wireshark/packet-sna.c

1612 lines
51 KiB
C

/* packet-sna.c
* Routines for SNA
* Gilbert Ramirez <gram@alumni.rice.edu>
*
* $Id: packet-sna.c,v 1.42 2002/08/28 21:00:34 jmayer Exp $
*
* Ethereal - Network traffic analyzer
* By Gerald Combs <gerald@ethereal.com>
* Copyright 1998 Gerald Combs
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <glib.h>
#include <epan/packet.h>
#include "llcsaps.h"
#include "ppptypes.h"
#include <epan/sna-utils.h>
/*
* http://www.wanresources.com/snacell.html
* ftp://ftp.software.ibm.com/networking/pub/standards/aiw/formats/
*
*/
static int proto_sna = -1;
static int hf_sna_th = -1;
static int hf_sna_th_0 = -1;
static int hf_sna_th_fid = -1;
static int hf_sna_th_mpf = -1;
static int hf_sna_th_odai = -1;
static int hf_sna_th_efi = -1;
static int hf_sna_th_daf = -1;
static int hf_sna_th_oaf = -1;
static int hf_sna_th_snf = -1;
static int hf_sna_th_dcf = -1;
static int hf_sna_th_lsid = -1;
static int hf_sna_th_tg_sweep = -1;
static int hf_sna_th_er_vr_supp_ind = -1;
static int hf_sna_th_vr_pac_cnt_ind = -1;
static int hf_sna_th_ntwk_prty = -1;
static int hf_sna_th_tgsf = -1;
static int hf_sna_th_mft = -1;
static int hf_sna_th_piubf = -1;
static int hf_sna_th_iern = -1;
static int hf_sna_th_nlpoi = -1;
static int hf_sna_th_nlp_cp = -1;
static int hf_sna_th_ern = -1;
static int hf_sna_th_vrn = -1;
static int hf_sna_th_tpf = -1;
static int hf_sna_th_vr_cwi = -1;
static int hf_sna_th_tg_nonfifo_ind = -1;
static int hf_sna_th_vr_sqti = -1;
static int hf_sna_th_tg_snf = -1;
static int hf_sna_th_vrprq = -1;
static int hf_sna_th_vrprs = -1;
static int hf_sna_th_vr_cwri = -1;
static int hf_sna_th_vr_rwi = -1;
static int hf_sna_th_vr_snf_send = -1;
static int hf_sna_th_dsaf = -1;
static int hf_sna_th_osaf = -1;
static int hf_sna_th_snai = -1;
static int hf_sna_th_def = -1;
static int hf_sna_th_oef = -1;
static int hf_sna_th_sa = -1;
static int hf_sna_th_cmd_fmt = -1;
static int hf_sna_th_cmd_type = -1;
static int hf_sna_th_cmd_sn = -1;
static int hf_sna_nlp_nhdr = -1;
static int hf_sna_nlp_nhdr_0 = -1;
static int hf_sna_nlp_sm = -1;
static int hf_sna_nlp_tpf = -1;
static int hf_sna_nlp_nhdr_1 = -1;
static int hf_sna_nlp_ft = -1;
static int hf_sna_nlp_tspi = -1;
static int hf_sna_nlp_slowdn1 = -1;
static int hf_sna_nlp_slowdn2 = -1;
static int hf_sna_nlp_fra = -1;
static int hf_sna_nlp_anr = -1;
static int hf_sna_nlp_frh = -1;
static int hf_sna_nlp_thdr = -1;
static int hf_sna_nlp_tcid = -1;
static int hf_sna_nlp_thdr_8 = -1;
static int hf_sna_nlp_setupi = -1;
static int hf_sna_nlp_somi = -1;
static int hf_sna_nlp_eomi = -1;
static int hf_sna_nlp_sri = -1;
static int hf_sna_nlp_rasapi = -1;
static int hf_sna_nlp_retryi = -1;
static int hf_sna_nlp_thdr_9 = -1;
static int hf_sna_nlp_lmi = -1;
static int hf_sna_nlp_cqfi = -1;
static int hf_sna_nlp_osi = -1;
static int hf_sna_nlp_offset = -1;
static int hf_sna_nlp_dlf = -1;
static int hf_sna_nlp_bsn = -1;
static int hf_sna_rh = -1;
static int hf_sna_rh_0 = -1;
static int hf_sna_rh_1 = -1;
static int hf_sna_rh_2 = -1;
static int hf_sna_rh_rri = -1;
static int hf_sna_rh_ru_category = -1;
static int hf_sna_rh_fi = -1;
static int hf_sna_rh_sdi = -1;
static int hf_sna_rh_bci = -1;
static int hf_sna_rh_eci = -1;
static int hf_sna_rh_dr1 = -1;
static int hf_sna_rh_lcci = -1;
static int hf_sna_rh_dr2 = -1;
static int hf_sna_rh_eri = -1;
static int hf_sna_rh_rti = -1;
static int hf_sna_rh_rlwi = -1;
static int hf_sna_rh_qri = -1;
static int hf_sna_rh_pi = -1;
static int hf_sna_rh_bbi = -1;
static int hf_sna_rh_ebi = -1;
static int hf_sna_rh_cdi = -1;
static int hf_sna_rh_csi = -1;
static int hf_sna_rh_edi = -1;
static int hf_sna_rh_pdi = -1;
static int hf_sna_rh_cebi = -1;
/*static int hf_sna_ru = -1;*/
static gint ett_sna = -1;
static gint ett_sna_th = -1;
static gint ett_sna_th_fid = -1;
static gint ett_sna_nlp_nhdr = -1;
static gint ett_sna_nlp_nhdr_0 = -1;
static gint ett_sna_nlp_nhdr_1 = -1;
static gint ett_sna_nlp_thdr = -1;
static gint ett_sna_nlp_thdr_8 = -1;
static gint ett_sna_nlp_thdr_9 = -1;
static gint ett_sna_rh = -1;
static gint ett_sna_rh_0 = -1;
static gint ett_sna_rh_1 = -1;
static gint ett_sna_rh_2 = -1;
static dissector_handle_t data_handle;
/* Format Identifier */
static const value_string sna_th_fid_vals[] = {
{ 0x0, "SNA device <--> Non-SNA Device" },
{ 0x1, "Subarea Nodes, without ER or VR" },
{ 0x2, "Subarea Node <--> PU2" },
{ 0x3, "Subarea Node or SNA host <--> Subarea Node" },
{ 0x4, "Subarea Nodes, supporting ER and VR" },
{ 0x5, "HPR RTP endpoint nodes" },
{ 0xa, "HPR NLP Frame Routing" },
{ 0xb, "HPR NLP Frame Routing" },
{ 0xc, "HPR NLP Automatic Network Routing" },
{ 0xd, "HPR NLP Automatic Network Routing" },
{ 0xf, "Adjaced Subarea Nodes, supporting ER and VR" },
{ 0x0, NULL }
};
/* Mapping Field */
static const value_string sna_th_mpf_vals[] = {
{ 0, "Middle segment of a BIU" },
{ 1, "Last segment of a BIU" },
{ 2, "First segment of a BIU" },
{ 3 , "Whole BIU" },
{ 0, NULL }
};
/* Expedited Flow Indicator */
static const value_string sna_th_efi_vals[] = {
{ 0, "Normal Flow" },
{ 1, "Expedited Flow" },
{ 0x0, NULL }
};
/* Request/Response Indicator */
static const value_string sna_rh_rri_vals[] = {
{ 0, "Request" },
{ 1, "Response" },
{ 0x0, NULL }
};
/* Request/Response Unit Category */
static const value_string sna_rh_ru_category_vals[] = {
{ 0, "Function Management Data (FMD)" },
{ 1, "Network Control (NC)" },
{ 2, "Data Flow Control (DFC)" },
{ 3, "Session Control (SC)" },
{ 0x0, NULL }
};
/* Format Indicator */
static const true_false_string sna_rh_fi_truth =
{ "FM Header", "No FM Header" };
/* Sense Data Included */
static const true_false_string sna_rh_sdi_truth =
{ "Included", "Not Included" };
