wireshark/packet-h263.c

539 lines
14 KiB
C

/* packet-h263.c
*
* Routines for ITU-T Recommendation H.263 dissection
*
* Copyright 2003 Niklas Ögren <niklas.ogren@7l.se>
* Seven Levels Consultants AB
*
* $Id: packet-h263.c,v 1.4 2003/08/25 21:48:44 guy Exp $
*
* Ethereal - Network traffic analyzer
* By Gerald Combs <gerald@ethereal.com>
* Copyright 1998 Gerald Combs
*
* Copied structure from packet-h261.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* This dissector tries to dissect the H.263 protocol according to
* ITU-T Recommendations and RFC 2190
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <glib.h>
#include <epan/packet.h>
#include <stdio.h>
#include <string.h>
#include "rtp_pt.h"
/* H.263 header fields */
static int proto_h263 = -1;
/* Mode A header */
static int hf_h263_ftype = -1;
static int hf_h263_pbframes = -1;
static int hf_h263_sbit = -1;
static int hf_h263_ebit = -1;
static int hf_h263_srcformat = -1;
static int hf_h263_picture_coding_type = -1;
static int hf_h263_unrestricted_motion_vector = -1;
static int hf_h263_syntax_based_arithmetic = -1;
static int hf_h263_advanced_prediction = -1;
static int hf_h263_r = -1;
static int hf_h263_rr = -1;
static int hf_h263_dbq = -1;
static int hf_h263_trb = -1;
static int hf_h263_tr = -1;
/* Additional fields for Mode B or C header */
static int hf_h263_quant = -1;
static int hf_h263_gobn = -1;
static int hf_h263_mba = -1;
static int hf_h263_hmv1 = -1;
static int hf_h263_vmv1 = -1;
static int hf_h263_hmv2 = -1;
static int hf_h263_vmv2 = -1;
static int hf_h263_data = -1;
/* Source format types */
#define SRCFORMAT_FORB 0 /* forbidden */
#define SRCFORMAT_SQCIF 1
#define SRCFORMAT_QCIF 2
#define SRCFORMAT_CIF 3
#define SRCFORMAT_4CIF 4
#define SRCFORMAT_16CIF 5
static const value_string srcformat_vals[] =
{
{ SRCFORMAT_FORB, "forbidden" },
{ SRCFORMAT_SQCIF, "sub-QCIF 128x96" },
{ SRCFORMAT_QCIF, "QCIF 176x144" },
{ SRCFORMAT_CIF, "CIF 352x288" },
{ SRCFORMAT_4CIF, "4CIF 704x576" },
{ SRCFORMAT_16CIF, "16CIF 1408x1152" },
{ 0, NULL },
};
/* H.263 fields defining a sub tree */
static gint ett_h263 = -1;
static void
dissect_h263( tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree )
{
proto_item *ti = NULL;
proto_tree *h263_tree = NULL;
unsigned int offset = 0;
unsigned int h263_version = 0;
h263_version = (tvb_get_guint8( tvb, offset ) & 0xc0 ) >> 6;
if ( check_col( pinfo->cinfo, COL_PROTOCOL ) ) {
col_set_str( pinfo->cinfo, COL_PROTOCOL, "H.263" );
}
if( h263_version == 0x00) {
if ( check_col( pinfo->cinfo, COL_INFO) ) {
col_append_str( pinfo->cinfo, COL_INFO, " MODE A");
}
}
else if( h263_version == 0x02) {
if ( check_col( pinfo->cinfo, COL_INFO) ) {
col_append_str( pinfo->cinfo, COL_INFO, " MODE B");
}
}
else if( h263_version == 0x03) {
if ( check_col( pinfo->cinfo, COL_INFO) ) {
col_append_str( pinfo->cinfo, COL_INFO, " MODE C");
}
}
if ( tree ) {
ti = proto_tree_add_item( tree, proto_h263, tvb, offset, -1, FALSE );
h263_tree = proto_item_add_subtree( ti, ett_h263 );
/* FBIT 1st octet, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_ftype, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x80 );
/* PBIT 1st octet, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_pbframes, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x40 );
/* SBIT 1st octet, 3 bits */
proto_tree_add_uint( h263_tree, hf_h263_sbit, tvb, offset, 1, ( tvb_get_guint8( tvb, offset ) & 0x38 ) >> 3 );
/* EBIT 1st octet, 3 bits */
proto_tree_add_uint( h263_tree, hf_h263_ebit, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x7 );
offset++;
/* SRC 2nd octet, 3 bits */
proto_tree_add_uint( h263_tree, hf_h263_srcformat, tvb, offset, 1, tvb_get_guint8( tvb, offset ) >> 5 );
if(h263_version == 0x00) { /* MODE A */
/* I flag, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_picture_coding_type, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x10 );
/* U flag, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_unrestricted_motion_vector, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x08 );
/* S flag, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_syntax_based_arithmetic, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x04 );
