wireshark/packet-eth.c

272 lines
8.4 KiB
C

/* packet-eth.c
* Routines for ethernet packet disassembly
*
* $Id: packet-eth.c,v 1.28 2000/01/24 18:46:44 guy Exp $
*
* Ethereal - Network traffic analyzer
* By Gerald Combs <gerald@zing.org>
* Copyright 1998 Gerald Combs
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
#endif
#include <glib.h>
#include "packet.h"
#include "etypes.h"
#include "resolv.h"
extern const value_string etype_vals[];
/* protocols and header fields */
static int proto_eth = -1;
static int hf_eth_dst = -1;
static int hf_eth_src = -1;
static int hf_eth_len = -1;
static int hf_eth_type = -1;
static gint ett_ieee8023 = -1;
static gint ett_ether2 = -1;
#define ETH_HEADER_SIZE 14
/* These are the Netware-ish names for the different Ethernet frame types.
EthernetII: The ethernet with a Type field instead of a length field
Ethernet802.2: An 802.3 header followed by an 802.3 header
Ethernet802.3: A raw 802.3 packet. IPX/SPX can be the only payload.
There's not 802.2 hdr in this.
EthernetSNAP: Basically 802.2, just with 802.2SNAP. For our purposes,
there's no difference between 802.2 and 802.2SNAP, since we just
pass it down to dissect_llc(). -- Gilbert
*/
#define ETHERNET_II 0
#define ETHERNET_802_2 1
#define ETHERNET_802_3 2
#define ETHERNET_SNAP 3
void
capture_eth(const u_char *pd, int offset, packet_counts *ld)
{
guint16 etype, length;
int ethhdr_type; /* the type of ethernet frame */
if (!BYTES_ARE_IN_FRAME(offset, ETH_HEADER_SIZE)) {
ld->other++;
return;
}
etype = pntohs(&pd[offset+12]);
/* either ethernet802.3 or ethernet802.2 */
if (etype <= IEEE_802_3_MAX_LEN) {
length = etype;
/* Is there an 802.2 layer? I can tell by looking at the first 2
bytes after the 802.3 header. If they are 0xffff, then what
follows the 802.3 header is an IPX payload, meaning no 802.2.
(IPX/SPX is they only thing that can be contained inside a
straight 802.3 packet). A non-0xffff value means that there's an
802.2 layer inside the 802.3 layer */
if (pd[offset+14] == 0xff && pd[offset+15] == 0xff) {
ethhdr_type = ETHERNET_802_3;
}
else {
ethhdr_type = ETHERNET_802_2;
}
/* Oh, yuck. Cisco ISL frames require special interpretation of the
destination address field; fortunately, they can be recognized by
checking the first 5 octets of the destination address, which are
01-00-0C-00-00 for ISL frames. */
if (pd[offset] == 0x01 && pd[offset+1] == 0x00 && pd[offset+2] == 0x0C
&& pd[offset+3] == 0x00 && pd[offset+4] == 0x00) {
capture_isl(pd, offset, ld);
return;
}
/* Convert the LLC length from the 802.3 header to a total
frame length, by adding in the size of any data that preceded
the Ethernet header, and adding in the Ethernet header size,
and set the payload and captured-payload lengths to the minima
of the total length and the frame lengths. */
length += offset + ETH_HEADER_SIZE;
if (pi.len > length)
pi.len = length;
if (pi.captured_len > length)
pi.captured_len = length;
} else {
ethhdr_type = ETHERNET_II;
}
offset += ETH_HEADER_SIZE;
switch (ethhdr_type) {
case ETHERNET_802_3:
capture_ipx(pd, offset, ld);
break;
case ETHERNET_802_2:
capture_llc(pd, offset, ld);
break;
case ETHERNET_II:
capture_ethertype(etype, offset, pd, ld);
break;
}
}
void
dissect_eth(const u_char *pd, int offset, frame_data *fd, proto_tree *tree)
{
guint16 etype, length;
proto_tree *fh_tree = NULL;
proto_item *ti;
int ethhdr_type; /* the type of ethernet frame */
if (!BYTES_ARE_IN_FRAME(offset, ETH_HEADER_SIZE)) {
dissect_data(pd, offset, fd, tree);
return;
}
SET_ADDRESS(&pi.dl_src, AT_ETHER, 6, &pd[offset+6]);
SET_ADDRESS(&pi.src, AT_ETHER, 6, &pd[offset+6]);
SET_ADDRESS(&pi.dl_dst, AT_ETHER, 6, &pd[offset+0]);
SET_ADDRESS(&pi.dst, AT_ETHER, 6, &pd[offset+0]);
if (check_col(fd, COL_PROTOCOL))
col_add_str(fd, COL_PROTOCOL, "Ethernet");
etype = pntohs(&pd[offset+12]);
/* either ethernet802.3 or ethernet802.2 */
if (etype <= IEEE_802_3_MAX_LEN) {
length = etype;
/* Is there an 802.2 layer? I can tell by looking at the first 2
bytes after the 802.3 header. If they are 0xffff, then what
follows the 802.3 header is an IPX payload, meaning no 802.2.