/* Begin Chain Indicator */
static const true_false_string sna_rh_bci_truth =
{ "First in Chain", "Not First in Chain" };
/* End Chain Indicator */
static const true_false_string sna_rh_eci_truth =
{ "Last in Chain", "Not Last in Chain" };
/* Lengith-Checked Compression Indicator */
static const true_false_string sna_rh_lcci_truth =
{ "Compressed", "Not Compressed" };
/* Response Type Indicator */
static const true_false_string sna_rh_rti_truth =
{ "Negative", "Positive" };
/* Exception Response Indicator */
static const true_false_string sna_rh_eri_truth =
{ "Exception", "Definite" };
/* Queued Response Indicator */
static const true_false_string sna_rh_qri_truth =
{ "Enqueue response in TC queues", "Response bypasses TC queues" };
/* Code Selection Indicator */
static const value_string sna_rh_csi_vals[] = {
{ 0, "EBCDIC" },
{ 1, "ASCII" },
{ 0x0, NULL }
};
/* TG Sweep */
static const value_string sna_th_tg_sweep_vals[] = {
{ 0, "This PIU may overtake any PU ahead of it." },
{ 1, "This PIU does not ovetake any PIU ahead of it." },
{ 0x0, NULL }
};
/* ER_VR_SUPP_IND */
static const value_string sna_th_er_vr_supp_ind_vals[] = {
{ 0, "Each node supports ER and VR protocols" },
{ 1, "Includes at least one node that does not support ER and VR protocols" },
{ 0x0, NULL }
};
/* VR_PAC_CNT_IND */
static const value_string sna_th_vr_pac_cnt_ind_vals[] = {
{ 0, "Pacing count on the VR has not reached 0" },
{ 1, "Pacing count on the VR has reached 0" },
{ 0x0, NULL }
};
/* NTWK_PRTY */
static const value_string sna_th_ntwk_prty_vals[] = {
{ 0, "PIU flows at a lower priority" },
{ 1, "PIU flows at network priority (highest transmission priority)" },
{ 0x0, NULL }
};
/* TGSF */
static const value_string sna_th_tgsf_vals[] = {
{ 0, "Not segmented" },
{ 1, "Last segment" },
{ 2, "First segment" },
{ 3, "Middle segment" },
{ 0x0, NULL }
};
/* PIUBF */
static const value_string sna_th_piubf_vals[] = {
{ 0, "Single PIU frame" },
{ 1, "Last PIU of a multiple PIU frame" },
{ 2, "First PIU of a multiple PIU frame" },
{ 3, "Middle PIU of a multiple PIU frame" },
{ 0x0, NULL }
};
/* NLPOI */
static const value_string sna_th_nlpoi_vals[] = {
{ 0, "NLP starts within this FID4 TH" },
{ 1, "NLP byte 0 starts after RH byte 0 following NLP C/P pad" },
{ 0x0, NULL }
};
/* TPF */
static const value_string sna_th_tpf_vals[] = {
{ 0, "Low Priority" },
{ 1, "Medium Priority" },
{ 2, "High Priority" },
{ 3, "Network Priority" },
{ 0x0, NULL }
};
/* VR_CWI */
static const value_string sna_th_vr_cwi_vals[] = {
{ 0, "Increment window size" },
{ 1, "Decrement window size" },
{ 0x0, NULL }
};
/* TG_NONFIFO_IND */
static const true_false_string sna_th_tg_nonfifo_ind_truth =
{ "TG FIFO is not required", "TG FIFO is required" };
/* VR_SQTI */
static const value_string sna_th_vr_sqti_vals[] = {
{ 0, "Non-sequenced, Non-supervisory" },
{ 1, "Non-sequenced, Supervisory" },
{ 2, "Singly-sequenced" },
{ 0x0, NULL }
};
/* VRPRQ */
static const true_false_string sna_th_vrprq_truth = {
"VR pacing request is sent asking for a VR pacing response",
"No VR pacing response is requested",
};
/* VRPRS */
static const true_false_string sna_th_vrprs_truth = {
"VR pacing response is sent in response to a VRPRQ bit set",
"No pacing response sent",
};
/* VR_CWRI */
static const value_string sna_th_vr_cwri_vals[] = {
{ 0, "Increment window size by 1" },
{ 1, "Decrement window size by 1" },
{ 0x0, NULL }
};
/* VR_RWI */
static const true_false_string sna_th_vr_rwi_truth = {
"Reset window size to the minimum specified in NC_ACTVR",
"Do not reset window size",
};
/* Switching Mode */
static const value_string sna_nlp_sm_vals[] = {
{ 5, "Function routing" },
{ 6, "Automatic network routing" },
{ 0x0, NULL }
};
static const true_false_string sna_nlp_tspi_truth =
{ "Time sensitive", "Not time sensitive" };
static const true_false_string sna_nlp_slowdn1_truth =
{ "Minor congestion", "No minor congestion" };
static const true_false_string sna_nlp_slowdn2_truth =
{ "Major congestion", "No major congestion" };
/* Function Type */
static const value_string sna_nlp_ft_vals[] = {
{ 0x10, "LDLC" },
{ 0x0, NULL }
};
static const value_string sna_nlp_frh_vals[] = {
{ 0x03, "XID complete request" },
{ 0x04, "XID complete response" },
{ 0x0, NULL }
};
static const true_false_string sna_nlp_setupi_truth =
{ "Connection setup segment present", "Connection setup segment not present" };
static const true_false_string sna_nlp_somi_truth =
{ "Start of message", "Not start of message" };
static const true_false_string sna_nlp_eomi_truth =
{ "End of message", "Not end of message" };
static const true_false_string sna_nlp_sri_truth =
{ "Status requested", "No status requested" };
static const true_false_string sna_nlp_rasapi_truth =
{ "Reply as soon as possible", "No need to reply as soon as possible" };
static const true_false_string sna_nlp_retryi_truth =
{ "Undefined", "Sender will retransmit" };
static const true_false_string sna_nlp_lmi_truth =
{ "Last message", "Not last message" };
static const true_false_string sna_nlp_cqfi_truth =
{ "CQFI included", "CQFI not included" };
static const true_false_string sna_nlp_osi_truth =
{ "Optional segments present", "No optional segments present" };
static int dissect_fid0_1 (tvbuff_t*, packet_info*, proto_tree*);
static int dissect_fid2 (tvbuff_t*, packet_info*, proto_tree*);
static int dissect_fid3 (tvbuff_t*, proto_tree*);
static int dissect_fid4 (tvbuff_t*, packet_info*, proto_tree*);
static int dissect_fid5 (tvbuff_t*, proto_tree*);
static int dissect_fidf (tvbuff_t*, proto_tree*);
static void dissect_fid (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
static void dissect_nlp (tvbuff_t*, packet_info*, proto_tree*, proto_tree*);