/* A flag, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_advanced_prediction, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x02 );
/* Reserved 2nd octect, 1 bit + 3rd octect 3 bits */
proto_tree_add_uint( h263_tree, hf_h263_r, tvb, offset, 2, ( ( tvb_get_guint8( tvb, offset ) & 0x1 ) << 3 ) + ( ( tvb_get_guint8( tvb, offset + 1 ) & 0xe0 ) >> 5 ) );
offset++;
/* DBQ 3 octect, 2 bits */
proto_tree_add_uint( h263_tree, hf_h263_dbq, tvb, offset, 1, ( tvb_get_guint8( tvb, offset ) & 0x18 ) >> 3 );
/* TRB 3 octect, 3 bits */
proto_tree_add_uint( h263_tree, hf_h263_trb, tvb, offset, 1, ( tvb_get_guint8( tvb, offset ) & 0x07 ) );
offset++;
/* TR 4 octect, 8 bits */
proto_tree_add_uint( h263_tree, hf_h263_tr, tvb, offset, 1, tvb_get_guint8( tvb, offset ) );
offset++;
} else { /* MODE B or MODE C */
/* QUANT 2 octect, 5 bits */
proto_tree_add_uint( h263_tree, hf_h263_quant, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x1f );
offset++;
/* GOBN 3 octect, 5 bits */
proto_tree_add_uint( h263_tree, hf_h263_gobn, tvb, offset, 1, ( tvb_get_guint8( tvb, offset ) & 0xf8 ) >> 3);
/* MBA 3 octect, 3 bits + 4 octect 6 bits */
proto_tree_add_uint( h263_tree, hf_h263_mba, tvb, offset, 2, ( ( tvb_get_guint8( tvb, offset ) & 0x7 ) << 6 ) + ( ( tvb_get_guint8( tvb, offset + 1 ) & 0xfc ) >> 2 ) );
offset++;
/* Reserved 4th octect, 2 bits */
proto_tree_add_uint( h263_tree, hf_h263_r, tvb, offset, 1, ( tvb_get_guint8( tvb, offset ) & 0x3 ) );
offset++;
/* I flag, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_picture_coding_type, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x80 );
/* U flag, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_unrestricted_motion_vector, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x40 );
/* S flag, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_syntax_based_arithmetic, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x20 );
/* A flag, 1 bit */
proto_tree_add_boolean( h263_tree, hf_h263_advanced_prediction, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x10 );
/* HMV1 5th octect, 4 bits + 6th octect 3 bits*/
proto_tree_add_uint( h263_tree, hf_h263_hmv1, tvb, offset, 2,( ( tvb_get_guint8( tvb, offset ) & 0xf ) << 3 ) + ( ( tvb_get_guint8( tvb, offset+1 ) & 0xe0 ) >> 5) );
offset++;
/* VMV1 6th octect, 5 bits + 7th octect 2 bits*/
proto_tree_add_uint( h263_tree, hf_h263_vmv1, tvb, offset, 2,( ( tvb_get_guint8( tvb, offset ) & 0x1f ) << 2 ) + ( ( tvb_get_guint8( tvb, offset+1 ) & 0xc0 ) >> 6) );
offset++;
/* HMV2 7th octect, 6 bits + 8th octect 1 bit*/
proto_tree_add_uint( h263_tree, hf_h263_hmv2, tvb, offset, 2,( ( tvb_get_guint8( tvb, offset ) & 0x3f ) << 1 ) + ( ( tvb_get_guint8( tvb, offset+1 ) & 0xf0 ) >> 7) );
offset++;
/* VMV2 8th octect, 7 bits*/
proto_tree_add_uint( h263_tree, hf_h263_vmv2, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x7f );
offset++;
if(h263_version == 0x03) { /* MODE C */
/* Reserved 9th to 11th octect, 8 + 8 + 3 bits */
proto_tree_add_uint( h263_tree, hf_h263_rr, tvb, offset, 3, ( tvb_get_guint8( tvb, offset ) << 11 ) + ( tvb_get_guint8( tvb, offset + 1 ) << 3 ) + ( ( tvb_get_guint8( tvb, offset + 2 ) & 0xe0 ) >> 5 ) );
offset+=2;
/* DBQ 11th octect, 2 bits */
proto_tree_add_uint( h263_tree, hf_h263_dbq, tvb, offset, 1, ( tvb_get_guint8( tvb, offset ) & 0x18 ) >>3 );
/* TRB 11th octect, 3 bits */
proto_tree_add_uint( h263_tree, hf_h263_trb, tvb, offset, 1, tvb_get_guint8( tvb, offset ) & 0x07 );
offset++;
/* TR 12th octect, 8 bits */
proto_tree_add_uint( h263_tree, hf_h263_tr, tvb, offset, 1, tvb_get_guint8( tvb, offset ) );
offset++;
} /* end mode c */
} /* end not mode a */
/* The rest of the packet is the H.263 stream */
proto_tree_add_item( h263_tree, hf_h263_data, tvb, offset, -1, FALSE );
}
}
void
proto_register_h263(void)
{
static hf_register_info hf[] =
{
{
&hf_h263_ftype,
{
"F",
"h263.sbit",
FT_BOOLEAN,
BASE_NONE,
NULL,
0x0,
"Indicates the mode of the payload header (MODE A or B/C)", HFILL
}
},
{
&hf_h263_pbframes,
{
"p/b frame",
"h263.pbframes",
FT_BOOLEAN,
BASE_NONE,
NULL,
0x0,
"Optional PB-frames mode as defined by H.263 (MODE C)", HFILL
}
},
{
&hf_h263_sbit,
{
"Start bit position",
"h263.sbit",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Start bit position specifies number of most significant bits that shall be ignored in the first data byte.", HFILL
