*/
ssl_key_hash = g_hash_table_new_full(ssl_private_key_hash,
ssl_private_key_equal, g_free, ssl_private_key_free);
if (nssldecrypt > 0) {
if (key_list_stack == NULL)
key_list_stack = wmem_stack_new(NULL);
for (i = 0; i < nssldecrypt; i++) {
ssldecrypt_assoc_t *ssl_uat = &(sslkeylist_uats[i]);
ssl_parse_key_list(ssl_uat, ssl_key_hash, "ssl.port", ssl_handle, TRUE);
if (key_list_stack)
wmem_stack_push(key_list_stack, GUINT_TO_POINTER(atoi(ssl_uat->port)));
}
}
ssl_debug_flush();
}
static void
ssl_parse_old_keys(void)
{
gchar **old_keys, **parts, *err;
gchar *uat_entry;
guint i;
/* Import old-style keys */
if (ssldecrypt_uat && ssl_keys_list && ssl_keys_list[0]) {
old_keys = wmem_strsplit(NULL, ssl_keys_list, ";", 0);
for (i = 0; old_keys[i] != NULL; i++) {
parts = wmem_strsplit(NULL, old_keys[i], ",", 5);
if (parts[0] && parts[1] && parts[2] && parts[3]) {
gchar *path = uat_esc(parts[3], (guint)strlen(parts[3]));
const gchar *password = parts[4] ? parts[4] : "";
uat_entry = wmem_strdup_printf(NULL, "\"%s\",\"%s\",\"%s\",\"%s\",\"%s\"",
parts[0], parts[1], parts[2], path, password);
g_free(path);
if (!uat_load_str(ssldecrypt_uat, uat_entry, &err)) {
ssl_debug_printf("ssl_parse_old_keys: Can't load UAT string %s: %s\n",
uat_entry, err);
g_free(err);
}
wmem_free(NULL, uat_entry);
}
wmem_free(NULL, parts);
}
wmem_free(NULL, old_keys);
}
}
static gboolean
ssl_follow_tap_listener(void *tapdata, packet_info *pinfo, epan_dissect_t *edt _U_, const void *ssl)
{
follow_info_t * follow_info = (follow_info_t*) tapdata;
follow_record_t * follow_record = NULL;
const SslDataInfo * appl_data = NULL;
const SslPacketInfo * pi = (const SslPacketInfo*)ssl;
show_stream_t from = FROM_CLIENT;
/* Skip packets without decrypted payload data. */
if (!pi || !pi->appl_data) return FALSE;
/* Compute the packet's sender. */
if (follow_info->client_port == 0) {
follow_info->client_port = pinfo->srcport;
copy_address(&follow_info->client_ip, &pinfo->src);
}
if (addresses_equal(&follow_info->client_ip, &pinfo->src) &&
follow_info->client_port == pinfo->srcport) {
from = FROM_CLIENT;
} else {
from = FROM_SERVER;
}
for (appl_data = pi->appl_data; appl_data != NULL; appl_data = appl_data->next) {
/* TCP segments that contain the end of two or more SSL PDUs will be
queued to SSL taps for each of those PDUs. Therefore a single
packet could be processed by this SSL tap listener multiple times.
The following test handles that scenario by treating the
follow_info->bytes_written[] values as the next expected
appl_data->seq. Any appl_data instances that fall below that have
already been processed and must be skipped. */
if (appl_data->seq < follow_info->bytes_written[from]) continue;
/* Allocate a follow_record_t to hold the current appl_data
instance's decrypted data. Even though it would be possible to
consolidate multiple appl_data instances into a single record, it is
beneficial to use a one-to-one mapping. This affords the Follow
Stream dialog view modes (ASCII, EBCDIC, Hex Dump, C Arrays, Raw)
the opportunity to accurately reflect SSL PDU boundaries. Currently
the Hex Dump view does by starting a new line, and the C Arrays
view does by starting a new array declaration. */
follow_record = g_new(follow_record_t,1);
follow_record->is_server = (from == FROM_SERVER);
follow_record->packet_num = pinfo->num;
follow_record->data = g_byte_array_sized_new(appl_data->plain_data.data_len);
follow_record->data = g_byte_array_append(follow_record->data,
appl_data->plain_data.data,
appl_data->plain_data.data_len);
/* Append the record to the follow_info structure. */
follow_info->payload = g_list_append(follow_info->payload, follow_record);
follow_info->bytes_written[from] += appl_data->plain_data.data_len;
}
return FALSE;
}
/*********************************************************************
*
* Forward Declarations
*
*********************************************************************/
/*
* SSL version 3 and TLS dissectors
*
*/
/* record layer dissector */
static gint dissect_ssl3_record(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
SslSession *session, gint is_from_server,
gboolean *need_desegmentation,
SslDecryptSession *conv_data,
const gboolean first_record_in_frame);
/* alert message dissector */
static void dissect_ssl3_alert(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
const SslSession *session);
/* handshake protocol dissector */
static void dissect_ssl3_handshake(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
guint32 record_length,
SslSession *session, gint is_from_server,
SslDecryptSession *conv_data, const guint8 content_type);
/* heartbeat message dissector */
static void dissect_ssl3_heartbeat(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
const SslSession *session, guint32 record_length,
gboolean decrypted);
static void dissect_ssl3_hnd_cert_status(tvbuff_t *tvb,
proto_tree *tree,
guint32 offset,
packet_info *pinfo);
static void dissect_ssl3_hnd_encrypted_exts(tvbuff_t *tvb,
proto_tree *tree,
guint32 offset);
/*
* SSL version 2 dissectors
*
*/
/* record layer dissector */
static gint dissect_ssl2_record(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
SslSession *session,
gboolean *need_desegmentation,
SslDecryptSession *ssl, gboolean first_record_in_frame);
/* client hello dissector */
static void dissect_ssl2_hnd_client_hello(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree,
guint32 offset,
SslDecryptSession *ssl);
static void dissect_pct_msg_client_hello(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree,
guint32 offset);
/* client master key dissector */
static void dissect_ssl2_hnd_client_master_key(tvbuff_t *tvb,
proto_tree *tree,
guint32 offset);
static void dissect_pct_msg_client_master_key(tvbuff_t *tvb,
proto_tree *tree,
guint32 offset);
/* server hello dissector */
static void dissect_ssl2_hnd_server_hello(tvbuff_t *tvb,
proto_tree *tree,
guint32 offset, packet_info *pinfo);
static void dissect_pct_msg_server_hello(tvbuff_t *tvb,
proto_tree *tree,
guint32 offset, packet_info *pinfo);
static void dissect_pct_msg_server_verify(tvbuff_t *tvb,
proto_tree *tree,
guint32 offset);
static void dissect_pct_msg_error(tvbuff_t *tvb,
proto_tree *tree,
guint32 offset);
/*
* Support Functions
*
*/
static gint ssl_is_valid_ssl_version(const guint16 version);
static gint ssl_is_v2_client_hello(tvbuff_t *tvb, const guint32 offset);
static gint ssl_looks_like_sslv2(tvbuff_t *tvb, const guint32 offset);
static gint ssl_looks_like_sslv3(tvbuff_t *tvb, const guint32 offset);
static gint ssl_looks_like_valid_v2_handshake(tvbuff_t *tvb,
const guint32 offset,
const guint32 record_length);
static gint ssl_looks_like_valid_pct_handshake(tvbuff_t *tvb,
const guint32 offset,
const guint32 record_length);
/*********************************************************************
*
* Main dissector
*
*********************************************************************/
/*
* Code to actually dissect the packets
*/
static int
dissect_ssl(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree, void *data _U_)
{
conversation_t *conversation;
proto_item *ti;
proto_tree *ssl_tree;
guint32 offset;
gboolean first_record_in_frame;
gboolean need_desegmentation;
SslDecryptSession *ssl_session;
SslSession *session;
gint is_from_server;
ti = NULL;
ssl_tree = NULL;
offset = 0;
first_record_in_frame = TRUE;
ssl_session = NULL;
if (tvb_captured_length(tvb) > 4) {
const guint8 *tmp = tvb_get_ptr(tvb, 0, 4);
if (g_ascii_isprint(tmp[0]) &&
g_ascii_isprint(tmp[1]) &&
g_ascii_isprint(tmp[2]) &&
g_ascii_isprint(tmp[3])) {
/* it is extremely unlikely that real SSL traffic starts with four
* printable ascii characters; this looks like it's unencrypted
* text, so assume it's not ours (SSL does have some unencrypted
* text fields in certain packets, but you'd have to get very
* unlucky with TCP fragmentation to have one of those fields at the
* beginning of a TCP payload at the beginning of the capture where
* reassembly hasn't started yet) */
return 0;
}
}
ssl_debug_printf("\ndissect_ssl enter frame #%u (%s)\n", pinfo->num, (pinfo->fd->flags.visited)?"already visited":"first time");
/* Track the version using conversations to reduce the
* chance that a packet that simply *looks* like a v2 or
* v3 packet is dissected improperly. This also allows
* us to more frequently set the protocol column properly
* for continuation data frames.
*
* Also: We use the copy in conv_version as our cached copy,
* so that we don't have to search the conversation
* table every time we want the version; when setting
* the conv_version, must set the copy in the conversation
* in addition to conv_version
*/
conversation = find_or_create_conversation(pinfo);
ssl_session = ssl_get_session(conversation, ssl_handle);
session = &ssl_session->session;
is_from_server = ssl_packet_from_server(session, ssl_associations, pinfo);
if (session->last_nontls_frame != 0 &&
session->last_nontls_frame >= pinfo->num) {
/* This conversation started at a different protocol and STARTTLS was
* used, but this packet comes too early. */
return 0;
}
/* try decryption only the first time we see this packet
* (to keep cipher synchronized) */
if (pinfo->fd->flags.visited)
ssl_session = NULL;
ssl_debug_printf(" conversation = %p, ssl_session = %p\n", (void *)conversation, (void *)ssl_session);
/* Initialize the protocol column; we'll set it later when we
* figure out what flavor of SSL it is (assuming we don't
* throw an exception before we get the chance to do so). */
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SSL");
/* clear the the info column */
col_clear(pinfo->cinfo, COL_INFO);
/* TCP packets and SSL records are orthogonal.
* A tcp packet may contain multiple ssl records and an ssl
* record may be spread across multiple tcp packets.
*
* This loop accounts for multiple ssl records in a single
* frame, but not a single ssl record across multiple tcp
* packets.
*
* Handling the single ssl record across multiple packets
* may be possible using wireshark conversations, but
* probably not cleanly. May have to wait for tcp stream
* reassembly.
*/
/* Create display subtree for SSL as a whole */
if (tree)
{
ti = proto_tree_add_item(tree, proto_ssl, tvb, 0, -1, ENC_NA);
ssl_tree = proto_item_add_subtree(ti, ett_ssl);
}
/* iterate through the records in this tvbuff */
while (tvb_reported_length_remaining(tvb, offset) > 0)
{
ssl_debug_printf(" record: offset = %d, reported_length_remaining = %d\n", offset, tvb_reported_length_remaining(tvb, offset));
/*
* Assume, for now, that this doesn't need desegmentation.
*/
need_desegmentation = FALSE;
/* first try to dispatch off the cached version
* known to be associated with the conversation
*/
switch (session->version) {
case SSLV2_VERSION:
case PCT_VERSION:
offset = dissect_ssl2_record(tvb, pinfo, ssl_tree,
offset, session,
&need_desegmentation,
ssl_session,
first_record_in_frame);
break;
case SSLV3_VERSION:
case TLSV1_VERSION:
case TLSV1DOT1_VERSION:
case TLSV1DOT2_VERSION:
/* SSLv3/TLS record headers need at least 1+2+2 = 5 bytes. */
if (tvb_reported_length_remaining(tvb, offset) < 5) {
if (ssl_desegment && pinfo->can_desegment) {
pinfo->desegment_offset = offset;
pinfo->desegment_len = DESEGMENT_ONE_MORE_SEGMENT;
need_desegmentation = TRUE;
} else {
/* Not enough bytes available. Stop here. */
offset = tvb_reported_length(tvb);
}
break;
}
/* the version tracking code works too well ;-)
* at times, we may visit a v2 client hello after
* we already know the version of the connection;
* work around that here by detecting and calling
* the v2 dissector instead
*/
if (ssl_is_v2_client_hello(tvb, offset))
{
offset = dissect_ssl2_record(tvb, pinfo, ssl_tree,
offset, session,
&need_desegmentation,
ssl_session,
first_record_in_frame);
}
else
{
offset = dissect_ssl3_record(tvb, pinfo, ssl_tree,
offset, session, is_from_server,
&need_desegmentation,
ssl_session,
first_record_in_frame);
}
break;
/* that failed, so apply some heuristics based
* on this individual packet
*/
default:
if (ssl_looks_like_sslv2(tvb, offset))
{
/* looks like sslv2 or pct client hello */
offset = dissect_ssl2_record(tvb, pinfo, ssl_tree,
offset, session,
&need_desegmentation,
ssl_session,
first_record_in_frame);
}
else if (ssl_looks_like_sslv3(tvb, offset))
{
/* looks like sslv3 or tls */
offset = dissect_ssl3_record(tvb, pinfo, ssl_tree,
offset, session, is_from_server,
&need_desegmentation,
ssl_session,
first_record_in_frame);
}
else
{
/* on second and subsequent records per frame
* add a delimiter on info column
*/
if (!first_record_in_frame) {
col_append_str(pinfo->cinfo, COL_INFO, ", ");
}
/* looks like something unknown, so lump into
* continuation data
*/
offset = tvb_reported_length(tvb);
col_append_str(pinfo->cinfo, COL_INFO,
"Continuation Data");
/* Set the protocol column */
col_set_str(pinfo->cinfo, COL_PROTOCOL,
val_to_str_const(session->version, ssl_version_short_names, "SSL"));
}
break;
}
/* Desegmentation return check */
if (need_desegmentation) {
ssl_debug_printf(" need_desegmentation: offset = %d, reported_length_remaining = %d\n",
offset, tvb_reported_length_remaining(tvb, offset));
tap_queue_packet(ssl_tap, pinfo, p_get_proto_data(wmem_file_scope(), pinfo, proto_ssl, 0));
return tvb_captured_length(tvb);
}
/* set up for next record in frame, if any */
first_record_in_frame = FALSE;
}
col_set_fence(pinfo->cinfo, COL_INFO);
ssl_debug_flush();
tap_queue_packet(ssl_tap, pinfo, p_get_proto_data(wmem_file_scope(), pinfo, proto_ssl, 0));
return tvb_captured_length(tvb);
}
static gint
decrypt_ssl3_record(tvbuff_t *tvb, packet_info *pinfo, guint32 offset,
guint32 record_length, guint8 content_type, SslDecryptSession *ssl,
gboolean save_plaintext)
{
gint ret;
gint direction;
StringInfo *data_for_iv;
gint data_for_iv_len;
SslDecoder *decoder;
ret = 0;
/* if we can decrypt and decryption was a success
* add decrypted data to this packet info */
ssl_debug_printf("decrypt_ssl3_record: app_data len %d, ssl state 0x%02X\n",
record_length, ssl->state);
direction = ssl_packet_from_server(&ssl->session, ssl_associations, pinfo);
/* retrieve decoder for this packet direction */
if (direction != 0) {
ssl_debug_printf("decrypt_ssl3_record: using server decoder\n");
decoder = ssl->server;
}
else {
ssl_debug_printf("decrypt_ssl3_record: using client decoder\n");
decoder = ssl->client;
}
/* save data to update IV if decoder is available or updated later */
data_for_iv = (direction != 0) ? &ssl->server_data_for_iv : &ssl->client_data_for_iv;
data_for_iv_len = (record_length < 24) ? record_length : 24;
ssl_data_set(data_for_iv, (const guchar*)tvb_get_ptr(tvb, offset + record_length - data_for_iv_len, data_for_iv_len), data_for_iv_len);
if (!decoder) {
ssl_debug_printf("decrypt_ssl3_record: no decoder available\n");
return ret;
}
/* run decryption and add decrypted payload to protocol data, if decryption
* is successful*/
ssl_decrypted_data_avail = ssl_decrypted_data.data_len;
if (ssl_decrypt_record(ssl, decoder,
content_type, tvb_get_ptr(tvb, offset, record_length),
record_length, &ssl_compressed_data, &ssl_decrypted_data, &ssl_decrypted_data_avail) == 0)
ret = 1;
/* */
if (!ret) {
/* save data to update IV if valid session key is obtained later */
data_for_iv = (direction != 0) ? &ssl->server_data_for_iv : &ssl->client_data_for_iv;
data_for_iv_len = (record_length < 24) ? record_length : 24;
ssl_data_set(data_for_iv, (const guchar*)tvb_get_ptr(tvb, offset + record_length - data_for_iv_len, data_for_iv_len), data_for_iv_len);
}
if (ret && save_plaintext) {
ssl_add_data_info(proto_ssl, pinfo, ssl_decrypted_data.data, ssl_decrypted_data_avail, tvb_raw_offset(tvb)+offset, decoder->flow);
}
return ret;
}
static void
process_ssl_payload(tvbuff_t *tvb, int offset, packet_info *pinfo,
proto_tree *tree, SslSession *session,
dissector_handle_t app_handle_port);
static void
desegment_ssl(tvbuff_t *tvb, packet_info *pinfo, int offset,
guint32 seq, guint32 nxtseq,
SslSession *session,
proto_tree *root_tree, proto_tree *tree,
SslFlow *flow, dissector_handle_t app_handle_port)
{
fragment_head *ipfd_head;
gboolean must_desegment;
gboolean called_dissector;
int another_pdu_follows;
gboolean another_segment_in_frame = FALSE;
int deseg_offset;
guint32 deseg_seq;
gint nbytes;
proto_item *item;
proto_item *frag_tree_item;
proto_item *ssl_tree_item;
struct tcp_multisegment_pdu *msp;
again:
ipfd_head = NULL;
must_desegment = FALSE;
called_dissector = FALSE;
another_pdu_follows = 0;
msp = NULL;
/*
* Initialize these to assume no desegmentation.