static void dissect_rh (tvbuff_t*, int, proto_tree*);
static void
dissect_sna(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
guint8 fid;
proto_tree *sna_tree = NULL;
proto_item *sna_ti = NULL;
if (check_col(pinfo->cinfo, COL_PROTOCOL))
col_set_str(pinfo->cinfo, COL_PROTOCOL, "SNA");
if (check_col(pinfo->cinfo, COL_INFO))
col_clear(pinfo->cinfo, COL_INFO);
/* SNA data should be printed in EBCDIC, not ASCII */
pinfo->fd->flags.encoding = CHAR_EBCDIC;
if (tree) {
/* Don't bother setting length. We'll set it later after we find
* the lengths of TH/RH/RU */
sna_ti = proto_tree_add_item(tree, proto_sna, tvb, 0, -1, FALSE);
sna_tree = proto_item_add_subtree(sna_ti, ett_sna);
}
/* Transmission Header Format Identifier */
fid = hi_nibble(tvb_get_guint8(tvb, 0));
switch(fid) {
case 0xa: /* HPR Network Layer Packet */
case 0xb:
case 0xc:
case 0xd:
dissect_nlp(tvb, pinfo, sna_tree, tree);
break;
default:
dissect_fid(tvb, pinfo, sna_tree, tree);
}
}
static void
dissect_fid(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_tree *parent_tree)
{
proto_tree *th_tree = NULL, *rh_tree = NULL;
proto_item *th_ti = NULL, *rh_ti = NULL;
guint8 th_fid;
int sna_header_len = 0, th_header_len = 0;
int offset;
/* Transmission Header Format Identifier */
th_fid = hi_nibble(tvb_get_guint8(tvb, 0));
/* Summary information */
if (check_col(pinfo->cinfo, COL_INFO))
col_add_str(pinfo->cinfo, COL_INFO,
val_to_str(th_fid, sna_th_fid_vals, "Unknown FID: %01x"));
if (tree) {
/* --- TH --- */
/* Don't bother setting length. We'll set it later after we find
* the length of TH */
th_ti = proto_tree_add_item(tree, hf_sna_th, tvb, 0, -1, FALSE);
th_tree = proto_item_add_subtree(th_ti, ett_sna_th);
}
/* Get size of TH */
switch(th_fid) {
case 0x0:
case 0x1:
th_header_len = dissect_fid0_1(tvb, pinfo, th_tree);
break;
case 0x2:
th_header_len = dissect_fid2(tvb, pinfo, th_tree);
break;
case 0x3:
th_header_len = dissect_fid3(tvb, th_tree);
break;
case 0x4:
th_header_len = dissect_fid4(tvb, pinfo, th_tree);
break;
case 0x5:
th_header_len = dissect_fid5(tvb, th_tree);
break;
case 0xf:
th_header_len = dissect_fidf(tvb, th_tree);
break;
default:
call_dissector(data_handle,
tvb_new_subset(tvb, 1, -1, -1), pinfo, parent_tree);
return;
}
sna_header_len += th_header_len;
offset = th_header_len;
if (tree) {
proto_item_set_len(th_ti, th_header_len);
/* --- RH --- */
rh_ti = proto_tree_add_item(tree, hf_sna_rh, tvb, offset, 3, FALSE);
rh_tree = proto_item_add_subtree(rh_ti, ett_sna_rh);
dissect_rh(tvb, offset, rh_tree);
sna_header_len += 3;
offset += 3;
}
else {
sna_header_len += 3;
offset += 3;
}
if (tvb_offset_exists(tvb, offset+1)) {
call_dissector(data_handle, tvb_new_subset(tvb, offset, -1, -1),
pinfo, parent_tree);
}
}
#define SNA_FID01_ADDR_LEN 2
/* FID Types 0 and 1 */
static int
dissect_fid0_1(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
const guint8 *ptr;
const int bytes_in_header = 10;
if (tree) {
/* Byte 0 */
th_0 = tvb_get_guint8(tvb, 0);
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
/* Byte 1 */
proto_tree_add_text(tree, tvb, 1, 1, "Reserved");
/* Bytes 2-3 */
proto_tree_add_item(tree, hf_sna_th_daf, tvb, 2, 2, FALSE);
}
/* Set DST addr */
ptr = tvb_get_ptr(tvb, 2, SNA_FID01_ADDR_LEN);
SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID01_ADDR_LEN, ptr);
SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID01_ADDR_LEN, ptr);
if (tree) {
proto_tree_add_item(tree, hf_sna_th_oaf, tvb, 4, 2, FALSE);
}
/* Set SRC addr */
ptr = tvb_get_ptr(tvb, 4, SNA_FID01_ADDR_LEN);
SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID01_ADDR_LEN, ptr);
SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID01_ADDR_LEN, ptr);
/* If we're not filling a proto_tree, return now */
if (tree) {
return bytes_in_header;
}
proto_tree_add_item(tree, hf_sna_th_snf, tvb, 6, 2, FALSE);
proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 8, 2, FALSE);
return bytes_in_header;
}
#define SNA_FID2_ADDR_LEN 1
/* FID Type 2 */
static int
dissect_fid2(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0=0, daf=0, oaf=0;
const guint8 *ptr;
const int bytes_in_header = 6;
if (tree) {
th_0 = tvb_get_guint8(tvb, 0);
daf = tvb_get_guint8(tvb, 2);
oaf = tvb_get_guint8(tvb, 3);
/* Byte 0 */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_odai,tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
/* Byte 1 */
proto_tree_add_text(tree, tvb, 1, 1, "Reserved");
/* Byte 2 */
proto_tree_add_uint_format(tree, hf_sna_th_daf, tvb, 2, 1, daf,
"Destination Address Field: 0x%02x", daf);
}
/* Set DST addr */
ptr = tvb_get_ptr(tvb, 2, SNA_FID2_ADDR_LEN);
SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID2_ADDR_LEN, ptr);
SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID2_ADDR_LEN, ptr);
if (tree) {
/* Byte 3 */
proto_tree_add_uint_format(tree, hf_sna_th_oaf, tvb, 3, 1, oaf,
"Origin Address Field: 0x%02x", oaf);
}
/* Set SRC addr */
ptr = tvb_get_ptr(tvb, 3, SNA_FID2_ADDR_LEN);
SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID2_ADDR_LEN, ptr);
SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID2_ADDR_LEN, ptr);
if (tree) {
proto_tree_add_item(tree, hf_sna_th_snf, tvb, 4, 2, FALSE);
}
return bytes_in_header;
}
/* FID Type 3 */
static int
dissect_fid3(tvbuff_t *tvb, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
const int bytes_in_header = 2;
/* If we're not filling a proto_tree, return now */
if (!tree) {
return bytes_in_header;
}
th_0 = tvb_get_guint8(tvb, 0);
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
proto_tree_add_item(tree, hf_sna_th_lsid, tvb, 1, 1, FALSE);
return bytes_in_header;
}
static int
dissect_fid4(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
int offset = 0;
guint8 th_byte, mft;
guint16 th_word;