}
},
{
&hf_h263_ebit,
{
"End bit position",
"h263.ebit",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"End bit position specifies number of least significant bits that shall be ignored in the last data byte.", HFILL
}
},
{
&hf_h263_srcformat,
{
"SRC format",
"h263.srcformat",
FT_UINT8,
BASE_DEC,
VALS(srcformat_vals),
0x0,
"Source format specifies the resolution of the current picture.", HFILL
}
},
{
&hf_h263_picture_coding_type,
{
"Inter-coded frame",
"h263.picture_coding_type",
FT_BOOLEAN,
BASE_NONE,
NULL,
0x0,
"Picture coding type, intra-coded (false) or inter-coded (true)", HFILL
}
},
{
&hf_h263_unrestricted_motion_vector,
{
"Motion vector",
"h263.unrestricted_motion_vector",
FT_BOOLEAN,
BASE_NONE,
NULL,
0x0,
"Unrestricted Motion Vector option for current picture", HFILL
}
},
{
&hf_h263_syntax_based_arithmetic,
{
"Syntax-based arithmetic coding",
"h263.syntax_based_arithmetic",
FT_BOOLEAN,
BASE_NONE,
NULL,
0x0,
"Syntax-based Arithmetic Coding option for current picture", HFILL
}
},
{
&hf_h263_advanced_prediction,
{
"Advanced prediction option",
"h263.advanced_prediction",
FT_BOOLEAN,
BASE_NONE,
NULL,
0x0,
"Advanced Prediction option for current picture", HFILL
}
},
{
&hf_h263_dbq,
{
"Differential quantization parameter",
"h263.dbq",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Differential quantization parameter used to calculate quantizer for the B frame based on quantizer for the P frame, when PB-frames option is used.", HFILL
}
},
{
&hf_h263_trb,
{
"Temporal Reference for B frames",
"h263.trb",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Temporal Reference for the B frame as defined by H.263", HFILL
}
},
{
&hf_h263_tr,
{
"Temporal Reference for P frames",
"h263.tr",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Temporal Reference for the P frame as defined by H.263", HFILL
}
},
{
&hf_h263_quant,
{
"Quantizer",
"h263.quant",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Quantization value for the first MB coded at the starting of the packet.", HFILL
}
},
{
&hf_h263_gobn,
{
"GOB Number",
"h263.gobn",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"GOB number in effect at the start of the packet.", HFILL
}
},
{
&hf_h263_mba,
{
"Macroblock address",
"h263.mba",
FT_UINT16,
BASE_DEC,
NULL,
0x0,
"The address within the GOB of the first MB in the packet, counting from zero in scan order.", HFILL
}
},
{
&hf_h263_hmv1,
{
"Horizontal motion vector 1",
"h263.hmv1",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Horizontal motion vector predictor for the first MB in this packet ", HFILL
}
},
{
&hf_h263_vmv1,
{
"Vertical motion vector 1",
"h263.vmv1",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Vertical motion vector predictor for the first MB in this packet ", HFILL
}
},
{
&hf_h263_hmv2,
{
"Horizontal motion vector 2",
"h263.hmv2",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Horizontal motion vector predictor for block number 3 in the first MB in this packet when four motion vectors are used with the advanced prediction option.", HFILL
}
},
{
&hf_h263_vmv2,
{
"Vertical motion vector 2",
"h263.vmv2",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Vertical motion vector predictor for block number 3 in the first MB in this packet when four motion vectors are used with the advanced prediction option.", HFILL
}
},
{
&hf_h263_r,
{
"Reserved field",
"h263.r",
FT_UINT8,
BASE_DEC,
NULL,
0x0,
"Reserved field that houls contain zeroes", HFILL
}
},
{
&hf_h263_rr,
{
"Reserved field 2",
"h263.rr",
FT_UINT16,
BASE_DEC,
NULL,
0x0,
"Reserved field that should contain zeroes", HFILL
}
},
{
&hf_h263_data,
{
"H.263 stream",
"h263.stream",
FT_BYTES,
BASE_NONE,
NULL,
0x0,
"The H.263 stream including its Picture, GOB or Macro block start code.", HFILL
}
},
};
static gint *ett[] =
{
&ett_h263,
};
proto_h263 = proto_register_protocol("ITU-T Recommendation H.263 RTP Payload header (RFC2190)",
"H.263", "h263");
proto_register_field_array(proto_h263, hf, array_length(hf));
proto_register_subtree_array(ett, array_length(ett));
}
void
proto_reg_handoff_h263(void)
{
dissector_handle_t h263_handle;
h263_handle = create_dissector_handle(dissect_h263, proto_h263);
dissector_add("rtp.pt", PT_H263, h263_handle);
}