* If that's not the case, these will be set appropriately
* by the subdissector.
*/
pinfo->desegment_offset = 0;
pinfo->desegment_len = 0;
/*
* Initialize this to assume that this segment will just be
* added to the middle of a desegmented chunk of data, so
* that we should show it all as data.
* If that's not the case, it will be set appropriately.
*/
deseg_offset = offset;
/* If we've seen this segment before (e.g., it's a retransmission),
* there's nothing for us to do. Certainly, don't add it to the list
* of multisegment_pdus (that would cause subsequent lookups to find
* the retransmission instead of the original transmission, breaking
* dissection of the desegmented pdu if we'd already seen the end of
* the pdu).
*/
if ((msp = (struct tcp_multisegment_pdu *)wmem_tree_lookup32(flow->multisegment_pdus, seq))) {
const char *prefix;
if (msp->first_frame == pinfo->num) {
prefix = "";
col_set_str(pinfo->cinfo, COL_INFO, "[SSL segment of a reassembled PDU]");
} else {
prefix = "Retransmitted ";
}
nbytes = tvb_reported_length_remaining(tvb, offset);
ssl_proto_tree_add_segment_data(tree, tvb, offset, nbytes, prefix);
return;
}
/* Else, find the most previous PDU starting before this sequence number */
msp = (struct tcp_multisegment_pdu *)wmem_tree_lookup32_le(flow->multisegment_pdus, seq-1);
if (msp && msp->seq <= seq && msp->nxtpdu > seq) {
int len;
if (!PINFO_FD_VISITED(pinfo)) {
msp->last_frame = pinfo->num;
msp->last_frame_time = pinfo->abs_ts;
}
/* OK, this PDU was found, which means the segment continues
* a higher-level PDU and that we must desegment it.
*/
if (msp->flags & MSP_FLAGS_REASSEMBLE_ENTIRE_SEGMENT) {
/* The dissector asked for the entire segment */
len = MAX(0, tvb_reported_length_remaining(tvb, offset));
} else {
len = MIN(nxtseq, msp->nxtpdu) - seq;
}
ipfd_head = fragment_add(&ssl_reassembly_table, tvb, offset,
pinfo, msp->first_frame, NULL,
seq - msp->seq,
len, (LT_SEQ (nxtseq,msp->nxtpdu)));
if (msp->flags & MSP_FLAGS_REASSEMBLE_ENTIRE_SEGMENT) {
msp->flags &= (~MSP_FLAGS_REASSEMBLE_ENTIRE_SEGMENT);
/* If we consumed the entire segment there is no
* other pdu starting anywhere inside this segment.
* So update nxtpdu to point at least to the start
* of the next segment.
* (If the subdissector asks for even more data we
* will advance nxtpdu even further later down in
* the code.)
*/
msp->nxtpdu = nxtseq;
}
if ( (msp->nxtpdu < nxtseq)
&& (msp->nxtpdu >= seq)
&& (len > 0)) {
another_pdu_follows = msp->nxtpdu - seq;
}
} else {
/* This segment was not found in our table, so it doesn't
* contain a continuation of a higher-level PDU.
* Call the normal subdissector.
*/
process_ssl_payload(tvb, offset, pinfo, tree, session, app_handle_port);
called_dissector = TRUE;
/* Did the subdissector ask us to desegment some more data
* before it could handle the packet?
* If so we have to create some structures in our table but
* this is something we only do the first time we see this
* packet.
*/
if (pinfo->desegment_len) {
if (!PINFO_FD_VISITED(pinfo))
must_desegment = TRUE;
/*
* Set "deseg_offset" to the offset in "tvb"
* of the first byte of data that the
* subdissector didn't process.
*/
deseg_offset = offset + pinfo->desegment_offset;
}
/* Either no desegmentation is necessary, or this is
* segment contains the beginning but not the end of
* a higher-level PDU and thus isn't completely
* desegmented.
*/
ipfd_head = NULL;
}
/* is it completely desegmented? */
if (ipfd_head) {
/*
* Yes, we think it is.
* We only call subdissector for the last segment.
* Note that the last segment may include more than what
* we needed.
*/
if (ipfd_head->reassembled_in == pinfo->num &&
nxtseq < ipfd_head->datalen) {
/*
* This is *not* the last segment. It is part of a PDU in the same
* frame, so no another PDU can follow this one.
* Do not reassemble SSL yet, it will be done in the final segment.
* Clear the Info column and avoid displaying [SSL segment of a
* reassembled PDU], the payload dissector will typically set it.
* (This is needed here for the second pass.)
*/
another_pdu_follows = 0;
col_clear(pinfo->cinfo, COL_INFO);
another_segment_in_frame = TRUE;
} else if (ipfd_head->reassembled_in == pinfo->num) {
/*
* OK, this is the last segment of the PDU and also the
* last segment in this frame.
* Let's call the subdissector with the desegmented
* data.
*/
tvbuff_t *next_tvb;
int old_len;
/*
* Reset column in case multiple SSL segments form the
* PDU and this last SSL segment is not in the first TCP segment of
* this frame.
* XXX prevent clearing the column if the last layer is not SSL?
*/
/* Clear column during the first pass. */
col_clear(pinfo->cinfo, COL_INFO);
/* create a new TVB structure for desegmented data */
next_tvb = tvb_new_chain(tvb, ipfd_head->tvb_data);
/* add desegmented data to the data source list */
add_new_data_source(pinfo, next_tvb, "Reassembled SSL");
/* call subdissector */
process_ssl_payload(next_tvb, 0, pinfo, tree, session, app_handle_port);
called_dissector = TRUE;
/*
* OK, did the subdissector think it was completely
* desegmented, or does it think we need even more
* data?
*/
old_len = (int)(tvb_reported_length(next_tvb) - tvb_reported_length_remaining(tvb, offset));
if (pinfo->desegment_len && pinfo->desegment_offset <= old_len) {
/*
* "desegment_len" isn't 0, so it needs more
* data for something - and "desegment_offset"
* is before "old_len", so it needs more data
* to dissect the stuff we thought was
* completely desegmented (as opposed to the
* stuff at the beginning being completely
* desegmented, but the stuff at the end
* being a new higher-level PDU that also
* needs desegmentation).
*/
fragment_set_partial_reassembly(&ssl_reassembly_table,
pinfo, msp->first_frame, NULL);
/* Update msp->nxtpdu to point to the new next
* pdu boundary.
*/
if (pinfo->desegment_len == DESEGMENT_ONE_MORE_SEGMENT) {
/* We want reassembly of at least one
* more segment so set the nxtpdu
* boundary to one byte into the next
* segment.
* This means that the next segment
* will complete reassembly even if it
* is only one single byte in length.
*/
msp->nxtpdu = seq + tvb_reported_length_remaining(tvb, offset) + 1;
msp->flags |= MSP_FLAGS_REASSEMBLE_ENTIRE_SEGMENT;
} else {
msp->nxtpdu = seq + tvb_reported_length_remaining(tvb, offset) + pinfo->desegment_len;
}
/* Since we need at least some more data
* there can be no pdu following in the
* tail of this segment.
*/
another_pdu_follows = 0;
} else {
/*
* Show the stuff in this TCP segment as
* just raw TCP segment data.
*/
nbytes = tvb_reported_length_remaining(tvb, offset);
ssl_proto_tree_add_segment_data(tree, tvb, offset, nbytes, NULL);
/*
* The subdissector thought it was completely
* desegmented (although the stuff at the
* end may, in turn, require desegmentation),
* so we show a tree with all segments.
*/
show_fragment_tree(ipfd_head, &ssl_segment_items,
root_tree, pinfo, next_tvb, &frag_tree_item);
/*
* The toplevel fragment subtree is now
* behind all desegmented data; move it
* right behind the TCP tree.
*/
ssl_tree_item = proto_tree_get_parent(tree);
if (frag_tree_item && ssl_tree_item) {
proto_tree_move_item(root_tree, ssl_tree_item, frag_tree_item);
}
/* Did the subdissector ask us to desegment
* some more data? This means that the data
* at the beginning of this segment completed
* a higher-level PDU, but the data at the
* end of this segment started a higher-level
* PDU but didn't complete it.
*
* If so, we have to create some structures
* in our table, but this is something we
* only do the first time we see this packet.
*/
if (pinfo->desegment_len) {
if (!PINFO_FD_VISITED(pinfo))
must_desegment = TRUE;
/* The stuff we couldn't dissect
* must have come from this segment,
* so it's all in "tvb".
*
* "pinfo->desegment_offset" is
* relative to the beginning of
* "next_tvb"; we want an offset
* relative to the beginning of "tvb".
*
* First, compute the offset relative
* to the *end* of "next_tvb" - i.e.,
* the number of bytes before the end
* of "next_tvb" at which the
* subdissector stopped. That's the
* length of "next_tvb" minus the
* offset, relative to the beginning
* of "next_tvb, at which the
* subdissector stopped.
*/
deseg_offset = ipfd_head->datalen - pinfo->desegment_offset;
/* "tvb" and "next_tvb" end at the
* same byte of data, so the offset
* relative to the end of "next_tvb"
* of the byte at which we stopped
* is also the offset relative to
* the end of "tvb" of the byte at
* which we stopped.
*
* Convert that back into an offset
* relative to the beginning of
* "tvb", by taking the length of
* "tvb" and subtracting the offset
* relative to the end.
*/
deseg_offset = tvb_reported_length(tvb) - deseg_offset;
}
}
}
}
if (must_desegment) {
/* If the dissector requested "reassemble until FIN"
* just set this flag for the flow and let reassembly
* proceed at normal. We will check/pick up these
* reassembled PDUs later down in dissect_tcp() when checking
* for the FIN flag.
*/
if (pinfo->desegment_len == DESEGMENT_UNTIL_FIN) {
flow->flags |= TCP_FLOW_REASSEMBLE_UNTIL_FIN;
}
/*
* The sequence number at which the stuff to be desegmented
* starts is the sequence number of the byte at an offset
* of "deseg_offset" into "tvb".
*
* The sequence number of the byte at an offset of "offset"
* is "seq", i.e. the starting sequence number of this
* segment, so the sequence number of the byte at
* "deseg_offset" is "seq + (deseg_offset - offset)".
*/
deseg_seq = seq + (deseg_offset - offset);
if (((nxtseq - deseg_seq) <= 1024*1024)
&& (!PINFO_FD_VISITED(pinfo))) {
if (pinfo->desegment_len == DESEGMENT_ONE_MORE_SEGMENT) {
/* The subdissector asked to reassemble using the
* entire next segment.
* Just ask reassembly for one more byte
* but set this msp flag so we can pick it up
* above.
*/
msp = pdu_store_sequencenumber_of_next_pdu(pinfo,
deseg_seq, nxtseq+1, flow->multisegment_pdus);
msp->flags |= MSP_FLAGS_REASSEMBLE_ENTIRE_SEGMENT;
} else {
msp = pdu_store_sequencenumber_of_next_pdu(pinfo,
deseg_seq, nxtseq+pinfo->desegment_len, flow->multisegment_pdus);
}
/* add this segment as the first one for this new pdu */
fragment_add(&ssl_reassembly_table, tvb, deseg_offset,
pinfo, msp->first_frame, NULL,
0, nxtseq - deseg_seq,
LT_SEQ(nxtseq, msp->nxtpdu));
}
}
if (!called_dissector || pinfo->desegment_len != 0) {
if (ipfd_head != NULL && ipfd_head->reassembled_in != 0 &&
!(ipfd_head->flags & FD_PARTIAL_REASSEMBLY)) {
/*
* We know what frame this PDU is reassembled in;
* let the user know.
*/
item=proto_tree_add_uint(tree, *ssl_segment_items.hf_reassembled_in,
tvb, 0, 0, ipfd_head->reassembled_in);
PROTO_ITEM_SET_GENERATED(item);
}
/*
* Either we didn't call the subdissector at all (i.e.,
* this is a segment that contains the middle of a
* higher-level PDU, but contains neither the beginning
* nor the end), or the subdissector couldn't dissect it
* all, as some data was missing (i.e., it set
* "pinfo->desegment_len" to the amount of additional
* data it needs).
*/
if (!another_segment_in_frame && pinfo->desegment_offset == 0) {
/*
* It couldn't, in fact, dissect any of it (the
* first byte it couldn't dissect is at an offset
* of "pinfo->desegment_offset" from the beginning
* of the payload, and that's 0).
* Just mark this as SSL.
*/
col_set_str(pinfo->cinfo, COL_PROTOCOL,
val_to_str_const(session->version, ssl_version_short_names, "SSL"));
col_set_str(pinfo->cinfo, COL_INFO, "[SSL segment of a reassembled PDU]");
}
/*
* Show what's left in the packet as just raw TCP segment
* data.
* XXX - remember what protocol the last subdissector
* was, and report it as a continuation of that, instead?
*/
nbytes = tvb_reported_length_remaining(tvb, deseg_offset);
ssl_proto_tree_add_segment_data(tree, tvb, deseg_offset, nbytes, NULL);
}
pinfo->can_desegment = 0;
pinfo->desegment_offset = 0;
pinfo->desegment_len = 0;
if (another_pdu_follows) {
/* there was another pdu following this one. */
pinfo->can_desegment=2;
/* we also have to prevent the dissector from changing the
* PROTOCOL and INFO colums since what follows may be an
* incomplete PDU and we don't want it be changed back from
* <Protocol> to <TCP>
*/
col_set_fence(pinfo->cinfo, COL_INFO);
col_set_writable(pinfo->cinfo, COL_PROTOCOL, FALSE);
offset += another_pdu_follows;
seq += another_pdu_follows;
goto again;
}
}
static void
export_pdu_packet(tvbuff_t *tvb, packet_info *pinfo, guint8 tag, const gchar *name)
{
exp_pdu_data_t *exp_pdu_data = export_pdu_create_common_tags(pinfo, name, tag);
exp_pdu_data->tvb_captured_length = tvb_captured_length(tvb);
exp_pdu_data->tvb_reported_length = tvb_reported_length(tvb);
exp_pdu_data->pdu_tvb = tvb;
tap_queue_packet(exported_pdu_tap, pinfo, exp_pdu_data);
}
static void
process_ssl_payload(tvbuff_t *tvb, int offset, packet_info *pinfo,
proto_tree *tree, SslSession *session,
dissector_handle_t app_handle_port)
{
tvbuff_t *next_tvb;
heur_dtbl_entry_t *hdtbl_entry;
guint16 saved_match_port;
next_tvb = tvb_new_subset_remaining(tvb, offset);
/* If the appdata proto is not yet known (no STARTTLS), try heuristics
* first, then ports-based dissectors. Port 443 is too overloaded... */
if (!session->app_handle) {
/* The heuristics dissector should set the app_handle if it wants to be
* called in the future. */
if (dissector_try_heuristic(ssl_heur_subdissector_list, next_tvb,
pinfo, proto_tree_get_root(tree), &hdtbl_entry,
&session->app_handle)) {
ssl_debug_printf("%s: found heuristics dissector %s, app_handle is %p (%s)\n",
G_STRFUNC, hdtbl_entry->short_name,
(void *)session->app_handle,
dissector_handle_get_dissector_name(session->app_handle));
if (have_tap_listener(exported_pdu_tap)) {
export_pdu_packet(next_tvb, pinfo, EXP_PDU_TAG_HEUR_PROTO_NAME, hdtbl_entry->short_name);
}
return;
}
if (app_handle_port) {
/* Heuristics failed, just try the port-based dissector. */
ssl_debug_printf("%s: no heuristics dissector, falling back to "
"handle %p (%s)\n", G_STRFUNC,
(void *)app_handle_port,
dissector_handle_get_dissector_name(app_handle_port));
session->app_handle = app_handle_port;
} else {
/* No heuristics, no port-based proto, unknown protocol. */
ssl_debug_printf("%s: no appdata dissector found\n", G_STRFUNC);
return;
}
}
ssl_debug_printf("%s: found handle %p (%s)\n", G_STRFUNC,
(void *)session->app_handle,
dissector_handle_get_dissector_name(session->app_handle));
if (have_tap_listener(exported_pdu_tap)) {
export_pdu_packet(next_tvb, pinfo, EXP_PDU_TAG_PROTO_NAME,
dissector_handle_get_dissector_name(session->app_handle));
}
saved_match_port = pinfo->match_uint;
if (ssl_packet_from_server(session, ssl_associations, pinfo)) {
pinfo->match_uint = pinfo->srcport;
} else {
pinfo->match_uint = pinfo->destport;
}
call_dissector(session->app_handle, next_tvb, pinfo, proto_tree_get_root(tree));
pinfo->match_uint = saved_match_port;
}
static void
dissect_ssl_payload(tvbuff_t *tvb, packet_info *pinfo, int offset,
proto_tree *tree, SslSession *session,
dissector_handle_t app_handle_port)
{
gboolean save_fragmented;
guint16 save_can_desegment;
SslDataInfo *appl_data;
tvbuff_t *next_tvb;
/* Preserve current desegmentation ability to prevent the subdissector
* from messing up the ssl desegmentation */
save_can_desegment = pinfo->can_desegment;
/* show decrypted data info, if available */
appl_data = ssl_get_data_info(proto_ssl, pinfo, tvb_raw_offset(tvb)+offset);
if (!appl_data || !appl_data->plain_data.data_len) return;
/* try to dissect decrypted data*/
ssl_debug_printf("dissect_ssl3_record decrypted len %d\n", appl_data->plain_data.data_len);
ssl_print_data("decrypted app data fragment", appl_data->plain_data.data, appl_data->plain_data.data_len);
/* create a new TVB structure for desegmented data */
next_tvb = tvb_new_child_real_data(tvb, appl_data->plain_data.data, appl_data->plain_data.data_len, appl_data->plain_data.data_len);
/* add desegmented data to the data source list */
add_new_data_source(pinfo, next_tvb, "Decrypted SSL data");
/* Can we desegment this segment? */
if (ssl_desegment_app_data) {
/* Yes. */
pinfo->can_desegment = 2;
desegment_ssl(next_tvb, pinfo, 0, appl_data->seq, appl_data->nxtseq,
session, proto_tree_get_root(tree), tree,
appl_data->flow, app_handle_port);
} else if (session->app_handle || app_handle_port) {
/* No - just call the subdissector.