guint16 def, oef;
guint32 dsaf, osaf;
static struct sna_fid_type_4_addr src, dst;
const int bytes_in_header = 26;
/* If we're not filling a proto_tree, return now */
if (!tree) {
return bytes_in_header;
}
if (tree) {
th_byte = tvb_get_guint8(tvb, offset);
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, offset, 1, th_byte);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 0 */
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_tg_sweep, tvb, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_er_vr_supp_ind, tvb, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_vr_pac_cnt_ind, tvb, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_ntwk_prty, tvb, offset, 1, th_byte);
offset += 1;
th_byte = tvb_get_guint8(tvb, offset);
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 1");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 1 */
proto_tree_add_uint(bf_tree, hf_sna_th_tgsf, tvb, offset, 1, th_byte);
proto_tree_add_boolean(bf_tree, hf_sna_th_mft, tvb, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_piubf, tvb, offset, 1, th_byte);
mft = th_byte & 0x04;
offset += 1;
th_byte = tvb_get_guint8(tvb, offset);
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 2");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 2 */
if (mft) {
proto_tree_add_uint(bf_tree, hf_sna_th_nlpoi, tvb, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_nlp_cp, tvb, offset, 1, th_byte);
}
else {
proto_tree_add_uint(bf_tree, hf_sna_th_iern, tvb, offset, 1, th_byte);
}
proto_tree_add_uint(bf_tree, hf_sna_th_ern, tvb, offset, 1, th_byte);
offset += 1;
th_byte = tvb_get_guint8(tvb, offset);
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, tvb, offset, 1, "Transmision Header Byte 3");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 3 */
proto_tree_add_uint(bf_tree, hf_sna_th_vrn, tvb, offset, 1, th_byte);
proto_tree_add_uint(bf_tree, hf_sna_th_tpf, tvb, offset, 1, th_byte);
offset += 1;
th_word = tvb_get_ntohs(tvb, offset);
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Bytes 4-5");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Bytes 4-5 */
proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwi, tvb, offset, 2, th_word);
proto_tree_add_boolean(bf_tree, hf_sna_th_tg_nonfifo_ind, tvb, offset, 2, th_word);
proto_tree_add_uint(bf_tree, hf_sna_th_vr_sqti, tvb, offset, 2, th_word);
/* I'm not sure about byte-order on this one... */
proto_tree_add_uint(bf_tree, hf_sna_th_tg_snf, tvb, offset, 2, th_word);
offset += 2;
th_word = tvb_get_ntohs(tvb, offset);
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Bytes 6-7");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Bytes 6-7 */
proto_tree_add_boolean(bf_tree, hf_sna_th_vrprq, tvb, offset, 2, th_word);
proto_tree_add_boolean(bf_tree, hf_sna_th_vrprs, tvb, offset, 2, th_word);
proto_tree_add_uint(bf_tree, hf_sna_th_vr_cwri, tvb, offset, 2, th_word);
proto_tree_add_boolean(bf_tree, hf_sna_th_vr_rwi, tvb, offset, 2, th_word);
/* I'm not sure about byte-order on this one... */
proto_tree_add_uint(bf_tree, hf_sna_th_vr_snf_send, tvb, offset, 2, th_word);
offset += 2;
}
dsaf = tvb_get_ntohl(tvb, 8);
if (tree) {
/* Bytes 8-11 */
proto_tree_add_uint(tree, hf_sna_th_dsaf, tvb, offset, 4, dsaf);
offset += 4;
}
osaf = tvb_get_ntohl(tvb, 12);
if (tree) {
/* Bytes 12-15 */
proto_tree_add_uint(tree, hf_sna_th_osaf, tvb, offset, 4, osaf);
offset += 4;
th_byte = tvb_get_guint8(tvb, offset);
/* Create the bitfield tree */
bf_item = proto_tree_add_text(tree, tvb, offset, 2, "Transmision Header Byte 16");
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
/* Byte 16 */
proto_tree_add_boolean(tree, hf_sna_th_snai, tvb, offset, 1, th_byte);
/* We luck out here because in their infinite wisdom the SNA
* architects placed the MPF and EFI fields in the same bitfield
* locations, even though for FID4 they're not in byte 0.
* Thank you IBM! */
proto_tree_add_uint(tree, hf_sna_th_mpf, tvb, offset, 1, th_byte);
proto_tree_add_uint(tree, hf_sna_th_efi, tvb, offset, 1, th_byte);
offset += 2; /* 1 for byte 16, 1 for byte 17 which is reserved */
}
def = tvb_get_ntohs(tvb, 18);
if (tree) {
/* Bytes 18-25 */
proto_tree_add_uint(tree, hf_sna_th_def, tvb, offset, 2, def);
}
/* Addresses in FID 4 are discontiguous, sigh */
dst.saf = dsaf;
dst.ef = def;
SET_ADDRESS(&pinfo->net_dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8* )&dst);
SET_ADDRESS(&pinfo->dst, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&dst);
oef = tvb_get_ntohs(tvb, 20);
if (tree) {
proto_tree_add_uint(tree, hf_sna_th_oef, tvb, offset+2, 2, oef);
}
/* Addresses in FID 4 are discontiguous, sigh */
src.saf = osaf;
src.ef = oef;
SET_ADDRESS(&pinfo->net_src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&src);
SET_ADDRESS(&pinfo->src, AT_SNA, SNA_FID_TYPE_4_ADDR_LEN, (guint8 *)&src);
if (tree) {
proto_tree_add_item(tree, hf_sna_th_snf, tvb, offset+4, 2, FALSE);
proto_tree_add_item(tree, hf_sna_th_dcf, tvb, offset+6, 2, FALSE);
}
return bytes_in_header;
}
/* FID Type 5 */
static int
dissect_fid5(tvbuff_t *tvb, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
const int bytes_in_header = 12;
/* If we're not filling a proto_tree, return now */
if (!tree) {
return bytes_in_header;
}
th_0 = tvb_get_guint8(tvb, 0);
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_mpf, tvb, 0, 1, th_0);
proto_tree_add_uint(bf_tree, hf_sna_th_efi, tvb, 0, 1, th_0);
proto_tree_add_text(tree, tvb, 1, 1, "Reserved");
proto_tree_add_item(tree, hf_sna_th_snf, tvb, 2, 2, FALSE);
proto_tree_add_item(tree, hf_sna_th_sa, tvb, 4, 8, FALSE);
return bytes_in_header;
}
/* FID Type f */
static int
dissect_fidf(tvbuff_t *tvb, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
guint8 th_0;
