wireshark/tools/make-tap-reg.py

160 lines
3.7 KiB
Python

#!/usr/bin/env python
#
# Looks for registration routines in the taps,
# and assembles C code to call all the routines.
#
# This is a Python version of the make-reg-dotc shell script.
# Running the shell script on Win32 is very very slow because of
# all the process-launching that goes on --- multiple greps and
# seds for each input file. I wrote this python version so that
# less processes would have to be started.
#
# $Id$
import os
import sys
import re
import pickle
from stat import *
#
# The first argument is the directory in which the source files live.
#
srcdir = sys.argv[1]
#
# The second argument is "taps".
#
registertype = sys.argv[2]
if registertype == "taps":
tmp_filename = "wireshark-tap-register.c-tmp"
final_filename = "wireshark-tap-register.c"
cache_filename = "wireshark-tap-register-cache.pkl"
else:
print "Unknown output type '%s'" % registertype
sys.exit(1)
#
# All subsequent arguments are the files to scan.
#
files = sys.argv[3:]
# Create the proper list of filenames
filenames = []
for file in files:
if os.path.isfile(file):
filenames.append(file)
else:
filenames.append("%s/%s" % (srcdir, file))
if len(filenames) < 1:
print "No files found"
sys.exit(1)
# Look through all files, applying the regex to each line.
# If the pattern matches, save the "symbol" section to the
# appropriate array.
regs = {
'tap_reg': [],
}
# For those that don't know Python, r"" indicates a raw string,
# devoid of Python escapes.
tap_regex0 = r"^(?P<symbol>register_tap_listener_[_A-Za-z0-9]+)\s*\([^;]+$"
tap_regex1 = r"void\s+(?P<symbol>register_tap_listener_[_A-Za-z0-9]+)\s*\([^;]+$"
# This table drives the pattern-matching and symbol-harvesting
patterns = [
( 'tap_reg', re.compile(tap_regex0) ),
( 'tap_reg', re.compile(tap_regex1) ),
]
# Open our registration symbol cache
cache = None
if cache_filename:
try:
cache_file = open(cache_filename, 'rb')
cache = pickle.load(cache_file)
cache_file.close()
except:
cache = {}
# Grep
for filename in filenames:
file = open(filename)
cur_mtime = os.fstat(file.fileno())[ST_MTIME]
if cache and cache.has_key(filename):
cdict = cache[filename]
if cur_mtime == cdict['mtime']:
# print "Pulling %s from cache" % (filename)
regs['tap_reg'].extend(cdict['tap_reg'])
file.close()
continue
# We don't have a cache entry
if cache is not None:
cache[filename] = {
'mtime': cur_mtime,
'tap_reg': [],
}
# print "Searching %s" % (filename)
for line in file.readlines():
for action in patterns:
regex = action[1]
match = regex.search(line)
if match:
symbol = match.group("symbol")
sym_type = action[0]
regs[sym_type].append(symbol)
if cache is not None:
# print "Caching %s for %s: %s" % (sym_type, filename, symbol)
cache[filename][sym_type].append(symbol)
file.close()
if cache is not None and cache_filename is not None:
cache_file = open(cache_filename, 'wb')
pickle.dump(cache, cache_file)
cache_file.close()
# Make sure we actually processed something
if len(regs['tap_reg']) < 1:
print "No protocol registrations found"
sys.exit(1)
# Sort the lists to make them pretty
regs['tap_reg'].sort()
reg_code = open(tmp_filename, "w")
reg_code.write("/* Do not modify this file. */\n")
reg_code.write("/* It is created automatically by the Makefile. */\n")
# Make the routine to register all taps
reg_code.write("""
#include "register.h"
void register_all_tap_listeners(void) {
""");
for symbol in regs['tap_reg']:
line = " {extern void %s (void); %s ();}\n" % (symbol, symbol)
reg_code.write(line)
reg_code.write("}\n")
# Close the file
reg_code.close()
# Remove the old final_file if it exists.
try:
os.stat(final_filename)
os.remove(final_filename)
except OSError:
pass
# Move from tmp file to final file
os.rename(tmp_filename, final_filename)