Mark this as fragmented, so if somebody throws an exception,
we don't report it as a malformed frame. */
pinfo->can_desegment = 0;
save_fragmented = pinfo->fragmented;
pinfo->fragmented = TRUE;
process_ssl_payload(next_tvb, 0, pinfo, tree, session, app_handle_port);
pinfo->fragmented = save_fragmented;
}
/* restore desegmentation ability */
pinfo->can_desegment = save_can_desegment;
}
/*********************************************************************
*
* SSL version 3 and TLS Dissection Routines
*
*********************************************************************/
static gint
dissect_ssl3_record(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
SslSession *session, gint is_from_server,
gboolean *need_desegmentation,
SslDecryptSession *ssl, const gboolean first_record_in_frame)
{
/*
* struct {
* uint8 major, minor;
* } ProtocolVersion;
*
*
* enum {
* change_cipher_spec(20), alert(21), handshake(22),
* application_data(23), (255)
* } ContentType;
*
* struct {
* ContentType type;
* ProtocolVersion version;
* uint16 length;
* opaque fragment[TLSPlaintext.length];
* } TLSPlaintext;
*/
guint32 record_length;
guint16 version;
guint8 content_type;
guint8 next_byte;
proto_tree *ti;
proto_tree *ssl_record_tree;
guint32 available_bytes;
ti = NULL;
ssl_record_tree = NULL;
available_bytes = tvb_reported_length_remaining(tvb, offset);
/* TLS 1.0/1.1 just ignores unknown records - RFC 2246 chapter 6. The TLS Record Protocol */
if ((session->version==TLSV1_VERSION ||
session->version==TLSV1DOT1_VERSION ||
session->version==TLSV1DOT2_VERSION) &&
(available_bytes >=1 ) && !ssl_is_valid_content_type(tvb_get_guint8(tvb, offset))) {
proto_tree_add_expert(tree, pinfo, &ei_ssl_ignored_unknown_record, tvb, offset, available_bytes);
/* on second and subsequent records per frame
* add a delimiter on info column
*/
if (!first_record_in_frame) {
col_append_str(pinfo->cinfo, COL_INFO, ", ");
}
col_append_str(pinfo->cinfo, COL_INFO, "Ignored Unknown Record");
col_set_str(pinfo->cinfo, COL_PROTOCOL, val_to_str_const(session->version, ssl_version_short_names, "SSL"));
return offset + available_bytes;
}
/*
* Is the record header split across segment boundaries?
*/
if (available_bytes < 5) {
/*
* Yes - can we do reassembly?
*/
if (ssl_desegment && pinfo->can_desegment) {
/*
* Yes. Tell the TCP dissector where the data for this
* message starts in the data it handed us, and that we need
* "some more data." Don't tell it exactly how many bytes we
* need because if/when we ask for even more (after the header)
* that will break reassembly.
*/
pinfo->desegment_offset = offset;
pinfo->desegment_len = DESEGMENT_ONE_MORE_SEGMENT;
*need_desegmentation = TRUE;
return offset;
} else {
/* Not enough bytes available. Stop here. */
return offset + available_bytes;
}
}
/*
* Get the record layer fields of interest
*/
content_type = tvb_get_guint8(tvb, offset);
version = tvb_get_ntohs(tvb, offset + 1);
record_length = tvb_get_ntohs(tvb, offset + 3);
if (ssl_is_valid_content_type(content_type)) {
/*
* Is the record split across segment boundaries?
*/
if (available_bytes < record_length + 5) {
/*
* Yes - can we do reassembly?
*/
if (ssl_desegment && pinfo->can_desegment) {
/*
* Yes. Tell the TCP dissector where the data for this
* message starts in the data it handed us, and how many
* more bytes we need, and return.
*/
pinfo->desegment_offset = offset;
/* Don't use:
* pinfo->desegment_len = DESEGMENT_ONE_MORE_SEGMENT;
* it avoids some minor display glitches when a frame contains
* the continuation of a previous PDU together with a full new
* PDU, but it completely breaks dissection for jumbo SSL frames
*/
pinfo->desegment_len = (record_length + 5) - available_bytes;
*need_desegmentation = TRUE;
return offset;
} else {
/* Not enough bytes available. Stop here. */
return offset + available_bytes;
}
}
} else {
/* on second and subsequent records per frame
* add a delimiter on info column
*/
if (!first_record_in_frame) {
col_append_str(pinfo->cinfo, COL_INFO, ", ");
}
/* if we don't have a valid content_type, there's no sense
* continuing any further
*/
col_append_str(pinfo->cinfo, COL_INFO, "Continuation Data");
/* Set the protocol column */
col_set_str(pinfo->cinfo, COL_PROTOCOL,
val_to_str_const(session->version, ssl_version_short_names, "SSL"));
return offset + 5 + record_length;
}
/* add the record layer subtree header */
ti = proto_tree_add_item(tree, hf_ssl_record, tvb,
offset, 5 + record_length, ENC_NA);
ssl_record_tree = proto_item_add_subtree(ti, ett_ssl_record);
/* show the one-byte content type */
proto_tree_add_item(ssl_record_tree, hf_ssl_record_content_type,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset++;
/* add the version */
proto_tree_add_item(ssl_record_tree, hf_ssl_record_version, tvb,
offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* add the length */
proto_tree_add_uint(ssl_record_tree, hf_ssl_record_length, tvb,
offset, 2, record_length);
offset += 2; /* move past length field itself */
/*
* if we don't already have a version set for this conversation,
* but this message's version is authoritative (i.e., it's
* not client_hello, then save the version to to conversation
* structure and print the column version
*/
next_byte = tvb_get_guint8(tvb, offset);
if (session->version == SSL_VER_UNKNOWN)
ssl_try_set_version(session, ssl, content_type, next_byte, FALSE, version);
/* on second and subsequent records per frame
* add a delimiter on info column
*/
if (!first_record_in_frame) {
col_append_str(pinfo->cinfo, COL_INFO, ", ");
}
col_set_str(pinfo->cinfo, COL_PROTOCOL,
val_to_str_const(session->version, ssl_version_short_names, "SSL"));
/*
* now dissect the next layer
*/
ssl_debug_printf("dissect_ssl3_record: content_type %d %s\n",content_type, val_to_str_const(content_type, ssl_31_content_type, "unknown"));
/* PAOLO try to decrypt each record (we must keep ciphers "in sync")
* store plain text only for app data */
switch ((ContentType) content_type) {
case SSL_ID_CHG_CIPHER_SPEC:
col_append_str(pinfo->cinfo, COL_INFO, "Change Cipher Spec");
ssl_dissect_change_cipher_spec(&dissect_ssl3_hf, tvb, pinfo,
ssl_record_tree, offset, session,
is_from_server, ssl);
if (ssl) {
ssl_load_keyfile(ssl_options.keylog_filename, &ssl_keylog_file,
&ssl_master_key_map);
ssl_finalize_decryption(ssl, &ssl_master_key_map);
ssl_change_cipher(ssl, ssl_packet_from_server(session, ssl_associations, pinfo));
}
break;
case SSL_ID_ALERT:
{
tvbuff_t *decrypted;
if (ssl&&decrypt_ssl3_record(tvb, pinfo, offset,
record_length, content_type, ssl, FALSE))
ssl_add_record_info(proto_ssl, pinfo, ssl_decrypted_data.data,
ssl_decrypted_data_avail, tvb_raw_offset(tvb)+offset);
/* try to retrieve and use decrypted alert record, if any. */
decrypted = ssl_get_record_info(tvb, proto_ssl, pinfo, tvb_raw_offset(tvb)+offset);
if (decrypted) {
add_new_data_source(pinfo, decrypted, "Decrypted SSL record");
dissect_ssl3_alert(decrypted, pinfo, ssl_record_tree, 0, session);
} else {
dissect_ssl3_alert(tvb, pinfo, ssl_record_tree, offset, session);
}
break;
}
case SSL_ID_HANDSHAKE:
{
tvbuff_t *decrypted;
ssl_calculate_handshake_hash(ssl, tvb, offset, record_length);
/* try to decrypt handshake record, if possible. Store decrypted
* record for later usage. The offset is used as 'key' to identify
* this record in the packet (we can have multiple handshake records
* in the same frame) */
if (ssl && decrypt_ssl3_record(tvb, pinfo, offset,
record_length, content_type, ssl, FALSE))
ssl_add_record_info(proto_ssl, pinfo, ssl_decrypted_data.data,
ssl_decrypted_data_avail, tvb_raw_offset(tvb)+offset);
/* try to retrieve and use decrypted handshake record, if any. */
decrypted = ssl_get_record_info(tvb, proto_ssl, pinfo, tvb_raw_offset(tvb)+offset);
if (decrypted) {
/* add desegmented data to the data source list */
add_new_data_source(pinfo, decrypted, "Decrypted SSL record");
dissect_ssl3_handshake(decrypted, pinfo, ssl_record_tree, 0,
tvb_reported_length(decrypted), session,
is_from_server, ssl, content_type);
} else {
dissect_ssl3_handshake(tvb, pinfo, ssl_record_tree, offset,
record_length, session, is_from_server, ssl,
content_type);
}
break;
}
case SSL_ID_APP_DATA:
{
dissector_handle_t app_handle;
if (ssl){
decrypt_ssl3_record(tvb, pinfo, offset,
record_length, content_type, ssl, TRUE);
/* if application data desegmentation is allowed and needed */
/* if (ssl_desegment_app_data && *need_desegmentation)
ssl_desegment_ssl_app_data(ssl,pinfo);
*/
}
/* show on info column what we are decoding */
col_append_str(pinfo->cinfo, COL_INFO, "Application Data");
/* app_handle discovery is done here instead of dissect_ssl_payload()
* because the protocol name needs to be displayed below. */
app_handle = session->app_handle;
if (!app_handle) {
/* Unknown protocol handle, ssl_starttls_ack was not called before.
* Try to find a port-based protocol and use it if there is no
* heuristics dissector (see process_ssl_payload). */
app_handle = dissector_get_uint_handle(ssl_associations, pinfo->srcport);
if (!app_handle) app_handle = dissector_get_uint_handle(ssl_associations, pinfo->destport);
}
proto_item_set_text(ssl_record_tree,
"%s Record Layer: %s Protocol: %s",
val_to_str_const(session->version, ssl_version_short_names, "SSL"),
val_to_str_const(content_type, ssl_31_content_type, "unknown"),
app_handle ? dissector_handle_get_dissector_name(app_handle)
: "Application Data");
proto_tree_add_item(ssl_record_tree, hf_ssl_record_appdata, tvb,
offset, record_length, ENC_NA);
dissect_ssl_payload(tvb, pinfo, offset, tree, session, app_handle);
/* Set app proto again in case the heuristics found a different proto. */
if (session->app_handle && session->app_handle != app_handle)
proto_item_set_text(ssl_record_tree,
"%s Record Layer: %s Protocol: %s",
val_to_str_const(session->version, ssl_version_short_names, "SSL"),
val_to_str_const(content_type, ssl_31_content_type, "unknown"),
dissector_handle_get_dissector_name(session->app_handle));
break;
}
case SSL_ID_HEARTBEAT:
{
tvbuff_t *decrypted;
if (ssl && decrypt_ssl3_record(tvb, pinfo, offset,
record_length, content_type, ssl, FALSE))
ssl_add_record_info(proto_ssl, pinfo, ssl_decrypted_data.data,
ssl_decrypted_data_avail, tvb_raw_offset(tvb)+offset);
/* try to retrieve and use decrypted handshake record, if any. */
decrypted = ssl_get_record_info(tvb, proto_ssl, pinfo, tvb_raw_offset(tvb)+offset);
if (decrypted) {
add_new_data_source(pinfo, decrypted, "Decrypted SSL record");
dissect_ssl3_heartbeat(decrypted, pinfo, ssl_record_tree, 0, session, tvb_reported_length (decrypted), TRUE);
} else {
gboolean plaintext = TRUE;
/* heartbeats before ChangeCipherSpec are unencrypted */
if (ssl) {
if (ssl_packet_from_server(session, ssl_associations, pinfo)) {
plaintext = ssl->server == NULL;
} else {
plaintext = ssl->client == NULL;
}
}
dissect_ssl3_heartbeat(tvb, pinfo, ssl_record_tree, offset, session, record_length, plaintext);
}
break;
}
}
offset += record_length; /* skip to end of record */
return offset;
}
/* dissects the alert message, filling in the tree */
static void
dissect_ssl3_alert(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
const SslSession *session)
{
/* struct {
* AlertLevel level;
* AlertDescription description;
* } Alert;
*/
proto_tree *ti;
proto_tree *ssl_alert_tree;
const gchar *level;
const gchar *desc;
guint8 byte;
ssl_alert_tree = NULL;
if (tree)
{
ti = proto_tree_add_item(tree, hf_ssl_alert_message, tvb,
offset, 2, ENC_NA);
ssl_alert_tree = proto_item_add_subtree(ti, ett_ssl_alert);
}
/*
* set the record layer label
*/
/* first lookup the names for the alert level and description */
byte = tvb_get_guint8(tvb, offset); /* grab the level byte */
level = try_val_to_str(byte, ssl_31_alert_level);
byte = tvb_get_guint8(tvb, offset+1); /* grab the desc byte */
desc = try_val_to_str(byte, ssl_31_alert_description);
/* now set the text in the record layer line */
if (level && desc)
{
col_append_fstr(pinfo->cinfo, COL_INFO,
"Alert (Level: %s, Description: %s)",
level, desc);
}
else
{
col_append_str(pinfo->cinfo, COL_INFO, "Encrypted Alert");
}
if (tree)
{
if (level && desc)
{
proto_item_set_text(tree, "%s Record Layer: Alert "
"(Level: %s, Description: %s)",
val_to_str_const(session->version, ssl_version_short_names, "SSL"),
level, desc);
proto_tree_add_item(ssl_alert_tree, hf_ssl_alert_message_level,
tvb, offset++, 1, ENC_BIG_ENDIAN);
proto_tree_add_item(ssl_alert_tree, hf_ssl_alert_message_description,
tvb, offset++, 1, ENC_BIG_ENDIAN);
}
else
{
proto_item_set_text(tree,
"%s Record Layer: Encrypted Alert",
val_to_str_const(session->version, ssl_version_short_names, "SSL"));
proto_item_set_text(ssl_alert_tree,
"Alert Message: Encrypted Alert");
}
}
}
/* dissects the handshake protocol, filling the tree */
static void
dissect_ssl3_handshake(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
guint32 record_length, SslSession *session,
gint is_from_server,
SslDecryptSession *ssl, const guint8 content_type)
{
/* struct {
* HandshakeType msg_type;
* uint24 length;
* select (HandshakeType) {
* case hello_request: HelloRequest;
* case client_hello: ClientHello;
* case server_hello: ServerHello;
* case certificate: Certificate;
* case server_key_exchange: ServerKeyExchange;
* case certificate_request: CertificateRequest;
* case server_hello_done: ServerHelloDone;
* case certificate_verify: CertificateVerify;
* case client_key_exchange: ClientKeyExchange;
* case finished: Finished;
* case certificate_url: CertificateURL;
* case certificate_status: CertificateStatus;
* case encrypted_extensions:NextProtocolNegotiationEncryptedExtension;
* } body;
* } Handshake;
*/
proto_tree *ssl_hand_tree;
const gchar *msg_type_str;
guint8 msg_type;
guint32 length;
gboolean first_iteration;
proto_item *ti;
ssl_hand_tree = NULL;
first_iteration = TRUE;
/* just as there can be multiple records per packet, there
* can be multiple messages per record as long as they have
* the same content type
*
* we really only care about this for handshake messages
*/
/* set record_length to the max offset */
record_length += offset;
while (offset < record_length)
{
msg_type = tvb_get_guint8(tvb, offset);
length = tvb_get_ntoh24(tvb, offset + 1);
/* Check the length in the handshake message. Assume it's an
* encrypted handshake message if the message would pass
* the record_length boundary. This is a workaround for the
* situation where the first octet of the encrypted handshake
* message is actually a known handshake message type.