const int bytes_in_header = 26;
/* If we're not filling a proto_tree, return now */
if (!tree) {
return bytes_in_header;
}
th_0 = tvb_get_guint8(tvb, 0);
/* Create the bitfield tree */
bf_item = proto_tree_add_uint(tree, hf_sna_th_0, tvb, 0, 1, th_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_th_fid);
proto_tree_add_uint(bf_tree, hf_sna_th_fid, tvb, 0, 1, th_0);
proto_tree_add_text(tree, tvb, 1, 1, "Reserved");
proto_tree_add_item(tree, hf_sna_th_cmd_fmt, tvb, 2, 1, FALSE);
proto_tree_add_item(tree, hf_sna_th_cmd_type, tvb, 3, 1, FALSE);
proto_tree_add_item(tree, hf_sna_th_cmd_sn, tvb, 4, 2, FALSE);
/* Yup, bytes 6-23 are reserved! */
proto_tree_add_text(tree, tvb, 6, 18, "Reserved");
proto_tree_add_item(tree, hf_sna_th_dcf, tvb, 24, 2, FALSE);
return bytes_in_header;
}
/* HPR Network Layer Packet */
static void
dissect_nlp(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree,
proto_tree *parent_tree)
{
proto_tree *nlp_tree, *bf_tree;
proto_item *nlp_item, *bf_item, *h_item;
guint8 nhdr_0, nhdr_1, nhdr_x, thdr_8, thdr_9;
guint32 thdr_len, thdr_dlf, thdr_bsn;
int index = 0, counter = 0;
nlp_tree = NULL;
nlp_item = NULL;
nhdr_0 = tvb_get_guint8(tvb, index);
nhdr_1 = tvb_get_guint8(tvb, index+1);
if (check_col(pinfo->cinfo, COL_INFO))
col_add_str(pinfo->cinfo, COL_INFO, "HPR NLP Packet");
if (tree) {
/* Don't bother setting length. We'll set it later after we find
* the lengths of NHDR */
nlp_item = proto_tree_add_item(tree, hf_sna_nlp_nhdr, tvb, index, -1, FALSE);
nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_nhdr);
bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_nhdr_0, tvb, index, 1, nhdr_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_nhdr_0);
proto_tree_add_uint(bf_tree, hf_sna_nlp_sm, tvb, index, 1, nhdr_0);
proto_tree_add_uint(bf_tree, hf_sna_nlp_tpf, tvb, index, 1, nhdr_0);
bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_nhdr_1, tvb, index+1, 1, nhdr_1);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_nhdr_1);
proto_tree_add_uint(bf_tree, hf_sna_nlp_ft, tvb, index+1, 1, nhdr_1);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_tspi, tvb, index+1, 1, nhdr_1);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_slowdn1, tvb, index+1, 1, nhdr_1);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_slowdn2, tvb, index+1, 1, nhdr_1);
}
/* ANR or FR lists */
index += 2;
counter = 0;
if ((nhdr_0 & 0xe0) == 0xa0) {
do {
nhdr_x = tvb_get_guint8(tvb, index + counter);
counter ++;
} while (nhdr_x != 0xff);
if (tree)
h_item = proto_tree_add_item(nlp_tree, hf_sna_nlp_fra, tvb, index, counter, FALSE);
index += counter;
index++; /* 1 Byte Reserved */
if (tree) {
proto_item_set_len(nlp_item, index);
}
if ((nhdr_1 & 0x80) == 0x10) {
nhdr_x = tvb_get_guint8(tvb, index);
if (tree) {
proto_tree_add_uint(tree, hf_sna_nlp_frh, tvb, index, 1, nhdr_x);
}
index ++;
if (tvb_offset_exists(tvb, index+1)) {
call_dissector(data_handle,
tvb_new_subset(tvb, index, -1, -1),
pinfo, parent_tree);
}
return;
}
}
if ((nhdr_0 & 0xe0) == 0xc0) {
do {
nhdr_x = tvb_get_guint8(tvb, index + counter);
counter ++;
} while (nhdr_x != 0xff);
if (tree)
h_item = proto_tree_add_item(nlp_tree, hf_sna_nlp_anr, tvb, index, counter, FALSE);
index += counter;
index++; /* 1 Byte Reserved */
if (tree) {
proto_item_set_len(nlp_item, index);
}
}
thdr_8 = tvb_get_guint8(tvb, index+8);
thdr_9 = tvb_get_guint8(tvb, index+9);
thdr_len = tvb_get_ntohs(tvb, index+10);
thdr_dlf = tvb_get_ntohl(tvb, index+12);
thdr_bsn = tvb_get_ntohl(tvb, index+16);
if (tree) {
/* Don't bother setting length. We'll set it later after we find
* the lengths of NHDR */
nlp_item = proto_tree_add_item(tree, hf_sna_nlp_thdr, tvb, index, -1, FALSE);
nlp_tree = proto_item_add_subtree(nlp_item, ett_sna_nlp_thdr);
bf_item = proto_tree_add_item(nlp_tree, hf_sna_nlp_tcid, tvb, index, 8, FALSE);
bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_thdr_8, tvb, index+8, 1, thdr_8);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_thdr_8);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_setupi, tvb, index+8, 1, thdr_8);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_somi, tvb, index+8, 1, thdr_8);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_eomi, tvb, index+8, 1, thdr_8);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_sri, tvb, index+8, 1, thdr_8);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_rasapi, tvb, index+8, 1, thdr_8);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_retryi, tvb, index+8, 1, thdr_8);
bf_item = proto_tree_add_uint(nlp_tree, hf_sna_nlp_thdr_9, tvb, index+9, 1, thdr_9);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_nlp_thdr_9);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_lmi, tvb, index+9, 1, thdr_9);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_cqfi, tvb, index+9, 1, thdr_9);
proto_tree_add_boolean(bf_tree, hf_sna_nlp_osi, tvb, index+9, 1, thdr_9);
proto_tree_add_uint(nlp_tree, hf_sna_nlp_offset, tvb, index+10, 2, thdr_len);
proto_tree_add_uint(nlp_tree, hf_sna_nlp_dlf, tvb, index+12, 4, thdr_dlf);
proto_tree_add_uint(nlp_tree, hf_sna_nlp_bsn, tvb, index+16, 4, thdr_bsn);
proto_item_set_len(nlp_item, thdr_len);
}
index += (thdr_len << 2);
if (((thdr_8 & 0x20) == 0) && thdr_dlf) {
if (check_col(pinfo->cinfo, COL_INFO))
col_add_str(pinfo->cinfo, COL_INFO, "HPR Fragment");
if (tvb_offset_exists(tvb, index+1)) {
call_dissector(data_handle,
tvb_new_subset(tvb, index, -1, -1), pinfo,
parent_tree);
}
return;
}
if (tvb_offset_exists(tvb, index+1)) {
dissect_fid(tvb_new_subset(tvb, index, -1, -1), pinfo, tree,
parent_tree);
}
}
/* RH */
static void
dissect_rh(tvbuff_t *tvb, int offset, proto_tree *tree)
{
proto_tree *bf_tree;
proto_item *bf_item;
gboolean is_response;