(IPX/SPX is they only thing that can be contained inside a
straight 802.3 packet). A non-0xffff value means that there's an
802.2 layer inside the 802.3 layer */
if (pd[offset+14] == 0xff && pd[offset+15] == 0xff) {
ethhdr_type = ETHERNET_802_3;
}
else {
ethhdr_type = ETHERNET_802_2;
}
/* Oh, yuck. Cisco ISL frames require special interpretation of the
destination address field; fortunately, they can be recognized by
checking the first 5 octets of the destination address, which are
01-00-0C-00-00 for ISL frames. */
if (pd[offset] == 0x01 && pd[offset+1] == 0x00 && pd[offset+2] == 0x0C
&& pd[offset+3] == 0x00 && pd[offset+4] == 0x00) {
dissect_isl(pd, offset, fd, tree);
return;
}
if (check_col(fd, COL_INFO)) {
col_add_fstr(fd, COL_INFO, "IEEE 802.3 %s",
(ethhdr_type == ETHERNET_802_3 ? "Raw " : ""));
}
if (tree) {
ti = proto_tree_add_item_format(tree, proto_eth, offset, ETH_HEADER_SIZE,
NULL, "IEEE 802.3 %s", (ethhdr_type == ETHERNET_802_3 ? "Raw " : ""));
fh_tree = proto_item_add_subtree(ti, ett_ieee8023);
proto_tree_add_item(fh_tree, hf_eth_dst, offset+0, 6, &pd[offset+0]);
proto_tree_add_item(fh_tree, hf_eth_src, offset+6, 6, &pd[offset+6]);
proto_tree_add_item(fh_tree, hf_eth_len, offset+12, 2, length);
}
/* Convert the LLC length from the 802.3 header to a total
frame length, by adding in the size of any data that preceded
the Ethernet header, and adding in the Ethernet header size,
and set the payload and captured-payload lengths to the minima
of the total length and the frame lengths. */
length += offset + ETH_HEADER_SIZE;
if (pi.len > length)
pi.len = length;
if (pi.captured_len > length)
pi.captured_len = length;
} else {
ethhdr_type = ETHERNET_II;
if (check_col(fd, COL_INFO))
col_add_str(fd, COL_INFO, "Ethernet II");
if (tree) {
ti = proto_tree_add_item_format(tree, proto_eth, offset, ETH_HEADER_SIZE,
NULL, "Ethernet II");
fh_tree = proto_item_add_subtree(ti, ett_ether2);
proto_tree_add_item(fh_tree, hf_eth_dst, offset+0, 6, &pd[offset+0]);
proto_tree_add_item(fh_tree, hf_eth_src, offset+6, 6, &pd[offset+6]);
}
}
offset += ETH_HEADER_SIZE;
switch (ethhdr_type) {
case ETHERNET_802_3:
dissect_ipx(pd, offset, fd, tree);
break;
case ETHERNET_802_2:
dissect_llc(pd, offset, fd, tree);
break;
case ETHERNET_II:
ethertype(etype, offset, pd, fd, tree, fh_tree, hf_eth_type);
break;
}
}
void
proto_register_eth(void)
{
static hf_register_info hf[] = {
{ &hf_eth_dst,
{ "Destination", "eth.dst", FT_ETHER, BASE_NONE, NULL, 0x0,
"Destination Hardware Address" }},
{ &hf_eth_src,
{ "Source", "eth.src", FT_ETHER, BASE_NONE, NULL, 0x0,
"Source Hardware Address" }},
{ &hf_eth_len,
{ "Length", "eth.len", FT_UINT16, BASE_DEC, NULL, 0x0,
"" }},
/* registered here but handled in ethertype.c */
{ &hf_eth_type,
{ "Type", "eth.type", FT_UINT16, BASE_HEX, VALS(etype_vals), 0x0,
"" }}
};
static gint *ett[] = {
&ett_ieee8023,
&ett_ether2,
};
proto_eth = proto_register_protocol ("Ethernet", "eth" );
proto_register_field_array(proto_eth, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
}