*/
if (offset + length <= record_length)
msg_type_str = try_val_to_str(msg_type, ssl_31_handshake_type);
else
msg_type_str = NULL;
ssl_debug_printf("dissect_ssl3_handshake iteration %d type %d offset %d length %d "
"bytes, remaining %d \n", first_iteration, msg_type, offset, length, record_length);
if (!msg_type_str && !first_iteration)
{
/* only dissect / report messages if they're
* either the first message in this record
* or they're a valid message type
*/
return;
}
/* on second and later iterations, add comma to info col */
if (!first_iteration)
{
col_append_str(pinfo->cinfo, COL_INFO, ", ");
}
/*
* Update our info string
*/
col_append_str(pinfo->cinfo, COL_INFO, (msg_type_str != NULL)
? msg_type_str : "Encrypted Handshake Message");
/* set the label text on the record layer expanding node */
if (first_iteration)
{
proto_item_set_text(tree, "%s Record Layer: %s Protocol: %s",
val_to_str_const(session->version, ssl_version_short_names, "SSL"),
val_to_str_const(content_type, ssl_31_content_type, "unknown"),
(msg_type_str!=NULL) ? msg_type_str :
"Encrypted Handshake Message");
}
else
{
proto_item_set_text(tree, "%s Record Layer: %s Protocol: %s",
val_to_str_const(session->version, ssl_version_short_names, "SSL"),
val_to_str_const(content_type, ssl_31_content_type, "unknown"),
"Multiple Handshake Messages");
}
/* add a subtree for the handshake protocol */
ti = proto_tree_add_item(tree, hf_ssl_handshake_protocol, tvb,
offset, length + 4, ENC_NA);
ssl_hand_tree = proto_item_add_subtree(ti, ett_ssl_handshake);
/* set the text label on the subtree node */
proto_item_set_text(ssl_hand_tree, "Handshake Protocol: %s",
(msg_type_str != NULL) ? msg_type_str :
"Encrypted Handshake Message");
/* if we don't have a valid handshake type, just quit dissecting */
if (!msg_type_str)
return;
/* add nodes for the message type and message length */
proto_tree_add_uint(ssl_hand_tree, hf_ssl_handshake_type,
tvb, offset, 1, msg_type);
offset += 1;
proto_tree_add_uint(ssl_hand_tree, hf_ssl_handshake_length,
tvb, offset, 3, length);
offset += 3;
/* now dissect the handshake message, if necessary */
switch ((HandshakeType) msg_type) {
case SSL_HND_HELLO_REQUEST:
/* hello_request has no fields, so nothing to do! */
break;
case SSL_HND_CLIENT_HELLO:
if (ssl) {
/* ClientHello is first packet so set direction */
ssl_set_server(session, &pinfo->dst, pinfo->ptype, pinfo->destport);
}
ssl_dissect_hnd_cli_hello(&dissect_ssl3_hf, tvb, pinfo,
ssl_hand_tree, offset, length, session, ssl,
NULL);
break;
case SSL_HND_SERVER_HELLO:
ssl_dissect_hnd_srv_hello(&dissect_ssl3_hf, tvb, pinfo, ssl_hand_tree,
offset, length, session, ssl, FALSE);
break;
case SSL_HND_HELLO_VERIFY_REQUEST:
/* only valid for DTLS */
break;
case SSL_HND_NEWSESSION_TICKET:
/* no need to load keylog file here as it only links a previous
* master key with this Session Ticket */
ssl_dissect_hnd_new_ses_ticket(&dissect_ssl3_hf, tvb,
ssl_hand_tree, offset, ssl,
ssl_master_key_map.tickets);
break;
case SSL_HND_CERTIFICATE:
ssl_dissect_hnd_cert(&dissect_ssl3_hf, tvb, ssl_hand_tree,
offset, pinfo, session, ssl, ssl_key_hash, is_from_server);
break;
case SSL_HND_SERVER_KEY_EXCHG:
ssl_dissect_hnd_srv_keyex(&dissect_ssl3_hf, tvb, ssl_hand_tree, offset, length, session);
break;
case SSL_HND_CERT_REQUEST:
ssl_dissect_hnd_cert_req(&dissect_ssl3_hf, tvb, ssl_hand_tree, offset, pinfo, session);
break;
case SSL_HND_SVR_HELLO_DONE:
if (ssl)
ssl->state |= SSL_SERVER_HELLO_DONE;
break;
case SSL_HND_CERT_VERIFY:
ssl_dissect_hnd_cli_cert_verify(&dissect_ssl3_hf, tvb, ssl_hand_tree, offset, session);
break;
case SSL_HND_CLIENT_KEY_EXCHG:
ssl_dissect_hnd_cli_keyex(&dissect_ssl3_hf, tvb, ssl_hand_tree, offset, length, session);
if (!ssl)
break;
ssl_load_keyfile(ssl_options.keylog_filename, &ssl_keylog_file,
&ssl_master_key_map);
/* try to find master key from pre-master key */
if (!ssl_generate_pre_master_secret(ssl, length, tvb, offset,
ssl_options.psk,
&ssl_master_key_map)) {
ssl_debug_printf("dissect_ssl3_handshake can't generate pre master secret\n");
}
break;
case SSL_HND_FINISHED:
ssl_dissect_hnd_finished(&dissect_ssl3_hf, tvb, ssl_hand_tree,
offset, session, &ssl_hfs);
break;
case SSL_HND_CERT_URL:
ssl_dissect_hnd_cert_url(&dissect_ssl3_hf, tvb, ssl_hand_tree, offset);
break;
case SSL_HND_CERT_STATUS:
dissect_ssl3_hnd_cert_status(tvb, ssl_hand_tree, offset, pinfo);
break;
case SSL_HND_SUPPLEMENTAL_DATA:
/* TODO: dissect this? */
break;
case SSL_HND_ENCRYPTED_EXTS:
dissect_ssl3_hnd_encrypted_exts(tvb, ssl_hand_tree, offset);
break;
}
offset += length;
first_iteration = FALSE; /* set up for next pass, if any */
}
}
/* dissects the heartbeat message, filling in the tree */
static void
dissect_ssl3_heartbeat(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
const SslSession *session, guint32 record_length,
gboolean decrypted)
{
/* struct {
* HeartbeatMessageType type;
* uint16 payload_length;
* opaque payload;
* opaque padding;
* } HeartbeatMessage;
*/
proto_item *ti;
proto_tree *tls_heartbeat_tree;
const gchar *type;
guint8 byte;
guint16 payload_length;
guint16 padding_length;
tls_heartbeat_tree = NULL;
if (tree) {
ti = proto_tree_add_item(tree, hf_ssl_heartbeat_message, tvb,
offset, record_length, ENC_NA);
tls_heartbeat_tree = proto_item_add_subtree(ti, ett_ssl_heartbeat);
}
/*
* set the record layer label
*/
/* first lookup the names for the message type and the payload length */
byte = tvb_get_guint8(tvb, offset);
type = try_val_to_str(byte, tls_heartbeat_type);
payload_length = tvb_get_ntohs(tvb, offset + 1);
padding_length = record_length - 3 - payload_length;
/* assume plaintext if the (expected) record size is smaller than the type
* (1), length (2)[, payload] and padding (16) fields combined */
if (record_length <= 19u || 3u + payload_length + 16 <= record_length) {
decrypted = TRUE;
}
/* now set the text in the record layer line */
if (type && decrypted) {
col_append_fstr(pinfo->cinfo, COL_INFO, "Heartbeat %s", type);
} else {
col_append_str(pinfo->cinfo, COL_INFO, "Encrypted Heartbeat");
}
if (type && decrypted) {
proto_item_set_text(tree, "%s Record Layer: Heartbeat "
"%s",
val_to_str_const(session->version, ssl_version_short_names, "SSL"),
type);
proto_tree_add_item(tls_heartbeat_tree, hf_ssl_heartbeat_message_type,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
ti = proto_tree_add_uint(tls_heartbeat_tree, hf_ssl_heartbeat_message_payload_length,
tvb, offset, 2, payload_length);
offset += 2;
if (3u + payload_length + 16 > record_length) {
expert_add_info_format(pinfo, ti, &ei_ssl3_heartbeat_payload_length,
"Invalid heartbeat payload length (%d)", payload_length);
/* There is no room for padding... truncate the payload such that
* the field can be selected (for the interested). */
payload_length = record_length - 3;
padding_length = 0;
proto_item_append_text (ti, " (invalid, using %u to decode payload)", payload_length);
}
proto_tree_add_bytes_format(tls_heartbeat_tree, hf_ssl_heartbeat_message_payload,
tvb, offset, payload_length,
NULL, "Payload (%u byte%s)",
payload_length,
plurality(payload_length, "", "s"));
offset += payload_length;
if (padding_length)
proto_tree_add_bytes_format(tls_heartbeat_tree, hf_ssl_heartbeat_message_padding,
tvb, offset, padding_length,
NULL, "Padding and HMAC (%u byte%s)",
padding_length,
plurality(padding_length, "", "s"));
} else {
proto_item_set_text(tree,
"%s Record Layer: Encrypted Heartbeat",
val_to_str_const(session->version, ssl_version_short_names, "SSL"));
proto_item_set_text(tls_heartbeat_tree,
"Encrypted Heartbeat Message");
}
}
static guint
dissect_ssl3_ocsp_response(tvbuff_t *tvb, proto_tree *tree,
guint32 offset, packet_info *pinfo)
{
guint cert_status_len;
proto_item *ti;
proto_tree *cert_status_tree;
cert_status_len = tvb_get_ntoh24(tvb, offset);
ti = proto_tree_add_item(tree, hf_ssl_handshake_cert_status,
tvb, offset, cert_status_len + 3,
ENC_NA);
cert_status_tree = proto_item_add_subtree(ti, ett_ssl_cert_status);
proto_tree_add_item(cert_status_tree, hf_ssl_handshake_cert_status_len,
tvb, offset, 3, ENC_BIG_ENDIAN);
offset += 3;
if (cert_status_len > 0) {
proto_item *ocsp_resp;
proto_tree *ocsp_resp_tree;
asn1_ctx_t asn1_ctx;
ocsp_resp = proto_tree_add_item(cert_status_tree,
proto_ocsp, tvb, offset,
cert_status_len, ENC_BIG_ENDIAN);
proto_item_set_text(ocsp_resp, "OCSP Response");
ocsp_resp_tree = proto_item_add_subtree(ocsp_resp,
ett_ssl_ocsp_resp);
asn1_ctx_init(&asn1_ctx, ASN1_ENC_BER, TRUE, pinfo);
dissect_ocsp_OCSPResponse(FALSE, tvb, offset, &asn1_ctx,
ocsp_resp_tree, -1);
offset += cert_status_len;
}
return offset;
}
static void
dissect_ssl3_hnd_cert_status(tvbuff_t *tvb, proto_tree *tree,
guint32 offset, packet_info *pinfo)
{
guint8 cert_status_type;
cert_status_type = tvb_get_guint8(tvb, offset);
proto_tree_add_item(tree, hf_ssl_handshake_cert_status_type,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
switch (cert_status_type) {
case SSL_HND_CERT_STATUS_TYPE_OCSP:
dissect_ssl3_ocsp_response(tvb, tree, offset, pinfo);
break;
case SSL_HND_CERT_STATUS_TYPE_OCSP_MULTI:
{
gint32 list_len;
list_len = tvb_get_ntoh24(tvb, offset);
offset += 3;
while (list_len > 0) {
guint32 prev_offset = offset;
offset = dissect_ssl3_ocsp_response(tvb, tree, offset, pinfo);
list_len -= offset - prev_offset;
}
break;
}
}
}
/* based on https://tools.ietf.org/html/draft-agl-tls-nextprotoneg-04 */
static void
dissect_ssl3_hnd_encrypted_exts(tvbuff_t *tvb, proto_tree *tree,
guint32 offset)
{
guint8 selected_protocol_len;
guint8 padding_len;
selected_protocol_len = tvb_get_guint8(tvb, offset);
proto_tree_add_item(tree, hf_ssl_handshake_npn_selected_protocol_len,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_ssl_handshake_npn_selected_protocol,
tvb, offset, selected_protocol_len, ENC_ASCII|ENC_NA);
offset += selected_protocol_len;
padding_len = tvb_get_guint8(tvb, offset);
proto_tree_add_item(tree, hf_ssl_handshake_npn_padding_len,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset++;
proto_tree_add_item(tree, hf_ssl_handshake_npn_padding,
tvb, offset, padding_len, ENC_NA);
}
/*********************************************************************
*
* SSL version 2 Dissectors
*
*********************************************************************/
/* record layer dissector */
static gint
dissect_ssl2_record(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
guint32 offset, SslSession *session,
gboolean *need_desegmentation,
SslDecryptSession *ssl, gboolean first_record_in_frame)
{
guint32 initial_offset;
guint8 byte;
guint8 record_length_length;
guint32 record_length;
gint is_escape;
gint16 padding_length;
guint8 msg_type;
const gchar *msg_type_str;
guint32 available_bytes;
proto_item *ti;
proto_tree *ssl_record_tree;
initial_offset = offset;
record_length = 0;
is_escape = -1;
padding_length = -1;
msg_type_str = NULL;
ssl_record_tree = NULL;
/* pull first byte; if high bit is unset, then record
* length is three bytes due to padding; otherwise
* record length is two bytes
*/
byte = tvb_get_guint8(tvb, offset);
record_length_length = (byte & 0x80) ? 2 : 3;
available_bytes = tvb_reported_length_remaining(tvb, offset);
/*
* Is the record header split across segment boundaries?
*/
if (available_bytes < record_length_length) {
/*
* Yes - can we do reassembly?
*/
if (ssl_desegment && pinfo->can_desegment) {
/*
* Yes. Tell the TCP dissector where the data for this
* message starts in the data it handed us, and that we need
* "some more data." Don't tell it exactly how many bytes we
* need because if/when we ask for even more (after the header)
* that will break reassembly.
*/
pinfo->desegment_offset = offset;
pinfo->desegment_len = DESEGMENT_ONE_MORE_SEGMENT;
*need_desegmentation = TRUE;
return offset;
} else {
/* Not enough bytes available. Stop here. */
return offset + available_bytes;
}
}
/* parse out the record length */
switch (record_length_length) {
case 2: /* two-byte record length */
record_length = (byte & 0x7f) << 8;
byte = tvb_get_guint8(tvb, offset + 1);
record_length += byte;
break;
case 3: /* three-byte record length */
is_escape = (byte & 0x40) ? TRUE : FALSE;
record_length = (byte & 0x3f) << 8;
byte = tvb_get_guint8(tvb, offset + 1);
record_length += byte;
byte = tvb_get_guint8(tvb, offset + 2);
padding_length = byte;
}
/*
* Is the record split across segment boundaries?
*/
if (available_bytes < (record_length_length + record_length)) {
/*
* Yes - Can we do reassembly?
*/
if (ssl_desegment && pinfo->can_desegment) {
/*
* Yes. Tell the TCP dissector where the data for this
* message starts in the data it handed us, and how many
* more bytes we need, and return.