guint8 rh_0, rh_1, rh_2;
/* Create the bitfield tree for byte 0*/
rh_0 = tvb_get_guint8(tvb, offset);
is_response = (rh_0 & 0x80);
bf_item = proto_tree_add_uint(tree, hf_sna_rh_0, tvb, offset, 1, rh_0);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_0);
proto_tree_add_uint(bf_tree, hf_sna_rh_rri, tvb, offset, 1, rh_0);
proto_tree_add_uint(bf_tree, hf_sna_rh_ru_category, tvb, offset, 1, rh_0);
proto_tree_add_boolean(bf_tree, hf_sna_rh_fi, tvb, offset, 1, rh_0);
proto_tree_add_boolean(bf_tree, hf_sna_rh_sdi, tvb, offset, 1, rh_0);
proto_tree_add_boolean(bf_tree, hf_sna_rh_bci, tvb, offset, 1, rh_0);
proto_tree_add_boolean(bf_tree, hf_sna_rh_eci, tvb, offset, 1, rh_0);
offset += 1;
rh_1 = tvb_get_guint8(tvb, offset);
/* Create the bitfield tree for byte 1*/
bf_item = proto_tree_add_uint(tree, hf_sna_rh_1, tvb, offset, 1, rh_1);
bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_1);
proto_tree_add_boolean(bf_tree, hf_sna_rh_dr1, tvb, offset, 1, rh_1);
if (!is_response) {
proto_tree_add_boolean(bf_tree, hf_sna_rh_lcci, tvb, offset, 1, rh_1);
}
proto_tree_add_boolean(bf_tree, hf_sna_rh_dr2, tvb, offset, 1, rh_1);
if (is_response) {
proto_tree_add_boolean(bf_tree, hf_sna_rh_rti, tvb, offset, 1, rh_1);
}
else {
proto_tree_add_boolean(bf_tree, hf_sna_rh_eri, tvb, offset, 1, rh_1);
proto_tree_add_boolean(bf_tree, hf_sna_rh_rlwi, tvb, offset, 1, rh_1);
}
proto_tree_add_boolean(bf_tree, hf_sna_rh_qri, tvb, offset, 1, rh_1);
proto_tree_add_boolean(bf_tree, hf_sna_rh_pi, tvb, offset, 1, rh_1);
offset += 1;
rh_2 = tvb_get_guint8(tvb, offset);
/* Create the bitfield tree for byte 2*/
bf_item = proto_tree_add_uint(tree, hf_sna_rh_2, tvb, offset, 1, rh_2);
if (!is_response) {
bf_tree = proto_item_add_subtree(bf_item, ett_sna_rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_bbi, tvb, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_ebi, tvb, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_cdi, tvb, offset, 1, rh_2);
proto_tree_add_uint(bf_tree, hf_sna_rh_csi, tvb, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_edi, tvb, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_pdi, tvb, offset, 1, rh_2);
proto_tree_add_boolean(bf_tree, hf_sna_rh_cebi, tvb, offset, 1, rh_2);
}
/* XXX - check for sdi. If TRUE, the next 4 bytes will be sense data */
}
void
proto_register_sna(void)
{
static hf_register_info hf[] = {
{ &hf_sna_th,
{ "Transmission Header", "sna.th", FT_NONE, BASE_NONE, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_0,
{ "Transmission Header Byte 0", "sna.th.0", FT_UINT8, BASE_HEX, NULL, 0x0,
"Byte 0 of Tranmission Header contains FID, MPF, ODAI,"
" and EFI as bitfields.", HFILL }},
{ &hf_sna_th_fid,
{ "Format Identifer", "sna.th.fid", FT_UINT8, BASE_HEX, VALS(sna_th_fid_vals), 0xf0,
"Format Identification", HFILL }},
{ &hf_sna_th_mpf,
{ "Mapping Field", "sna.th.mpf", FT_UINT8, BASE_DEC, VALS(sna_th_mpf_vals), 0x0c,
"The Mapping Field specifies whether the information field"
" associated with the TH is a complete or partial BIU.", HFILL }},
{ &hf_sna_th_odai,
{ "ODAI Assignment Indicator", "sna.th.odai", FT_UINT8, BASE_DEC, NULL, 0x02,
"The ODAI indicates which node assigned the OAF'-DAF' values"
" carried in the TH.", HFILL }},
{ &hf_sna_th_efi,
{ "Expedited Flow Indicator", "sna.th.efi", FT_UINT8, BASE_DEC, VALS(sna_th_efi_vals), 0x01,
"The EFI designates whether the PIU belongs to the normal"
" or expedited flow.", HFILL }},
{ &hf_sna_th_daf,
{ "Destination Address Field", "sna.th.daf", FT_UINT16, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_oaf,
{ "Origin Address Field", "sna.th.oaf", FT_UINT16, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_snf,
{ "Sequence Number Field", "sna.th.snf", FT_UINT16, BASE_DEC, NULL, 0x0,
"The Sequence Number Field contains a numerical identifier for"
" the associated BIU.", HFILL }},
{ &hf_sna_th_dcf,
{ "Data Count Field", "sna.th.dcf", FT_UINT16, BASE_DEC, NULL, 0x0,
"A binary count of the number of bytes in the BIU or BIU segment associated "
"with the tranmission header. The count does not include any of the bytes "
"in the transmission header.", HFILL }},
{ &hf_sna_th_lsid,
{ "Local Session Identification", "sna.th.lsid", FT_UINT8, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_tg_sweep,
{ "Transmission Group Sweep", "sna.th.tg_sweep", FT_UINT8, BASE_DEC,
VALS(sna_th_tg_sweep_vals), 0x08,
"", HFILL }},
{ &hf_sna_th_er_vr_supp_ind,
{ "ER and VR Support Indicator", "sna.th.er_vr_supp_ind", FT_UINT8, BASE_DEC,
VALS(sna_th_er_vr_supp_ind_vals), 0x04,
"", HFILL }},
{ &hf_sna_th_vr_pac_cnt_ind,
{ "Virtual Route Pacing Count Indicator", "sna.th.vr_pac_cnt_ind",
FT_UINT8, BASE_DEC, VALS(sna_th_vr_pac_cnt_ind_vals), 0x02,
"", HFILL }},
{ &hf_sna_th_ntwk_prty,
{ "Network Priority", "sna.th.ntwk_prty",
FT_UINT8, BASE_DEC, VALS(sna_th_ntwk_prty_vals), 0x01,
"", HFILL }},
{ &hf_sna_th_tgsf,
{ "Transmission Group Segmenting Field", "sna.th.tgsf",
FT_UINT8, BASE_HEX, VALS(sna_th_tgsf_vals), 0xc0,
"", HFILL }},
{ &hf_sna_th_mft,
{ "MPR FID4 Type", "sna.th.mft", FT_BOOLEAN, BASE_NONE, NULL, 0x04,
"", HFILL }},
{ &hf_sna_th_piubf,
{ "PIU Blocking Field", "sna.th.piubf", FT_UINT8, BASE_HEX,
VALS(sna_th_piubf_vals), 0x03,
"Specifies whether this frame contains a single PIU or multiple PIUs.", HFILL }},
{ &hf_sna_th_iern,
{ "Initial Explicit Route Number", "sna.th.iern", FT_UINT8, BASE_DEC, NULL, 0xf0,
"", HFILL }},
{ &hf_sna_th_nlpoi,
{ "NLP Offset Indicator", "sna.th.nlpoi", FT_UINT8, BASE_DEC,
VALS(sna_th_nlpoi_vals), 0x80,
"", HFILL }},
{ &hf_sna_th_nlp_cp,
{ "NLP Count or Padding", "sna.th.nlp_cp", FT_UINT8, BASE_DEC, NULL, 0x70,
"", HFILL }},
{ &hf_sna_th_ern,
{ "Explicit Route Number", "sna.th.ern", FT_UINT8, BASE_DEC, NULL, 0x0f,
"The ERN in a TH identifies an explicit route direction of flow.", HFILL }},
{ &hf_sna_th_vrn,
{ "Virtual Route Number", "sna.th.vrn", FT_UINT8, BASE_DEC, NULL, 0xf0,
"", HFILL }},
{ &hf_sna_th_tpf,
{ "Transmission Priority Field", "sna.th.tpf", FT_UINT8, BASE_HEX,
VALS(sna_th_tpf_vals), 0x03,
"", HFILL }},
{ &hf_sna_th_vr_cwi,
{ "Virtual Route Change Window Indicator", "sna.th.vr_cwi", FT_UINT16, BASE_DEC,
VALS(sna_th_vr_cwi_vals), 0x8000,
"Used to change the window size of the virtual route by 1.", HFILL }},
{ &hf_sna_th_tg_nonfifo_ind,
{ "Transmission Group Non-FIFO Indicator", "sna.th.tg_nonfifo_ind", FT_BOOLEAN, 16,
TFS(&sna_th_tg_nonfifo_ind_truth), 0x4000,
"Indicates whether or not FIFO discipline is to enforced in "
"transmitting PIUs through the tranmission groups to prevent the PIUs "
"getting out of sequence during transmission over the TGs.", HFILL }},
{ &hf_sna_th_vr_sqti,
{ "Virtual Route Sequence and Type Indicator", "sna.th.vr_sqti", FT_UINT16, BASE_HEX,
VALS(sna_th_vr_sqti_vals), 0x3000,
"Specifies the PIU type.", HFILL }},
{ &hf_sna_th_tg_snf,
{ "Transmission Group Sequence Number Field", "sna.th.tg_snf", FT_UINT16, BASE_DEC,
NULL, 0x0fff,
"", HFILL }},
{ &hf_sna_th_vrprq,
{ "Virtual Route Pacing Request", "sna.th.vrprq", FT_BOOLEAN, 16,
TFS(&sna_th_vrprq_truth), 0x8000,
"", HFILL }},
{ &hf_sna_th_vrprs,
{ "Virtual Route Pacing Response", "sna.th.vrprs", FT_BOOLEAN, 16,
TFS(&sna_th_vrprs_truth), 0x4000,
"", HFILL }},
{ &hf_sna_th_vr_cwri,
{ "Virtual Route Change Window Reply Indicator", "sna.th.vr_cwri", FT_UINT16, BASE_DEC,
VALS(sna_th_vr_cwri_vals), 0x2000,
"Permits changing of the window size by 1 for PIUs received by the "
"sender of this bit.", HFILL }},
{ &hf_sna_th_vr_rwi,
{ "Virtual Route Reset Window Indicator", "sna.th.vr_rwi", FT_BOOLEAN, 16,
TFS(&sna_th_vr_rwi_truth), 0x1000,
"Indicates severe congestion in a node on the virtual route.", HFILL }},
{ &hf_sna_th_vr_snf_send,
{ "Virtual Route Send Sequence Number Field", "sna.th.vr_snf_send", FT_UINT16, BASE_DEC,
NULL, 0x0fff,
"", HFILL }},
{ &hf_sna_th_dsaf,
{ "Destination Subarea Address Field", "sna.th.dsaf", FT_UINT32, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_osaf,
{ "Origin Subarea Address Field", "sna.th.osaf", FT_UINT32, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_snai,
{ "SNA Indicator", "sna.th.snai", FT_BOOLEAN, 8, NULL, 0x10,
"Used to identify whether the PIU originated or is destined for "
"an SNA or non-SNA device.", HFILL }},
{ &hf_sna_th_def,
{ "Destination Element Field", "sna.th.def", FT_UINT16, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_oef,
{ "Origin Element Field", "sna.th.oef", FT_UINT16, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_sa,
{ "Session Address", "sna.th.sa", FT_BYTES, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_cmd_fmt,
{ "Command Format", "sna.th.cmd_fmt", FT_UINT8, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_cmd_type,
{ "Command Type", "sna.th.cmd_type", FT_UINT8, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_th_cmd_sn,
{ "Command Sequence Number", "sna.th.cmd_sn", FT_UINT16, BASE_DEC, NULL, 0x0,
"", HFILL }},
{ &hf_sna_nlp_nhdr,
{ "Network Layer Packet Header", "sna.nlp.nhdr", FT_NONE, BASE_NONE, NULL, 0x0,
"Network Layer Packet Header (NHDR)", HFILL }},
{ &hf_sna_nlp_nhdr_0,
{ "Network Layer Packet Header Byte 0", "sna.nlp.nhdr.0", FT_UINT8, BASE_HEX, NULL, 0x0,
"Byte 0 of Network Layer Packet contains SM and TPF", HFILL }},
{ &hf_sna_nlp_nhdr_1,
{ "Network Layer Packet Header Bype 1", "sna.nlp.nhdr.1", FT_UINT8, BASE_HEX, NULL, 0x0,
"Byte 1 of Network Layer Packet contains FT,"
" Time Sensitive Packet Indicator and Congestion Indicator", HFILL }},
{ &hf_sna_nlp_sm,
{ "Switching Mode Field", "sna.nlp.nhdr.sm", FT_UINT8, BASE_HEX,
VALS(sna_nlp_sm_vals), 0xe0,
"", HFILL }},
{ &hf_sna_nlp_tpf,
{ "Transmission Priority Field", "sna.nlp.nhdr.tpf", FT_UINT8, BASE_HEX,
VALS(sna_th_tpf_vals), 0x06,
"", HFILL }},
{ &hf_sna_nlp_ft,
{ "Function Type", "sna.nlp.nhdr.ft", FT_UINT8, BASE_HEX,
VALS(sna_nlp_ft_vals), 0xF0,
"", HFILL }},
{ &hf_sna_nlp_tspi,
{ "Time Sensitive Packet Indicator", "sna.nlp.nhdr.tspi", FT_BOOLEAN, 8,
TFS(&sna_nlp_tspi_truth), 0x08,
"", HFILL }},
{ &hf_sna_nlp_slowdn1,
{ "Slowdown 1", "sna.nlp.nhdr.slowdn1", FT_BOOLEAN, 8,
TFS(&sna_nlp_slowdn1_truth), 0x04,
"", HFILL }},
{ &hf_sna_nlp_slowdn2,
{ "Slowdown 2", "sna.nlp.nhdr.slowdn2", FT_BOOLEAN, 8,
TFS(&sna_nlp_slowdn2_truth), 0x02,
"", HFILL }},
{ &hf_sna_nlp_fra,
{ "Function Routing Address Entry", "sna.nlp.nhdr.fra", FT_BYTES, BASE_NONE, NULL, 0,
"", HFILL }},
{ &hf_sna_nlp_anr,
{ "Automatic Network Routing Entry", "sna.nlp.nhdr.anr", FT_BYTES, BASE_HEX, NULL, 0,
"", HFILL }},
{ &hf_sna_nlp_frh,
{ "Transmission Priority Field", "sna.nlp.frh", FT_UINT8, BASE_HEX,
VALS(sna_nlp_frh_vals), 0, "", HFILL }},
{ &hf_sna_nlp_thdr,
{ "RTP Transport Header", "sna.nlp.thdr", FT_NONE, BASE_NONE, NULL, 0x0,
"RTP Transport Header (THDR)", HFILL }},
{ &hf_sna_nlp_tcid,
{ "Transport Connection Identifier", "sna.nlp.thdr.tcid", FT_BYTES, BASE_HEX, NULL, 0x0,
"Transport Connection Identifier (TCID)", HFILL }},
{ &hf_sna_nlp_thdr_8,
{ "RTP Transport Packet Header Bype 8", "sna.nlp.thdr.8", FT_UINT8, BASE_HEX, NULL, 0x0,
"Byte 8 of RTP Transport Packet Header", HFILL }},
{ &hf_sna_nlp_setupi,
{ "Setup Indicator", "sna.nlp.thdr.setupi", FT_BOOLEAN, 8,
TFS(&sna_nlp_setupi_truth), 0x40,
"", HFILL }},
{ &hf_sna_nlp_somi,
{ "Start Of Message Indicator", "sna.nlp.thdr.somi", FT_BOOLEAN, 8,
TFS(&sna_nlp_somi_truth), 0x20,
"", HFILL }},
{ &hf_sna_nlp_eomi,
{ "End Of Message Indicator", "sna.nlp.thdr.eomi", FT_BOOLEAN, 8,
TFS(&sna_nlp_eomi_truth), 0x10,
"", HFILL }},
{ &hf_sna_nlp_sri,