*/
pinfo->desegment_offset = offset;
pinfo->desegment_len = (record_length_length + record_length)
- available_bytes;
*need_desegmentation = TRUE;
return offset;
} else {
/* Not enough bytes available. Stop here. */
return offset + available_bytes;
}
}
offset += record_length_length;
/* on second and subsequent records per frame
* add a delimiter on info column
*/
if (!first_record_in_frame) {
col_append_str(pinfo->cinfo, COL_INFO, ", ");
}
/* add the record layer subtree header */
ti = proto_tree_add_item(tree, hf_ssl2_record, tvb, initial_offset,
record_length_length + record_length, ENC_NA);
ssl_record_tree = proto_item_add_subtree(ti, ett_ssl_record);
/* pull the msg_type so we can bail if it's unknown */
msg_type = tvb_get_guint8(tvb, initial_offset + record_length_length);
/* if we get a server_hello or later handshake in v2, then set
* this to sslv2
*/
if (session->version == SSL_VER_UNKNOWN)
{
if (ssl_looks_like_valid_pct_handshake(tvb,
(initial_offset +
record_length_length),
record_length)) {
session->version = PCT_VERSION;
}
else if (msg_type >= 2 && msg_type <= 8)
{
session->version = SSLV2_VERSION;
}
}
/* if we get here, but don't have a version set for the
* conversation, then set a version for just this frame
* (e.g., on a client hello)
*/
col_set_str(pinfo->cinfo, COL_PROTOCOL,
(session->version == PCT_VERSION) ? "PCT" : "SSLv2");
/* see if the msg_type is valid; if not the payload is
* probably encrypted, so note that fact and bail
*/
msg_type_str = try_val_to_str(msg_type,
(session->version == PCT_VERSION)
? pct_msg_types : ssl_20_msg_types);
if (!msg_type_str
|| ((session->version != PCT_VERSION) &&
!ssl_looks_like_valid_v2_handshake(tvb, initial_offset
+ record_length_length,
record_length))
|| ((session->version == PCT_VERSION) &&
!ssl_looks_like_valid_pct_handshake(tvb, initial_offset
+ record_length_length,
record_length)))
{
if (ssl_record_tree)
{
proto_item_set_text(ssl_record_tree, "%s Record Layer: %s",
(session->version == PCT_VERSION)
? "PCT" : "SSLv2",
"Encrypted Data");
/* Unlike SSLv3, the SSLv2 record layer does not have a
* version field. To make it possible to filter on record
* layer version we create a generated field with ssl
* record layer version 0x0002
*/
ti = proto_tree_add_uint(ssl_record_tree,
hf_ssl_record_version, tvb,
initial_offset, 0, 0x0002);
PROTO_ITEM_SET_GENERATED(ti);
}
col_append_str(pinfo->cinfo, COL_INFO, "Encrypted Data");
return initial_offset + record_length_length + record_length;
}
else
{
col_append_str(pinfo->cinfo, COL_INFO, msg_type_str);
if (ssl_record_tree)
{
proto_item_set_text(ssl_record_tree, "%s Record Layer: %s",
(session->version == PCT_VERSION)
? "PCT" : "SSLv2",
msg_type_str);
}
}
/* We have a valid message type, so move forward, filling in the
* tree by adding the length, is_escape boolean and padding_length,
* if present in the original packet
*/
if (ssl_record_tree)
{
/* Unlike SSLv3, the SSLv2 record layer does not have a
* version field. To make it possible to filter on record
* layer version we create a generated field with ssl
* record layer version 0x0002
*/
ti = proto_tree_add_uint(ssl_record_tree,
hf_ssl_record_version, tvb,
initial_offset, 0, 0x0002);
PROTO_ITEM_SET_GENERATED(ti);
/* add the record length */
tvb_ensure_bytes_exist(tvb, offset, record_length_length);
proto_tree_add_uint (ssl_record_tree,
hf_ssl_record_length, tvb,
initial_offset, record_length_length,
record_length);
}
if (ssl_record_tree && is_escape != -1)
{
proto_tree_add_boolean(ssl_record_tree,
hf_ssl2_record_is_escape, tvb,
initial_offset, 1, is_escape);
}
if (ssl_record_tree && padding_length != -1)
{
proto_tree_add_uint(ssl_record_tree,
hf_ssl2_record_padding_length, tvb,
initial_offset + 2, 1, padding_length);
}
/*
* dissect the record data
*/
/* jump forward to the start of the record data */
offset = initial_offset + record_length_length;
/* add the message type */
if (ssl_record_tree)
{
proto_tree_add_item(ssl_record_tree,
(session->version == PCT_VERSION)
? hf_pct_msg_type : hf_ssl2_msg_type,
tvb, offset, 1, ENC_BIG_ENDIAN);
}
offset += 1; /* move past msg_type byte */
if (session->version != PCT_VERSION)
{
/* dissect the message (only handle client hello right now) */
switch (msg_type) {
case SSL2_HND_CLIENT_HELLO:
dissect_ssl2_hnd_client_hello(tvb, pinfo, ssl_record_tree, offset, ssl);
break;
case SSL2_HND_CLIENT_MASTER_KEY:
dissect_ssl2_hnd_client_master_key(tvb, ssl_record_tree, offset);
break;
case SSL2_HND_SERVER_HELLO:
dissect_ssl2_hnd_server_hello(tvb, ssl_record_tree, offset, pinfo);
break;
case SSL2_HND_ERROR:
case SSL2_HND_CLIENT_FINISHED:
case SSL2_HND_SERVER_VERIFY:
case SSL2_HND_SERVER_FINISHED:
case SSL2_HND_REQUEST_CERTIFICATE:
case SSL2_HND_CLIENT_CERTIFICATE:
/* unimplemented */
break;
default: /* unknown */
break;
}
}
else
{
/* dissect the message */
switch (msg_type) {
case PCT_MSG_CLIENT_HELLO:
dissect_pct_msg_client_hello(tvb, pinfo, ssl_record_tree, offset);
break;
case PCT_MSG_SERVER_HELLO:
dissect_pct_msg_server_hello(tvb, ssl_record_tree, offset, pinfo);
break;
case PCT_MSG_CLIENT_MASTER_KEY:
dissect_pct_msg_client_master_key(tvb, ssl_record_tree, offset);
break;
case PCT_MSG_SERVER_VERIFY:
dissect_pct_msg_server_verify(tvb, ssl_record_tree, offset);
break;
case PCT_MSG_ERROR:
dissect_pct_msg_error(tvb, ssl_record_tree, offset);
break;
default: /* unknown */
break;
}
}
return (initial_offset + record_length_length + record_length);
}
static void
dissect_ssl2_hnd_client_hello(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset,
SslDecryptSession *ssl)
{
/* struct {
* uint8 msg_type;
* Version version;
* uint16 cipher_spec_length;
* uint16 session_id_length;
* uint16 challenge_length;
* V2CipherSpec cipher_specs[V2ClientHello.cipher_spec_length];
* opaque session_id[V2ClientHello.session_id_length];
* Random challenge;
* } V2ClientHello;
*
* Note: when we get here, offset's already pointing at Version
*
*/
guint16 version;
guint16 cipher_spec_length;
guint16 session_id_length;
guint16 challenge_length;
proto_item *ti;
proto_tree *cs_tree;
cs_tree=0;
version = tvb_get_ntohs(tvb, offset);
if (!ssl_is_valid_ssl_version(version))
{
/* invalid version; probably encrypted data */
return;
}
if (ssl) {
ssl_set_server(&ssl->session, &pinfo->dst, pinfo->ptype, pinfo->destport);
}
/* show the version */
proto_tree_add_item(tree, dissect_ssl3_hf.hf.hs_client_version, tvb,
offset, 2, ENC_BIG_ENDIAN);
offset += 2;
cipher_spec_length = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl2_handshake_cipher_spec_len,
tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
session_id_length = tvb_get_ntohs(tvb, offset);
ti = proto_tree_add_item(tree, hf_ssl2_handshake_session_id_len,
tvb, offset, 2, ENC_BIG_ENDIAN);
if (session_id_length > SSLV2_MAX_SESSION_ID_LENGTH_IN_BYTES) {
expert_add_info_format(pinfo, ti, &ei_ssl2_handshake_session_id_len_error,
"Session ID length (%u) must be less than %u.",
session_id_length, SSLV2_MAX_SESSION_ID_LENGTH_IN_BYTES);
return;
}
offset += 2;
challenge_length = tvb_get_ntohs(tvb, offset);
if (tree)
proto_tree_add_item(tree, hf_ssl2_handshake_challenge_len,
tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
if (tree)
{
/* tell the user how many cipher specs they've won */
ti = proto_tree_add_none_format(tree, dissect_ssl3_hf.hf.hs_cipher_suites,
tvb, offset, cipher_spec_length,
"Cipher Specs (%u specs)",
cipher_spec_length/3);
/* make this a subtree and expand the actual specs below */
cs_tree = proto_item_add_subtree(ti, dissect_ssl3_hf.ett.cipher_suites);
if (!cs_tree)
{
cs_tree = tree; /* failsafe */
}
}
/* iterate through the cipher specs, showing them */
while (cipher_spec_length > 0)
{
if (cs_tree)
proto_tree_add_item(cs_tree, hf_ssl2_handshake_cipher_spec,
tvb, offset, 3, ENC_BIG_ENDIAN);
offset += 3; /* length of one cipher spec */
cipher_spec_length -= 3;
}
/* if there's a session id, show it */
if (session_id_length > 0)
{
proto_tree_add_bytes_format(tree,
dissect_ssl3_hf.hf.hs_session_id,
tvb, offset, session_id_length,
NULL, "Session ID (%u byte%s)",
session_id_length,
plurality(session_id_length, "", "s"));
/* PAOLO: get session id and reset session state for key [re]negotiation */
if (ssl)
{
tvb_memcpy(tvb,ssl->session_id.data, offset, session_id_length);
ssl->session_id.data_len = session_id_length;
ssl->state &= ~(SSL_HAVE_SESSION_KEY|SSL_MASTER_SECRET|SSL_PRE_MASTER_SECRET|
SSL_CIPHER|SSL_SERVER_RANDOM);
}
offset += session_id_length;
}
/* if there's a challenge, show it */
if (challenge_length > 0)
{
proto_tree_add_item(tree, hf_ssl2_handshake_challenge,
tvb, offset, challenge_length, ENC_NA);
if (ssl)
{
/* PAOLO: get client random data; we get at most 32 bytes from
challenge */
gint max;
max = challenge_length > 32? 32: challenge_length;
ssl_debug_printf("client random len: %d padded to 32\n", challenge_length);
/* client random is padded with zero and 'right' aligned */
memset(ssl->client_random.data, 0, 32 - max);
tvb_memcpy(tvb, &ssl->client_random.data[32 - max], offset, max);
ssl->client_random.data_len = 32;
ssl->state |= SSL_CLIENT_RANDOM;
ssl_debug_printf("dissect_ssl2_hnd_client_hello found CLIENT RANDOM -> state 0x%02X\n", ssl->state);
}
}
}
static void
dissect_pct_msg_client_hello(tvbuff_t *tvb, packet_info *pinfo,
proto_tree *tree, guint32 offset)
{
guint16 CH_CLIENT_VERSION, CH_OFFSET, CH_CIPHER_SPECS_LENGTH, CH_HASH_SPECS_LENGTH, CH_CERT_SPECS_LENGTH, CH_EXCH_SPECS_LENGTH, CH_KEY_ARG_LENGTH;
proto_item *CH_CIPHER_SPECS_ti, *CH_HASH_SPECS_ti, *CH_CERT_SPECS_ti, *CH_EXCH_SPECS_ti, *ti;
proto_tree *CH_CIPHER_SPECS_tree, *CH_HASH_SPECS_tree, *CH_CERT_SPECS_tree, *CH_EXCH_SPECS_tree;
gint i;
CH_CLIENT_VERSION = tvb_get_ntohs(tvb, offset);
ti = proto_tree_add_item(tree, hf_ssl_pct_client_version, tvb, offset, 2, ENC_BIG_ENDIAN);
if (CH_CLIENT_VERSION != PCT_VERSION_1)
expert_add_info_format(pinfo, ti, &ei_ssl_pct_client_version, "Client Version, should be %x in PCT version 1", PCT_VERSION_1);
offset += 2;
proto_tree_add_item(tree, hf_ssl_pct_pad, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_ssl_pct_client_session_id_data, tvb, offset, 32, ENC_NA);
offset += 32;
proto_tree_add_item(tree, hf_ssl_pct_challenge_data, tvb, offset, 32, ENC_NA);
offset += 32;
CH_OFFSET = tvb_get_ntohs(tvb, offset);
ti = proto_tree_add_item(tree, hf_ssl_pct_ch_offset, tvb, offset, 2, ENC_BIG_ENDIAN);
if (CH_OFFSET != PCT_CH_OFFSET_V1)
expert_add_info_format(pinfo, ti, &ei_ssl_pct_ch_offset, "should be %d in PCT version 1", PCT_CH_OFFSET_V1);
offset += 2;
CH_CIPHER_SPECS_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_cipher_specs_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CH_HASH_SPECS_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_hash_specs_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CH_CERT_SPECS_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_cert_specs_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CH_EXCH_SPECS_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_exch_specs_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CH_KEY_ARG_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_iv_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
if (CH_CIPHER_SPECS_LENGTH) {
CH_CIPHER_SPECS_ti = proto_tree_add_item(tree, hf_pct_handshake_cipher_spec, tvb, offset, CH_CIPHER_SPECS_LENGTH, ENC_NA);
CH_CIPHER_SPECS_tree = proto_item_add_subtree(CH_CIPHER_SPECS_ti, ett_pct_cipher_suites);
for(i=0; i<(CH_CIPHER_SPECS_LENGTH/4); i++) {
proto_tree_add_item(CH_CIPHER_SPECS_tree, hf_pct_handshake_cipher, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(CH_CIPHER_SPECS_tree, hf_ssl_pct_encryption_key_length, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_uint(CH_CIPHER_SPECS_tree, hf_ssl_pct_mac_key_length_in_bits, tvb, offset, 1, tvb_get_guint8(tvb, offset) + 64);
offset += 1;
}
}
if (CH_HASH_SPECS_LENGTH) {
CH_HASH_SPECS_ti = proto_tree_add_item(tree, hf_pct_handshake_hash_spec, tvb, offset, CH_HASH_SPECS_LENGTH, ENC_NA);
CH_HASH_SPECS_tree = proto_item_add_subtree(CH_HASH_SPECS_ti, ett_pct_hash_suites);
for(i=0; i<(CH_HASH_SPECS_LENGTH/2); i++) {
proto_tree_add_item(CH_HASH_SPECS_tree, hf_pct_handshake_hash, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
}
if (CH_CERT_SPECS_LENGTH) {
CH_CERT_SPECS_ti = proto_tree_add_item(tree, hf_pct_handshake_cert_spec, tvb, offset, CH_CERT_SPECS_LENGTH, ENC_NA);
CH_CERT_SPECS_tree = proto_item_add_subtree(CH_CERT_SPECS_ti, ett_pct_cert_suites);
for(i=0; i< (CH_CERT_SPECS_LENGTH/2); i++) {
proto_tree_add_item(CH_CERT_SPECS_tree, hf_pct_handshake_cert, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
}
if (CH_EXCH_SPECS_LENGTH) {
CH_EXCH_SPECS_ti = proto_tree_add_item(tree, hf_pct_handshake_exch_spec, tvb, offset, CH_EXCH_SPECS_LENGTH, ENC_NA);
CH_EXCH_SPECS_tree = proto_item_add_subtree(CH_EXCH_SPECS_ti, ett_pct_exch_suites);
for(i=0; i<(CH_EXCH_SPECS_LENGTH/2); i++) {
proto_tree_add_item(CH_EXCH_SPECS_tree, hf_pct_handshake_exch, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
}
}
if (CH_KEY_ARG_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_iv_data, tvb, offset, CH_KEY_ARG_LENGTH, ENC_NA);
}
}
static void
dissect_pct_msg_server_hello(tvbuff_t *tvb, proto_tree *tree, guint32 offset, packet_info *pinfo)
{
/* structure:
char SH_MSG_SERVER_HELLO
char SH_PAD
char SH_SERVER_VERSION_MSB
char SH_SERVER_VERSION_LSB
char SH_RESTART_SESSION_OK
char SH_CLIENT_AUTH_REQ
char SH_CIPHER_SPECS_DATA[4]
char SH_HASH_SPECS_DATA[2]
char SH_CERT_SPECS_DATA[2]
char SH_EXCH_SPECS_DATA[2]
char SH_CONNECTION_ID_DATA[32]
char SH_CERTIFICATE_LENGTH_MSB
char SH_CERTIFICATE_LENGTH_LSB
char SH_CLIENT_CERT_SPECS_LENGTH_MSB
char SH_CLIENT_CERT_SPECS_LENGTH_LSB
char SH_CLIENT_SIG_SPECS_LENGTH_MSB
char SH_CLIENT_SIG_SPECS_LENGTH_LSB
char SH_RESPONSE_LENGTH_MSB
char SH_RESPONSE_LENGTH_LSB
char SH_CERTIFICATE_DATA[MSB<<8|LSB]
char SH_CLIENT_CERT_SPECS_DATA[MSB<<8|LSB]
char SH_CLIENT_SIG_SPECS_DATA[MSB<<8|LSB]
char SH_RESPONSE_DATA[MSB<<8|LSB]
*/
guint16 SH_SERVER_VERSION, SH_CERT_LENGTH, SH_CERT_SPECS_LENGTH, SH_CLIENT_SIG_LENGTH, SH_RESPONSE_LENGTH;
proto_item* ti;
asn1_ctx_t asn1_ctx;
asn1_ctx_init(&asn1_ctx, ASN1_ENC_BER, TRUE, pinfo);
proto_tree_add_item(tree, hf_ssl_pct_pad, tvb, offset, 1, ENC_NA);
offset += 1;
SH_SERVER_VERSION = tvb_get_ntohs(tvb, offset);
ti = proto_tree_add_item(tree, hf_ssl_pct_server_version, tvb, offset, 2, ENC_BIG_ENDIAN);
if (SH_SERVER_VERSION != PCT_VERSION_1)
expert_add_info_format(pinfo, ti, &ei_ssl_pct_server_version, "Server Version, should be %x in PCT version 1", PCT_VERSION_1);
offset += 2;
proto_tree_add_item(tree, hf_ssl_pct_sh_restart_session_ok_flag, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_ssl_pct_sh_client_auth_req_flag, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_pct_handshake_cipher, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(tree, hf_ssl_pct_encryption_key_length, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_uint(tree, hf_ssl_pct_mac_key_length_in_bits, tvb, offset, 1, tvb_get_guint8(tvb, offset) + 64);
offset += 1;
proto_tree_add_item(tree, hf_pct_handshake_hash, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(tree, hf_pct_handshake_cert, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(tree, hf_pct_handshake_exch, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(tree, hf_ssl_pct_connection_id_data, tvb, offset, 32, ENC_NA);
offset += 32;
SH_CERT_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_server_certificate_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
SH_CERT_SPECS_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_client_cert_specs_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
SH_CLIENT_SIG_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_client_sig_specs_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
SH_RESPONSE_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_response_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
if (SH_CERT_LENGTH) {
dissect_x509af_Certificate(FALSE, tvb, offset, &asn1_ctx, tree, hf_pct_handshake_server_cert);