{ "Session Request Indicator", "sna.nlp.thdr.sri", FT_BOOLEAN, 8,
TFS(&sna_nlp_sri_truth), 0x08,
"", HFILL }},
{ &hf_sna_nlp_rasapi,
{ "Reply ASAP Indicator", "sna.nlp.thdr.rasapi", FT_BOOLEAN, 8,
TFS(&sna_nlp_rasapi_truth), 0x04,
"", HFILL }},
{ &hf_sna_nlp_retryi,
{ "Retry Indicator", "sna.nlp.thdr.retryi", FT_BOOLEAN, 8,
TFS(&sna_nlp_retryi_truth), 0x02,
"", HFILL }},
{ &hf_sna_nlp_thdr_9,
{ "RTP Transport Packet Header Bype 9", "sna.nlp.thdr.9", FT_UINT8, BASE_HEX, NULL, 0x0,
"Byte 9 of RTP Transport Packet Header", HFILL }},
{ &hf_sna_nlp_lmi,
{ "Last Message Indicator", "sna.nlp.thdr.lmi", FT_BOOLEAN, 8,
TFS(&sna_nlp_lmi_truth), 0x80,
"", HFILL }},
{ &hf_sna_nlp_cqfi,
{ "Connection Qualifyer Field Indicator", "sna.nlp.thdr.cqfi", FT_BOOLEAN, 8,
TFS(&sna_nlp_cqfi_truth), 0x08,
"", HFILL }},
{ &hf_sna_nlp_osi,
{ "Optional Segments Present Indicator", "sna.nlp.thdr.osi", FT_BOOLEAN, 8,
TFS(&sna_nlp_osi_truth), 0x04,
"", HFILL }},
{ &hf_sna_nlp_offset,
{ "Data Offset/4", "sna.nlp.thdr.offset", FT_UINT16, BASE_HEX, NULL, 0x0,
"Data Offset in words", HFILL }},
{ &hf_sna_nlp_dlf,
{ "Data Length Field", "sna.nlp.thdr.dlf", FT_UINT32, BASE_HEX, NULL, 0x0,
"Data Length Field", HFILL }},
{ &hf_sna_nlp_bsn,
{ "Byte Sequence Number", "sna.nlp.thdr.bsn", FT_UINT32, BASE_HEX, NULL, 0x0,
"Byte Sequence Number", HFILL }},
{ &hf_sna_rh,
{ "Request/Response Header", "sna.rh", FT_NONE, BASE_NONE, NULL, 0x0,
"", HFILL }},
{ &hf_sna_rh_0,
{ "Request/Response Header Byte 0", "sna.rh.0", FT_UINT8, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_rh_1,
{ "Request/Response Header Byte 1", "sna.rh.1", FT_UINT8, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_rh_2,
{ "Request/Response Header Byte 2", "sna.rh.2", FT_UINT8, BASE_HEX, NULL, 0x0,
"", HFILL }},
{ &hf_sna_rh_rri,
{ "Request/Response Indicator", "sna.rh.rri", FT_UINT8, BASE_DEC, VALS(sna_rh_rri_vals), 0x80,
"Denotes whether this is a request or a response.", HFILL }},
{ &hf_sna_rh_ru_category,
{ "Request/Response Unit Category", "sna.rh.ru_category", FT_UINT8, BASE_HEX,
VALS(sna_rh_ru_category_vals), 0x60,
"", HFILL }},
{ &hf_sna_rh_fi,
{ "Format Indicator", "sna.rh.fi", FT_BOOLEAN, 8, TFS(&sna_rh_fi_truth), 0x08,
"", HFILL }},
{ &hf_sna_rh_sdi,
{ "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN, 8, TFS(&sna_rh_sdi_truth), 0x04,
"Indicates that a 4-byte sense data field is included in the associated RU.", HFILL }},
{ &hf_sna_rh_bci,
{ "Begin Chain Indicator", "sna.rh.bci", FT_BOOLEAN, 8, TFS(&sna_rh_bci_truth), 0x02,
"", HFILL }},
{ &hf_sna_rh_eci,
{ "End Chain Indicator", "sna.rh.eci", FT_BOOLEAN, 8, TFS(&sna_rh_eci_truth), 0x01,
"", HFILL }},
{ &hf_sna_rh_dr1,
{ "Definite Response 1 Indicator", "sna.rh.dr1", FT_BOOLEAN, 8, NULL, 0x80,
"", HFILL }},
{ &hf_sna_rh_lcci,
{ "Length-Checked Compression Indicator", "sna.rh.lcci", FT_BOOLEAN, 8,
TFS(&sna_rh_lcci_truth), 0x40,
"", HFILL }},
{ &hf_sna_rh_dr2,
{ "Definite Response 2 Indicator", "sna.rh.dr2", FT_BOOLEAN, 8, NULL, 0x20,
"", HFILL }},
{ &hf_sna_rh_eri,
{ "Exception Response Indicator", "sna.rh.eri", FT_BOOLEAN, 8, NULL, 0x10,
"Used in conjunction with DR1I and DR2I to indicate, in a request, "
"the form of response requested.", HFILL }},
{ &hf_sna_rh_rti,
{ "Response Type Indicator", "sna.rh.rti", FT_BOOLEAN, 8, TFS(&sna_rh_rti_truth), 0x10,
"", HFILL }},
{ &hf_sna_rh_rlwi,
{ "Request Larger Window Indicator", "sna.rh.rlwi", FT_BOOLEAN, 8, NULL, 0x04,
"Indicates whether a larger pacing window was requested.", HFILL }},
{ &hf_sna_rh_qri,
{ "Queued Response Indicator", "sna.rh.qri", FT_BOOLEAN, 8, TFS(&sna_rh_qri_truth), 0x02,
"", HFILL }},
{ &hf_sna_rh_pi,
{ "Pacing Indicator", "sna.rh.pi", FT_BOOLEAN, 8, NULL, 0x01,
"", HFILL }},
{ &hf_sna_rh_bbi,
{ "Begin Bracket Indicator", "sna.rh.bbi", FT_BOOLEAN, 8, NULL, 0x80,
"", HFILL }},
{ &hf_sna_rh_ebi,
{ "End Bracket Indicator", "sna.rh.ebi", FT_BOOLEAN, 8, NULL, 0x40,
"", HFILL }},
{ &hf_sna_rh_cdi,
{ "Change Direction Indicator", "sna.rh.cdi", FT_BOOLEAN, 8, NULL, 0x20,
"", HFILL }},
{ &hf_sna_rh_csi,
{ "Code Selection Indicator", "sna.rh.csi", FT_UINT8, BASE_DEC, VALS(sna_rh_csi_vals), 0x08,
"Specifies the encoding used for the associated FMD RU.", HFILL }},
{ &hf_sna_rh_edi,
{ "Enciphered Data Indicator", "sna.rh.edi", FT_BOOLEAN, 8, NULL, 0x04,
"Indicates that information in the associated RU is enciphered under "
"session-level cryptography protocols.", HFILL }},
{ &hf_sna_rh_pdi,
{ "Padded Data Indicator", "sna.rh.pdi", FT_BOOLEAN, 8, NULL, 0x02,
"Indicates that the RU was padded at the end, before encipherment, to the next "
"integral multiple of 8 bytes.", HFILL }},
{ &hf_sna_rh_cebi,
{ "Conditional End Bracket Indicator", "sna.rh.cebi", FT_BOOLEAN, 8, NULL, 0x01,
"Used to indicate the beginning or end of a group of exchanged "
"requests and responses called a bracket. Only used on LU-LU sessions.", HFILL }},
/* { &hf_sna_ru,
{ "Request/Response Unit", "sna.ru", FT_NONE, BASE_NONE, NULL, 0x0,
"", HFILL }},*/
};
static gint *ett[] = {
&ett_sna,
&ett_sna_th,
&ett_sna_th_fid,
&ett_sna_nlp_nhdr,
&ett_sna_nlp_nhdr_0,
&ett_sna_nlp_nhdr_1,
&ett_sna_nlp_thdr,
&ett_sna_nlp_thdr_8,
&ett_sna_nlp_thdr_9,
&ett_sna_rh,
&ett_sna_rh_0,
&ett_sna_rh_1,
&ett_sna_rh_2,
};
proto_sna = proto_register_protocol("Systems Network Architecture",
"SNA", "sna");
proto_register_field_array(proto_sna, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
register_dissector("sna", dissect_sna, proto_sna);
}
void
proto_reg_handoff_sna(void)
{
dissector_handle_t sna_handle;
sna_handle = find_dissector("sna");
dissector_add("llc.dsap", SAP_SNA_PATHCTRL, sna_handle);
/* RFC 2043 */
dissector_add("ppp.protocol", PPP_SNA, sna_handle);
data_handle = find_dissector("data");
}