offset += SH_CERT_LENGTH;
}
if (SH_CERT_SPECS_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_client_cert_specs, tvb, offset, SH_CERT_SPECS_LENGTH, ENC_NA);
offset += SH_CERT_SPECS_LENGTH;
}
if (SH_CLIENT_SIG_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_client_signature, tvb, offset, SH_CLIENT_SIG_LENGTH, ENC_NA);
offset += SH_CLIENT_SIG_LENGTH;
}
if (SH_RESPONSE_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_server_response, tvb, offset, SH_RESPONSE_LENGTH, ENC_NA);
}
}
static void
dissect_pct_msg_client_master_key(tvbuff_t *tvb, proto_tree *tree, guint32 offset)
{
guint16 CMK_CLEAR_KEY_LENGTH, CMK_ENCRYPTED_KEY_LENGTH, CMK_KEY_ARG_LENGTH, CMK_VERIFY_PRELUDE, CMK_CLIENT_CERT_LENGTH, CMK_RESPONSE_LENGTH;
proto_tree_add_item(tree, hf_ssl_pct_pad, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_pct_handshake_cert, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
proto_tree_add_item(tree, hf_pct_handshake_sig, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CMK_CLEAR_KEY_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_clear_key_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CMK_ENCRYPTED_KEY_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_encrypted_key_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CMK_KEY_ARG_LENGTH= tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_iv_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CMK_VERIFY_PRELUDE = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_verify_prelude_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CMK_CLIENT_CERT_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_client_cert_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
CMK_RESPONSE_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_response_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
if (CMK_CLEAR_KEY_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_clear_key_data, tvb, offset, CMK_CLEAR_KEY_LENGTH, ENC_NA);
offset += CMK_CLEAR_KEY_LENGTH;
}
if (CMK_ENCRYPTED_KEY_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_encrypted_key_data, tvb, offset, CMK_ENCRYPTED_KEY_LENGTH, ENC_NA);
offset += CMK_ENCRYPTED_KEY_LENGTH;
}
if (CMK_KEY_ARG_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_iv_data, tvb, offset, CMK_KEY_ARG_LENGTH, ENC_NA);
offset += CMK_KEY_ARG_LENGTH;
}
if (CMK_VERIFY_PRELUDE) {
proto_tree_add_item(tree, hf_ssl_pct_verify_prelude_data, tvb, offset, CMK_VERIFY_PRELUDE, ENC_NA);
offset += CMK_VERIFY_PRELUDE;
}
if (CMK_CLIENT_CERT_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_client_certificate_data, tvb, offset, CMK_CLIENT_CERT_LENGTH, ENC_NA);
offset += CMK_CLIENT_CERT_LENGTH;
}
if (CMK_RESPONSE_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_response_data, tvb, offset, CMK_RESPONSE_LENGTH, ENC_NA);
}
}
static void
dissect_pct_msg_server_verify(tvbuff_t *tvb,
proto_tree *tree, guint32 offset)
{
guint16 SV_RESPONSE_LENGTH;
proto_tree_add_item(tree, hf_ssl_pct_pad, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_ssl_pct_server_session_id_data, tvb, offset, 32, ENC_NA);
offset += 32;
SV_RESPONSE_LENGTH = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_server_response_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
if (SV_RESPONSE_LENGTH) {
proto_tree_add_item(tree, hf_ssl_pct_server_response, tvb, offset, SV_RESPONSE_LENGTH, ENC_NA);
}
}
static void
dissect_pct_msg_error(tvbuff_t *tvb,
proto_tree *tree, guint32 offset)
{
guint16 ERROR_CODE, INFO_LEN;
ERROR_CODE = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_pct_msg_error_type, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
INFO_LEN = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl_pct_error_information_length, tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
if (ERROR_CODE == PCT_ERR_SPECS_MISMATCH && INFO_LEN == 6)
{
proto_tree_add_item(tree, hf_ssl_pct_specs_mismatch_cipher, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_ssl_pct_specs_mismatch_hash, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_ssl_pct_specs_mismatch_cert, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_ssl_pct_specs_mismatch_exch, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_ssl_pct_specs_mismatch_client_cert, tvb, offset, 1, ENC_NA);
offset += 1;
proto_tree_add_item(tree, hf_ssl_pct_specs_mismatch_client_sig, tvb, offset, 1, ENC_NA);
}
else if (INFO_LEN) {
proto_tree_add_item(tree, hf_ssl_pct_error_information_data, tvb, offset, INFO_LEN, ENC_NA);
}
}
static void
dissect_ssl2_hnd_client_master_key(tvbuff_t *tvb,
proto_tree *tree, guint32 offset)
{
/* struct {
* uint8 msg_type;
* V2Cipherspec cipher;
* uint16 clear_key_length;
* uint16 encrypted_key_length;
* uint16 key_arg_length;
* opaque clear_key_data[V2ClientMasterKey.clear_key_length];
* opaque encrypted_key_data[V2ClientMasterKey.encrypted_key_length];
* opaque key_arg_data[V2ClientMasterKey.key_arg_length];
* } V2ClientMasterKey;
*
* Note: when we get here, offset's already pointing at cipher
*/
guint16 clear_key_length;
guint16 encrypted_key_length;
guint16 key_arg_length;
/* at this point, everything we do involves the tree,
* so quit now if we don't have one ;-)
*/
if (!tree)
{
return;
}
/* show the selected cipher */
proto_tree_add_item(tree, hf_ssl2_handshake_cipher_spec,
tvb, offset, 3, ENC_BIG_ENDIAN);
offset += 3;
/* get the fixed fields */
clear_key_length = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl2_handshake_clear_key_len,
tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
encrypted_key_length = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl2_handshake_enc_key_len,
tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
key_arg_length = tvb_get_ntohs(tvb, offset);
proto_tree_add_item(tree, hf_ssl2_handshake_key_arg_len,
tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* show the variable length fields */
if (clear_key_length > 0)
{
proto_tree_add_item(tree, hf_ssl2_handshake_clear_key,
tvb, offset, clear_key_length, ENC_NA);
offset += clear_key_length;
}
if (encrypted_key_length > 0)
{
proto_tree_add_item(tree, hf_ssl2_handshake_enc_key,
tvb, offset, encrypted_key_length, ENC_NA);
offset += encrypted_key_length;
}
if (key_arg_length > 0)
{
proto_tree_add_item(tree, hf_ssl2_handshake_key_arg,
tvb, offset, key_arg_length, ENC_NA);
}
}
static void
dissect_ssl2_hnd_server_hello(tvbuff_t *tvb,
proto_tree *tree, guint32 offset, packet_info *pinfo)
{
/* struct {
* uint8 msg_type;
* uint8 session_id_hit;
* uint8 certificate_type;
* uint16 server_version;
* uint16 certificate_length;
* uint16 cipher_specs_length;
* uint16 connection_id_length;
* opaque certificate_data[V2ServerHello.certificate_length];
* opaque cipher_specs_data[V2ServerHello.cipher_specs_length];
* opaque connection_id_data[V2ServerHello.connection_id_length];
* } V2ServerHello;
*
* Note: when we get here, offset's already pointing at session_id_hit
*/
guint16 certificate_length;
guint16 cipher_spec_length;
guint16 connection_id_length;
guint16 version;
proto_item *ti;
proto_tree *subtree;
asn1_ctx_t asn1_ctx;
asn1_ctx_init(&asn1_ctx, ASN1_ENC_BER, TRUE, pinfo);
/* everything we do only makes sense with a tree, so
* quit now if we don't have one
*/
if (!tree)
{
return;
}
version = tvb_get_ntohs(tvb, offset + 2);
if (!ssl_is_valid_ssl_version(version))
{
/* invalid version; probably encrypted data */
return;
}
/* is there a hit? */
proto_tree_add_item(tree, hf_ssl2_handshake_session_id_hit,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* what type of certificate is this? */
proto_tree_add_item(tree, hf_ssl2_handshake_cert_type,
tvb, offset, 1, ENC_BIG_ENDIAN);
offset += 1;
/* now the server version */
proto_tree_add_item(tree, dissect_ssl3_hf.hf.hs_server_version,
tvb, offset, 2, ENC_BIG_ENDIAN);
offset += 2;
/* get the fixed fields */
certificate_length = tvb_get_ntohs(tvb, offset);
proto_tree_add_uint(tree, dissect_ssl3_hf.hf.hs_certificate_len,
tvb, offset, 2, certificate_length);
offset += 2;
cipher_spec_length = tvb_get_ntohs(tvb, offset);
proto_tree_add_uint(tree, hf_ssl2_handshake_cipher_spec_len,
tvb, offset, 2, cipher_spec_length);
offset += 2;
connection_id_length = tvb_get_ntohs(tvb, offset);
proto_tree_add_uint(tree, hf_ssl2_handshake_connection_id_len,
tvb, offset, 2, connection_id_length);
offset += 2;
/* now the variable length fields */
if (certificate_length > 0)
{
(void)dissect_x509af_Certificate(FALSE, tvb, offset, &asn1_ctx, tree, dissect_ssl3_hf.hf.hs_certificate);
offset += certificate_length;
}
if (cipher_spec_length > 0)
{
/* provide a collapsing node for the cipher specs */
ti = proto_tree_add_none_format(tree,
dissect_ssl3_hf.hf.hs_cipher_suites,
tvb, offset, cipher_spec_length,
"Cipher Specs (%u spec%s)",
cipher_spec_length/3,
plurality(cipher_spec_length/3, "", "s"));
subtree = proto_item_add_subtree(ti, dissect_ssl3_hf.ett.cipher_suites);
if (!subtree)
{
subtree = tree;
}
/* iterate through the cipher specs */
while (cipher_spec_length > 0)
{
proto_tree_add_item(subtree, hf_ssl2_handshake_cipher_spec,
tvb, offset, 3, ENC_BIG_ENDIAN);
offset += 3;
cipher_spec_length -= 3;
}
}
if (connection_id_length > 0)
{
proto_tree_add_item(tree, hf_ssl2_handshake_connection_id,
tvb, offset, connection_id_length, ENC_NA);
}
}
void ssl_set_master_secret(guint32 frame_num, address *addr_srv, address *addr_cli,
port_type ptype, guint32 port_srv, guint32 port_cli,
guint32 version, gint cipher, const guchar *_master_secret,
const guchar *_client_random, const guchar *_server_random,
guint32 client_seq, guint32 server_seq)
{
conversation_t *conversation;
SslDecryptSession *ssl;
guint iv_len;
ssl_debug_printf("\nssl_set_master_secret enter frame #%u\n", frame_num);
conversation = find_conversation(frame_num, addr_srv, addr_cli, ptype, port_srv, port_cli, 0);
if (!conversation) {
/* create a new conversation */
conversation = conversation_new(frame_num, addr_srv, addr_cli, ptype, port_srv, port_cli, 0);
ssl_debug_printf(" new conversation = %p created\n", (void *)conversation);
}
ssl = ssl_get_session(conversation, ssl_handle);
ssl_debug_printf(" conversation = %p, ssl_session = %p\n", (void *)conversation, (void *)ssl);
ssl_set_server(&ssl->session, addr_srv, ptype, port_srv);
/* version */
if ((ssl->session.version==SSL_VER_UNKNOWN) && (version!=SSL_VER_UNKNOWN)) {
switch (version) {
case SSLV3_VERSION:
case TLSV1_VERSION:
case TLSV1DOT1_VERSION:
case TLSV1DOT2_VERSION:
ssl->session.version = version;
ssl->state |= SSL_VERSION;
ssl_debug_printf("%s set version 0x%04X -> state 0x%02X\n", G_STRFUNC, ssl->session.version, ssl->state);
break;
default:
/* API change: version number is no longer an internal value
* (SSL_VER_*) but the ProtocolVersion from wire (*_VERSION) */
ssl_debug_printf("%s WARNING must pass ProtocolVersion, not 0x%04x!\n", G_STRFUNC, version);
break;
}
}
/* cipher */
if (cipher > 0) {
ssl->session.cipher = cipher;
if (!(ssl->cipher_suite = ssl_find_cipher(ssl->session.cipher))) {
ssl->state &= ~SSL_CIPHER;
ssl_debug_printf("ssl_set_master_secret can't find cipher suite 0x%X\n", ssl->session.cipher);
} else {
ssl->state |= SSL_CIPHER;
ssl_debug_printf("ssl_set_master_secret set CIPHER 0x%04X -> state 0x%02X\n", ssl->session.cipher, ssl->state);
}
}
/* client random */
if (_client_random) {
ssl_data_set(&ssl->client_random, _client_random, 32);
ssl->state |= SSL_CLIENT_RANDOM;
ssl_debug_printf("ssl_set_master_secret set CLIENT RANDOM -> state 0x%02X\n", ssl->state);
}
/* server random */
if (_server_random) {
ssl_data_set(&ssl->server_random, _server_random, 32);
ssl->state |= SSL_SERVER_RANDOM;
ssl_debug_printf("ssl_set_master_secret set SERVER RANDOM -> state 0x%02X\n", ssl->state);
}
/* master secret */
if (_master_secret) {
ssl_data_set(&ssl->master_secret, _master_secret, 48);
ssl->state |= SSL_MASTER_SECRET;
ssl_debug_printf("ssl_set_master_secret set MASTER SECRET -> state 0x%02X\n", ssl->state);
}
ssl_debug_printf("ssl_set_master_secret trying to generate keys\n");
if (ssl_generate_keyring_material(ssl)<0) {
ssl_debug_printf("ssl_set_master_secret can't generate keyring material\n");
return;
}
/* change ciphers immediately */
ssl_change_cipher(ssl, TRUE);
ssl_change_cipher(ssl, FALSE);
/* update seq numbers if available */
if (ssl->client && (client_seq != (guint32)-1)) {
ssl->client->seq = client_seq;
ssl_debug_printf("ssl_set_master_secret client->seq updated to %u\n", ssl->client->seq);
}
if (ssl->server && (server_seq != (guint32)-1)) {
ssl->server->seq = server_seq;
ssl_debug_printf("ssl_set_master_secret server->seq updated to %u\n", ssl->server->seq);
}
/* update IV from last data */
iv_len = (ssl->cipher_suite->block>1) ? ssl->cipher_suite->block : 8;
if (ssl->client && ((ssl->client->seq > 0) || (ssl->client_data_for_iv.data_len > iv_len))) {
ssl_cipher_setiv(&ssl->client->evp, ssl->client_data_for_iv.data + ssl->client_data_for_iv.data_len - iv_len, iv_len);
ssl_print_data("ssl_set_master_secret client IV updated",ssl->client_data_for_iv.data + ssl->client_data_for_iv.data_len - iv_len, iv_len);
}
if (ssl->server && ((ssl->server->seq > 0) || (ssl->server_data_for_iv.data_len > iv_len))) {
ssl_cipher_setiv(&ssl->server->evp, ssl->server_data_for_iv.data + ssl->server_data_for_iv.data_len - iv_len, iv_len);
ssl_print_data("ssl_set_master_secret server IV updated",ssl->server_data_for_iv.data + ssl->server_data_for_iv.data_len - iv_len, iv_len);
}
}
/*********************************************************************
*
* Support Functions
*
*********************************************************************/
static gint
ssl_is_valid_ssl_version(const guint16 version)
{
const gchar *version_str;
version_str = try_val_to_str(version, ssl_versions);
return version_str != NULL;
}
static gint
ssl_is_v2_client_hello(tvbuff_t *tvb, const guint32 offset)
{
guint8 byte;
byte = tvb_get_guint8(tvb, offset);
if (byte != 0x80) /* v2 client hello should start this way */
{
return 0;
}
byte = tvb_get_guint8(tvb, offset+2);
if (byte != 0x01) /* v2 client hello msg type */
{
return 0;
}
/* 1 in 2^16 of being right; improve later if necessary */
return 1;
}
/* this applies a heuristic to determine whether
* or not the data beginning at offset looks like a
* valid sslv2 record. this isn't really possible,
* but we'll try to do a reasonable job anyway.
*/
static gint
ssl_looks_like_sslv2(tvbuff_t *tvb, const guint32 offset)
{
/* here's the current approach:
*
* we only try to catch unencrypted handshake messages, so we can
* assume that there is not padding. This means that the
* first byte must be >= 0x80 and there must be a valid sslv2
* msg_type in the third byte
*/
/* get the first byte; must have high bit set */
guint8 byte;
byte = tvb_get_guint8(tvb, offset);
if (byte < 0x80)
{
return 0;
}
/* get the supposed msg_type byte; since we only care about
* unencrypted handshake messages (we can't tell the type for
* encrypted messages), we just check against that list
*/
byte = tvb_get_guint8(tvb, offset + 2);
switch (byte) {
case SSL2_HND_ERROR:
case SSL2_HND_CLIENT_HELLO:
case SSL2_HND_CLIENT_MASTER_KEY:
case SSL2_HND_SERVER_HELLO:
case PCT_MSG_CLIENT_MASTER_KEY:
case PCT_MSG_ERROR:
return 1;
}
return 0;
}
/* this applies a heuristic to determine whether
* or not the data beginning at offset looks like a
* valid sslv3 record. this is somewhat more reliable
* than sslv2 due to the structure of the v3 protocol
*/
static gint
ssl_looks_like_sslv3(tvbuff_t *tvb, const guint32 offset)
{
/* have to have a valid content type followed by a valid
* protocol version
*/
guint8 byte;
guint16 version;
/* see if the first byte is a valid content type */
byte = tvb_get_guint8(tvb, offset);
if (!ssl_is_valid_content_type(byte))
{
return 0;
}
/* now check to see if the version byte appears valid */
version = tvb_get_ntohs(tvb, offset + 1);
switch (version) {
case SSLV3_VERSION:
case TLSV1_VERSION:
case TLSV1DOT1_VERSION:
case TLSV1DOT2_VERSION:
return 1;
}
return 0;
}
/* applies a heuristic to determine whether
* or not the data beginning at offset looks
* like a valid, unencrypted v2 handshake message.
* since it isn't possible to completely tell random
* data apart from a valid message without state,
* we try to help the odds.
*/
static gint
ssl_looks_like_valid_v2_handshake(tvbuff_t *tvb, const guint32 offset,
const guint32 record_length)
{
/* first byte should be a msg_type.
*
* - we know we only see client_hello, client_master_key,
* and server_hello in the clear, so check to see if
* msg_type is one of those (this gives us a 3 in 2^8
* chance of saying yes with random payload)
*
* - for those three types that we know about, do some
* further validation to reduce the chance of an error
*/
guint8 msg_type;
guint16 version;
guint32 sum;
gint ret = 0;
/* fetch the msg_type */
msg_type = tvb_get_guint8(tvb, offset);
switch (msg_type) {
case SSL2_HND_CLIENT_HELLO:
/* version follows msg byte, so verify that this is valid */
version = tvb_get_ntohs(tvb, offset+1);
ret = ssl_is_valid_ssl_version(version);
break;
case SSL2_HND_SERVER_HELLO:
/* version is three bytes after msg_type */
version = tvb_get_ntohs(tvb, offset+3);
ret = ssl_is_valid_ssl_version(version);
break;
case SSL2_HND_CLIENT_MASTER_KEY:
/* sum of clear_key_length, encrypted_key_length, and key_arg_length
* must be less than record length
*/
sum = tvb_get_ntohs(tvb, offset + 4); /* clear_key_length */
sum += tvb_get_ntohs(tvb, offset + 6); /* encrypted_key_length */
sum += tvb_get_ntohs(tvb, offset + 8); /* key_arg_length */
if (sum <= record_length) {
ret = 1;
}
break;
default:
break;
}
return ret;
}
/* applies a heuristic to determine whether
* or not the data beginning at offset looks
* like a valid, unencrypted pct handshake message.
* since it isn't possible to completely tell random
* data apart from a valid message without state,
* we try to help the odds.
*/
static gint
ssl_looks_like_valid_pct_handshake(tvbuff_t *tvb, const guint32 offset,
const guint32 record_length)
{
/* first byte should be a msg_type.
*
* - we know we only see client_hello, client_master_key,
* and server_hello in the clear, so check to see if
* msg_type is one of those (this gives us a 3 in 2^8
* chance of saying yes with random payload)
*
* - for those three types that we know about, do some
* further validation to reduce the chance of an error
*/
guint8 msg_type;
guint16 version;
guint32 sum;
gint ret = 0;
/* fetch the msg_type */
msg_type = tvb_get_guint8(tvb, offset);
switch (msg_type) {
case PCT_MSG_CLIENT_HELLO:
/* version follows msg byte, so verify that this is valid */
version = tvb_get_ntohs(tvb, offset+1);
ret = (version == PCT_VERSION_1);
break;
case PCT_MSG_SERVER_HELLO:
/* version is one byte after msg_type */
version = tvb_get_ntohs(tvb, offset+2);
ret = (version == PCT_VERSION_1);
break;
case PCT_MSG_CLIENT_MASTER_KEY:
/* sum of various length fields must be less than record length */
sum = tvb_get_ntohs(tvb, offset + 6); /* clear_key_length */
sum += tvb_get_ntohs(tvb, offset + 8); /* encrypted_key_length */
sum += tvb_get_ntohs(tvb, offset + 10); /* key_arg_length */
sum += tvb_get_ntohs(tvb, offset + 12); /* verify_prelude_length */
sum += tvb_get_ntohs(tvb, offset + 14); /* client_cert_length */
sum += tvb_get_ntohs(tvb, offset + 16); /* response_length */
if (sum <= record_length) {
ret = 1;
}
break;
case PCT_MSG_SERVER_VERIFY:
/* record is 36 bytes longer than response_length */
sum = tvb_get_ntohs(tvb, offset + 34); /* response_length */
if ((sum + 36) == record_length) {
ret = 1;
}
break;
default:
break;
}
return ret;
}
/* UAT */
#if defined(HAVE_LIBGNUTLS) && defined(HAVE_LIBGCRYPT)
static void
ssldecrypt_free_cb(void *r)
{
ssldecrypt_assoc_t *h = (ssldecrypt_assoc_t *)r;
g_free(h->ipaddr);
g_free(h->port);
g_free(h->protocol);
g_free(h->keyfile);
g_free(h->password);
}
static void*
ssldecrypt_copy_cb(void *dest, const void *orig, size_t len _U_)
{
const ssldecrypt_assoc_t *o = (const ssldecrypt_assoc_t *)orig;
ssldecrypt_assoc_t *d = (ssldecrypt_assoc_t *)dest;
d->ipaddr = g_strdup(o->ipaddr);
d->port = g_strdup(o->port);
d->protocol = g_strdup(o->protocol);
d->keyfile = g_strdup(o->keyfile);
d->password = g_strdup(o->password);
return d;
}
UAT_CSTRING_CB_DEF(sslkeylist_uats,ipaddr,ssldecrypt_assoc_t)
UAT_CSTRING_CB_DEF(sslkeylist_uats,port,ssldecrypt_assoc_t)
UAT_CSTRING_CB_DEF(sslkeylist_uats,protocol,ssldecrypt_assoc_t)
UAT_FILENAME_CB_DEF(sslkeylist_uats,keyfile,ssldecrypt_assoc_t)
UAT_CSTRING_CB_DEF(sslkeylist_uats,password,ssldecrypt_assoc_t)
static gboolean
ssldecrypt_uat_fld_protocol_chk_cb(void* r _U_, const char* p, guint len _U_, const void* u1 _U_, const void* u2 _U_, char** err)
{
if (!p || strlen(p) == 0u) {
*err = g_strdup("No protocol given.");
return FALSE;
}
if (!ssl_find_appdata_dissector(p)) {
if (proto_get_id_by_filter_name(p) != -1) {
*err = g_strdup_printf("While '%s' is a valid dissector filter name, that dissector is not configured"
" to support SSL decryption.\n\n"
"If you need to decrypt '%s' over SSL, please contact the Wireshark development team.", p, p);
} else {
char* ssl_str = ssl_association_info("ssl.port", "TCP");
*err = g_strdup_printf("Could not find dissector for: '%s'\nCommonly used SSL dissectors include:\n%s", p, ssl_str);
g_free(ssl_str);
}
return FALSE;
}
*err = NULL;
return TRUE;
}
#endif
static void
ssl_src_prompt(packet_info *pinfo, gchar *result)
{
g_snprintf(result, MAX_DECODE_AS_PROMPT_LEN, "source (%u%s)", pinfo->srcport, UTF8_RIGHTWARDS_ARROW);
}
static gpointer
ssl_src_value(packet_info *pinfo)
{
return GUINT_TO_POINTER(pinfo->srcport);
}
static void
ssl_dst_prompt(packet_info *pinfo, gchar *result)
{
g_snprintf(result, MAX_DECODE_AS_PROMPT_LEN, "destination (%s%u)", UTF8_RIGHTWARDS_ARROW, pinfo->destport);
}
static gpointer
ssl_dst_value(packet_info *pinfo)
{
return GUINT_TO_POINTER(pinfo->destport);
}
static void
ssl_both_prompt(packet_info *pinfo, gchar *result)
{
g_snprintf(result, MAX_DECODE_AS_PROMPT_LEN, "both (%u%s%u)", pinfo->srcport, UTF8_LEFT_RIGHT_ARROW, pinfo->destport);
}
/*********************************************************************
*
* Standard Wireshark Protocol Registration and housekeeping
*
*********************************************************************/
void
proto_register_ssl(void)
{
/* Setup list of header fields See Section 1.6.1 for details*/
static hf_register_info hf[] = {
{ &hf_ssl_record,
{ "Record Layer", "ssl.record",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ssl_record_content_type,
{ "Content Type", "ssl.record.content_type",
FT_UINT8, BASE_DEC, VALS(ssl_31_content_type), 0x0,
NULL, HFILL}
},
{ &hf_ssl2_msg_type,
{ "Handshake Message Type", "ssl.handshake.type",
FT_UINT8, BASE_DEC, VALS(ssl_20_msg_types), 0x0,
"SSLv2 handshake message type", HFILL}
},
{ &hf_pct_msg_type,
{ "Handshake Message Type", "ssl.pct_handshake.type",
FT_UINT8, BASE_DEC, VALS(pct_msg_types), 0x0,
"PCT handshake message type", HFILL}
},
{ &hf_ssl_record_version,
{ "Version", "ssl.record.version",
FT_UINT16, BASE_HEX, VALS(ssl_versions), 0x0,
"Record layer version", HFILL }
},
{ &hf_ssl_record_length,
{ "Length", "ssl.record.length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of SSL record data", HFILL }
},
{ &hf_ssl_record_appdata,
{ "Encrypted Application Data", "ssl.app_data",
FT_BYTES, BASE_NONE, NULL, 0x0,
"Payload is encrypted application data", HFILL }
},
{ &hf_ssl2_record,
{ "SSLv2/PCT Record Header", "ssl.record",
FT_NONE, BASE_NONE, NULL, 0x0,
"SSLv2/PCT record data", HFILL }
},
{ &hf_ssl2_record_is_escape,
{ "Is Escape", "ssl.record.is_escape",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Indicates a security escape", HFILL}
},
{ &hf_ssl2_record_padding_length,
{ "Padding Length", "ssl.record.padding_length",
FT_UINT8, BASE_DEC, NULL, 0x0,
"Length of padding at end of record", HFILL }
},
{ &hf_ssl_alert_message,
{ "Alert Message", "ssl.alert_message",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ssl_alert_message_level,
{ "Level", "ssl.alert_message.level",
FT_UINT8, BASE_DEC, VALS(ssl_31_alert_level), 0x0,
"Alert message level", HFILL }
},
{ &hf_ssl_alert_message_description,
{ "Description", "ssl.alert_message.desc",
FT_UINT8, BASE_DEC, VALS(ssl_31_alert_description), 0x0,
"Alert message description", HFILL }
},
{ &hf_ssl_handshake_protocol,
{ "Handshake Protocol", "ssl.handshake",
FT_NONE, BASE_NONE, NULL, 0x0,
"Handshake protocol message", HFILL}
},
{ &hf_ssl_handshake_type,
{ "Handshake Type", "ssl.handshake.type",
FT_UINT8, BASE_DEC, VALS(ssl_31_handshake_type), 0x0,
"Type of handshake message", HFILL}
},
{ &hf_ssl_handshake_length,
{ "Length", "ssl.handshake.length",
FT_UINT24, BASE_DEC, NULL, 0x0,
"Length of handshake message", HFILL }
},
{ &hf_ssl2_handshake_cipher_spec,
{ "Cipher Spec", "ssl.handshake.cipherspec",
FT_UINT24, BASE_HEX|BASE_EXT_STRING, &ssl_20_cipher_suites_ext, 0x0,
"Cipher specification", HFILL }
},
{ &hf_ssl_handshake_cert_status,
{ "Certificate Status", "ssl.handshake.cert_status",
FT_NONE, BASE_NONE, NULL, 0x0,
"Certificate Status Data", HFILL }
},
{ &hf_ssl_handshake_cert_status_type,
{ "Certificate Status Type", "ssl.handshake.cert_status_type",
FT_UINT8, BASE_DEC, VALS(tls_cert_status_type), 0x0,
NULL, HFILL }
},
{ &hf_ssl_handshake_cert_status_len,
{ "Certificate Status Length", "ssl.handshake.cert_status_len",
FT_UINT24, BASE_DEC, NULL, 0x0,
"Length of certificate status", HFILL }
},
{ &hf_ssl_handshake_npn_selected_protocol_len,
{ "Selected Protocol Length", "ssl.handshake.npn_selected_protocol_len",
FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ssl_handshake_npn_selected_protocol,
{ "Selected Protocol", "ssl.handshake.npn_selected_protocol",
FT_STRING, BASE_NONE, NULL, 0x0,
"Protocol to be used for connection", HFILL }
},
{ &hf_ssl_handshake_npn_padding_len,
{ "Padding Length", "ssl.handshake.npn_padding_len",
FT_UINT8, BASE_DEC, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ssl_handshake_npn_padding,
{ "Padding", "ssl.handshake.npn_padding",
FT_BYTES, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &ssl_hfs.hs_md5_hash,
{ "MD5 Hash", "ssl.handshake.md5_hash",
FT_NONE, BASE_NONE, NULL, 0x0,
"Hash of messages, master_secret, etc.", HFILL }
},
{ &ssl_hfs.hs_sha_hash,
{ "SHA-1 Hash", "ssl.handshake.sha_hash",
FT_NONE, BASE_NONE, NULL, 0x0,
"Hash of messages, master_secret, etc.", HFILL }
},
{ &hf_ssl_heartbeat_message,
{ "Heartbeat Message", "ssl.heartbeat_message",
FT_NONE, BASE_NONE, NULL, 0x0,
NULL, HFILL }
},
{ &hf_ssl_heartbeat_message_type,
{ "Type", "ssl.heartbeat_message.type",
FT_UINT8, BASE_DEC, VALS(tls_heartbeat_type), 0x0,
"Heartbeat message type", HFILL }
},
{ &hf_ssl_heartbeat_message_payload_length,
{ "Payload Length", "ssl.heartbeat_message.payload_length",
FT_UINT16, BASE_DEC, NULL, 0x00, NULL, HFILL }
},
{ &hf_ssl_heartbeat_message_payload,
{ "Payload Length", "ssl.heartbeat_message.payload",
FT_BYTES, BASE_NONE, NULL, 0x00, NULL, HFILL }
},
{ &hf_ssl_heartbeat_message_padding,
{ "Payload Length", "ssl.heartbeat_message.padding",
FT_BYTES, BASE_NONE, NULL, 0x00, NULL, HFILL }
},
{ &hf_ssl2_handshake_challenge,
{ "Challenge", "ssl.handshake.challenge",
FT_NONE, BASE_NONE, NULL, 0x0,
"Challenge data used to authenticate server", HFILL }
},
{ &hf_ssl2_handshake_cipher_spec_len,
{ "Cipher Spec Length", "ssl.handshake.cipher_spec_len",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of cipher specs field", HFILL }
},
{ &hf_ssl2_handshake_session_id_len,
{ "Session ID Length", "ssl.handshake.session_id_length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of session ID field", HFILL }
},
{ &hf_ssl2_handshake_challenge_len,
{ "Challenge Length", "ssl.handshake.challenge_length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of challenge field", HFILL }
},
{ &hf_ssl2_handshake_clear_key_len,
{ "Clear Key Data Length", "ssl.handshake.clear_key_length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of clear key data", HFILL }
},
{ &hf_ssl2_handshake_enc_key_len,
{ "Encrypted Key Data Length", "ssl.handshake.encrypted_key_length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of encrypted key data", HFILL }
},
{ &hf_ssl2_handshake_key_arg_len,
{ "Key Argument Length", "ssl.handshake.key_arg_length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of key argument", HFILL }
},
{ &hf_ssl2_handshake_clear_key,
{ "Clear Key Data", "ssl.handshake.clear_key_data",
FT_NONE, BASE_NONE, NULL, 0x0,
"Clear portion of MASTER-KEY", HFILL }
},
{ &hf_ssl2_handshake_enc_key,
{ "Encrypted Key", "ssl.handshake.encrypted_key",
FT_NONE, BASE_NONE, NULL, 0x0,
"Secret portion of MASTER-KEY encrypted to server", HFILL }
},
{ &hf_ssl2_handshake_key_arg,
{ "Key Argument", "ssl.handshake.key_arg",
FT_NONE, BASE_NONE, NULL, 0x0,
"Key Argument (e.g., Initialization Vector)", HFILL }
},
{ &hf_ssl2_handshake_session_id_hit,
{ "Session ID Hit", "ssl.handshake.session_id_hit",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Did the server find the client's Session ID?", HFILL }
},
{ &hf_ssl2_handshake_cert_type,
{ "Certificate Type", "ssl.handshake.cert_type",
FT_UINT8, BASE_DEC, VALS(ssl_20_certificate_type), 0x0,
NULL, HFILL }
},
{ &hf_ssl2_handshake_connection_id_len,
{ "Connection ID Length", "ssl.handshake.connection_id_length",
FT_UINT16, BASE_DEC, NULL, 0x0,
"Length of connection ID", HFILL }
},
{ &hf_ssl2_handshake_connection_id,
{ "Connection ID", "ssl.handshake.connection_id",
FT_NONE, BASE_NONE, NULL, 0x0,
"Server's challenge to client", HFILL }
},
{ &hf_pct_handshake_cipher_spec,
{ "Cipher Spec", "ssl.pct.handshake.cipherspec",
FT_NONE, BASE_NONE, NULL, 0x0,
"PCT Cipher specification", HFILL }
},
{ &hf_pct_handshake_cipher,
{ "Cipher", "ssl.pct.handshake.cipher",
FT_UINT16, BASE_HEX, VALS(pct_cipher_type), 0x0,
"PCT Ciper", HFILL }
},
{ &hf_pct_handshake_hash_spec,
{ "Hash Spec", "ssl.pct.handshake.hashspec",
FT_NONE, BASE_NONE, NULL, 0x0,
"PCT Hash specification", HFILL }
},
{ &hf_pct_handshake_hash,
{ "Hash", "ssl.pct.handshake.hash",
FT_UINT16, BASE_HEX, VALS(pct_hash_type), 0x0,
"PCT Hash", HFILL }
},
{ &hf_pct_handshake_cert_spec,
{ "Cert Spec", "ssl.pct.handshake.certspec",
FT_NONE, BASE_NONE, NULL, 0x0,
"PCT Certificate specification", HFILL }
},
{ &hf_pct_handshake_cert,
{ "Cert", "ssl.pct.handshake.cert",
FT_UINT16, BASE_HEX, VALS(pct_cert_type), 0x0,
"PCT Certificate", HFILL }
},
{ &hf_pct_handshake_exch_spec,
{ "Exchange Spec", "ssl.pct.handshake.exchspec",
FT_NONE, BASE_NONE, NULL, 0x0,
"PCT Exchange specification", HFILL }
},
{ &hf_pct_handshake_exch,
{ "Exchange", "ssl.pct.handshake.exch",
FT_UINT16, BASE_HEX, VALS(pct_exch_type), 0x0,
"PCT Exchange", HFILL }
},
{ &hf_pct_handshake_sig,
{ "Sig Spec", "ssl.pct.handshake.sig",
FT_UINT16, BASE_HEX, VALS(pct_sig_type), 0x0,
"PCT Signature", HFILL }
},
{ &hf_pct_msg_error_type,
{ "PCT Error Code", "ssl.pct.msg_error_code",
FT_UINT16, BASE_HEX, VALS(pct_error_code), 0x0,
NULL, HFILL }
},
{ &hf_pct_handshake_server_cert,
{ "Server Cert", "ssl.pct.handshake.server_cert",
FT_BYTES, BASE_NONE, NULL , 0x0,
"PCT Server Certificate", HFILL }
},
/* Generated from convert_proto_tree_add_text.pl */
{ &hf_ssl_pct_client_version, { "Client Version", "ssl.pct.client_version", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_pad, { "PAD", "ssl.pct.pad", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_client_session_id_data, { "Client Session ID Data", "ssl.pct.client_session_id_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_challenge_data, { "Challenge Data", "ssl.pct.challenge_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_ch_offset, { "CH_OFFSET", "ssl.pct.ch_offset", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_cipher_specs_length, { "CIPHER_SPECS Length", "ssl.pct.cipher_specs_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_hash_specs_length, { "HASH_SPECS Length", "ssl.pct.hash_specs_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_cert_specs_length, { "CERT_SPECS Length", "ssl.pct.cert_specs_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_exch_specs_length, { "EXCH_SPECS Length", "ssl.pct.exch_specs_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_iv_length, { "IV Length", "ssl.pct.iv_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_encryption_key_length, { "Encryption key length", "ssl.pct.encryption_key_length", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_mac_key_length_in_bits, { "MAC key length in bits", "ssl.pct.mac_key_length_in_bits", FT_UINT8, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_iv_data, { "IV data", "ssl.pct.iv_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_server_version, { "Server Version", "ssl.pct.server_version", FT_UINT16, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_sh_restart_session_ok_flag, { "SH_RESTART_SESSION_OK flag", "ssl.pct.sh_restart_session_ok_flag", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_sh_client_auth_req_flag, { "SH_CLIENT_AUTH_REQ flag", "ssl.pct.sh_client_auth_req_flag", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_connection_id_data, { "Connection ID Data", "ssl.connection_id_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_server_certificate_length, { "Server Certificate Length", "ssl.pct.server_certificate_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_client_cert_specs_length, { "Client CERT_SPECS Length", "ssl.pct.client_cert_specs_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_client_sig_specs_length, { "Client SIG_SPECS Length", "ssl.pct.client_sig_specs_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_response_length, { "Response Length", "ssl.pct.response_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_client_cert_specs, { "Client CERT_SPECS", "ssl.pct.client_cert_specs", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_client_signature, { "Client Signature", "ssl.pct.client_signature", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_server_response, { "Server Response", "ssl.pct.server_response", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_clear_key_length, { "Clear Key Length", "ssl.pct.clear_key_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_encrypted_key_length, { "Encrypted Key Length", "ssl.pct.encrypted_key_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_verify_prelude_length, { "Verify Prelude Length", "ssl.pct.verify_prelude_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_client_cert_length, { "Client Cert Length", "ssl.pct.client_cert_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_clear_key_data, { "Clear Key data", "ssl.pct.clear_key_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_encrypted_key_data, { "Encrypted Key data", "ssl.pct.encrypted_key_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_verify_prelude_data, { "Verify Prelude data", "ssl.pct.verify_prelude_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_client_certificate_data, { "Client Certificate data", "ssl.pct.client_certificate_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_response_data, { "Response data", "ssl.pct.response_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_server_session_id_data, { "Server Session ID data", "ssl.pct.server_session_id_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_server_response_length, { "Server Response Length", "ssl.pct.server_response_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_error_information_length, { "Error Information Length", "ssl.pct.error_information_length", FT_UINT16, BASE_DEC, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_specs_mismatch_cipher, { "SPECS_MISMATCH_CIPHER", "ssl.pct.specs_mismatch_cipher", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_specs_mismatch_hash, { "SPECS_MISMATCH_HASH", "ssl.pct.specs_mismatch_hash", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_specs_mismatch_cert, { "SPECS_MISMATCH_CERT", "ssl.pct.specs_mismatch_cert", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_specs_mismatch_exch, { "SPECS_MISMATCH_EXCH", "ssl.pct.specs_mismatch_exch", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_specs_mismatch_client_cert, { "SPECS_MISMATCH_CLIENT_CERT", "ssl.pct.specs_mismatch_client_cert", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_specs_mismatch_client_sig, { "SPECS_MISMATCH_CLIENT_SIG", "ssl.pct.specs_mismatch_client_sig", FT_UINT8, BASE_HEX, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_pct_error_information_data, { "Error Information data", "ssl.pct.error_information_data", FT_BYTES, BASE_NONE, NULL, 0x0, NULL, HFILL }},
{ &hf_ssl_segment_overlap,
{ "Segment overlap", "ssl.segment.overlap",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Segment overlaps with other segments", HFILL }},
{ &hf_ssl_segment_overlap_conflict,
{ "Conflicting data in segment overlap", "ssl.segment.overlap.conflict",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Overlapping segments contained conflicting data", HFILL }},
{ &hf_ssl_segment_multiple_tails,
{ "Multiple tail segments found", "ssl.segment.multipletails",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Several tails were found when reassembling the pdu", HFILL }},
{ &hf_ssl_segment_too_long_fragment,
{ "Segment too long", "ssl.segment.toolongfragment",
FT_BOOLEAN, BASE_NONE, NULL, 0x0,
"Segment contained data past end of the pdu", HFILL }},
{ &hf_ssl_segment_error,
{ "Reassembling error", "ssl.segment.error",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"Reassembling error due to illegal segments", HFILL }},
{ &hf_ssl_segment_count,
{ "Segment count", "ssl.segment.count",
FT_UINT32, BASE_DEC, NULL, 0x0,
NULL, HFILL }},
{ &hf_ssl_segment,
{ "SSL segment", "ssl.segment",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
NULL, HFILL }},
{ &hf_ssl_segments,
{ "Reassembled SSL segments", "ssl.segments",
FT_NONE, BASE_NONE, NULL, 0x0,
"SSL Segments", HFILL }},
{ &hf_ssl_reassembled_in,
{ "Reassembled PDU in frame", "ssl.reassembled_in",
FT_FRAMENUM, BASE_NONE, NULL, 0x0,
"The PDU that doesn't end in this segment is reassembled in this frame", HFILL }},
{ &hf_ssl_reassembled_length,
{ "Reassembled PDU length", "ssl.reassembled.length",
FT_UINT32, BASE_DEC, NULL, 0x0,
"The total length of the reassembled payload", HFILL }},
{ &hf_ssl_reassembled_data,
{ "Reassembled PDU data", "ssl.reassembled.data",
FT_BYTES, BASE_NONE, NULL, 0x00,
"The payload of multiple reassembled SSL segments", HFILL }},
{ &hf_ssl_segment_data,
{ "SSL segment data", "ssl.segment.data",
FT_BYTES, BASE_NONE, NULL, 0x00,
"The payload of a single SSL segment", HFILL }
},
SSL_COMMON_HF_LIST(dissect_ssl3_hf, "ssl")
};
/* Setup protocol subtree array */
static gint *ett[] = {
&ett_ssl,
&ett_ssl_record,
&ett_ssl_alert,
&ett_ssl_handshake,
&ett_ssl_heartbeat,
&ett_ssl_certs,
&ett_ssl_cert_status,
&ett_ssl_ocsp_resp,
&ett_pct_cipher_suites,
&ett_pct_hash_suites,
&ett_pct_cert_suites,
&ett_pct_exch_suites,
&ett_ssl_segments,
&ett_ssl_segment,
SSL_COMMON_ETT_LIST(dissect_ssl3_hf)
};
static ei_register_info ei[] = {
{ &ei_ssl2_handshake_session_id_len_error, { "ssl.handshake.session_id_length.error", PI_MALFORMED, PI_ERROR, "Session ID length error", EXPFILL }},
{ &ei_ssl3_heartbeat_payload_length, { "ssl.heartbeat_message.payload_length.invalid", PI_MALFORMED, PI_ERROR, "Invalid heartbeat payload length", EXPFILL }},
/* Generated from convert_proto_tree_add_text.pl */
{ &ei_ssl_ignored_unknown_record, { "ssl.ignored_unknown_record", PI_PROTOCOL, PI_WARN, "Ignored Unknown Record", EXPFILL }},
{ &ei_ssl_pct_client_version, { "ssl.pct.client_version.invalid", PI_PROTOCOL, PI_WARN, "Client Version invalid", EXPFILL }},
{ &ei_ssl_pct_ch_offset, { "ssl.pct.ch_offset.invalid", PI_PROTOCOL, PI_WARN, "CH_OFFSET invalid", EXPFILL }},
{ &ei_ssl_pct_server_version, { "ssl.pct.server_version.invalid", PI_PROTOCOL, PI_WARN, "Server Version invalid", EXPFILL }},
SSL_COMMON_EI_LIST(dissect_ssl3_hf, "ssl")
};
static build_valid_func ssl_da_src_values[1] = {ssl_src_value};
static build_valid_func ssl_da_dst_values[1] = {ssl_dst_value};
static build_valid_func ssl_da_both_values[2] = {ssl_src_value, ssl_dst_value};
static decode_as_value_t ssl_da_values[3] = {{ssl_src_prompt, 1, ssl_da_src_values}, {ssl_dst_prompt, 1, ssl_da_dst_values}, {ssl_both_prompt, 2, ssl_da_both_values}};
static decode_as_t ssl_da = {"ssl", "Transport", "ssl.port", 3, 2, ssl_da_values, "TCP", "port(s) as",
decode_as_default_populate_list, decode_as_default_reset, decode_as_default_change, NULL};
expert_module_t* expert_ssl;
/* Register the protocol name and description */
proto_ssl = proto_register_protocol("Secure Sockets Layer",
"SSL", "ssl");
ssl_associations = register_dissector_table("ssl.port", "SSL TCP Dissector", proto_ssl, FT_UINT16, BASE_DEC);
/* Required function calls to register the header fields and
* subtrees used */
proto_register_field_array(proto_ssl, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
expert_ssl = expert_register_protocol(proto_ssl);
expert_register_field_array(expert_ssl, ei, array_length(ei));
{
module_t *ssl_module = prefs_register_protocol(proto_ssl, proto_reg_handoff_ssl);
#ifdef HAVE_LIBGCRYPT
#ifdef HAVE_LIBGNUTLS
static uat_field_t sslkeylist_uats_flds[] = {
UAT_FLD_CSTRING_OTHER(sslkeylist_uats, ipaddr, "IP address", ssldecrypt_uat_fld_ip_chk_cb, "IPv4 or IPv6 address"),
UAT_FLD_CSTRING_OTHER(sslkeylist_uats, port, "Port", ssldecrypt_uat_fld_port_chk_cb, "Port Number"),
UAT_FLD_CSTRING_OTHER(sslkeylist_uats, protocol, "Protocol", ssldecrypt_uat_fld_protocol_chk_cb, "Protocol"),
UAT_FLD_FILENAME_OTHER(sslkeylist_uats, keyfile, "Key File", ssldecrypt_uat_fld_fileopen_chk_cb, "Private keyfile."),
UAT_FLD_CSTRING_OTHER(sslkeylist_uats, password,"Password", ssldecrypt_uat_fld_password_chk_cb, "Password (for PCKS#12 keyfile)"),
UAT_END_FIELDS
};
ssldecrypt_uat = uat_new("SSL Decrypt",
sizeof(ssldecrypt_assoc_t),
"ssl_keys", /* filename */
TRUE, /* from_profile */
&sslkeylist_uats, /* data_ptr */
&nssldecrypt, /* numitems_ptr */
UAT_AFFECTS_DISSECTION, /* affects dissection of packets, but not set of named fields */
NULL, /* Help section (currently a wiki page) */
ssldecrypt_copy_cb,
NULL,
ssldecrypt_free_cb,
ssl_parse_uat,
sslkeylist_uats_flds);
prefs_register_uat_preference(ssl_module, "key_table",
"RSA keys list",
"A table of RSA keys for SSL decryption",
ssldecrypt_uat);
#endif /* HAVE_LIBGNUTLS */
prefs_register_filename_preference(ssl_module, "debug_file", "SSL debug file",
"Redirect SSL debug to the file specified. Leave empty to disable debugging "
"or use \"" SSL_DEBUG_USE_STDERR "\" to redirect output to stderr.",
&ssl_debug_file_name);
prefs_register_string_preference(ssl_module, "keys_list", "RSA keys list (deprecated)",
"Semicolon-separated list of private RSA keys used for SSL decryption. "
"Used by versions of Wireshark prior to 1.6",
&ssl_keys_list);
#endif /* HAVE_LIBGCRYPT */
prefs_register_bool_preference(ssl_module,
"desegment_ssl_records",
"Reassemble SSL records spanning multiple TCP segments",
"Whether the SSL dissector should reassemble SSL records spanning multiple TCP segments. "
"To use this option, you must also enable \"Allow subdissectors to reassemble TCP streams\" in the TCP protocol settings.",
&ssl_desegment);
prefs_register_bool_preference(ssl_module,
"desegment_ssl_application_data",
"Reassemble SSL Application Data spanning multiple SSL records",
"Whether the SSL dissector should reassemble SSL Application Data spanning multiple SSL records. ",
&ssl_desegment_app_data);
prefs_register_bool_preference(ssl_module,
"ignore_ssl_mac_failed",
"Message Authentication Code (MAC), ignore \"mac failed\"",
"For troubleshooting ignore the mac check result and decrypt also if the Message Authentication Code (MAC) fails.",
&ssl_ignore_mac_failed);
ssl_common_register_options(ssl_module, &ssl_options);
}
/* heuristic dissectors for any premable e.g. CredSSP before RDP */
ssl_heur_subdissector_list = register_heur_dissector_list("ssl", proto_ssl);
register_dissector("ssl", dissect_ssl, proto_ssl);
ssl_handle = find_dissector("ssl");
register_init_routine(ssl_init);
register_cleanup_routine(ssl_cleanup);
register_decode_as(&ssl_da);
ssl_tap = register_tap("ssl");
ssl_debug_printf("proto_register_ssl: registered tap %s:%d\n",
"ssl", ssl_tap);
register_follow_stream(proto_ssl, "ssl", tcp_follow_conv_filter, tcp_follow_index_filter, tcp_follow_address_filter,
tcp_port_to_display, ssl_follow_tap_listener);
}
/* If this dissector uses sub-dissector registration add a registration
* routine. This format is required because a script is used to find
* these routines and create the code that calls these routines.
*/
void
proto_reg_handoff_ssl(void)
{
/* parse key list */
ssl_parse_uat();
ssl_parse_old_keys();
exported_pdu_tap = find_tap_id(EXPORT_PDU_TAP_NAME_LAYER_7);
}
void
ssl_dissector_add(guint port, dissector_handle_t handle)
{
ssl_association_add("ssl.port", ssl_handle, handle, port, TRUE);
}
void
ssl_dissector_delete(guint port, dissector_handle_t handle)
{
ssl_association_remove("ssl.port", ssl_handle, handle, port, TRUE);
}
/*
* Editor modelines - http://www.wireshark.org/tools/modelines.html
*
* Local variables:
* c-basic-offset: 4
* tab-width: 8
* indent-tabs-mode: nil
* End:
*
* vi: set shiftwidth=4 tabstop=8 expandtab:
* :indentSize=4:tabSize=8:noTabs=true:
*/